WO2024113450A1 - 磁编码器的校正方法、装置及磁编码器 - Google Patents

磁编码器的校正方法、装置及磁编码器 Download PDF

Info

Publication number
WO2024113450A1
WO2024113450A1 PCT/CN2022/143270 CN2022143270W WO2024113450A1 WO 2024113450 A1 WO2024113450 A1 WO 2024113450A1 CN 2022143270 W CN2022143270 W CN 2022143270W WO 2024113450 A1 WO2024113450 A1 WO 2024113450A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
target
magnetic encoder
mapping relationship
temperature
Prior art date
Application number
PCT/CN2022/143270
Other languages
English (en)
French (fr)
Inventor
徐凯敏
王�华
潘德方
Original Assignee
赛卓电子科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赛卓电子科技(上海)股份有限公司 filed Critical 赛卓电子科技(上海)股份有限公司
Publication of WO2024113450A1 publication Critical patent/WO2024113450A1/zh

Links

Images

Definitions

  • the present invention relates to the field of industrial control technology, and in particular to a calibration method and device for a magnetic encoder and a magnetic encoder.
  • Magnetic encoders detect changes in magnetic fields to obtain rotational position information and provide accurate angle measurement. They are widely used in non-contact rotational position sensing, rotary switches, brushless DC motor position control, etc. Compared with optical encoders, magnetic encoders have the advantages of strong environmental tolerance, small size, light weight, and high reliability. They are suitable for application scenarios in harsh environments such as dust, oil, and water.
  • the magnetic encoder is mainly composed of Hall sensor, magnetic code disk, signal processing circuit and main structure.
  • the output voltage of the Hall sensor is proportional to the magnetic field, and its output voltage varies greatly with temperature, which will seriously affect the detection accuracy of the magnetic encoder in the temperature environment and limit its scope of use.
  • the Hall sensor is generally compensated in the corresponding temperature environment by means of constant current source power supply, but this method has high requirements on the temperature coefficient and consistency of the Hall sensor, and there is no compensation for the magnet in the measurement system. If it is not compensated, it will be impossible to obtain more accurate rotation position information, resulting in poor angle measurement accuracy.
  • the present invention provides a calibration method and device for a magnetic encoder and a magnetic encoder, so as to solve the defect in the prior art that the magnetic encoder is affected by temperature and has poor angle measurement accuracy.
  • the present invention provides a calibration method for a magnetic encoder, comprising:
  • the system operating temperature is obtained
  • temperature compensation is performed on the first rotation angle of the target magnetic encoder to determine a second rotation angle
  • the target relationship library corresponds to the target magnetic encoder;
  • the first mapping relationship includes the correspondence between the actual value of the rotation angle and the measured value of the rotation angle within the system operating temperature range;
  • the first rotation angle is the rotation angle collected by the target magnetic encoder at the system operating temperature;
  • the second rotation angle is the rotation angle output by the target magnetic encoder at the system operating temperature.
  • a magnetic encoder calibration method when it is determined that the target magnetic encoder is in a working state, after obtaining the system working temperature, it also includes:
  • N temperature points are set within the system operating temperature range to obtain N+1 temperature intervals
  • the target temperature interval is one of the temperature intervals; N is a positive integer, and the larger the value of N is, the closer the Hall potential output by the target magnetic encoder is to linearity.
  • determining a second mapping relationship corresponding to the target temperature range includes:
  • the target rotation angle measurement value includes the rotation angle measurement values corresponding to the starting angle point and the ending angle point in the rotation angle interval;
  • the target rotation angle actual value includes the rotation angle actual values corresponding to the starting angle point and the ending angle point in the rotation angle interval;
  • M is a positive integer, and the larger the value of M is, the closer the system operating temperature change of the target magnetic encoder is to linearity.
  • temperature compensation is performed on the first rotation angle of the target magnetic encoder to determine the second rotation angle, including:
  • the second rotation angle is determined based on the first rotation angle and the angle compensation amount.
  • determining the angle compensation amount based on the first mapping relationship and the first rotation angle includes:
  • the angle compensation amount is determined based on the first rotation angle and the target mapping relationship.
  • the first mapping relationship includes the second mapping relationship.
  • the second mapping relationship is obtained by formula (1):
  • is the rotation angle measurement value in the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • is the angle compensation amount required for temperature compensation at ⁇ .
  • ⁇ (a) and ⁇ (a+1) are the actual values of the target rotation angle corresponding to the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • ⁇ a is the difference between the target rotation angle measurement value corresponding to ⁇ (a) and the actual value of the target rotation angle.
  • ⁇ (a+1) is the difference between the target rotation angle measurement value corresponding to ⁇ (a+1) and the actual value of the target rotation angle.
  • the present invention also provides a calibration device for a magnetic encoder, comprising:
  • a temperature acquisition module used to acquire the system operating temperature when it is determined that the target magnetic encoder is in a working state
  • a temperature association module connected to the temperature acquisition module, for matching a first mapping relationship corresponding to the system operating temperature according to a target relationship library;
  • a correction module connected to the temperature association module, and configured to perform temperature compensation on the first rotation angle of the target magnetic encoder according to the first mapping relationship to determine a second rotation angle
  • the target relationship library corresponds to the target magnetic encoder;
  • the first mapping relationship includes the correspondence between the actual value of the rotation angle and the measured value of the rotation angle within the system operating temperature range;
  • the first rotation angle is the rotation angle collected by the target magnetic encoder at the system operating temperature;
  • the second rotation angle is the rotation angle output by the target magnetic encoder at the system operating temperature.
  • the present invention also provides a magnetic encoder, comprising a Hall sensor and a magnetic code disk which are located on the same central axis and stacked from bottom to top, and a signal processing circuit for signal processing, wherein the signal processing circuit is used to execute the correction method of the magnetic encoder as described in any of the above items.
  • the Hall sensor is a switch type Hall sensor.
  • the present invention also provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, a correction method for the magnetic encoder as described above is implemented.
  • the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the correction method of the magnetic encoder as described in any one of the above is implemented.
  • the present invention also provides a computer program product, comprising a computer program, wherein when the computer program is executed by a processor, the correction method of the magnetic encoder as described above is implemented.
  • the calibration method, device and magnetic encoder provided by the present invention when directly calibrating based on the system operating temperature decision, calibrate the first rotation angle obtained by measuring the target magnetic encoder using the first mapping relationship corresponding to the system operating temperature, so as to output the corrected second rotation angle as the angle measurement result.
  • the mapping relationship can weaken the difference between the actual value and the measured value of the rotation angle at different operating temperatures, avoid the error caused by temperature in the entire measurement process, and improve the precision and accuracy of the angle measurement.
  • FIG1 is a schematic flow chart of a calibration method for a magnetic encoder provided by the present invention.
  • FIG2 is a schematic diagram of a first partial flow chart of a calibration method for a magnetic encoder provided by the present invention
  • FIG. 3 is a schematic diagram of a second partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • FIG4 is a schematic diagram of a third partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • FIG. 5 is a schematic diagram of a third partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • FIG6 is a schematic diagram of the principle of the calibration method of the magnetic encoder provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a correction device for a magnetic encoder provided by the present invention.
  • FIG8 is a schematic diagram of the structure of the magnetic encoder provided by the present invention.
  • first, second, etc. in this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way can be interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first”, “second”, etc. are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • Fig. 1 is a flow chart of a calibration method for a magnetic encoder provided by the present invention.
  • the calibration method for a magnetic encoder provided by an embodiment of the present invention comprises: Step 101, when it is determined that the target magnetic encoder is in a working state, obtaining a system operating temperature.
  • the executor of the magnetic encoder calibration method provided in the embodiment of the present invention is a magnetic encoder calibration device arranged in the magnetic encoder.
  • the application scenario of the magnetic encoder correction method provided in the embodiment of the present application is that after the measurement system of the magnetic encoder starts working, the angular position is compensated according to the temperature change of the magnetic encoder and the magnetic field, so that the magnetic encoder outputs a precise rotation angle.
  • the magnetic encoder calibration device may receive the system operating temperature of the entire encoder collected in real time by the temperature sensor built into the target magnetic encoder during the operation of the magnetic encoder.
  • Step 102 Match a first mapping relationship corresponding to the system operating temperature according to the target relationship library.
  • the target relationship library corresponds to the target magnetic encoder.
