CN109163752A - 最小二乘法曲线拟合校正磁编码器的初值算法 - Google Patents

最小二乘法曲线拟合校正磁编码器的初值算法 Download PDF

Info

Publication number
CN109163752A
CN109163752A CN201811084805.3A CN201811084805A CN109163752A CN 109163752 A CN109163752 A CN 109163752A CN 201811084805 A CN201811084805 A CN 201811084805A CN 109163752 A CN109163752 A CN 109163752A
Authority
CN
China
Prior art keywords
value
curve
square method
period
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811084805.3A
Other languages
English (en)
Inventor
张明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811084805.3A priority Critical patent/CN109163752A/zh
Publication of CN109163752A publication Critical patent/CN109163752A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种最小二乘法曲线拟合校正磁编码器的初值算法,所述方法步骤如下:在拟合曲线的初始状态查找已知数据点的最值,假定最值为当前数据区间的极值,通过极值计算幅值A;计算曲线的分界零点,根据分界零点计算数据量的周期,将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B;通过幅值A计算直流分量D;根据曲线的标准表达式推导计算相位C,将计算出的初值A、B、C、D带入最小二乘法进行曲线拟合,通过对初值进行快速准确的计算,以达到高效计算初值,提高最小二乘法曲线拟合校正磁编码器的效率和准确率的目的。

