WO2018179502A1 - 中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置 - Google Patents

中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置 Download PDF

Info

Publication number
WO2018179502A1
WO2018179502A1 PCT/JP2017/033549 JP2017033549W WO2018179502A1 WO 2018179502 A1 WO2018179502 A1 WO 2018179502A1 JP 2017033549 W JP2017033549 W JP 2017033549W WO 2018179502 A1 WO2018179502 A1 WO 2018179502A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hollow fiber
fiber membrane
container
air
Prior art date
Application number
PCT/JP2017/033549
Other languages
English (en)
French (fr)
Inventor
景二郎 多田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020197023086A priority Critical patent/KR102349872B1/ko
Priority to SG11201908900R priority patent/SG11201908900RA/en
Priority to CN201780085726.1A priority patent/CN110248721A/zh
Priority to US16/497,476 priority patent/US20200016544A1/en
Publication of WO2018179502A1 publication Critical patent/WO2018179502A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/78Handling the filter cake in the filter for purposes other than for regenerating for washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/10Use of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a hollow fiber membrane module cleaning method and a hollow fiber membrane filtration device, and more particularly to a hollow fiber membrane module cleaning method and a hollow fiber membrane filtration device capable of sufficiently washing and removing turbidity adhering to the membrane.
  • Hollow fiber membrane modules are widely used in the field of pure water production and wastewater collection as a means for removing turbid components and organic substances.
  • microfiltration membranes MF membranes
  • ultrafiltration membranes UF membranes
  • MF membranes microfiltration membranes
  • UF membranes ultrafiltration membranes
  • the membrane will become clogged, and the frequency of backwashing and chemical washing will increase. Get higher.
  • a method of reducing the amount of water per unit area of the membrane is common, but this method has a problem that the number of membranes is increased.
  • Patent Document 1 proposes a backwashing method using air and water in order to improve the turbidity removability of the membrane.
  • this method may not improve the turbidity removability so much, and a higher-performance backwashing method is required.
  • JP 2005-88008 A Japanese Patent Laid-Open No. 5-96136 JP 2002-204930 A
  • the present invention has been made in view of the above-described conventional circumstances, and provides a method for cleaning a hollow fiber membrane module and a hollow fiber membrane filtration device capable of sufficiently removing turbidity adhering to the hollow fiber membrane uniformly. With the goal.
  • the method for cleaning a hollow fiber membrane module of the present invention includes a container having a treated water outlet and a concentrated water outlet, a water conduit for supplying raw water into the container, and a hollow for separating raw water into permeated water and concentrated water.
  • a plurality of hollow fiber membranes arranged in a vertical direction in the container, and fixing an upper end portion of the hollow fiber membrane, an upper end fixing portion arranged at an upper portion in the container;
  • a treated water chamber formed on the upper side of the upper end fixing portion and communicating with the inside of each hollow fiber membrane; and an air diffuser disposed on the lower side of the hollow fiber membrane, wherein the water conduit is connected to the upper end
  • a plurality of jet holes are provided below the fixed portion to extend in the vertical direction and jet the raw water on the side peripheral surface, and a drain port for discharging the cleaning waste water is provided at the lower portion of the container.
  • a method for cleaning a hollow fiber membrane module wherein bubbling cleaning is performed by blowing gas from the diffuser member, and Characterized in that
  • the water backwashing is performed after supplying air or air and raw water from the water conduit and / or simultaneously.
  • the water is discharged from the drain.
  • the water back cleaning is performed.
  • a chemical solution is added to the backwash water.
  • the hollow fiber membrane is fixed only at the upper end fixing portion.
  • the water conduit extends through the bottom surface of the container, and the water conduit is provided with a plurality of ejection holes.
  • the hollow fiber membrane filtration device of the present invention includes a container having a treated water outlet and a concentrated water outlet, a water conduit for supplying raw water into the container, and a hollow fiber membrane for separating raw water into permeated water and concentrated water.