  • the first mapping relationship includes a corresponding relationship between an actual value of a rotation angle and a measured value of a rotation angle within a system operating temperature range.
  • the relationship library is a mapping relationship corresponding to the magnetic encoder that completes temperature compensation through the correction device of the magnetic encoder when calibrating different working temperatures.
  • the relationship library corresponding to each magnetic encoder is distinguished by the identification information of the corresponding magnetic encoder as the unique identification information.
  • the identification information of the target magnetic encoder may be used to perform a query, and a target relationship library corresponding to the target magnetic encoder may be selected from the relationship library.
  • step 102 the calibration device of the magnetic encoder uses the system operating temperature obtained in step 101 as retrieval information to perform query matching in the target relationship library, and the results are divided into two types: successful matching and failed matching.
  • a successful match means that the current system operating temperature matches the information stored in the locally stored target relationship library, indicating that the correction device of the magnetic encoder has performed a correction task with the same device type as the target magnetic encoder and the same operating temperature for temperature compensation, and in the corresponding historical correction task, the rotation angle measurement value at the operating temperature is corrected according to the corresponding first mapping relationship, and the angle data close to the actual value of the rotation angle is output. Therefore, the first mapping relationship corresponding to the historical correction task can be extracted from the target relationship library.
  • Matching failure means that the current system operating temperature cannot match any information in the locally stored target relationship library, which means that the correction device of the magnetic encoder has not yet performed compensation correction for similar temperatures. It is necessary to perform a correction program on it first to obtain the corresponding first mapping relationship, and then carry out temperature compensation work based on the obtained mapping relationship.
  • Step 103 Based on the first mapping relationship, temperature compensation is performed on the first rotation angle of the target magnetic encoder to determine a second rotation angle.
  • the first rotation angle is the rotation angle acquired by the target magnetic encoder at the system operating temperature
  • the second rotation angle is the rotation angle output by the target magnetic encoder at the system operating temperature
  • step 103 the correction device of the magnetic encoder uses the mapping relationship matched in step 102 to correct the first rotation angle measured by the current system operating temperature, and after correcting it to a second rotation angle close to or equal to the actual value of the rotation angle, it is output by the target magnetic encoder.
  • the first rotation angle obtained by measuring the target magnetic encoder is corrected using the first mapping relationship corresponding to the system operating temperature, so as to output the corrected second rotation angle as the angle measurement result.
  • the mapping relationship can weaken the difference between the actual value and the measured value of the rotation angle at different operating temperatures, avoid the error caused by temperature in the entire measurement process, and improve the precision and accuracy of the angle measurement.
  • Fig. 2 is a schematic diagram of a first partial flow chart of the calibration method of the magnetic encoder provided by the present invention. As shown in Fig. 2, based on any of the above embodiments, after determining that the target magnetic encoder is in a working state and obtaining the system operating temperature, it also includes: step 201, when determining that the system operating temperature fails to match the target relationship library, setting N temperature points within the system operating temperature range to obtain N+1 temperature intervals.
  • N is a positive integer, and the larger the value of N is, the closer the Hall potential output by the target magnetic encoder is to linearity.
  • the calibration device of the magnetic encoder uses the system operating temperature of the target magnetic encoder obtained in step 101 as retrieval information, performs query matching in the target relationship library, and when it is determined that the query result is a match failure, enters the calibration procedure of step 201, and divides the system operating temperature range of the target magnetic encoder into N+1 temperature intervals using N temperature points.
  • N is a positive integer greater than or equal to 0.
  • the embodiment of the present invention does not specifically limit the number N of temperature points to be set.
  • the relationship between the Hall potential at the output end of the target magnetic encoder and the system operating temperature is expressed as follows:
  • E H is the Hall potential output by the target magnetic encoder
  • K(0)(1- ⁇ H T) is the Hall sensitivity
  • I is the constant current of the target magnetic encoder
  • T is the system operating temperature of the target magnetic encoder.
  • Step 202 When it is determined that the system operating temperature is within a target temperature range, determine a second mapping relationship corresponding to the target temperature range.
  • the target temperature interval is one of the temperature intervals.
  • the correction device of the magnetic encoder uses the system operating temperature of the target magnetic encoder to query the divided temperature interval, takes the temperature interval in which the current system operating temperature is located as the target temperature interval, and outputs the correspondence between the actual value of the rotation angle and the measured value of the rotation angle within the rotation angle range corresponding to the target temperature interval as the corresponding second mapping relationship.
  • the system operating temperature range is divided into multiple temperature intervals by setting multiple temperature points, and when the system operating temperature corresponding to the target magnetic encoder matches the target temperature interval, a second mapping relationship corresponding to the target temperature interval is established. Furthermore, the first rotation angle obtained by measuring the target magnetic encoder is corrected using the second mapping relationship, so that the corrected rotation angle is output as the angle measurement result.
  • the measurement error can be relatively stable by refining the temperature range, so that the angle error can be corrected in sections to achieve the stability of temperature compensation.
  • Fig. 3 is a schematic diagram of a second partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • the partial flow chart corresponding to step 202 that is, when it is determined that the system operating temperature is in the target temperature interval, determining the second mapping relationship corresponding to the target temperature interval, includes: step 301, setting M angle points in the rotation angle range corresponding to the target temperature interval to obtain M+1 rotation angle intervals.
  • M is a positive integer, and the larger the value of M is, the closer the system operating temperature change of the target magnetic encoder is to linearity.
  • rotation angle corresponding to each temperature interval ranges from 0° to 360°.
  • step 301 the calibration device of the magnetic encoder divides the rotation angle range corresponding to the target temperature interval where the system operating temperature of the target magnetic encoder is located into M+1 rotation angle intervals using M angle points.
  • M is a positive integer greater than or equal to 0.
  • the embodiment of the present invention does not specifically limit the number M of angle points to be set.
  • Step 302 Determine the first mapping relationship corresponding to each rotation angle interval based on the target rotation angle measurement value and the target rotation angle actual value.
  • the target rotation angle measurement value includes the rotation angle measurement values corresponding to the starting angle point and the ending angle point in the rotation angle interval respectively;
  • the target rotation angle actual value includes the rotation angle actual value corresponding to the starting angle point and the ending angle point in the rotation angle interval respectively.
  • the target rotation angle measurement value includes the rotation angle measurement value corresponding to the starting angle point ⁇ (a) in any rotation angle interval [ ⁇ a, ⁇ (a+1)] and the rotation angle measurement value corresponding to the ending angle point ⁇ (a+1).
  • the target rotation angle actual value includes the rotation angle actual value ⁇ (a) of the starting angle point in any rotation angle interval [ ⁇ a, ⁇ (a+1)] and the rotation angle actual value ⁇ (a+1) of the ending angle point.
  • step 302 the calibration device of the magnetic encoder uses the target rotation angle measurement value and the target rotation angle actual value corresponding to any rotation angle interval to establish a second mapping relationship corresponding to the rotation angle interval.
  • the rotation angle range corresponding to the target temperature interval is divided into multiple rotation angle intervals by setting multiple angle points, and a second mapping relationship is established using the target rotation angle measurement value and the target rotation angle actual value corresponding to each rotation angle interval. Furthermore, the mapping relationship corrects the first rotation angle obtained by measuring the target magnetic encoder, so as to output the corrected second rotation angle as the angle measurement result.
  • the measurement error can be relatively stable, and the angle error can be corrected in sections to achieve the stability of temperature compensation.
  • Fig. 4 is a schematic diagram of a third partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • the partial flow chart corresponding to step 103 i.e., based on the first mapping relationship, temperature compensation is performed on the first rotation angle of the target magnetic encoder to determine the second rotation angle, includes: determining an angle compensation amount based on the first mapping relationship and the first rotation angle.
  • step 401 the correction device of the magnetic encoder substitutes the first rotation angle measured at the current system operating temperature into the obtained mapping relationship, and converts the angle compensation amount corresponding to the current system operating temperature.
  • Step 402 Determine the second rotation angle based on the first rotation angle and the angle compensation amount.
