WO2020024260A1 - 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置 - Google Patents

硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置 Download PDF

Info

Publication number
WO2020024260A1
WO2020024260A1 PCT/CN2018/098512 CN2018098512W WO2020024260A1 WO 2020024260 A1 WO2020024260 A1 WO 2020024260A1 CN 2018098512 W CN2018098512 W CN 2018098512W WO 2020024260 A1 WO2020024260 A1 WO 2020024260A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
green
sulfide
powder
hours
Prior art date
Application number
PCT/CN2018/098512
Other languages
English (en)
French (fr)
Inventor
王晶
胡程
尹向南
徐达
Original Assignee
东台市天源光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东台市天源光电科技有限公司 filed Critical 东台市天源光电科技有限公司
Publication of WO2020024260A1 publication Critical patent/WO2020024260A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals

Definitions

  • the invention relates to a sulfide red fluorescent powder, a preparation method thereof, and a light emitting device using the fluorescent powder.
  • the backlight source of the existing LCD products generally adopts KSF or MGF phosphors.
  • KSF or MGF phosphors have extremely poor temperature properties and decompose in water.
  • An object of the present invention is to provide a sulfide red phosphor and a preparation method thereof.
  • Another object of the present invention is to provide a light-emitting device using the sulfide red phosphor instead of KSF or MGF phosphor as a red phosphor, and simultaneously used with a green (yellow-green) luminous body, and applied to a display and a lighting device Etc., not only obtain high luminous efficiency, but also can emit the highest brightness with the least power consumption.
  • a sulfide red phosphor whose chemical structure is as follows: (Ca 1-x , Sr x ) M y Sa: zEu, cEr, bR, where M is one of Mg, Zn, Al, Ga, Gd or Y or Various types, R is one of Ce, Tb, Pr, Bi, Sb, Se, Pb, Sn, Ge, and 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0.0001 ⁇ z ⁇ 0.5, 1 ⁇ a ⁇ 4, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.001.
  • the method for preparing the sulfide red phosphor according to the present invention comprises the following steps:
  • Step (1) Weigh the required raw materials according to the chemical group distribution ratio of the chemical formula (Ca 1-x , Sr x ) M y Sa: zEu, cEr, bR;
  • step (2) the oxides and / or carbonates in the raw materials are dissolved with nitric acid, and ammonium bicarbonate is added for precipitation, filtered, washed and dried, and sulfur and flux are added for mixing, and then ground into a material precursor; or
  • the oxides and / or sulfides and / or nitrates in the raw materials are mixed with water, dried, mixed with sulfur and a flux, and ground into a material precursor;
  • the fluxes are BaCl 2 , CaCl 2 , SrCl 2 , BaF 2 , one or more of CaF 2 , SrF 2 , LiF, NH 4 Cl, LiCl, Li 2 CO 3 ;
  • Step (3) The material precursor is pre-fired in a reducing atmosphere, crushed after cooling, washed, and dried; and then the powder is burned in a reducing atmosphere;
  • step (4) the burned product is subjected to post-treatment to obtain a powder, which is then coated by a CVD method to obtain a sulfide red phosphor.
  • the raw material corresponding to Ca is one or more of carbonate, sulfide, oxide, or nitrate of Ca
  • the raw material corresponding to Sr is carbonate, sulfide, oxide, or One or more of nitrate
  • Eu corresponds to one or more of carbonate, sulfide, oxide or nitrate of Eu
  • Er corresponds to carbonate or sulfide of Er
  • the raw material corresponding to M is one or more of carbonate, sulfide, oxide or nitrate
  • the corresponding raw material of R is carbonate, sulfide Or one or more of oxides or nitrates
  • the raw material corresponding to S is sulfur.
  • the present invention has no limitation on the concentration of nitric acid, and generally, nitric acid with a mass fraction of 40-68% can be used.
  • the amount of metal ion species to be opposite to the bicarbonate salt is excessive, the ammonium bicarbonate (CO 3 2- in the count) with nitric acid (in NO 3 -) Molar ratio of 1.05: 1, using hydrogen Precipitation with ammonium to produce carbonate precipitation is well known to those skilled in the art.
  • wet mixing is performed with nitric acid, and if there is sulfide or nitrate in the raw material, water is used for wet mixing.
  • the raw materials other than S in the present invention are mixed by wet method to achieve effective crystal bonding before the high-temperature solid-phase reaction of the phosphor, so that the raw materials are more closely combined with each other.
  • the amount of the flux used is 0.03-5% by weight of the raw material.
  • the reducing atmosphere is one or more of N 2 , H 2 S, NH 3 , Ar-H 2 mixed gas, N 2 -H 2 mixed gas, and NH 3 -H 2 mixed gas.
  • the volume ratio of Ar and H 2 in the Ar-H 2 gas mixture is 95%: 5%
  • the volume ratio of N 2 and H 2 in the N 2 / H 2 gas mixture is 95%: 5%
  • NH 3 -H The volume ratio of NH 3 and H 2 in the 2 mixed gas is 50%: 50%.
  • the material precursor After the material precursor is calcined, it needs to be broken to 5-20 ⁇ m.
  • the material precursor is put into a buried carbon corundum crucible and placed in a reducing atmosphere for pre-firing.
  • the powder is put into a buried carbon corundum crucible, and the powder is burned in a reducing atmosphere.
  • the pre-baking temperature is 700-800 ° C, and the time is 1-4 hours; the burning temperature is 820-1420 ° C, and the time is 2-12 hours.
  • the post-treatment is that the burning product is ball-milled with an agate ball for 1-6 hours to obtain a powder.
  • the CVD coating process is as follows: the powder is fluidized in a reactor to form a fluidized powder, and triethylaluminum and silicon tetrachloride are used as coating materials, and the coating materials are formed under the conditions of 20 ° C-80 ° C.
  • the steam is fully saturated in the reactor with nitrogen as the carrier, so that the fluidized powder is exposed to the material of the evaporation coating, the temperature is raised to 500 ° C-600 ° C, water vapor is introduced, and the reaction is performed for 5-10 hours.
  • silicon tetrachloride the powder is coated to obtain a sulfide red phosphor.
  • the mass ratio of triethylaluminum vapor and silicon tetrachloride vapor is 1: 1, and the mass of the coating material and the fluidized powder are The ratio is 1-8%; the mass ratio of water vapor and coating material is 9-10: 1.
  • the sulfide red phosphor powder of the present invention is uniformly distributed and has good temperature resistance after being coated. In a 2mol / L silver nitrate solution, it will not be black for at least 24 hours at 90 ° C and at least 72 hours at 40 ° C. It will not be dark for 10 days at room temperature.
  • the sulfide red phosphor can selectively absorb the blue light emitted by the light-emitting element and emit red light; it will not absorb the green light of the green (yellow-green) luminous body and will not cause repeated absorption.
  • Another object of the present invention is to provide a light-emitting device using the sulfide red phosphor, including: a light-emitting element 1 that emits blue light; a green (yellow-green) light-emitting body 2 that absorbs a part of the blue light emitted by the light-emitting element 1 And emits green light; and the sulfide red phosphor according to the present invention absorbs part of the blue light of the light-emitting element 1 and emits red light; the cavity resin package 4 and the cavity section of the cavity resin package 4 It is trapezoidal, and the upper part of the cavity resin package 4 is opened; the light-emitting element 1 is arranged on the bottom surface of the resin package 4, and the sealing resin is filled in the cavity of the resin package 4 to form a light-emitting element package; 2 The outside is covered with a sealing resin to form a light-emitting body-containing layer, and the light-emitting body-containing layer contains a light-transmitting material.