  • a plurality of hollow fiber membranes arranged in the vertical direction in the container, and an upper end portion of the hollow fiber membrane is fixed; an upper end fixing portion arranged in an upper part of the container; and the upper end
  • a hollow fiber membrane module formed on the upper side of the fixed portion and having a treated water chamber in which the inside of each hollow fiber membrane communicates, and an air diffuser disposed below the hollow fiber membrane; Is provided with a plurality of jet holes extending in the vertical direction below the upper end fixing portion and for jetting raw water on the side peripheral surface, and a drain port for discharging cleaning waste water is provided at the lower portion of the container.
  • a raw water pipe and a gas introduction means are connected to the water conduit.
  • the bubbling cleaning is performed by blowing gas from the air diffuser provided on the lower side of the hollow fiber membrane, the air reaches the entire membrane module, and the hollow fiber membrane The turbidity adhering to the water can be removed thoroughly.
  • FIG. 1 is a schematic diagram showing a filtration process of a hollow fiber membrane filtration device equipped with a hollow fiber membrane module according to the present embodiment.
  • the hollow fiber membrane module includes a container 1 that is arranged with the axial direction of the cylinder in the vertical direction (vertical direction in this embodiment).
  • a plurality of hollow fiber membranes 2 are disposed in the container 1.
  • the hollow fiber membrane 2 is fixed on the upper side of the container 1 by a synthetic resin potting portion 3 as a fixing portion, and is not fixed on the lower side of the container 1.
  • a synthetic resin for the potting portion 3 for example, an epoxy resin can be used.
  • the hollow fiber membrane 2 is incorporated into a U-shape, and both ends of the hollow fiber membrane are fixed by the potting portion 3.
  • the middle part of the hollow fiber membrane 2 is located in the lower part of the container 1.
  • one end side of the opened hollow fiber membrane 2 is fixed by the potting portion 3, and the sealed other end side is fixed. Arranged at the bottom of the container 1.
  • the hollow fiber membrane 2 may be either a UF membrane or an MF membrane.
  • the hollow fiber membrane 2 is not particularly limited, but usually, one having an inner diameter of 0.2 to 1.0 mm, an outer diameter of 0.5 to 2.0 mm, and an effective length of about 300 to 2500 mm is used.
  • a suitable membrane having a total membrane area of 5 to 100 m 2 in which 500 to 70,000 hollow fiber membranes 2 are loaded in the container 1 is suitable.
  • the membrane material of the hollow fiber membrane 2 is not particularly limited, but PVDF (polyvinylidene fluoride), polyethylene, polypropylene, or the like can be used.
  • PVDF polyvinylidene fluoride
  • a treated water chamber 7 is defined on the upper side of the potting portion 3.
  • the upper end side of the hollow fiber membrane 2 penetrates the potting portion 3, the opening at the upper end faces the treated water chamber 7, and the inside of the hollow fiber membrane 2 communicates with the treated water chamber 7.
  • both ends of the hollow fiber membrane 2 penetrate the potting portion 3.
  • the potting portion 3 has, for example, a disk shape, and its outer peripheral surface or outer peripheral edge portion is in watertight contact with the inner surface of the container 1.
  • an air diffuser 10 is provided as an air diffuser below the hollow fiber membrane 2.
  • One end of a pipe L9 having a valve V9 is connected to the diffuser pipe 10.
  • the other end of the pipe L9 is connected to an air pressure source (not shown) having an air pump or the like.
  • a water conduit 4 extends in a substantially vertical direction (the axial direction of the container 1).
  • the water conduit 4 is disposed along the central axis of the container 1, for example.
  • the water guide pipe 4 is a circular pipe whose tip (upper end) is closed, and a plurality of jet holes 4a are provided on the side peripheral surface in the vertical direction and at intervals in the circumferential direction.
  • the number of the ejection holes 4a is not particularly limited, but is about 5 to 50, for example.
  • the height (length in the vertical direction) of the water conduit 4 is not particularly limited, it is preferable that the upper end of the water conduit 4 is located near the lower surface of the potting portion 3.
  • the size and shape of the ejection hole 4a are not particularly limited, but are, for example, circular with a diameter of 5 to 50 mm.
  • the inner diameter of the water conduit 4 is, for example, about 10 to 100 mm. Further, the upper end of the water conduit may be embedded in the potting portion 3.