Description

最小二乘法曲线拟合校正磁编码器的初值算法
技术领域
本发明涉及最小二乘法曲线拟合校正磁编码器技术领域,具体涉及一种最小二乘法曲线拟合校正磁编码器的初值算法。
背景技术
磁编码器是一种基于磁阻效应或霍尔效应的新型轴角传感器,被广泛应用于工业,农业以及航天领域。正余弦磁编码器的输出是转子角位置的正余弦信号。但由于纵多非理想因素的影响,磁编码器输出的正余弦信号往往存在直流误差,幅值误差和相位误差,直接进行解调必将造成较大的解调误差。而现有技术方案中通常依据具体使用环境仅从某一种主要误差考虑增加相关的硬件校正,调试手段也需要人工方式进行配合修正,为解决上述问题采用基于最小二乘法的曲线拟合对磁编码器进行校正。
但是对于非线性的周期性曲线的拟合,该算法是需要迭代的,也就是需要给定初值,而初值是否合适直接关系到迭代是否收敛,拟合是否成功。这种算法要求能够给定与最佳结果相近的初值,其中对于曲线的拟合,频率的估算复杂,影响磁编码器校正的准确率。
发明内容
为解决上述技术问题,本发明提出了一种最小二乘法曲线拟合校正磁编码器的初值算法,以达到高效计算初值,提高最小二乘法曲线拟合校正磁编码器的效率和准确率的目的。
为达到上述目的,本发明的技术方案如下:一种最小二乘法曲线拟合校正磁编码器的初值算法,所述算法步骤如下:在拟合曲线的初始状态查找已知数据点的最值,假定最值为当前数据区间的极值,通过极值计算幅值A;计算曲线的分界零点,根据分界零点计算数据量的周期,将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B;通过幅值A计算直流分量D;根据曲线的标准表达式推导计算相位C,将计算出的初值A、B、C、D带入最小二乘法进行曲线拟合。
进一步地,所述最值包括:最大值和最小值,所述极值包括:极大值和极小值,所述计算幅值A的具体方法是:(极大值-极小值)/2,假定当前数据区间的极大值和极小值就是最佳曲线的最大值和最小值(实际情况下待拟合点可能集中分布在一个波形的某一小段如1/4周期或1/8周期,在这一小段区间上的最大值和最小值称为极大值和极小值,也就是说它不一定是幅值),然后用极大值减去极小值得到纵坐标的范围,在假定的情况下幅值为最大值减去最小值的差的一半,这里就是幅值。
进一步地,所述分界零点是以X为零作为分界线,所述计算曲线的分界零点的方法是:取所有纵坐标求和后的平均值作为分界零点,在不能保证保证所有曲线都是以x=0作为分界线时,利用平均值计算分界零点。
进一步地,所述根据分界零点计算数据量的周期的具体方法是:将曲线上的点逐一与分界零点进行比较,当出现下一个点与上一个点正好处于分界零点两侧时,记录过零点个数的变量自增加一,定义过零点的个数cont_num,两次经过零点即为一个周期T,所以T=(cont_num-1)/2。
进一步地,所述将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B的具体方法是:将数据组依次在1、1/2、1/3、……、1/i个周期进行拟合,直到拟合的手链度达到指定的精度,所述频率B=2*π*f,f=n/(1/(1+lum))=n*(1+lum),依次拟合时若上一次拟合失败则继续向下拟合,直到拟合成功。
进一步地,所述通过幅值A计算直流分量D的具体方法是:直流分量D=极大值-幅值A。进一步地,所述曲线的标准表达式为正弦曲线的标准表达式:Y=A*sin(B*X+C)+D,所述根据曲线的标准表达式推导计算相位C的具体方法是:已知A,B,D,X,Y,可得:C=asin((Ydata[m]-D)/(1.0*A))-B*Xdata[m]。
本发明具有如下优点:
(1).本发明通过对初值进行快速准确的计算,从而提高最小二乘法曲线拟合对磁编码器校正的效率和准确率。
(2).本发明可以自动调节频率,更灵活的利用最小二乘法在对曲线拟合计算。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例公开的最小二乘法曲线拟合校正磁编码器的初值算法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种最小二乘法曲线拟合校正磁编码器的初值算法,其工作原理是通过对初值进行快速准确的计算,以达到高效计算初值,提高最小二乘法曲线拟合校正磁编码器的效率和准确率的目的。
下面结合实施例和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种最小二乘法曲线拟合校正磁编码器的初值算法,所述方法步骤如下:在拟合曲线的初始状态查找已知数据点的最值,假定最值为当前数据区间的极值,通过极值计算幅值A;计算曲线的分界零点,根据分界零点计算数据量的周期,将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B;通过幅值A计算直流分量D;根据曲线的标准表达式推导计算相位C,将计算出的初值A、B、C、D带入最小二乘法进行曲线拟合。
其中,所述最值包括:最大值和最小值,所述极值包括:极大值和极小值,所述计算幅值A的具体方法是:(极大值-极小值)/2,假定当前数据区间的极大值和极小值就是最佳曲线的最大值和最小值(实际情况下待拟合点可能集中分布在一个波形的某一小段如1/4周期或1/8周期,在这一小段区间上的最大值和最小值称为极大值和极小值,也就是说它不一定是幅值),然后用极大值减去极小值得到纵坐标的范围,在假定的情况下幅值为最大值减去最小值的差的一半,这里就是幅值。
其中,所述分界零点是以X为零作为分界线,所述计算曲线的分界零点的方法是:取所有纵坐标求和后的平均值作为分界零点,在不能保证保证所有曲线都是以x=0作为分界线时,利用平均值计算分界零点,分界零点为广义的零点,是正负半轴的分界,实际波形中并不能保证所有曲线都是以x=0作为分界线的。
其中,所述根据分界零点计算数据量的周期的具体方法是:将曲线上的点逐一与分界零点进行比较,当出现下一个点与上一个点正好处于分界零点两侧时,记录过零点个数的变量自增加一,定义过零点的个数cont_num,两次经过零点即为一个周期T,所以T=(cont_num-1)/2。
其中,将曲线上的点逐一与分界零点进行比较具体方法是:将第一个点的纵坐标与零点比较,若该点小于零点,则比较第二个点的纵坐标,若还小于零点,则继续比较第三个点;当发现第k个点大于零点时,对记录过零点数的变量加一,继续比较,依据正弦特点我们知道在数据量最终必然逐渐达到幅值而后再次向零点逼近,那么继续比较,则会出现某个点大于零点,而下一个点小于零点的情况;由以上计算可以得到,过零点的个数cont_num,两次经过零点即为一个周期T,所以T=(cont_num-1)/2。
其中,需要特别说明的是以上情况是假定周期个数大于1,实际拟合情况下所以点可能都在一个周期内,也就是说T=0;这种情况下将直接导致拟合结果的失败,针对单周期下需要再次处理,即设定当周期T<=0,时,强制使周期为1。因为要拟合必定要有数据,有数据,周期就一定不为0
其中,所述将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B的具体方法是:将数据组依次在1、1/2、1/3、……、1/i(i为自然数)个周期进行拟合,直到拟合的手链度达到指定的精度,所述频率B=2*π*f,f=n/(1/(1+lum))=n*(1+lum),依次拟合时若上一次拟合失败则继续向下拟合,直到拟合成功,其中n为数据个数,lum初始值为0,失败一次自加一,在外循环进行。
其中,所述通过幅值A计算直流分量D的具体方法是:直流分量D=极大值-幅值A。
其中,所述曲线的标准表达式为正弦曲线的标准表达式:Y=A*sin(B*X+C)+D,所述根据曲线的标准表达式推导计算相位C的具体方法是:已知A,B,D,X,Y,可得:
C=asin((Ydata[m]-D)/(1.0*A))-B*Xdata[m],其中Xdata[m]与Ydata[m]就是数据的横纵坐标分别形成的数组,这里需要指出的是,通常我们选择第一个点的横纵坐标,但有种特例arcsin这个符号具有定义域,所以需要判断,
当((((Ydata[m]-D)/A)>1)||(((Ydata[m]-D)/A)<-1.000))满足时应该使用下一个点的横纵坐标即i++。
上述实施例是以正弦曲线为例,本发明适用于有公式且周期性变化的曲线,如正弦曲线、余弦曲线等。
对磁编码器进行校正,具体方法包括:步骤一、将磁编码器转换输出的电信号离散化,通过A/D进行周期采样,采样点数为n,得到数据序列对为(ti,vs[i]),i的取值范围为1,2,3….n;步骤二、分别对正弦信号和余弦信号的采样数据进行整体分析,分别估算出正弦曲线和余弦曲线的四个参数并以此作为最小二乘法的初值,进行曲线拟合,分别得到最小二乘法的正弦和余弦拟合曲线方程式。步骤三、以求得的正弦曲线方程式为基准,计算正弦曲线方程式与正弦方程式的幅值偏差,与相位偏差。从而进行补偿校正。
以上所述的仅是本发明所公开的一种最小二乘法曲线拟合校正磁编码器的初值算法的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (7)