  • the light-emitting body-containing layer contains a sulfide red phosphor; or a cavity of the resin package 4 is filled with a sealing resin 6, a filler, and a sulfide red phosphor 3. Control the mass ratio of sulfide red phosphor and green (yellow-green) luminous body in the range of 1: 15-20.
  • a light guide plate 10 is provided between the light-emitting element package and the green (yellow-green) light-emitting body 2.
  • the upper opening of the light-emitting element package is parallel to one side of the light guide plate 10
  • the light-emitting body-containing layer is parallel to the upper surface of the light guide plate 10 and is located on the upper surface of the light guide plate 10.
  • the light-emitting element 1 emits blue light, part of it is emitted from the sealing resin, and the other part is absorbed by the sulfide red phosphor 3 in the sealing resin, and emits red light.
  • the emitted blue light and red light are mixed into
  • the purple light passes through the light guide plate 10 and enters the green (yellow-green) light-emitting body-containing layer 9.
  • the green (yellow-green) light-containing body 9 absorbs the blue light of the light-emitting element 1 and emits green light (yellow-green light). Mixed with purple light into white light.
  • the light-emitting device using the sulfide red phosphor of the present invention has high light efficiency, the light efficiency is 110% of the current similar products, the color gamut is high, and the color rendering index can reach more than 97.
  • a blue-light LED chip can be used as the light-emitting element 1 that emits blue light.
  • the green luminous body 2 may be a gallate (YGa) 3 Al 5 : Ce green phosphor, a silicate (SrBa) 2 SiO 4 : Eu green phosphor.
  • the light-transmitting materials are polymethyl methacrylate (PMMA), polyvinyl phenol (PVP), polyvinyl alcohol (PVA), polyethersulfone (PES), polycarbonate (PC), polyparaphenylene Organic polymers of polyethylene dicarboxylate (PET), polyethylene naphthalate (PEN), polystyrene (PS), unsaturated polyester, epoxy resin, polyfunctional polyolefin, silicone resin One or more of them.
  • the sealing resin is one or more of polyester resin, liquid crystal resin, aromatic polyamide resin, epoxy resin, phenol resin, silicone resin, acrylic resin, and urethane resin.
  • the filler is a thermoplastic resin.
  • Figure 1 The emission spectrum of the red powder of Example 1; where the abscissa is the wavelength and the ordinate is the relative intensity;
  • Figure 4 The emission spectrum of the red powder of Example 4.
  • Figure 7 The emission spectrum of the red powder of Example 7.
  • Figure 8 The emission spectrum of the red powder of Example 8.
  • Figure 11 The emission spectrum of the red powder of Example 11;
  • Figure 12 The emission spectrum of the red powder of Example 12;
  • Figure 13 The emission spectrum of the red powder of Example 13;
  • Figure 14 The emission spectrum of the red powder of Example 14;
  • Figure 15 The emission spectrum of the red powder of Example 15;
  • Figure 16 The emission spectrum of the red powder of Example 16;
  • 17 is a schematic cross-sectional view of a light-emitting device according to a seventeenth embodiment
  • Embodiment 18 is a schematic cross-sectional view of a light-emitting device according to Embodiment 18;
  • Embodiment 19 is a schematic sectional view of a liquid crystal display of a light emitting device according to Embodiment 19;
  • FIG. 20 The range of the emitted light parameters on the chromaticity diagram (CIE) after the light-emitting element is packaged;
  • Figure 21 Spectral diagram of three different phosphors (luminescing bodies) packaged by a light-emitting element composited into white light.
  • the raw material ratio is calculated. According to the ratio, 147.62 g of raw material strontium carbonate, 0.84 g of magnesium carbonate, 3.16 g of thorium oxide, 0.09 g of thorium oxide, dissolved with nitric acid, It was then precipitated with excess ammonium bicarbonate, washed, dried, and finally added 35.28 g of sulfur, flux: 1.99 g of calcium chloride, 1.90 g of strontium chloride. After being thoroughly mixed and ground, it was placed in a corundum crucible and reduced in H 2 S Pre-firing at 750 ° C for 2 hours in the atmosphere.
  • the raw material ratio is calculated. According to the ratio, 36.07 grams of calcium sulfide, 59.85 grams of strontium sulfide, 2.74 grams of yttrium sulfide, 1.01 grams of thorium sulfide, and oxidation 0.09 g of osmium, 0.10 g of thorium oxide, fully mixed with water, dried, and finally added 6.4 g of sulfur, flux: 1.25 g of calcium fluoride, 1.10 g of ammonium chloride, after thorough mixing and grinding, put in a corundum crucible, Pre-firing at 750 ° C for 2 hours in 2 S reducing atmosphere, crushed and washed 3 times after cooling to normal temperature, put it into the corundum crucible again, burn at 1400 ° C for 3 hours in H 2 S reducing atmosphere, and finally use
  • the raw material ratio is calculated. According to the ratio, 36.07 g of calcium sulfide, 59.85 g of strontium sulfide, 2.11 g of thorium oxide, 0.09 g of thorium oxide, 1.10 g of thorium sulfide, and oxidation ⁇ 0.10g, mix thoroughly with water, dry, and finally add 6.4g of sulfur. Flux: 1.35g of lithium chloride, 1.11g of calcium chloride. After thoroughly mixing and grinding, put it into a corundum crucible and place it in a H 2 S reducing atmosphere.
  • the raw material ratio is calculated.
  • the ratio 82.05 g of calcium nitrate, 105.81 g of strontium nitrate, 3.83 g of yttrium nitrate, 0.47 gadolinium nitrate, and gadolinium nitrate 0.10 g, rhenium nitrate 0.34 g, thoroughly mixed with water, dried, and finally added 6.4 g of sulfur, flux: 1.25 g of calcium fluoride, 1.10 g of ammonium chloride, after thorough mixing and grinding, put in a corundum crucible, and place in H 2 Pre-firing at 750 ° C for 2 hours in S reducing atmosphere, crushed and washed 3 times after cooling to normal temperature, put it into the corundum crucible again, burn at 1400 ° C for 3 hours in H 2 S reducing atmosphere,
  • the red powders of Examples 1-16 were respectively subjected to a CVD coating process: the red powder was fluidized in a reactor to form a fluidized powder, and triethylaluminum and silicon tetrachloride each formed triethylaluminum at 80 ° C. Steam, silicon tetrachloride steam, triethylaluminum steam, and silicon tetrachloride steam are mixed at a mass ratio of 1: 1, and the reactor is saturated with nitrogen as a carrier, so that the fluidized powder is exposed to the substance of the evaporation coating. Then, the temperature was raised to 530 ° C, water vapor was introduced, and the reaction was carried out for 8 hours.
  • the sulfide red phosphors obtained by the above-mentioned CVD coating process are not blackened at 90 ° C for at least 24 hours in a 2mol / L silver nitrate solution, and are not blackened at 40 ° C for at least 72 hours. At room temperature Not dark for 10 days.
  • the red powder obtained in Example 1 was fluidized in the reactor to form a fluidized powder.