  • the lower part of the water conduit 4 extends through the bottom surface of the container 1 and extends to the outside of the container 1.
  • a raw water pipe L1 is connected to the water conduit 4, and a pump P1 and a valve V1 are provided in the raw water pipe L1.
  • One end of an air introduction pipe L2 is connected to the raw water pipe L1, and a valve V2 is provided in the air introduction pipe L2.
  • the other end of the pipe L2 is connected to an air pressure source (not shown) having an air pump or the like.
  • the supply of raw water / air to the container 1 can be switched by switching between opening and closing of the valve V1 and the valve V2.
  • the valve V1 is opened, the valve V2 is closed, and the raw water is sent out through the raw water pipe L1 by the pump P1 so that the raw water is ejected in the radial direction from the ejection hole 4a of the water conduit 4, and the raw water is supplied into the container 1. be able to.
  • valve V1 When the valve V1 is closed and the valve V2 is opened and air is supplied from the air introduction pipe L2, bubbles are ejected in the radial direction from the ejection holes 4a of the water conduit 4, and bubbling cleaning can be performed. It is also possible to open the valves V1 and V2 and eject the gas-liquid mixed flow from the ejection hole 4a.
  • the outlet 5 of the treated water is provided at the top of the container 1.
  • a concentrated water outlet 8 is provided at the upper part of the side surface of the container 1.
  • the concentrated water outlet 8 is provided near the lower surface of the potting portion 3.
  • the distance from the potting part 3 to the upper edge of the concentrated water outlet 8 is preferably 0 to 30 mm, particularly preferably about 0 to 10 mm.
  • a pipe L5 is connected to the concentrated water outlet 8, and a valve V5 is provided in the pipe L5.
  • the drain port 6 is provided in the lower part of the side surface of the container 1.
  • the drain port 6 is provided near the bottom surface of the container 1.
  • a pipe L6 is connected to the drain port 6, and a valve V6 is provided in the pipe L6.
  • a treated water outlet pipe L3 is connected to the treated water outlet 5, and treated water (filtered water) is discharged through the treated water outlet pipe L3.
  • the treated water is stored in the treated water tank 9.
  • FIG. 1 shows a configuration in which the backwash water pipe L4 is connected to the treated water tank 9 and filtered water is used for the backwash water, the backwash water may be raw water.
  • a chemical addition means (not shown) having a pipe L7 and a valve V7 is connected to the upstream side of the pump P2 in the pipe L4 so as to add the chemical to the backwash water flowing through the backwash water pipe L4.
  • the chemical solution to be added is sodium hypochlorite, a strong alkaline agent, a strong acid agent or the like, and is selected according to the film deposit. For example, when the film deposit is an organic substance or a turbid substance containing an organic substance, sodium hypochlorite is preferably added so that 0.05 to 0.3 mg Cl 2 / L remains.
  • One end of a pipe L8 having a valve V8 is connected to the pipe L3 so that air is supplied to the pipe L3 between the valve V3 and the treated water outlet 5.
  • the other end of the pipe L8 is provided with a switching valve (not shown) that switches between connection to an air pressure source (not shown) having an air pump and the like and opening to the atmosphere.
  • the concentrated water that has not permeated through the hollow fiber membrane 2 is discharged from the concentrated water outlet 8 through the pipe L5. You may circulate so that the discharged
  • the hollow fiber membrane filtration device shown in FIG. 1 performs a filtration process by an external pressure method in which raw water is passed through the outside of the hollow fiber membrane 2 by a cross flow method.
  • a washing treatment for washing the turbidity trapped in the hollow fiber membrane 2 is performed as follows.
  • valve V8 is closed and the valve V3 is opened to open the hollow fiber membrane 2 and the treated water chamber 7 to the atmosphere to release the pressure.
  • valves V5 and V6 are opened, and the water in the container 1 is drained through the pipe L6.
  • the valve V6 is closed, the valves V1 and V5 are opened, raw water is supplied into the container 1 through the pipe L1, the water conduit 4, and the hole 4a, and the container 1 is filled with water.