1.一种最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述算法步骤如下:在拟合曲线的初始状态查找已知数据点的最值,假定最值为当前数据区间的极值,通过极值计算幅值A;计算曲线的分界零点,根据分界零点计算数据量的周期,将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B;通过幅值A计算直流分量D;根据曲线的标准表达式推导计算相位C;将计算出的初值A、B、C、D带入最小二乘法进行曲线拟合。
2.根据权利要求1所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述最值包括:最大值和最小值,所述极值包括:极大值和极小值,所述计算幅值A的具体方法是:(极大值-极小值)/2。
3.根据权利要求2所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述分界零点是以X为零作为分界线,所述计算曲线的分界零点的方法是:取所有纵坐标求和后的平均值作为分界零点。
4.根据权利要求3所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述根据分界零点计算数据量的周期的具体方法是:将曲线上的点逐一与分界零点进行比较,当出现下一个点与上一个点正好处于分界零点两侧时,记录过零点个数的变量自增加一,定义过零点的个数cont_num,两次经过零点即为一个周期T,所以T=(cont_num-1)/2。
5.根据权利要求4所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述将数据组在周期内的分布作为周期的初值进行多次拟合得到频率B的具体方法是:将数据组依次在1、1/2、1/3、……、1/i个周期进行拟合,直到拟合的手链度达到指定的精度,所述频率B=2*π*f,f=n/(1/(1+lum))=n*(1+lum)。
6.根据权利要求5所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述通过幅值A计算直流分量D的具体方法是:直流分量D=极大值-幅值A。
7.根据权利要求6所述的最小二乘法曲线拟合校正磁编码器的初值算法,其特征在于,所述曲线的标准表达式为正弦曲线的标准表达式:Y=A*sin(B*X+C)+D,所述根据曲线的标准表达式推导计算相位C的具体方法是:已知A,B,D,X,Y,可得:
C=asin((Ydata[m]-D)/(1.0*A))-B*Xdata[m]。
CN201811084805.3A 2018-09-18 2018-09-18 最小二乘法曲线拟合校正磁编码器的初值算法 Pending CN109163752A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811084805.3A CN109163752A (zh) 2018-09-18 2018-09-18 最小二乘法曲线拟合校正磁编码器的初值算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811084805.3A CN109163752A (zh) 2018-09-18 2018-09-18 最小二乘法曲线拟合校正磁编码器的初值算法

Publications (1)

Publication Number Publication Date
CN109163752A true CN109163752A (zh) 2019-01-08

Family

ID=64879570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811084805.3A Pending CN109163752A (zh) 2018-09-18 2018-09-18 最小二乘法曲线拟合校正磁编码器的初值算法