  • triethylaluminum was formed into triethylaluminum vapor, and the reactor was fully saturated with nitrogen as the carrier, so that The fluidized powder was exposed to the material of the evaporation coating, heated to 530 ° C, introduced with water vapor, and reacted for 8 hours.
  • the triethylaluminum was coated in the powder to obtain a sulfide red phosphor;
  • the mass ratio of the fluidized powder is 4.5%, and the mass ratio of water vapor to the coating material is 9.5: 1.
  • the sulfide red phosphor turns black in a 2 mol / L silver nitrate solution at 90 ° C. for 12 hours, blackens at 40 ° C. for 24 hours, and turns black for 4 days at room temperature.
  • the red powder prepared in Example 1 was taken and fluidized in the reactor to form a fluidized powder.
  • silicon tetrachloride formed silicon tetrachloride vapor, and nitrogen was used as a carrier to pass into the reactor to be fully saturated, so that The fluidized powder was exposed to the material of the evaporation coating, heated to 530 ° C, introduced with water vapor, and reacted for 8 hours.
  • the powder was covered with powder to obtain a sulfide red phosphor.
  • silicon tetrachloride and The mass ratio of the fluidized powder is 4.5%, and the mass ratio of water vapor to the coating material is 9.5: 1.
  • the sulfide red phosphor in this example turns black in a 2 mol / L silver nitrate solution at 90 ° C for 12 hours, blackens at 40 ° C for 24 hours, and turns black for 3 days at normal temperature.
  • Example 2 Take the uncoated red powder of Example 1-16, the sulfide red phosphor treated with CVD coating, and the sulfide red phosphor of Comparative Example 2-3, and place them at 90 ° C and 90% RH. Constant temperature and humidity treatment for 2h, the relevant data before and after the constant temperature and humidity treatment are tested, see Table 2.
  • a light-emitting device includes: a light-emitting element 1 that emits blue light; a green (yellow-green) light-emitting body 2 that absorbs a part of the blue light of the light-emitting element 1 and emits green light; Part of blue light and red light emitting sulfide red phosphor 3 (Example 2); cavity resin package 4, cavity resin package 4 has an inverted trapezoidal cross-section, cavity resin package 4 The upper part is opened; the light-emitting element 1 is arranged on the bottom surface of the resin package 4, and the positive and negative electrodes of the light-emitting element 1 emit blue light by supplying current through an external power source; the cavity of the resin package 4 is filled with a sealing resin (silicone) Resin), filler (thermoplastic resin), and sulfide red phosphor 3; the sealing resin (polyester resin) is covered on the outside of the green (yellow-green) luminous body 2 to form a green (yellow
  • the green light emitting body is a gallate (YGa) 3 Al 5 : Ce green phosphor.
  • the sulfide red phosphor 3 is closer to the light emitting element 1 that emits blue light than the light emitting element 2 that emits green light (yellow-green).
  • a light-emitting device includes: a light-emitting element 1 that emits blue light; a green (yellow-green) light-emitting body 2 that absorbs a part of the blue light of the light-emitting element 1 and emits green light; A part of blue light and a red sulfide red phosphor 3; the cavity resin package 4, the cavity resin package 4 has an inverted trapezoidal cross section, and the cavity resin package 4 has an upper opening;
  • the light-emitting element 1 is disposed on the bottom surface of the cavity resin package 5.
  • the positive and negative electrodes of the light-emitting element 1 emit blue light by supplying current through an external power source.
  • the cavity of the cavity resin package 4 is filled with a sealing resin and a filler;
  • the sulfide red phosphor and the light-transmitting material are mixed with the sealing resin and covered on the outside of the green (yellow-green) luminous body 2 to form a green (yellow-green) luminous body containing layer to control the sulfide red phosphor and green (yellow-green)
  • the mass ratio of the luminous body is 1: 15-20.
  • the distance between the sulfide red phosphor 3 and the green (yellow-green) light-emitting body 2 is the same as that of the light-emitting element 1.
  • a light-emitting device liquid crystal display includes a light-emitting device.
  • the light-emitting device includes a light-emitting element package, a green (yellow-green) light-emitting body containing layer 9, and a light guide plate 10.
  • the light-emitting element package includes a light-emitting element 1 that emits blue light.
  • the positive electrode and the negative electrode of the element 1 emit blue light by supplying current through an external power source; the cavity of the cavity resin package 4 is filled with a sealing resin, a filler, and a sulfide red phosphor 3.
  • the light-emitting element package and the one side of the light guide plate 10 are arranged facing each other, that is, the light-emitting element package is located on the side of the light guide plate 10 and the upper opening of the resin package 4 of the light-emitting element package is parallel to the side of the light guide plate 10 so that blue light passes through the light guide.
  • a light plate; the green light color (yellow green) light-emitting body containing layer 9 is located on the upper surface of the light guide plate 10, and a polarizing film 31A,
  • the liquid crystal cell 32, the color filter array 33, and the polarizing film 31B are provided with a reflection plate 11 on the lower surface of the light guide plate 10.
  • the color filter array 33 includes a red color filter 33R, a green color filter 22G, and a blue color.
  • the color filters 11B are arranged in order.
  • the light-emitting principle of the liquid crystal display the light-emitting element 1 emits blue light, part of which is emitted from the sealing resin, and the other part is absorbed by the sulfide red phosphor 3 placed in the sealing resin, and emits red light.
  • the emitted blue light and red light are mixed into purple.
  • purple light passes through the light guide plate 10, and enters the green (yellow-green) light-emitting body containing layer 9 while the green (yellow-green) light-emitting body containing layer 9 absorbs blue light of the light emitting element 1, and emits green light (yellow-green light), and Purple light is mixed into white light.
  • the white light enters the polarizing film 31A, a part of the light passes through the polarizing film 31A, enters the liquid crystal cell 32, passes through the liquid crystal cell 32, and reaches the color filter array 33.
  • the white light (blue light + green light + red light) reaching the color filter array passes through
  • red light passes through the red color filter 33R
  • green light passes through the green color filter 22G
  • blue light passes through the blue color filter 11B
  • blue light, green light, and red pass through the color filter 33.
  • a part of the light passes through the upper polarizing film 31B, so that the liquid crystal display can display an image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种硫化物红色荧光粉,化学式:(Ca 1-x,Sr x)M ySa:zEu,cEr,bR,M为Mg、Zn、Al、Ga、Gd或Y的一种或多种,R为Ce、Tb、Pr、Bi、Sb、Pb、Sn、Ge中的一种,0≤x≤1,0≤y<1,0.0001<z<0.5,1≤a<4,0≤b<0.5,0≤c<0.001。该硫化物红色荧光粉颗粒分布均匀,经包膜后温度性很好,在2mol/L的硝酸银溶液中在90℃下至少24小时不变黑,在40℃下至少72小时不变黑,在常温下10天不变黑;能够选择性吸收发光元件发出的蓝色光,发出红光;不会吸收绿色(黄绿)发光体的绿光,不会引起重复吸收。本发明还公开了含该荧光粉的发光装置。