  • step 402 the correction device of the magnetic encoder subtracts the converted angle compensation amount from the first rotation angle to calculate a second rotation angle that is close to or the same as the actual value of the rotation angle.
  • the embodiment of the present invention uses the angle compensation amount corresponding to the system operating temperature to calculate the first rotation angle obtained by measuring the target magnetic encoder, obtains and outputs the second rotation angle after temperature compensation, and realizes corresponding compensation for the rotation angle under the influence of the temperature change of the magnetic encoder and the magnetic field, thereby improving the precision and accuracy of the angle measurement.
  • Fig. 5 is a schematic diagram of a third partial flow chart of the calibration method of the magnetic encoder provided by the present invention.
  • the partial flow chart corresponding to step 401 i.e., determining the angle compensation amount based on the first mapping relationship and the first rotation angle, comprises: step 501, when it is determined that the first rotation angle is in the target rotation angle interval, selecting a target mapping relationship corresponding to the target rotation angle interval from the first mapping relationship.
  • step 501 the correction device of the magnetic encoder uses the first rotation angle to query the divided rotation angle interval, takes the rotation angle interval in which the currently measured first rotation angle is located as the target rotation angle interval, and selects a set of target mapping relationships corresponding to the target rotation angle interval from multiple groups of mapping relationships integrating multiple rotation angle intervals.
  • Step 502 Determine the angle compensation amount based on the first rotation angle and the target mapping relationship.
  • step 502 the correction device of the magnetic encoder substitutes the first rotation angle into the obtained target mapping relationship, and converts it into an angle compensation amount corresponding to the temperature compensation of the measured rotation angle at the current system operating temperature.
  • the embodiment of the present invention selects the target mapping relationship corresponding to the target rotation angle interval from the first mapping relationship corresponding to the multi-terminal interval. Then, the first rotation angle obtained by measuring the target magnetic encoder is corrected using the target mapping relationship, so that the corrected second rotation angle is output as the angle measurement result.
  • the temperature range can be refined to ensure that the measurement error is relatively stable, so that the angle error can be corrected in sections to achieve the stability of temperature compensation.
  • the first mapping relationship includes the second mapping relationship.
  • the first mapping relationship maintained in real time by the correction device of the magnetic encoder in the target relationship library can also be obtained by constructing the second mapping relationship.
  • the embodiment of the present invention can directly divide the system operating temperature range into multiple temperature intervals by setting multiple temperature points.
  • the mapping relationship corresponding to the target temperature interval is established as a method for obtaining the first mapping relationship, and the target relationship library stored therein is updated.
  • the first rotation angle obtained by measuring the target magnetic encoder is corrected using the mapping relationship, so that the corrected rotation angle is output as the angle measurement result.
  • the temperature range can be refined to ensure that the measurement error is relatively stable, so that the angle error can be corrected in sections to achieve the stability of temperature compensation.
  • is the rotation angle measurement value in the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • is the angle compensation amount required for temperature compensation at ⁇ .
  • ⁇ (a) and ⁇ (a+1) are the target rotation angle actual values corresponding to the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • ⁇ a is the difference between the target rotation angle measurement value corresponding to ⁇ (a) and the target rotation angle actual value.
  • ⁇ (a+1) is the difference between the target rotation angle measurement value corresponding to ⁇ (a+1) and the target rotation angle actual value.
  • the correction device of the magnetic encoder can perform the following calculation using the second mapping relationship corresponding to the rotation angle interval [ ⁇ a, ⁇ (a+1)] where ⁇ is located:
  • is the rotation angle measurement value in the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • is the angle compensation amount required for temperature compensation at ⁇ .
  • ⁇ (a) and ⁇ (a+1) are the actual values of the target rotation angle corresponding to the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • ⁇ a is the difference between the target rotation angle measurement value corresponding to ⁇ (a) and the actual value of the target rotation angle.
  • ⁇ (a+1) is the difference between the target rotation angle measurement value corresponding to ⁇ (a+1) and the actual value of the target rotation angle.
  • FIG6 is a schematic diagram of the principle of the correction method of the magnetic encoder provided by the present invention. As shown in FIG2, a plurality of rotation angle intervals are divided within the rotation angle range (0°-360°) corresponding to each angle point on the X-axis, and the first rotation angle and the second rotation angle are indicated by the angle information of the Y-axis as an example.
  • the specific implementation process of temperature compensation by angle compensation is as follows:
  • the angle compensation amount ⁇ is calculated according to the above formula:
  • the embodiment of the present invention constructs a second mapping relationship so that the correction process in each rotation angle measurement value corresponding to the interval is associated with the previous interval, thereby achieving segmented correction of different degrees for multiple rotation angle intervals and achieving accuracy and stability of temperature compensation.
  • FIG7 is a schematic diagram of the structure of the correction device of the magnetic encoder provided by the present invention. Based on any of the above embodiments, as shown in FIG7 , the device includes: a temperature acquisition module 710, a temperature association module 720 and a correction module 730, wherein:
  • the temperature acquisition module 710 is used to acquire the system operating temperature when it is determined that the target magnetic encoder is in the working state.
  • the temperature association module 720 is connected to the temperature acquisition module 710 and is used to match a first mapping relationship corresponding to the system operating temperature according to a target relationship library.
  • the correction module 730 is connected to the temperature association module 720, and is used to perform temperature compensation on the first rotation angle of the target magnetic encoder according to the first mapping relationship to determine a second rotation angle.
  • the target relationship library corresponds to the target magnetic encoder.
  • the first mapping relationship includes a corresponding relationship between an actual rotation angle value and a rotation angle measurement value within a system operating temperature range.
  • the first rotation angle is a rotation angle collected by the target magnetic encoder at the system operating temperature.
  • the second rotation angle is a rotation angle output by the target magnetic encoder at the system operating temperature.
  • the temperature acquisition module 710 the temperature association module 720 , and the correction module 730 are electrically connected in sequence.
  • the temperature acquisition module 710 may receive the system working temperature of the entire encoder collected in real time by the temperature sensor built into the target magnetic encoder during the working process of the magnetic encoder.
  • the temperature association module 720 uses the system operating temperature acquired in the temperature acquisition module 710 as retrieval information to perform query matching in the target relationship library, and the results are divided into two types: successful matching and failed matching.
  • a successful match means that the current system operating temperature matches the information stored in the locally stored target relationship library, indicating that the correction device of the magnetic encoder has performed a correction task with the same device type as the target magnetic encoder and the same operating temperature for temperature compensation, and in the corresponding historical correction task, the rotation angle measurement value at the operating temperature is corrected according to the corresponding first mapping relationship, and the angle data close to the actual value of the rotation angle is output. Therefore, the first mapping relationship corresponding to the historical correction task can be extracted from the target relationship library.
  • the correction module 730 uses the mapping relationship matched by the temperature association module 720 to correct the first rotation angle measured by the current system operating temperature, and corrects it to a second rotation angle close to or equal to the actual value of the rotation angle, and then outputs it by the target magnetic encoder.
  • the device further includes a temperature division module and a mapping relationship establishment module, wherein:
  • the temperature division module is used to set N temperature points within the system operating temperature range to obtain N+1 temperature intervals when it is determined that the system operating temperature fails to match the target relationship library.
  • the mapping relationship establishing module is used to determine a second mapping relationship corresponding to the target temperature interval when it is determined that the system operating temperature is within the target temperature interval.
  • the target temperature interval is one of the temperature intervals.
  • N is a positive integer, and the larger the value of N is, the closer the Hall potential output by the target magnetic encoder is to linearity.
  • mapping relationship establishing module includes an angle division unit and a mapping relationship establishing unit, wherein:
  • the angle division unit is used to set M angle points in the rotation angle range corresponding to the target temperature interval to obtain M+1 rotation angle intervals.
  • the mapping relationship establishing unit is used to determine the second mapping relationship corresponding to each of the rotation angle intervals based on the target rotation angle measurement value and the target rotation angle actual value.