  • valve V1 is closed, the valves V5 and V9 are opened, air is blown into the container 1 from the air diffuser 10, and the air diffuser is bubbled.
  • the washing waste water is discharged out of the system from the concentrated water outlet 8 through the pipe L5.
  • bubbling cleaning and reverse cleaning may be performed simultaneously. That is, the valves V1, V2, V3, V6, and V8 are closed, the valves V9, V4, and V5 are opened, air is blown into the container 1 from the air diffuser 10, and the pump P2 is operated to operate the treatment water chamber 7
  • the filtered water may be fed into the hollow fiber membrane 2 through the backwashing.
  • the chemical solution may be added to the backwash water by opening the valve V7.
  • a chemical solution may be added by installing a check valve instead of the valve V7 and operating a chemical injection pump (not shown).
  • water obtained by treating the filtered water with a reverse osmosis membrane may be sent, and in that case, a valve, piping, or the like is installed so that the chemical solution is added to the treated water.
  • valve V5 may be closed and the valve V6 may be opened, and the cleaning waste water may be discharged from the drain port 6.
  • the backwash water may be discharged from the drain port 6 by opening the valve V6 and closing the valve V5 after discharging the backwash water from the concentrated water outlet 8 for a predetermined time.
  • valve V1 is closed
  • valve V2 is opened, air is supplied from the pipe L2 to the water conduit 4, bubbles are ejected from the ejection holes 4a, and the hollow fiber membrane 2 is washed.
  • the water guide pipe 4 is provided with a large number of ejection holes 4a in the entire vertical direction, air bubbles are jetted to the entire hollow fiber membrane 2 including the vicinity of the upper end fixing portion (near the potting portion 3) of the hollow fiber membrane 2.
  • the turbidity can be thoroughly washed and removed evenly. Further, even if the amount of air during bubbling cleaning is increased, the hollow fiber membrane 2 can be prevented from being twisted or broken as compared with a method of flowing air from the lower part of the module to the upper part.
  • valves V1 and V2 may be opened and water and air may be ejected from the ejection holes 4a.
  • valves V1 and V2 are closed and the valve V6 is opened, so that the water in the container 1 is drained from the pipe L6 in the same manner as in FIG.
  • the valve V4 is opened, the pump P2 is operated, and the treated water (filtered water) in the treated water tank 9 is supplied into the hollow fiber membrane 2 through the treated water chamber 7, The membrane 2 is backwashed with water.
  • the valve V7 is opened, the chemical is added to the filtered water from the treated water tank 9, and the hollow fiber membrane 2 is back-washed with the chemical liquid. It does not have to be.
  • it is good also as a structure which uses a check valve and a chemical injection pump, and is good also as a structure which sends in the treated water of a reverse osmosis membrane.
  • valve V6 is opened and the valve V5 is closed, and the washing waste water is discharged from the drain port 6.
  • the valve V6 is closed and the valve V5 is opened, and the backwash waste water is discharged from the concentrated water outlet 8.
  • the hollow fiber membrane 2 is backwashed with filtered water, but the hollow fiber membrane 2 may be backwashed with raw water.
  • valves V4 and V7 are closed, the valves V2 and V6 are opened, air is supplied into the water conduit 4, and air bubbles are ejected from the ejection holes 4a to clean the hollow fiber membrane 2.
  • the water in the container 1 is drained from the pipe L6.
  • valve V1 is closed and only air is supplied from the pipe L2 into the water conduit 4, but the valves V1 and V2 may be opened and raw water and air may be supplied to the water conduit 4.
  • valves V2, V6 are closed, the valves V1, V3, V5 are opened, the raw water is filled in the container 1, and then the filtration process is restarted as shown in FIG.
  • air (or air and raw water) is supplied to the water conduit 4 and drainage from the pipe L6 shown in FIG.
  • air (or air and raw water) supply to the water conduit 4 and drainage from the pipe L6 may be performed.
  • the water (or air and raw water) supply to the water conduit 4 and the drainage from the pipe L6 are started in the state where the water backwash is continued during the water backwash shown in FIG. Good.