Description

硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置 技术领域
本发明涉及一种硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置。
背景技术
随着国际IT行业迅速发展,使得相关背光源、显示照明和白光LED行业不断推陈出新,产品尺寸朝多元化和轻便化方高发展,背光源作为LCD产品的核心组件之一,势必配合此发展趋势,致力于产品的多元化和轻便化。现有的LCD产品的背光源一般采用KSF或者MGF荧光粉,KSF或者MGF荧光粉温度性极差,遇水分解。
发明内容
本发明的目的在于提供一种硫化物红色荧光粉及其制备方法。
本发明的另一个目的是提供一种发光装置,采用所述的硫化物红色荧光粉取代KSF或者MGF荧光粉作为红色荧光粉,同时和绿色(黄绿)发光体使用,应用于显示器以及照明装置等,既获得高发光效率,又能够以最少的耗电量发出最高的亮度。
本发明的目的是通过以下技术方案实现的:
一种硫化物红色荧光粉,其化学结构式如下:(Ca 1-x,Sr x)M ySa:zEu,cEr,bR,其中M为Mg、Zn、Al、Ga、Gd或Y的一种或多种,R为Ce、Tb、Pr、Bi、Sb、Se、Pb、Sn、Ge中的一种,并且0≤x≤1,0≤y<1,0.0001<z<0.5,1≤a<4,0≤b<0.5,0≤c<0.001。
本发明所述的硫化物红色荧光粉的制备方法,步骤如下:
步骤(1)、按化学式(Ca 1-x,Sr x)M ySa:zEu,cEr,bR的化学组分配比称取所需原料;
步骤(2)、原料中的氧化物和/或碳酸盐用硝酸溶解,再加入碳酸氢铵进行沉淀,过滤、清洗后烘干,加入硫磺和助熔剂混合,研磨成材料前驱体;或者将原料中的氧化物和/或硫化物和/或硝酸盐用水混合,烘干,加入硫磺和助熔剂混合,研磨成材料前驱体;所述的助熔剂为BaCl 2、CaCl 2、SrCl 2、BaF 2、CaF 2、SrF 2、LiF、NH 4Cl、LiCl、Li 2CO 3中的一种或多种;
步骤(3)、将材料前驱体置于还原气氛中进行预烧,冷却后破碎,清洗、烘干;再将粉体置于还原气氛中进行灼烧;
步骤(4)、灼烧产物经过后处理得到粉体,再采用CVD法包膜处理,得到硫化物红色荧光粉。
步骤(1)中,Ca对应的原料为Ca的碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种, Sr对应的原料为Sr的碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种,Eu对应的原料为Eu的碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种,Er对应的原料为Er的碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种,M对应的原料是碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种,R对应的原料是碳酸盐、硫化物、氧化物或硝酸盐中的一种或多种;S对应的原料为硫磺。
步骤(2)中,本发明对硝酸的浓度没有限制,一般可以采用质量分数为40-68%的硝酸。碳酸氢铵相对待成盐的金属离子的物质的量过量,所述的碳酸氢铵(以CO 3 2-计)与硝酸(以NO 3 -计)的摩尔比为1.05:1,采用碳酸氢铵进行沉淀制备碳酸盐沉淀为本领域技术人员公知常识。如果原料中有碳酸盐,采用硝酸进行湿法混合,原料中有硫化物或硝酸盐采用水进行湿法混合。相对于干法研磨混匀,本发明除S外的原料采用湿法混合,达到在荧光粉高温固相反应前有效的晶体结合,让原材料相互结合更加紧密。
所述的助熔剂的用量为原料重量的0.03-5%。
步骤(3)中,所述的还原气氛为N 2、H 2S、NH 3、Ar-H 2混合气、N 2-H 2混合气、NH 3-H 2混合气中的一种或多种;Ar-H 2混合气中Ar和H 2的体积比为95%:5%,N 2/H 2混合气中N 2和H 2的体积比为95%:5%,NH 3-H 2混合气中NH 3和H 2的体积比为50%:50%。
材料前驱体预烧后需要破碎至5-20μm。
所述的材料前躯体装入埋碳刚玉坩埚中,置于还原气氛中进行预烧。所述的粉体装入埋碳刚玉坩埚中,置于还原气氛中进行灼烧。
预烧的温度为700-800℃,时间为1-4小时;灼烧的温为820-1420℃,时间为2-12小时。
步骤(4)中,所述的后处理为灼烧产物采用玛瑙球球磨1-6小时得到粉体。
所述的CVD法包膜处理为:粉体在反应器中流化形成流化粉体,以三乙基铝和四氯化硅为镀膜的物质,在20℃-80℃条件下镀膜的物质形成蒸汽,以氮气为载体通入反应器中充分饱和,使得流化粉体暴露于蒸发镀膜的物质下,升温至500℃-600℃,导入水蒸气,反应5-10小时,三乙基铝、四氯化硅发生反应后包于粉体,得到硫化物红色荧光粉;其中,三乙基铝蒸汽和四氯化硅蒸汽的质量比为1:1,镀膜的物质与流化粉体的质量比为1-8%;水蒸汽和镀膜的物质的质量比为9-10:1。
本发明硫化物红色荧光粉颗粒分布均匀,经包膜后温度性很好,在2mol/L的硝酸银溶液中在90℃下至少24小时不变黑,在40℃下至少72小时不变黑,在常温下10天不变黑。硫化物红色荧光粉能够选择性吸收发光元件发出的蓝色光,发出红光;不会吸收绿色(黄绿)发光体的绿光,不会引起重复吸收。
本发明的另一个目的是提供采用所述的硫化物红色荧光粉的发光装置,包括:发出蓝色光的发光元件1;绿色(黄绿)发光体2,吸收发光元件1发出的蓝色光的一部分,发出绿光;以及本发明所述的硫化物红色荧光粉,吸收发光元件1的蓝色光的一部分,并发光出红光;空腔树脂封装件4,空腔树脂封装件4的空腔剖面呈梯形,空腔树脂封装件4上部开口;所述的发光元件1配置于树脂封装件4底面,在树脂封装件4空腔中填充密封树脂构成发光元件封装;在绿色(黄绿)发光体2外侧覆盖密封树脂形成发光体含有层,发光体含有层含有透光性材料。
所述的发光体含有层含有硫化物红色荧光粉;或在所述的树脂封装件4空腔中填充密封树脂6、填充剂和硫化物红色荧光粉3。控制硫化物红色荧光粉和绿色(黄绿)发光体的质量比在1:15-20。
所述的发光元件封装与所述的绿色(黄绿)发光体2之间配有导光板10。所述的发光元件封装的上部开口与所述的导光板10的1个侧面平行,所述的发光体含有层与所述的导光板10的上表面平行并位于导光板10的上表面。
本发明发光装置中,发光元件1发出蓝色光,一部分从密封树脂中射出,另外一部分被置于密封树脂内的硫化物红色荧光粉3吸收,发出红色光,射出的蓝色光和红色光混合成紫色光,紫色光经过导光板10,射入绿色(黄绿)发光体含有层9,同时该绿色(黄绿)发光体含有层9吸收发光元件1的蓝色光,发出绿色光(黄绿光),和紫色光混合成白光。
本发明采用硫化物红色荧光粉的发光装置光效高,光效是目前同类产品的110%,色域程度高,显色指数可以达到97以上。
具体的,发出蓝色光的发光元件1可以采用蓝光LED芯片。
所述的绿色发光体2可以为镓酸盐(YGa) 3Al 5:Ce绿色荧光粉、硅酸盐(SrBa) 2SiO 4:Eu绿色荧光粉。
所述的透光性材料为聚甲基丙烯酸甲酯(PMMA)、聚乙烯基苯酚(PVP)、聚乙烯醇(PVA)、聚醚砜(PES)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚苯乙烯(PS)、不饱和聚酯、环氧树脂、多官能聚烯烃、硅酮树脂的有机聚合物中的一种或多种。
所述的密封树脂为聚酯树脂、液晶树脂、芳香族聚酰胺树脂、环氧树脂、酚醛树脂、硅酮树脂、丙烯酸树脂、氨基甲酸酯树脂中的一种或多种。
所述的填充剂为热塑性树脂。
本发明所述的光发光装置在液晶显示器和其他显示器的背光灯或照明上的应用。
附图说明
图1:实施例1红色粉末的发射光谱;其中,横坐标为波长,纵坐标为相对强度;
图2:实施例2红色粉末的发射光谱;
图3:实施例3红色粉末的发射光谱;
图4:实施例4红色粉末的发射光谱;
图5:实施例5红色粉末的发射光谱;
图6:实施例6红色粉末的发射光谱;
图7:实施例7红色粉末的发射光谱;
图8:实施例8红色粉末的发射光谱;
图9:实施例9红色粉末的发射光谱;
图10:实施例10红色粉末的发射光谱;
图11:实施例11红色粉末的发射光谱;
图12:实施例12红色粉末的发射光谱;
图13:实施例13红色粉末的发射光谱;
图14:实施例14红色粉末的发射光谱;
图15:实施例15红色粉末的发射光谱;
图16:实施例16红色粉末的发射光谱;
图17:实施例17的发光装置的概略剖面图;
图18:实施例18的发光装置的概略剖面图;