  • the target rotation angle measurement value includes the rotation angle measurement values corresponding to the starting angle point and the ending angle point in the rotation angle interval.
  • the target rotation angle actual value includes the rotation angle actual values corresponding to the starting angle point and the ending angle point in the rotation angle interval.
  • M is a positive integer, and the larger the value of M is, the closer the system operating temperature change of the target magnetic encoder is to linearity.
  • the correction module 730 includes a compensation determination unit and a correction unit, wherein:
  • a compensation determination unit is used to determine an angle compensation amount based on the first mapping relationship and the first rotation angle.
  • a correction unit is used to determine the second rotation angle based on the first rotation angle and the angle compensation amount.
  • the compensation determination unit includes a mapping relationship screening subunit and a compensation determination subunit, wherein:
  • the mapping relationship screening subunit is used to screen out a target mapping relationship corresponding to the target rotation angle interval from the first mapping relationships when it is determined that the first rotation angle is within the target rotation angle interval.
  • the compensation determination subunit is used to determine the angle compensation amount based on the first rotation angle and the target mapping relationship.
  • the first mapping relationship includes the second mapping relationship.
  • the second mapping relationship is obtained by formula (1):
  • is the rotation angle measurement value in the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • is the angle compensation amount required for temperature compensation at ⁇ .
  • ⁇ (a) and ⁇ (a+1) are the actual values of the target rotation angle corresponding to the rotation angle interval [ ⁇ a, ⁇ (a+1)].
  • ⁇ a is the difference between the target rotation angle measurement value corresponding to ⁇ (a) and the actual value of the target rotation angle.
  • ⁇ (a+1) is the difference between the target rotation angle measurement value corresponding to ⁇ (a+1) and the actual value of the target rotation angle.
  • the correction device of the magnetic encoder provided in an embodiment of the present invention is used to execute the correction method of the magnetic encoder of the present invention. Its implementation method is consistent with the implementation method of the correction method of the magnetic encoder provided by the present invention, and can achieve the same beneficial effects, which will not be repeated here.
  • the first rotation angle obtained by measuring the target magnetic encoder is corrected using the first mapping relationship corresponding to the system operating temperature, so as to output the corrected second rotation angle as the angle measurement result.
  • the mapping relationship can weaken the difference between the actual value and the measured value of the rotation angle at different operating temperatures, avoid the error caused by temperature in the entire measurement process, and improve the precision and accuracy of the angle measurement.
  • Fig. 8 is a schematic diagram of the structure of the magnetic encoder provided by the present invention. Based on any of the above embodiments, as shown in Fig. 8, the magnetic encoder includes a Hall sensor 810 and a magnetic code disk 820 which are located on the same central axis and are stacked from bottom to top, and a signal processing circuit 830810820830 for signal processing, and the signal processing circuit 830 is used to execute the calibration method of the magnetic encoder as described in any of the above items.
  • the magnetic encoder is composed of a Hall sensor 810, a magnetic code disk 820 and a signal processing circuit 830.
  • the magnetic encoder can detect the rotation angle of the measured shaft, and can calculate the position and speed of the object connected to the shaft (such as the shaft of the motor) according to the rotation angle.
  • the Hall sensor 810 can output two sinusoidal voltage signals with a phase difference of 90° as the magnetic code disk 820 rotates, and the sinusoidal signal with a phase advance of 90° is a sin signal, and the sinusoidal signal with a phase lag of 90° is a cos signal, so as to perform analog-to-digital conversion based on the two voltage signals to obtain digital signals, and then decode the angle value of the encoder's magnetic code disk 820 (i.e., the measured shaft) according to the two digital signals, and correct the angle value.
  • the sinusoidal signal with a phase advance of 90° is a sin signal
  • the sinusoidal signal with a phase lag of 90° is a cos signal
  • the Hall sensor 810 is used to convert a changing magnetic field into a change in output voltage.
  • the magnetic code disk 820 refers to a digital encoder for measuring angular displacement.
  • the magnetic code disk 820 can receive the second rotation angle output by the signal processing circuit 830 and perform a front-end display of the measured angle.
  • the signal processing circuit 830 is an integrated circuit including a correction device of a magnetic encoder.
  • the temperature of the operating environment of the Hall sensor 810 and other magnetic sensing elements in the magnetic encoder can be used as the system operating temperature of the entire measurement system, and the generated system operating temperature can be temperature compensated, and the first rotation angle measured under the temperature can be corrected to the second rotation angle.
  • the temperature compensation of the entire measurement system can be performed, rather than just the compensation of the Hall element itself.
  • the first rotation angle obtained by measuring the target magnetic encoder is corrected using the first mapping relationship corresponding to the system operating temperature, so as to output the corrected second rotation angle as the angle measurement result.
  • the mapping relationship can weaken the difference between the actual value and the measured value of the rotation angle at different operating temperatures, avoid the error caused by temperature in the entire measurement process, and improve the precision and accuracy of the angle measurement.
  • the Hall sensor 810 is a switch type Hall sensor.
  • the Hall sensor 810 may be a switch type Hall sensor composed of a voltage regulator, a Hall element, a differential amplifier, a Schmitt trigger and an output stage, and this type of sensor may output a digital quantity, so that the temperature compensation for the magnetic encoder and the magnetic field is completely based on a digital circuit and has nothing to do with an analog circuit.
  • the embodiment of the present invention performs subsequent arithmetic and logic operations based on the digital quantity collected by the switch type Hall sensor. It can be applied to all stages of the design and analysis of the magnetic encoder. Even with simple design technology and low cost, the digital circuit can provide good accuracy and precision, and improve the fineness and accuracy of angle measurement.
  • the present invention also provides an electronic device, which may include: a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory communicate with each other through the communication bus.
  • the processor may call the logic instructions in the memory to execute the correction method of the magnetic encoder, the method comprising: obtaining the system operating temperature when determining that the target magnetic encoder is in a working state; matching a first mapping relationship corresponding to the system operating temperature according to a target relationship library; based on the first mapping relationship, temperature compensation is performed on the first rotation angle of the target magnetic encoder to determine the second rotation angle; wherein the target relationship library corresponds to the target magnetic encoder; the first mapping relationship includes the corresponding relationship between the actual value of the rotation angle and the measured value of the rotation angle within the system operating temperature range; the first rotation angle is the rotation angle collected by the target magnetic encoder at the system operating temperature; the second rotation angle is the rotation angle output by the target magnetic encoder at the system operating temperature.
  • the logic instructions in the above-mentioned memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present invention in essence, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, and other media that can store program codes.
  • the present invention also provides a computer program product, which includes a computer program, which can be stored on a non-transitory computer-readable storage medium.
  • the computer can execute the magnetic encoder correction method provided by the above methods, the method comprising: when it is determined that the target magnetic encoder is in a working state, obtaining the system operating temperature; matching a first mapping relationship corresponding to the system operating temperature according to a target relationship library; based on the first mapping relationship, performing temperature compensation on the first rotation angle of the target magnetic encoder to determine a second rotation angle; wherein the target relationship library corresponds to the target magnetic encoder; the first mapping relationship includes a correspondence between an actual rotation angle value and a rotation angle measurement value within the system operating temperature range; the first rotation angle is the rotation angle collected by the target magnetic encoder at the system operating temperature; the second rotation angle is the rotation angle output by the target magnetic encoder at the system operating temperature.
  • the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, is implemented to execute the correction method of the magnetic encoder provided by the above-mentioned methods, the method comprising: obtaining the system operating temperature when determining that the target magnetic encoder is in a working state; matching a first mapping relationship corresponding to the system operating temperature according to a target relationship library; based on the first mapping relationship, performing temperature compensation on the first rotation angle of the target magnetic encoder to determine a second rotation angle; wherein the target relationship library corresponds to the target magnetic encoder; the first mapping relationship includes a correspondence between an actual rotation angle value and a rotation angle measurement value within the system operating temperature range; the first rotation angle is a rotation angle collected by the target magnetic encoder at the system operating temperature; the second rotation angle is a rotation angle output by the target magnetic encoder at the system operating temperature.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Ordinary technicians in this field can understand and implement it without paying creative labor.
  • each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)