Country Status (1)

Country Link
CN (1) CN109163752A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940371A (zh) * 2019-12-13 2020-03-31 浙江禾川科技股份有限公司 一种旋转磁电编码器的校准方法、装置及设备
CN113739748A (zh) * 2021-08-13 2021-12-03 连云港杰瑞电子有限公司 一种感应式角度传感器参数采集方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184618A (ja) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd 正弦波交流信号の周波数検出方法
CN104482949A (zh) * 2014-12-29 2015-04-01 哈尔滨工业大学 一种光电编码器精码零偏、幅值自适应补偿方法
CN104613986A (zh) * 2015-02-05 2015-05-13 哈尔滨工业大学 一种基于最小二乘法拟合曲线补偿光电编码器基准电压的方法
CN108333420A (zh) * 2018-04-02 2018-07-27 三峡大学 一种低频正弦信号峰值检测装置和峰值检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184618A (ja) * 1994-12-27 1996-07-16 Fuji Electric Co Ltd 正弦波交流信号の周波数検出方法
CN104482949A (zh) * 2014-12-29 2015-04-01 哈尔滨工业大学 一种光电编码器精码零偏、幅值自适应补偿方法
CN104613986A (zh) * 2015-02-05 2015-05-13 哈尔滨工业大学 一种基于最小二乘法拟合曲线补偿光电编码器基准电压的方法
CN108333420A (zh) * 2018-04-02 2018-07-27 三峡大学 一种低频正弦信号峰值检测装置和峰值检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴义华: ""正弦信号四参数的高精度估计算法"", 《中国科学技术大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940371A (zh) * 2019-12-13 2020-03-31 浙江禾川科技股份有限公司 一种旋转磁电编码器的校准方法、装置及设备
WO2021114419A1 (zh) * 2019-12-13 2021-06-17 浙江禾川科技股份有限公司 一种旋转磁电编码器的校准方法、装置及设备
CN113739748A (zh) * 2021-08-13 2021-12-03 连云港杰瑞电子有限公司 一种感应式角度传感器参数采集方法
CN113739748B (zh) * 2021-08-13 2024-04-02 连云港杰瑞电子有限公司 一种感应式角度传感器参数采集方法

Similar Documents

Publication Publication Date Title
CN104038134B (zh) 一种基于线性霍尔的永磁同步电机转子位置误差校正方法
CN106018958B (zh) 孤网变频***中二次侧电流电压频率跟踪方法
CN109163752A (zh) 最小二乘法曲线拟合校正磁编码器的初值算法
DE102015122484A1 (de) System und Verfahren zum Messen von Leistung in einem Leistungsfaktorwandler
CN105629060B (zh) 基于最优基带滤波的电网频率测量方法和装置
CN105652085B (zh) 一种基于改进不完全s变换的基波和谐波参数估计方法
EP2979344B1 (en) Algorithm for passive power factor compensation method with differential capacitor change and reduced line transient noise
CN103399213B (zh) 一种基于基波频率修正的高压设备介质损耗因数计算方法
CN103018555A (zh) 一种高精度的电力参数软件同步采样方法
CN104410408B (zh) 一种单相锁相方法及装置
CN110112776B (zh) 考虑电网背景谐波的并网逆变器电网阻抗辨识方法
WO2017028617A1 (zh) 相位角获取方法和***
CN104360156A (zh) 一种电力***频率偏移时信号相角的测量方法
CN104569581B (zh) 一种电网频率测量的多水平集单周期估计方法
CN105067882B (zh) 一种电量幅值的测定方法
CN108599547B (zh) 三相电压型功率因数校正变换器鲁棒模型预测控制方法
CN110133381A (zh) 一种脉冲上升时间不确定度的确定方法
CN103543331A (zh) 一种计算电信号谐波和间谐波的方法
CN107276591A (zh) 一种并行采样***的失配误差估计方法及***
CN107944405A (zh) 一种基于极值点校正的三次样条局部均值分解方法
CN109191543B (zh) 一种交流采样同断面数据生成方法
CN109521269A (zh) 一种幅度调制信号数字化测频方法
CN109066698B (zh) 一种电网电压瞬时相位角的计算方法
CN104061950A (zh) 一种提高旋转变压器数字解码***解码精度的方法
CN114397496A (zh) 应用于标准表电压电流的相位测量方法、***、及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108