图19:实施例19的发光装置液晶显示器的概略剖面图;
图20:发光元件封装后发射出光参数在在色品图上(CIE)的范围;
图21:发光元件封装三种不同荧光粉(发光体)复合成白光的光谱图。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步说明。
实施例1
按化学式Ca 1M g0.01S 1.1:0.015Eu,0.0005Er计算原料配比,按配比称取原料碳酸钙100.09克,碳酸镁0.84克,氧化铕2.64克,氧化铒0.09克,用1.2mol/L硝酸(补充硝酸质量分数)溶解,再加入过量碳酸氢铵固体沉淀(碳酸氢铵以CO 3 2-计,硝酸以NO 3 -计,两者摩尔比为1.05:1,下同)过滤、去离子水清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化钡1.41克,氯化锶1.42克,氯化锂2.00克,经充分混合研磨后,放入埋碳刚玉坩埚,在 H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎至5-20μm之间(下同)、去离子水清洗3次,再次放入埋碳刚玉坩埚,在H 2S还原气氛中1000℃下灼烧10小时,最后采用玛瑙球球磨2小时,后得到红色粉末。
实施例2
按化学式Sr 1M g0.01S 1.1:0.018Eu,0.0005Er计算原料配比,按配比称取原料碳酸锶147.62克,碳酸镁0.84克,氧化铕3.16克,氧化铒0.09克,用硝酸溶解,再用过量碳酸氢铵沉淀,清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化钙1.99克,氯化锶1.90克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1100℃下灼烧8小时,最后采用玛瑙球球磨2.5小时,后得到红色粉末。
实施例3
按化学式Ca 0.5Sr 0.5M g0.01S 1.1:0.02Eu,0.0005Er计算原料配比,按配比称取原料碳酸钙50.05克,碳酸锶73.82,碳酸镁0.84克,氧化铕3.51克,氧化铒0.09克,用硝酸溶解,再用过量碳酸氢铵沉淀,清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化铵1.79克,氟化钙2.00克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1150℃下灼烧6小时,最后采用玛瑙球球磨3小时,后得到红色粉末。
实施例4
按化学式Ca 1.0M g0.02Zn 0.02S 0.1:0.03Eu,0.001Er计算原料配比,按配比称取原料硫化钙72.14克,硫化镁0.56克,硫化锌0.97克,硫化铕1.39克,硫化铒0.11克,用水充分混合,烘干,最后加入硫磺3.2克,助熔剂:氯化锶0.80克,氯化钙0.80克,氯化锂1.00克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在N 2/H 2还原气氛中1200℃下灼烧4小时,最后采用玛瑙球球磨3小时,后得到红色粉末。
实施例5
按化学式Sr 1.0M g0.02Ga 0.02S 0.1:0.036Eu,0.001Er计算原料配比,按配比称取原料硫化锶119.69克,硫化镁0.56克,硫化镓2.35克,硫化铕1.6克,硫化铒0.11克,用水充分混合,烘干,最后加入硫磺3.2克,助熔剂:氯化锶1.50克,氯化钙1.50克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在NH 3/NH 4还原气氛中进行1150℃下灼烧4小时,最后采用玛瑙球球磨 4小时,后得到红色粉末。
实施例6
按化学式Ca 0.5Sr 0.5Gd 0.02S 0.2:0.02Eu,0.001Er,0.002Ce计算原料配比,按配比称取原料硫化钙36.07克,硫化锶59.85克,硫化钆4.10克,硫化铕0.92克,硫化铒0.11克,硫化铈0.17克,用水充分混合,烘干,最后加入硫磺6.4克,助熔剂:氯化钙1.05克,氯化铵1.10克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1300℃下灼烧3小时,最后采用玛瑙球球磨4小时,后得到红色粉末。
实施例7
按化学式Ca 0.5Sr 0.5Y 0.02S 0.2:0.022Eu,0.001Er,0.001Tb计算原料配比,按配比称取原料硫化钙36.07克,硫化锶59.85克,硫化钇2.74克,硫化铕1.01克,氧化铒0.09克,氧化铽0.10克,用水充分混合,烘干,最后加入硫磺6.4克,助熔剂:氟化钙1.25克,氯化铵1.10克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中进行750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中进行1400℃下灼烧3小时,最后采用玛瑙球球磨5小时,后得到红色粉末。
实施例8
按化学式Ca 0.5Sr 0.5S 0.2:0.024Eu,0.001Er计算原料配比,按配比称取原料硫化钙36.07克,硫化锶59.85克,氧化铕2.11克,氧化铒0.09克,硫化铕1.10克,氧化铒0.10克,用水充分混合,烘干,最后加入硫磺6.4克,助熔剂:氯化锂1.35克,氯化钙1.11克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1400℃下灼烧4小时,最后采用玛瑙球球磨6小时,后得到红色粉末。
实施例9
按化学式Ca 1M g0.01S 1.1:0.015Eu,0.0005Er计算原料配比,按配比称取原料氧化钙56.07克,氧化镁0.40克,氧化铕2.64克,氧化铒0.09克,用硝酸溶解,再用过量碳酸氢铵沉淀,清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化钡1.41克,氯化锶1.42克,氯化锂2.00克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1000℃下灼烧10小时,最后采用玛瑙球球磨2小时,后得到红色粉末。
实施例10
按化学式Sr 1M g0.01S 1.1:0.018Eu,0.0005Er计算原料配比,按配比称取原料氧化锶103.62克,氧化镁0.40克,氧化铕3.16克,氧化铒0.09克,用硝酸溶解,再用过量碳酸氢铵沉淀,清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化钙1.99克,氯化锶1.90克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1100℃下灼烧8小时,最后采用玛瑙球球磨2.5小时,后得到红色粉末。
实施例11
按化学式Ca 0.5Sr 0.5M g0.01S 1.1:0.02Eu,0.0005Er计算原料配比,按配比称取原料氧化钙28.04克,氧化锶51.81,氧化镁0.40克,氧化铕3.51克,氧化铒0.09克,用硝酸溶解,再用过量碳酸氢铵沉淀,清洗、烘干,最后加入硫磺35.28克,助熔剂:氯化铵1.79克,氟化钙2.00克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1150℃下灼烧6小时,最后采用玛瑙球球磨3小时,后得到红色粉末。
实施例12
按化学式Ca 1.0M g0.02Zn 0.02S 0.1:0.03Eu,0.001Er计算原料配比,按配比称取原料硝酸钙164.09克,硝酸镁1.48克,硝酸锌2.97克,硝酸铕0.64克,硝酸铒0.08克,用水充分混合,烘干,最后加入硫磺3.2克,助熔剂:氯化锶0.80克,氯化钙0.80克,氯化锂1.00克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在N 2/H 2还原气氛中1200℃下灼烧4小时,最后采用玛瑙球球磨3小时,后得到红色粉末。
实施例13
按化学式Sr 1.0M g0.02Ga 0.02S 0.1:0.036Eu,0.001Er计算原料配比,按配比称取原料硝酸锶211.63,硝酸镁1.48克,硝酸镓2.55克,硝酸铕0.77克,硝酸铒0.09克,用水充分混合,烘干,最后加入硫磺3.2克,助熔剂:氯化锶1.50克,氯化钙1.50克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在NH 3/NH 4还原气氛中1150℃下灼烧4小时,最后采用玛瑙球球磨4小时,后得到红色粉末。