Abstract

一种磁编码器的校正方法、装置及磁编码器,方法包括:在确定目标磁编码器处于工作状态的情况下,获取***工作温度(S101);根据目标关系库匹配到与***工作温度对应的第一映射关系(S102);基于第一映射关系,对目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度(S103)。该磁编码器的校正方法、装置及磁编码器,基于***工作温度决策直接进行校正时,利用与***工作温度对应的第一映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度输出。能够通过映射关系削弱不同工作温度下旋转角度的实际值和测量值之间的差异,能避免温度在整个测量过程中所引起的误差,提高角度测量的精细性和准确性。

Description

磁编码器的校正方法、装置及磁编码器 技术领域
本发明涉及工业控制技术领域,尤其涉及一种磁编码器的校正方法、装置及磁编码器。
背景技术
磁编码器通过检测磁场变化得出旋转位置信息,可提供精确的角度测量,在非接触式旋转位置感应、旋转开关、无刷直流电动机位置控制等领域都有广泛应用。与光学编码器相比,磁编码器具有环境耐受性强、小型轻量、可靠性高的优点,适用于灰尘多、油多、水多等严苛环境下的应用场景。
磁编码器主要由霍尔传感器、磁码盘、信号处理电路和主体结构等部分组成,其中霍尔传感器输出电压与磁场成正比,且与其输出电压随温度变化较大,这必将严重影响磁编码器在温度环境下的检测精度,限制其使用范围。目前,一般使用恒流源供电的手段对霍尔传感器在对应温度环境下施加补偿措施,但这种方式对霍尔传感器的温度系数和一致性要求较高,且对测量***中的磁铁没有补偿。若不对其进行补偿,必然无法获取到较为精准的旋转位置信息,致使角度测量精度较差。
发明内容
本发明提供一种磁编码器的校正方法、装置及磁编码器,用以解决现有技 术中磁编码器受温度影响导致角度测量精度较差的缺陷。
本发明提供一种磁编码器的校正方法,包括:
在确定目标磁编码器处于工作状态的情况下,获取***工作温度;
根据目标关系库匹配到与所述***工作温度对应的第一映射关系;
基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;
其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
根据本发明提供的一种磁编码器的校正方法,在确定目标磁编码器处于工作状态的情况下,获取所述***工作温度之后,还包括:
在确定所述***工作温度与目标关系库匹配失败的情况下,在所述***工作温度范围内设置N个温度点,得到N+1个温度区间;
在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系;
其中,所述目标温度区间为所述温度区间中的一个;所述N为正整数,且所述N取值越大,所述目标磁编码器输出的霍尔电势越接近线性。
根据本发明提供的一种磁编码器的校正方法,在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系,包括:
将所述目标温度区间对应的旋转角度范围内设置M个角度点,得到M+1个旋转角度区间;
基于目标旋转角度测量值和目标旋转角度实际值,确定与各所述旋转角度区间对应的所述第二映射关系;
其中,所述目标旋转角度测量值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度测量值;所述目标旋转角度实际值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度实际值;所述M为正整数,且所述M取值越大,所述目标磁编码器的***工作温度变化越接近线性。
根据本发明提供的一种磁编码器的校正方法,所述基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度,包括:
基于所述第一映射关系和所述第一旋转角度,确定角度补偿量;
基于所述第一旋转角度和所述角度补偿量,确定所述第二旋转角度。
根据本发明提供的一种磁编码器的校正方法,所述基于所述第一映射关系和所述第一旋转角度,确定角度补偿量,包括:
在确定所述第一旋转角度处于目标旋转角度区间的情况下,从所述第一映射关系中筛选出与所述目标旋转角度区间对应的目标映射关系;
基于所述第一旋转角度和所述目标映射关系,确定所述角度补偿量。
根据本发明提供的一种磁编码器的校正方法,所述第一映射关系包括所述第二映射关系。
根据本发明提供的一种磁编码器的校正方法,所述第二映射关系通过公式(1)获得:
Figure PCTCN2022143270-appb-000001
其中,θ为处于所述旋转角度区间[θa,θ(a+1)]的旋转角度测量值。Δθ为θ 处需要进行温度补偿的角度补偿量。θ(a)和θ(a+1)分别为旋转角度区间[θa,θ(a+1)]对应的目标旋转角度实际值。Δθa为θ(a)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。Δθ(a+1)为θ(a+1)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。
本发明还提供一种磁编码器的校正装置,包括:
温度获取模块,用于在确定目标磁编码器处于工作状态的情况下,获取***工作温度;
温度关联模块,与所述温度获取模块连接,用于根据目标关系库匹配到与所述***工作温度对应的第一映射关系;
校正模块,与所述温度关联模块连接,用于根据所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;
其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
本发明还提供一种磁编码器,包括同处于一条中心轴线且由下至上层叠布设的霍尔传感器和磁码盘,以及用于信号处理的信号处理电路,所述信号处理电路用于执行如上任一项所述磁编码器的校正方法。
根据本发明提供的一种磁编码器,所述霍尔传感器为开关型霍尔传感器。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述磁编码器的校正方法。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述磁编码器的校正方法。
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述磁编码器的校正方法。
本发明提供的磁编码器的校正方法、装置及磁编码器,基于***工作温度决策直接进行校正时,利用与***工作温度对应的第一映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过映射关系削弱不同工作温度下旋转角度的实际值和测量值之间的差异,能避免温度在整个测量过程中所引起的误差,提高角度测量的精细性和准确性。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的磁编码器的校正方法的流程示意图;
图2是本发明提供的磁编码器的校正方法的第一种部分流程示意图;
图3是本发明提供的磁编码器的校正方法的第二种部分流程示意图;
图4是本发明提供的磁编码器的校正方法的第三种部分流程示意图;
图5是本发明提供的磁编码器的校正方法的第三种部分流程示意图;
图6是本发明提供的磁编码器的校正方法的原理示意图;
图7是本发明提供的磁编码器的校正装置的结构示意图;
图8是本发明提供的磁编码器的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
应当理解,在本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图1是本发明提供的磁编码器的校正方法的流程示意图。如图1所示,本发明实施例提供的磁编码器的校正方法,包括:步骤101、在确定目标磁编码器处于工作状态的情况下,获取***工作温度。
需要说明的是,本发明实施例提供的磁编码器的校正方法的执行主体是设置在磁编码器中的磁编码器的校正装置。
本申请实施例提供的磁编码器的校正方法的应用场景为,在磁编码器的测 量***启动工作后,根据磁编码器和磁场共同的温度变化进行角度位置的补偿,以使得磁编码器输出精准的旋转角度。
具体地,在步骤101中,磁编码器的校正装置在确定目标磁编码器处于工作状态的情况下,可以接收目标磁编码器内置的温度传感器在磁编码器工作过程中所实时采集的整个编码器内部的***工作温度。
步骤102、根据目标关系库匹配到与所述***工作温度对应的第一映射关系。
其中,所述目标关系库与所述目标磁编码器对应。所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系。
需要说明的是,关系库是一个包括经由磁编码器的校正装置完成温度补偿的磁编码器对不同工作温度进行校正时所对应的映射关系。各磁编码器对应的关系库由对应磁编码器的标识信息作为唯一标识信息进行区分。
所以,在步骤102之前,还可以利用目标磁编码器的标识信息进行查询,从关系库中筛选出与目标磁编码器对应的目标关系库。
具体地,在步骤102中,磁编码器的校正装置利用在步骤101所获取到的***工作温度作为检索信息,在目标关系库中进行查询匹配,其结果分为两种:匹配成功和匹配失败。
匹配成功,是当前的***工作温度与本地存储的目标关系库中存储的信息能够匹配情况,说明磁编码器的校正装置曾执行过器件类型与目标磁编码器一样,且进行温度补偿的工作温度也相同的校正任务,并在对应的历史校正任务中,该工作温度下的旋转角度测量值根据对应第一映射关系进行校正,输出与旋转角度实际值接近的角度数据,故可从目标关系库抽取出与历史校正任务对应的第一映射关系。
匹配失败,是当前的***工作温度在本地存储的目标关系库中匹配不到任何信息的情况,说明磁编码器的校正装置还没有对类似的温度进行补偿校正, 需要先对其进行校正程序以获得对应的第一映射关系,再根据所得到映射关系开展温度补偿工作。
步骤103、基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度。
其中,所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度。所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
具体地,在步骤103中,磁编码器的校正装置利用步骤102所匹配到的映射关系对当前的***工作温度所测量得到的第一旋转角度进行校正处理,将其校正至与旋转角度实际值相近或者相等的第二旋转角度后,由目标磁编码器输出。
本发明实施例基于***工作温度决策直接进行校正时,利用与***工作温度对应的第一映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过映射关系削弱不同工作温度下旋转角度的实际值和测量值之间的差异,能避免温度在整个测量过程中所引起的误差,提高角度测量的精细性和准确性。
图2是本发明提供的磁编码器的校正方法的第一种部分流程示意图。如图2所示,在上述任一实施例的基础上,在确定目标磁编码器处于工作状态的情况下,获取所述***工作温度之后,还包括:步骤201、在确定所述***工作温度与目标关系库匹配失败的情况下,在所述***工作温度范围内设置N个温度点,得到N+1个温度区间。
其中,所述N为正整数,且所述N取值越大,所述目标磁编码器输出的霍尔电势越接近线性。
具体地,在步骤101之后,磁编码器的校正装置利用在步骤101所获取到 的目标磁编码器的***工作温度作为检索信息,在该目标关系库中进行查询匹配,在确定查询结果为匹配失败时,进入步骤201的校正程序,利用N个温度点将目标磁编码器的***工作温度范围分成N+1个温度区间。
其中,N为大于或者等于0的正整数。本发明实施例对温度点的设置数量N不作具体限定。