实施例14
按化学式Ca 0.5Sr 0.5Gd 0.02S 0.2:0.02Eu,0.001Er,0.002Ce计算原料配比,按配比称取原料硝酸钙82.05克,硝酸锶105.82克,硝酸钆4.51克,硝酸铕0.43克,硝酸铒0.09克,硝酸铈 0.43克,用水充分混合,烘干,最后加入硫磺6.4克,氯化钙1.05克,氯化铵1.10克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1300℃下灼烧3小时,最后采用玛瑙球球磨4小时,后得到红色粉末。
实施例15
按化学式Ca 0.5Sr 0.5Y 0.02S 0.2:0.022Eu,0.001Er,0.001Tb计算原料配比,按配比称取原料硝酸钙82.05克,硝酸锶105.81克,硝酸钇3.83克,硝酸铕0.47,硝酸铒0.10克,硝酸铽0.34克,用水充分混合,烘干,最后加入硫磺6.4克,助熔剂:氟化钙1.25克,氯化铵1.10克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中进行750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中进行1400℃下灼烧3小时,最后采用玛瑙球球磨5小时,后得到红色粉末。
实施例16
按化学式Ca 0.5Sr 0.5S 0.2:0.024Eu,0.001Er计算原料配比,按配比称取原料硝酸钙82.05克,硝酸锶105.81克,硝酸铕0.51克,硝酸铒0.09克,用水充分混合,烘干,最后加入硫磺6.4克,助熔剂:氯化锂1.35克,氯化钙1.11克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中750℃下预烧2小时,冷却至常温后破碎、清洗3次,再次放入刚玉坩埚,在H 2S还原气氛中1400℃下灼烧4小时,最后采用玛瑙球球磨6小时,后得到红色粉末。
对比例1
按化学式Ca 0.5Sr 0.5S 0.2:0.024Eu,0.001Er计算原料配比,按配比称取原料硝酸钙82.05克,硝酸锶105.81克,硝酸铕0.51克,硝酸铒0.09克,用水充分混合,烘干,最后加入硫磺6.4克,氯化锂1.35克,氯化钙1.11克,经充分混合研磨后,放入刚玉坩埚,在H 2S还原气氛中1400℃下灼烧4小时,最后采用玛瑙球球磨6小时,得到红色粉末,相对强度较实施例16降低了20.3%。
表1 实施例1-16的红色粉末相关数据
Figure PCTCN2018098512-appb-000001
Figure PCTCN2018098512-appb-000002
分别对实施例1-16的红色粉末进行CVD法包膜处理:红色粉末在反应器中流化形成流化粉体,在80℃下,三乙基铝、四氯化硅分别形成三乙基铝蒸汽、四氯化硅蒸汽,三乙基铝蒸汽、四氯化硅蒸汽按照质量比1:1混合,以氮气为载体通入反应器中充分饱和,使得流化粉体暴露于蒸发镀膜的物质下,升温至530℃,导入水蒸气,反应8小时,三乙基铝、四氯化硅发生反应后包于粉体,得到硫化物红色荧光粉;其中,三乙基铝、四氯化硅的总量与流化粉体的质量比为4.5%,水蒸汽与镀膜的物质的质量比为9.5:1。
采用上述CVD法包膜处理得到的硫化物红色荧光粉,均在2mol/L的硝酸银溶液中在90℃下至少24小时不变黑,在40℃下至少72小时不变黑,在常温下10天不变黑。
对比例2
取实施例1制得的红色粉末,在反应器中流化形成流化粉体,在80℃下,三乙基铝形成三乙基铝蒸汽、以氮气为载体通入反应器中充分饱和,使得流化粉体暴露于蒸发镀膜的物质下,升温至530℃,导入水蒸气,反应8小时,三乙基铝反应后包于粉体,得到硫化物红色荧光粉;其中,三乙基铝与流化粉体的质量比为4.5%,水蒸汽与镀膜的物质的质量比为9.5:1。
本实施例硫化物红色荧光粉在2mol/L的硝酸银溶液中在90℃下12小时变黑,在40℃下24小时变黑,在常温下4天变黑。
对比例3
取实施例1制得的红色粉末,在反应器中流化形成流化粉体,在80℃下,四氯化硅形成四氯化硅蒸汽、以氮气为载体通入反应器中充分饱和,使得流化粉体暴露于蒸发镀膜的物质下,升温至530℃,导入水蒸气,反应8小时,四氯化硅反应后包于粉体,得到硫化物红色荧光粉;其中,四氯化硅与流化粉体的质量比比为4.5%,水蒸汽与镀膜的物质的质量比为9.5:1。
本实施例硫化物红色荧光粉在2mol/L的硝酸银溶液中在90℃下12小时变黑,在40℃下24小时变黑,在常温下3天变黑。
取实施例1-16未包膜处理的红色粉体和经过CVD法包膜处理的硫化物红色荧光粉、对比例2-3的硫化物红色荧光粉,置于90℃、90%RH条件下恒温恒湿处理2h,检测恒温恒湿处理前后的相关数据,见表2。
表2 包膜处理与未包膜处理的红色荧光粉的相关数据
Figure PCTCN2018098512-appb-000003
Figure PCTCN2018098512-appb-000004
实施例17
如图17所示,一种发光装置,包括:发出蓝色光的发光元件1;绿色(黄绿)发光体2,吸收发光元件1的蓝色光的一部分、并且发出绿光;吸收发光元件1的蓝色光的一部分,并且发出红色光的硫化物红色荧光粉3(实施例2);空腔树脂封装件4,空腔树脂封装件4的空腔剖面呈倒置的梯形,空腔树脂封装件4上部开口;所述发光元件1配置于树脂封装件4底面上,发光元件1的正极和负极通过外部电源提供电流而发出蓝色光;在空腔树脂封装件4空腔中填充密封树脂(硅酮树脂)、填充剂(热塑性树脂)和硫化物红色荧光粉3;在绿色(黄绿)发光体2外侧覆盖密封树脂(聚酯树脂)形成绿色(黄绿)发光体含有层,并在发光体含有层中添加有透光性材料(聚甲基丙烯酸甲酯,PMMA)。
所述的绿色发光体为镓酸盐(YGa) 3Al 5:Ce绿色荧光粉。
相对于发出蓝色光的发光元件1,硫化物红色荧光粉3比发出绿色光色(黄绿)发光体 2位置近点。
实施例18
如图18所示,一种发光装置,包括:发出蓝色光的发光元件1;绿色(黄绿)发光体2,吸收发光元件1的蓝色光的一部分、并且发出绿光;吸收发光元件1的蓝色光的一部分,并且发出红色光的硫化物红色荧光粉3;空腔树脂封装件4,空腔树脂封装件4的空腔剖面呈倒置的梯形,空腔树脂封装件4上部开口;所述发光元件1配置于空腔树脂封装件5底面,发光元件1的正极和负极通过外部电源提供电流而发出蓝色光,在空腔树脂封装件4空腔中填充密封树脂、填充剂;所述的硫化物红色荧光粉和透光性材料与密封树脂混合后覆盖在绿色(黄绿)发光体2外侧制成绿色(黄绿)发光体含有层,控制硫化物红色荧光粉和绿色(黄绿)发光体的质量比在1:15-20。
相对于发光元件1,硫化物红色荧光粉3和绿色(黄绿)发光体2与其距离相同。
实施例19
如图19所示,一种发光装置液晶显示器,包括发光装置,发光装置包括发光元件封装、绿色(黄绿)发光体含有层9、导光板10;发光元件封装包括发出蓝色光的发光元件1;吸收发光元件1的蓝色光的一部分,并且发出红色光的硫化物红色荧光粉3;空腔树脂封装件4;如实施例17所述,发光元件1配置于树脂封装件4底面上,发光元件1的正极和负极通过外部电源提供电流而发出蓝色光;在空腔树脂封装件4空腔中填充密封树脂、填充剂和硫化物红色荧光粉3。所述的发光元件封装与导光板10的一个侧面对地配置,即:发光元件封装位于导光板10的侧面并使发光元件封装的树脂封装件4上部开口与导光板10侧面平行使蓝光经过导光板;所述的绿色光色(黄绿)发光体含有层9位于导光板10的上表面,在绿色光色(黄绿)发光体含有层9上表面从下往上依次设置偏振膜31A、液晶单元32、滤色器阵列33、偏振膜31B,在导光板10的下表面设有反射板11;所述的滤色器阵列33由红色滤色器33R、绿色滤色器22G、蓝色滤色器11B依次排列构成。
液晶显示器发光原理:发光元件1发出蓝色光,一部分从密封树脂中射出,另外一部分被置于密封树脂内的硫化物红色荧光粉3吸收,发出红色光,射出的蓝色光和红色光混合成紫色光,紫色光经过导光板10,射入绿色(黄绿)发光体含有层9,同时该绿色(黄绿)发光体含有层9吸收发光元件1的蓝色光,发出绿色光(黄绿光),和紫色光混合成白光。该白光进入偏振膜31A,一部分光从偏振膜31A通过,进入液晶单元32,通过液晶单元32到达滤色器阵列33,到达滤色器阵列的白光(蓝色光+绿色光+红色光)分别通过对应的滤色器,红光从红色滤色器33R通过,绿光从绿色滤色器22G通过,蓝光从蓝色滤色器11B通过, 从滤色器33通过的蓝色光、绿色光、红色光的一部分从上部偏振膜31B通过,由此液晶显示器就可以显示出图像。