优选地,N取值越大,对目标磁编码器的***工作温度范围划分的越细,在尽可能多的覆盖到所有工作温度的同时,还能对目标磁编码器输出端的霍尔电势的变化趋势趋近线性变化,目标磁编码器输出端的霍尔电势和***工作温度之间的关系表达式为:
E H=K(0)Iβ(1-β HT)
其中,E H为目标磁编码器输出的霍尔电势,K(0)(1-β HT)为霍尔灵敏度,I为目标磁编码器的恒定电流,T为目标磁编码器的***工作温度。
可以见得,由于相邻***工作温度之间的温度变化很小,相应会使得目标磁编码器中输出端的霍尔电势在温度变化比较小时更加接近线性。
步骤202、在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系。
其中,所述目标温度区间为所述温度区间中的一个。
具体地,在步骤202中,磁编码器的校正装置利用目标磁编码器的***工作温度对照划分好的温度区间进行查询,将当前的***工作温度所处的温度区间作为目标温度区间,并将目标温度区间对应的旋转角度范围内的旋转角度实际值和旋转角度测量值之间的对应关系作为对应的第二映射关系输出。
本发明实施例基于***工作温度决策不直接进行校正时,通过设置的多个温度点将***工作温度范围划分出多个温度区间,在目标磁编码器对应的*** 工作温度匹配到目标温度区间时,建立该目标温度区间所对应的第二映射关系。进而,利用第二映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的旋转角度作为角度测量结果输出。能够通过对温度范围进行细化保证测量误差相对稳定,以对角度误差进行分段校正,实现温度补偿的稳定性。
图3是本发明提供的磁编码器的校正方法的第二种部分流程示意图。如图3所示,在上述任一实施例的基础上,步骤202所对应的部分流程,即在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系,包括:步骤301、将所述目标温度区间对应的旋转角度范围内设置M个角度点,得到M+1个旋转角度区间。
其中,所述M为正整数,且所述M取值越大,所述目标磁编码器的***工作温度变化越接近线性。
需要说明的是,每一温度区间所对应的旋转角度范围为0°到360°之间。
具体地,在步骤301中,磁编码器的校正装置利用M个角度点将目标磁编码器的***工作温度所处的目标温度区间对应的旋转角度范围分成M+1个旋转角度区间。
其中,M为大于或者等于0的正整数。本发明实施例对角度点的设置数量M不作具体限定。
优选地,M取值越大,对目标磁编码器的任一温度区间所对应的旋转角度范围划分的越细,在尽可能多的覆盖到所有旋转角度的同时,还由于角度变化越小使得温度补偿结果越接近线性。
步骤302、基于目标旋转角度测量值和目标旋转角度实际值,确定与各所述旋转角度区间对应的所述第一映射关系。
其中,所述目标旋转角度测量值包括所述旋转角度区间中的起始角度点和 终止角度点分别对应的旋转角度测量值;所述目标旋转角度实际值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度实际值。
需要说明的是,目标旋转角度测量值包括任一旋转角度区间[θa,θ(a+1)]中的起始角度点θ(a)对应的旋转角度测量值,以及终止角度点θ(a+1)对应的旋转角度测量值。
目标旋转角度实际值包括任一旋转角度区间[θa,θ(a+1)]中的起始角度点的旋转角度实际值θ(a),以及终止角度点的旋转角度实际值θ(a+1)。
具体地,在步骤302中,磁编码器的校正装置利用任一旋转角度区间所对应的目标旋转角度测量值和目标旋转角度实际值,建立起该旋转角度区间对应的第二映射关系。
本发明实施例在目标磁编码器对应的***工作温度匹配到目标温度区间时,通过设置的多个角度点将目标温度区间所对应的旋转角度范围划分出多个旋转角度区间,利用每一段旋转角度区间对应的目标旋转角度测量值和目标旋转角度实际值建立起第二映射关系。进而,映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过对旋转角度范围进行细化保证测量误差相对稳定,以对角度误差进行分段校正,实现温度补偿的稳定性。
图4是本发明提供的磁编码器的校正方法的第三种部分流程示意图。如图4所示,在上述任一实施例的基础上,步骤103所对应的部分流程,即基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度,包括:基于所述第一映射关系和所述第一旋转角度,确定角度补偿量。
具体地,在步骤401中,磁编码器的校正装置将当前的***工作温度下测 量得到的第一旋转角度,代入至所得出的映射关系中,换算出与当前的***工作温度对应的角度补偿量。
步骤402、基于所述第一旋转角度和所述角度补偿量,确定所述第二旋转角度。
具体地,在步骤402中,磁编码器的校正装置在第一旋转角度的基础上,减去换算出的角度补偿量,计算得到与旋转角度实际值接近或者相同的第二旋转角度。
本发明实施例在对目标磁编码器进行测量所得到的第一旋转角度的基础上,利用与***工作温度对应的角度补偿量进行运算,得到温度补偿后的第二旋转角度并输出。实现对磁编码器和磁场的温度变化影响下的旋转角度进行相应补偿,提高角度测量的精细性和准确性。
图5是本发明提供的磁编码器的校正方法的第三种部分流程示意图。如图5所示,在上述任一实施例的基础上,步骤401所对应的部分流程,即所述基于所述第一映射关系和所述第一旋转角度,确定角度补偿量,包括:步骤501、在确定所述第一旋转角度处于目标旋转角度区间的情况下,从所述第一映射关系中筛选出与所述目标旋转角度区间对应的目标映射关系。
具体地,在步骤501中,磁编码器的校正装置利用第一旋转角度对照划分好的旋转角度区间进行查询,将当前测量得到的第一旋转角度所处的旋转角度区间作为目标旋转角度区间,并从集成多段旋转角度区间的多组映射关系中筛选出与目标旋转角度区间对应的一组目标映射关系。
步骤502、基于所述第一旋转角度和所述目标映射关系,确定所述角度补偿量。
具体地,在步骤502中,磁编码器的校正装置将第一旋转角度代入至所得出的目标映射关系中,换算出与当前的***工作温度下对实测旋转角度进行温 度补偿所对应的角度补偿量。
本发明实施例在对第一旋转角度匹配到目标旋转角度区间时,从多端区间对应的第一映射关系中筛选出与目标旋转角度区间所对应的目标映射关系。进而,利用目标映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过对温度范围进行细化保证测量误差相对稳定,以对角度误差进行分段校正,实现温度补偿的稳定性。
在上述任一实施例的基础上,所述第一映射关系包括所述第二映射关系。
具体地,磁编码器的校正装置在目标关系库中所实时维护的第一映射关系也可以通过构建第二映射关系的方式获得的。
本发明实施例可以直接通过设置的多个温度点将***工作温度范围划分出多个温度区间,在目标磁编码器对应的***工作温度匹配到目标温度区间时,建立该目标温度区间所对应的映射关系作为第一映射关系的获取方式,并对其所存储的目标关系库进行更新。进而,利用映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的旋转角度作为角度测量结果输出。能够通过对温度范围进行细化保证测量误差相对稳定,以对角度误差进行分段校正,实现温度补偿的稳定性。
在上述任一实施例的基础上,所述第二映射关系通过公式(1)获得:
Figure PCTCN2022143270-appb-000002
其中,θ为处于所述旋转角度区间[θa,θ(a+1)]的旋转角度测量值。Δθ为θ处需要进行温度补偿的角度补偿量。θ(a)和θ(a+1)分别为旋转角度区间[θa,θ(a+1)]对应的目标旋转角度实际值。Δθa为θ(a)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。Δθ(a+1)为θ(a+1)处对应的目标旋转角 度测量值与目标旋转角度实际值之间的差值。
具体地,磁编码器的校正装置在确定第一旋转角度θ后,可以通过θ所处的旋转角度区间[θa,θ(a+1)]对应的第二映射关系进行如下计算:
Figure PCTCN2022143270-appb-000003
其中,θ为处于旋转角度区间[θa,θ(a+1)]的旋转角度测量值。Δθ为θ处需要进行温度补偿的角度补偿量。θ(a)和θ(a+1)分别为旋转角度区间[θa,θ(a+1)]对应的目标旋转角度实际值。Δθa为θ(a)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。Δθ(a+1)为θ(a+1)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。
图6是本发明提供的磁编码器的校正方法的原理示意图。如图2所示,以各角度点在X轴对应的旋转角度范围(0°-360°)内划分出多个旋转角度区间,且由Y轴的角度信息指示第一旋转角度和第二旋转角度作为示例,通过角度补偿量进行温度补偿的具体实施过程如下:
在确定实线线条上的第一旋转角度θ处于[θ 0,θ 1]时,根据上述公式计算出角度补偿量Δθ:
Figure PCTCN2022143270-appb-000004
在第一旋转角度θ的基础上减掉角度补偿量Δθ,得到第二旋转角度θ′,其计算公式如下所示:
θ′=θ-Δθ
其中,第二旋转角度θ′处于虚线线条中,呈Y=X的线性关系,以使得输出的第二旋转角度与旋转角度测量值相等。
本发明实施例通过构建第二映射关系,使得每一旋转角度测量值再对应区间内的校正过程均与上一区间进行关联,实现对多个旋转角度区间进行不同程度的分段校正,实现温度补偿的准确性和稳定性。
图7是本发明提供的磁编码器的校正装置的结构示意图。在上述任一实施例的基础上,如图7所示,该装置包括:温度获取模块710、温度关联模块720和校正模块730,其中:
温度获取模块710,用于在确定目标磁编码器处于工作状态的情况下,获取***工作温度。
温度关联模块720,与所述温度获取模块710连接,用于根据目标关系库匹配到与所述***工作温度对应的第一映射关系。
校正模块730,与所述温度关联模块720连接,用于根据所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度。
其中,所述目标关系库与所述目标磁编码器对应。所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系。所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度。所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
具体地,温度获取模块710、温度关联模块720和校正模块730顺次电连接。
温度获取模块710在确定目标磁编码器处于工作状态的情况下,可以接收目标磁编码器内置的温度传感器在磁编码器工作过程中所实时采集的整个编码器内部的***工作温度。
温度关联模块720利用在温度获取模块710中所获取到的***工作温度作为检索信息,在目标关系库中进行查询匹配,其结果分为两种:匹配成功和匹配失败。
匹配成功,是当前的***工作温度与本地存储的目标关系库中存储的信息能够匹配情况,说明磁编码器的校正装置曾执行过器件类型与目标磁编码器一样,且进行温度补偿的工作温度也相同的校正任务,并在对应的历史校正任务中,该工作温度下的旋转角度测量值根据对应第一映射关系进行校正,输出与旋转角度实际值接近的角度数据,故可从目标关系库抽取出与历史校正任务对应的第一映射关系。
校正模块730利用温度关联模块720所匹配到的映射关系对当前的***工作温度所测量得到的第一旋转角度进行校正处理,将其校正至与旋转角度实际值相近或者相等的第二旋转角度后,由目标磁编码器输出。
可选地,该装置还包括温度划分模块和映射关系建立模块,其中:
温度划分模块,用于在确定所述***工作温度与目标关系库匹配失败的情况下,在所述***工作温度范围内设置N个温度点,得到N+1个温度区间。
映射关系建立模块,用于在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系。
其中,所述目标温度区间为所述温度区间中的一个。所述N为正整数,且所述N取值越大,所述目标磁编码器输出的霍尔电势越接近线性。
可选地,映射关系建立模块包括角度划分单元和映射关系建立单元,其中:
角度划分单元,用于将所述目标温度区间对应的旋转角度范围内设置M个角度点,得到M+1个旋转角度区间。
映射关系建立单元,用于基于目标旋转角度测量值和目标旋转角度实际值,确定与各所述旋转角度区间对应的所述第二映射关系。
其中,所述目标旋转角度测量值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度测量值。所述目标旋转角度实际值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度实际值。所述M 为正整数,且所述M取值越大,所述目标磁编码器的***工作温度变化越接近线性。
可选地,校正模块730包括补偿确定单元和校正单元,其中:
补偿确定单元,用于基于所述第一映射关系和所述第一旋转角度,确定角度补偿量。
校正单元,用于基于所述第一旋转角度和所述角度补偿量,确定所述第二旋转角度。
可选地,补偿确定单元包括映射关系筛选子单元和补偿确定子单元,其中:
映射关系筛选子单元,用于在确定所述第一旋转角度处于目标旋转角度区间的情况下,从所述第一映射关系中筛选出与所述目标旋转角度区间对应的目标映射关系。
补偿确定子单元,用于基于所述第一旋转角度和所述目标映射关系,确定所述角度补偿量。
可选地,所述第一映射关系包括所述第二映射关系。
可选地,所述第二映射关系通过公式(1)获得:
Figure PCTCN2022143270-appb-000005
其中,θ为处于所述旋转角度区间[θa,θ(a+1)]的旋转角度测量值。Δθ为θ处需要进行温度补偿的角度补偿量。θ(a)和θ(a+1)分别为旋转角度区间[θa,θ(a+1)]对应的目标旋转角度实际值。Δθa为θ(a)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。Δθ(a+1)为θ(a+1)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。
本发明实施例提供的磁编码器的校正装置,用于执行本发明上述磁编码器 的校正方法,其实施方式与本发明提供的磁编码器的校正方法的实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本发明实施例基于***工作温度决策直接进行校正时,利用与***工作温度对应的第一映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过映射关系削弱不同工作温度下旋转角度的实际值和测量值之间的差异,能避免温度在整个测量过程中所引起的误差,提高角度测量的精细性和准确性。
图8是本发明提供的磁编码器的结构示意图。在上述任一实施例的基础上,如图8所示,磁编码器包括同处于一条中心轴线且由下至上层叠布设的霍尔传感器810和磁码盘820,以及用于信号处理的信号处理电路830810820830,信号处理电路830用于执行如上任一项所述磁编码器的校正方法。
具体地,磁编码器由霍尔传感器810、磁码盘820和信号处理电路830构成。磁编码器能够对被测转轴的旋转角度进行检测,根据该旋转角度能够计算出与转轴(例如电机的转轴)连接的物体的位置以及速度等数据,在对旋转角度进行测量时,霍尔传感器810随着磁码盘820的旋转可以输出两路相位相差90°的正弦电压信号,并将相位超前90°的正弦信号为sin信号,相位滞后90°的正弦信号为cos信号,以根据这两路电压信号进行模数转换得到数字信号,再根据两路数字信号解码出编码器的磁码盘820(即被测转轴)的角度值,并对该角度值进行校正。其中:
霍尔传感器810用于将变化的磁场转化为输出电压的变化。
磁码盘820是指测量角位移的数字编码器,磁码盘820可以接收信号处理电路830输出的第二旋转角度,进行测量角度的前端显示。
信号处理电路830为一个包含有磁编码器的校正装置的集成电路,可以根据磁编码器内的霍尔传感器810以及其他磁感应元件所处运行环境的温度作为 整个测量***的***工作温度,并对所产生的***工作温度进行温度补偿,从该温度作用下测量得到的第一旋转角度校正至第二旋转角度。可以对整个测量***的温度补偿,而不是仅对于霍尔元件本身的补偿。
本发明实施例基于***工作温度决策直接进行校正时,利用与***工作温度对应的第一映射关系对目标磁编码器进行测量所得到的第一旋转角度进行校正,以将校正后的第二旋转角度作为角度测量结果输出。能够通过映射关系削弱不同工作温度下旋转角度的实际值和测量值之间的差异,能避免温度在整个测量过程中所引起的误差,提高角度测量的精细性和准确性。
在上述任一实施例的基础上,所述霍尔传感器810为开关型霍尔传感器。
具体地,霍尔传感器810可以为由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成的开关型霍尔传感器,该类型传感器可以输出数字量。以使得针对磁编码器和磁场的温度进行补偿,完全基于数字电路,与模拟电路无关。
本发明实施例基于开关型霍尔传感器所采集的数字量,进行后续的算术运算和逻辑运算。能够适用于磁编码器的设计和分析的各个阶段,即使采用简单的设计技术和低成本,数字电路也可以提供良好的准确度和精度,提高角度测量的精细性和准确性。
另一方面,本发明还提供一种电子设备,该电子设备可以包括:处理器(processor)、通信接口(Communications Interface)、存储器(memory)和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信。处理器可以调用存储器中的逻辑指令,以执行磁编码器的校正方法,该方法包括:在确定目标磁编码器处于工作状态的情况下,获取***工作温度;根据目标关系库匹配到与所述***工作温度对应的第一映射关系;基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;其 中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的磁编码器的校正方法,该方法包括:在确定目标磁编码器处于工作状态的情况下,获取***工作温度;根据目标关系库匹配到与所述***工作温度对应的第一映射关系;基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的磁编码器的校正方法,该方法包括:在确定目标磁编码器处于工作状态的情况下,获取***工作温度;根据目标关系库匹配到与所述***工作温度对应的第一映射关系;基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员 应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种磁编码器的校正方法,其特征在于,包括:
    在确定目标磁编码器处于工作状态的情况下,获取***工作温度;
    根据目标关系库匹配到与所述***工作温度对应的第一映射关系;
    基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;
    其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
  2. 根据权利要求1所述的磁编码器的校正方法,其特征在于,在确定目标磁编码器处于工作状态的情况下,获取所述***工作温度之后,还包括:
    在确定所述***工作温度与目标关系库匹配失败的情况下,在所述***工作温度范围内设置N个温度点,得到N+1个温度区间;
    在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系;
    其中,所述目标温度区间为所述温度区间中的一个;所述N为正整数,且所述N取值越大,所述目标磁编码器输出的霍尔电势越接近线性。
  3. 根据权利要求2所述的磁编码器的校正方法,其特征在于,在确定所述***工作温度处于目标温度区间的情况下,确定与所述目标温度区间对应的第二映射关系,包括:
    将所述目标温度区间对应的旋转角度范围内设置M个角度点,得到M+1个旋转角度区间;
    基于目标旋转角度测量值和目标旋转角度实际值,确定与各所述旋转角度区间对 应的所述第二映射关系;
    其中,所述目标旋转角度测量值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度测量值;所述目标旋转角度实际值包括所述旋转角度区间中的起始角度点和终止角度点分别对应的旋转角度实际值;所述M为正整数,且所述M取值越大,所述目标磁编码器的***工作温度变化越接近线性。
  4. 根据权利要求1任一所述的磁编码器的校正方法,其特征在于,所述基于所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度,包括:
    基于所述第一映射关系和所述第一旋转角度,确定角度补偿量;
    基于所述第一旋转角度和所述角度补偿量,确定所述第二旋转角度。
  5. 根据权利要求4所述的磁编码器的校正方法,其特征在于,所述基于所述第一映射关系和所述第一旋转角度,确定角度补偿量,包括:
    在确定所述第一旋转角度处于目标旋转角度区间的情况下,从所述第一映射关系中筛选出与所述目标旋转角度区间对应的目标映射关系;
    基于所述第一旋转角度和所述目标映射关系,确定所述角度补偿量。
  6. 根据权利要求4或5所述的磁编码器的校正方法,其特征在于,所述第一映射关系包括所述第二映射关系。
  7. 根据权利要求6所述的磁编码器的校正方法,其特征在于,所述第二映射关系通过公式(1)获得:
    Figure PCTCN2022143270-appb-100001
    其中,θ为处于所述旋转角度区间[θa,θ(a+1)]的旋转角度测量值。Δθ为θ处需要进行温度补偿的角度补偿量。θ(a)和θ(a+1)分别为旋转角度区间[θa,θ(a+1)]对应的目标旋转角度实际值。Δθa为θ(a)处对应的目标旋转角度测量值与目标旋转角度实际值 之间的差值。Δθ(a+1)为θ(a+1)处对应的目标旋转角度测量值与目标旋转角度实际值之间的差值。
  8. 一种磁编码器的校正装置,其特征在于,包括:
    温度获取模块,用于在确定目标磁编码器处于工作状态的情况下,获取***工作温度;
    温度关联模块,与所述温度获取模块连接,用于根据目标关系库匹配到与所述***工作温度对应的第一映射关系;
    校正模块,与所述温度关联模块连接,用于根据所述第一映射关系,对所述目标磁编码器的第一旋转角度进行温度补偿,以确定第二旋转角度;
    其中,所述目标关系库与所述目标磁编码器对应;所述第一映射关系包括***工作温度范围内的旋转角度实际值和旋转角度测量值之间的对应关系;所述第一旋转角度为所述目标磁编码器在所述***工作温度下所采集的旋转角度;所述第二旋转角度为所述目标磁编码器在所述***工作温度下所输出的旋转角度。
  9. 一种磁编码器,包括同处于一条中心轴线且由下至上层叠布设的霍尔传感器和磁码盘,以及用于信号处理的信号处理电路,其特征在于,所述信号处理电路用于执行如权利要求1至7任一项所述磁编码器的校正方法。
  10. 根据权利要求9所述的磁编码器,其特征在于,所述霍尔传感器为开关型霍尔传感器。
PCT/CN2022/143270 2022-12-02 2022-12-29 磁编码器的校正方法、装置及磁编码器 WO2024113450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211542902.9 2022-12-02
CN202211542902.9A CN115824032A (zh) 2022-12-02 2022-12-02 磁编码器的校正方法、装置及磁编码器