Claims (10)

  1. 一种硫化物红色荧光粉,其特征在于化学式如下:(Ca 1-x,Sr x)M ySa:zEu,cEr,bR,其中,M为Mg、Zn、Al、Ga、Gd或Y的一种或多种,R为Ce、Tb、Pr、Bi、Sb、Se、Pb、Sn、Ge中的一种,0≤x≤1,0≤y<1,0.0001<z<0.5,1≤a<4,0≤b<0.5,0≤c<0.001。
  2. 权利要求1所述的硫化物红色荧光粉的制备方法,其特征在于步骤如下:
    步骤(1)、按化学式(Ca 1-x,Sr x)M ySa:zEu,cEr,bR的化学组分配比称取所需原料;
    步骤(2)、原料中的氧化物和/或碳酸盐用硝酸溶解,再加入碳酸氢铵进行沉淀,过滤、清洗后烘干,加入硫磺和助熔剂混合,研磨成材料前驱体;或者将原料中的氧化物和/或硫化物和/或硝酸盐用水混合,烘干,加入硫磺和助熔剂混合,研磨成材料前驱体;所述的助熔剂为BaCl 2、CaCl 2、SrCl 2、BaF 2、CaF 2、SrF 2、LiF、NH 4Cl、LiCl、Li 2CO 3中的一种或多种;
    步骤(3)、将材料前驱体置于还原气氛中进行预烧,冷却后破碎,清洗、烘干;再将粉体置于还原气氛中进行灼烧;
    步骤(4)、灼烧产物经过后处理得到粉体,再采用CVD法包膜处理,得到硫化物红色荧光粉。
  3. 根据权利要求2所述的硫化物红色荧光粉的制备方法,其特征在于步骤(2)中,所述的助熔剂的用量为原料重量的0.03-5%。
  4. 根据权利要求2所述的硫化物红色荧光粉的制备方法,其特征在于步骤(3)中:所述的还原气氛为N 2、H 2S、NH 3、Ar-H 2、N 2-H 2、NH 3-H 2中的一种或多种;
    预烧的温度为700-800℃,时间为1-4小时;灼烧的温度为820-1420℃,时间为2-12小时。
  5. 根据权利要求2所述的硫化物红色荧光粉的制备方法,其特征在于步骤(4)中,所述的后处理为灼烧产物采用玛瑙球球磨1-6小时得到粉体;所述的CVD法包膜处理为:粉体在反应器中流化形成流化粉体,以三乙基铝和四氯化硅为镀膜的物质,在20℃-80℃条件下镀膜的物质形成蒸汽,以氮气为载体通入反应器中充分饱和,使得流化粉体暴露于蒸发镀膜的物质下,升温至500℃-600℃,导入水蒸气,反应5-10小时,三乙基铝、四氯化硅发生反应后包于粉体,得到硫化物红色荧光粉;其中,三乙基铝蒸汽和四氯化硅蒸汽的质量比为1:1,镀膜的物质与流化粉体的质量比为1-8%;水蒸汽和镀膜的物质的质量比为9-10:1。
  6. 一种发光装置,其特征在于包含:发出蓝色光的发光元件(1);绿色(黄绿)发光体(2),吸收发光元件(1)发出的蓝色光的一部分,发出绿光;以及权利要求1所述的硫化物红色荧光粉,吸收发光元件(1)的蓝色光的一部分,并发光出红光;空腔树脂封装件(4),空腔 树脂封装件(4)的空腔剖面呈梯形,空腔树脂封装件(4)上部开口;所述的发光元件(1)配置于树脂封装件(4)底面,在树脂封装件(4)空腔中填充密封树脂构成发光元件封装;在绿色(黄绿)发光体(2)外侧覆盖密封树脂形成发光体含有层,发光体含有层含有透光性材料。
  7. 根据权利要求6所述的发光装置,其特征在于所述的发光体含有层含有硫化物红色荧光粉。
  8. 根据权利要求6所述的发光装置,其特征在于在所述的树脂封装件(4)空腔中填充密封树脂、填充剂和硫化物红色荧光粉(3)。
  9. 根据权利要求6或7所述的发光装置,其特征在于所述的发光元件封装与所述的绿色(黄绿)发光体(2)之间配有导光板(10)。
  10. 根据权利要求9所述的发光装置,其特征在于所述的发光元件封装的上部开口与所述的导光板(10)的1个侧面平行,所述的发光体含有层与所述的导光板(10)的上表面平行并位于导光板(10)的上表面。
PCT/CN2018/098512 2018-08-01 2018-08-03 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置 WO2020024260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810863719.6 2018-08-01
CN201810863719.6A CN109054811B (zh) 2018-08-01 2018-08-01 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置