Publications (1)

Publication Number Publication Date
WO2024113450A1 true WO2024113450A1 (zh) 2024-06-06

Family

ID=85545006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143270 WO2024113450A1 (zh) 2022-12-02 2022-12-29 磁编码器的校正方法、装置及磁编码器

Country Status (2)

Country Link
CN (1) CN115824032A (zh)
WO (1) WO2024113450A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116772904B (zh) * 2023-08-22 2024-06-11 杭州辰控智能控制技术有限公司 一种磁编码器的信号补偿方法、磁编码器及标定***
CN117782187B (zh) * 2024-02-23 2024-05-07 泉州昆泰芯微电子科技有限公司 一种编码器的非线性误差修正方法及编码器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290545A1 (en) * 2005-05-31 2006-12-28 Wolfgang Granig Method for Determining Residual Error Compensation Parameters for a Magnetoresistive Angle Sensor and Method for Reducing a Residual Angle Error in a Magnetoresistive Angle Sensor
CN104848813A (zh) * 2014-02-18 2015-08-19 赫克斯冈技术中心 用于确定相对位置的***
CN106482754A (zh) * 2015-08-28 2017-03-08 日本电产三协株式会社 编码器
CN206891377U (zh) * 2017-03-09 2018-01-16 常州寻心电子科技有限公司 一种角位移传感器
CN112067023A (zh) * 2020-07-26 2020-12-11 哈尔滨理工大学 一种两霍尔磁电编码器及其角度值温漂补偿方法
CN114094952A (zh) * 2021-11-26 2022-02-25 成都芯进电子有限公司 一种低温漂线性霍尔放大电路及其温度补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290545A1 (en) * 2005-05-31 2006-12-28 Wolfgang Granig Method for Determining Residual Error Compensation Parameters for a Magnetoresistive Angle Sensor and Method for Reducing a Residual Angle Error in a Magnetoresistive Angle Sensor
CN104848813A (zh) * 2014-02-18 2015-08-19 赫克斯冈技术中心 用于确定相对位置的***
CN106482754A (zh) * 2015-08-28 2017-03-08 日本电产三协株式会社 编码器
CN206891377U (zh) * 2017-03-09 2018-01-16 常州寻心电子科技有限公司 一种角位移传感器
CN112067023A (zh) * 2020-07-26 2020-12-11 哈尔滨理工大学 一种两霍尔磁电编码器及其角度值温漂补偿方法
CN114094952A (zh) * 2021-11-26 2022-02-25 成都芯进电子有限公司 一种低温漂线性霍尔放大电路及其温度补偿方法

Also Published As

Publication number Publication date
CN115824032A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024113450A1 (zh) 磁编码器的校正方法、装置及磁编码器
WO2021114419A1 (zh) 一种旋转磁电编码器的校准方法、装置及设备
CN108474671B (zh) 机械角度检测方法、云台及机器可读存储介质
CN113551660B (zh) 一种电极角度存在误差时的半球谐振陀螺振型角获取方法
AU2006336718A1 (en) Rotary encoder
JP2000314638A (ja) エンコーダ
WO2011055662A1 (ja) 軸ぶれ計測方法及び軸ぶれ計測機能を具備した自己校正機能付き角度検出器
CN107810390B (zh) 位置编码器
CN116182924A (zh) 相位补偿方法、装置以及磁编码器
US7046176B2 (en) Rotary encoder
JPH0643892B2 (ja) 測角誤差の補正装置
CN115979324A (zh) 一种磁编码器的非线性校准方法及装置
CN102829714A (zh) 一种基于圆感应同步器实现绝对式测角的方法
EP3705902B1 (en) Method of determining an absolute angle of a magnetic field
CN108827190B (zh) 基于双自准直仪的高精度测角误差检测装置及其检测方法
KR100528644B1 (ko) 차량용 조향축의 절대조향각 측정방법
JP2008026297A (ja) 回転角度位置検出装置
CN111368584A (zh) 一种可自校正的正余弦编码器高分辨率位置信息拼接方法
JP2839341B2 (ja) 位置信号の校正装置
JP2009008536A (ja) レゾルバを用いて回転体の回転位置を検出するための装置
CN109855668A (zh) 磁角度传感器的自校准方法、装置、磁角度传感器及***
CN110530544A (zh) 一种温度校正方法及***
CN115597650A (zh) 校准装置、校准方法以及校准程序
CN112665531B (zh) 一种多对级旋变坐标变换解角方法
CN112039373A (zh) 一种基于线性霍尔***的转子角度检测方法及装置