Publications (1)

Publication Number Publication Date
WO2020024260A1 true WO2020024260A1 (zh) 2020-02-06

Family

ID=64832358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098512 WO2020024260A1 (zh) 2018-08-01 2018-08-03 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置

Country Status (2)

Country Link
CN (1) CN109054811B (zh)
WO (1) WO2020024260A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998028B (zh) * 2018-08-29 2021-02-12 东台市天源光电科技有限公司 一种硫化物绿色荧光粉及其制备方法和采用该荧光粉的发光装置
CN113403064A (zh) * 2021-06-25 2021-09-17 佛山安亿纳米材料有限公司 耐候性良好的硫化物荧光体及制备耐候性良好的荧光体的化学沉积法
CN114479839B (zh) * 2022-02-23 2023-09-19 北京高压科学研究中心 一种多元稀土硫化物发光材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218475A (ja) * 1986-03-20 1987-09-25 Hitachi Ltd エレクトロルミネツセンス素子
CN102899033A (zh) * 2012-11-16 2013-01-30 湖南师范大学 一种制备含二价铕离子红色荧光粉的方法
JP2013144728A (ja) * 2012-01-13 2013-07-25 Sumitomo Metal Mining Co Ltd ユーロピウム賦活アルカリ土類金属硫化物蛍光体の製造方法
JP2014009253A (ja) * 2012-06-27 2014-01-20 Sumitomo Metal Mining Co Ltd 硫化物蛍光体の製造方法及びその硫化物蛍光体
CN105441070A (zh) * 2015-10-23 2016-03-30 东台市天源荧光材料有限公司 一种背光源用黄色硅酸盐荧光粉及其制造方法
CN106753325A (zh) * 2016-11-21 2017-05-31 东台市天源荧光材料有限公司 一种高显色、低光衰红色荧光粉及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379584B1 (en) * 1999-03-24 2002-04-30 Sarnoff Corporation Long persistence alkaline earth sulfide phosphors
CN103694998B (zh) * 2014-01-08 2018-07-20 中国科学院福建物质结构研究所 一种硫氧化物红色长余辉发光材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218475A (ja) * 1986-03-20 1987-09-25 Hitachi Ltd エレクトロルミネツセンス素子
JP2013144728A (ja) * 2012-01-13 2013-07-25 Sumitomo Metal Mining Co Ltd ユーロピウム賦活アルカリ土類金属硫化物蛍光体の製造方法
JP2014009253A (ja) * 2012-06-27 2014-01-20 Sumitomo Metal Mining Co Ltd 硫化物蛍光体の製造方法及びその硫化物蛍光体
CN102899033A (zh) * 2012-11-16 2013-01-30 湖南师范大学 一种制备含二价铕离子红色荧光粉的方法
CN105441070A (zh) * 2015-10-23 2016-03-30 东台市天源荧光材料有限公司 一种背光源用黄色硅酸盐荧光粉及其制造方法
CN106753325A (zh) * 2016-11-21 2017-05-31 东台市天源荧光材料有限公司 一种高显色、低光衰红色荧光粉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU WENLI ET AL: "Preparation and Luminescence Properties of Sr1-xZnxY2S4:Er3+, Eu2+ Phosphors", JOURNAL OF THE CHINESE RARE EARTH SOCIETY, vol. 27, no. 1, 28 February 2009 (2009-02-28), pages 40 - 45 *

Also Published As

Publication number Publication date
CN109054811B (zh) 2021-08-20
CN109054811A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
TWI504723B (zh) 螢光體、led發光元件及光源裝置
CN107482102B (zh) 颜色稳定的发射红色的磷光体
US8896004B2 (en) White LED, backlight using the same, and liquid crystal display device
CN104471024A (zh) 荧光体片
WO2020024260A1 (zh) 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置
KR20120134771A (ko) 실리케이트 형광체, 실리케이트 형광체의 제조방법 및 이를 포함하는 발광 장치
CA2952250C (en) Color stable red-emitting phosphors
KR101528413B1 (ko) 발광 장치용 형광체와 그 제조 방법, 및 그것을 사용한 발광 장치
JP2006233158A (ja) Ce付活希土類アルミン酸塩系蛍光体及びこれを用いた発光素子
AU2015274585A1 (en) Color stable red-emitting phosphors
CA2967642C (en) Color stable red-emitting phosphors
CN112011332A (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
TWI493258B (zh) Liquid crystal display device with backlight
KR100793463B1 (ko) 실리케이트계 형광체, 그 제조방법 및 이를 이용한발광장치
JP2023522185A (ja) 緑色発光蛍光体およびそのデバイス
CN1585141A (zh) 白光发光二极管及其光转换用荧光体
WO2020042158A1 (zh) 一种硫化物绿色荧光粉及其制备方法和采用该荧光粉的发光装置
US20130026414A1 (en) Silicate-based phosphor and manufacturing method of silicate-based phosphor
CN107557006A (zh) 氮化物荧光体及包含其的发光装置
US20110050089A1 (en) Phosphor and image displaying device employing the same
KR20140002792A (ko) 적색 형광체 및 발광 소자
KR101181155B1 (ko) 적색 형광체, 이를 이용하는 led, 및 그 제조방법
TW201910490A (zh) 螢光粉及其製造方法,螢光粉片及照明裝置
TWI831680B (zh) 光轉換材料及包括其的發光裝置與顯示裝置
CN114479839B (zh) 一种多元稀土硫化物发光材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928179

Country of ref document: EP

Kind code of ref document: A1