  • any of the air or air and raw water supply process to the water conduit shown in FIGS. 6 and 8 can be omitted.
  • each process is not performed in turn, but the water back-washing is simultaneously performed in a part of the time zone in which air or air and raw water are supplied to the water conduit. You may make it perform, and you may make it supply air or air and raw
  • the final cleaning waste water is preferably discharged from the drain port 6.
  • air or air and raw water is supplied to the conduit shown in FIG. 6 after bubbling of the diffuser shown in FIG. 5, while the waste water shown in FIGS. And water filling.
  • the drain port 6 is provided on the lower side surface of the container 1, but the drain port 6 may be provided on the bottom of the container 1.
  • the drain port 6 may be provided on the bottom of the container 1.
  • the above embodiment is an example of the present invention, and the present invention may be other than illustrated.
  • some cleaning process steps may be omitted.
  • the order of some of the cleaning processing steps may be changed.
  • Example 1 In the raw water tank, industrial water for A area with turbidity of 6.7 NTU was stored. Water was fed from the raw water tank to the coagulation tank by a pump, and the residence time was 10 minutes. 100 mg / L of industrial ferric chloride (concentration 38%) was added before the coagulation tank. After adding the flocculant, the pH was adjusted to 6.2 with hydrochloric acid and sodium hydroxide.
  • the water in the coagulation tank (hereinafter referred to as raw water) was supplied to the water conduit 4 of the hollow fiber membrane module shown in FIG.
  • the processing amount is 80 L / min ⁇ 30 min ⁇ 5 cycles (1 cycle: 12 m 3 ).
  • the configuration of the hollow fiber membrane module is as follows.
  • Container 1 Inner diameter 200mm, Height 1300mm
  • Hollow fiber UF membrane made of polyvinylidene fluoride having an inner diameter of 0.75 mm, an outer diameter of 1.25 mm, and an effective length of 990 mm, membrane area of 30 m 2
  • Water guide pipe 4 Length extending into the container 1 1000 mm, inner diameter 20 mm, outer diameter 25 mm
  • Ejection hole 4a Diameter 10mm, 10 pieces
  • This water backwashing was performed at 80 L / mi for 30 seconds.
  • the backwash waste water was discharged from the concentrated water outlet 8.
  • raw water was supplied from the water guide pipe 4 at 80 L / min for 30 seconds, and was not filtered and discharged from the concentrated water outlet 8.
  • Example 2 Example 1 except that in the step (2) of sending air from the water conduit 4, filtered water was supplied into the hollow fiber membrane 2 through the pipe L 4 and the treated water chamber 7 at 80 L / min and backwashed. (In other words, the step (4) is performed after the step (2) and the step (3) are simultaneously performed).
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Example 3 The same treatment as in Example 1 was performed except that the backwash waste water was discharged from the drain port 6 in the step (3).
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Step (2) the same treatment as in Example 3 was performed except that raw water was supplied from the water conduit 4 together with air at 80 L / min.
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Example 5 In the step (2), raw water is supplied from the water conduit 4 together with air at 80 L / min, and filtered water is supplied into the hollow fiber membrane 2 through the treated water chamber 7 at 80 L / min. Except for discharging from the drain port 6, the same treatment as in Example 3 was performed (that is, the step (2) for supplying air and raw water and the step (3) for discharging from the drain port 6 at the same time). (After that, step (4) is performed.) The measurement results of the turbidity removal rate are shown in Table 1.
  • Example 6 The same processing as in Example 5 was performed except that the supply amount of bubbling air in step (2) was 150 NL / min.
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Example 7 In the steps (2) and (3), the same treatment as in Example 6 was performed except that sodium hypochlorite was added to the backwash water (filtered water) so as to be 100 mgCl 2 / L.
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Example 1 A hollow fiber membrane module without the water conduit 4 was used, and the same treatment as in Example 1 was performed except that the steps (2) and (4) were omitted.
  • the measurement results of the turbidity removal rate are shown in Table 1.
  • Comparative Example 2 The same treatment as in Comparative Example 1 was performed except that the lower end of the hollow fiber membrane was embedded and fixed in the potting part. The measurement results of the turbidity removal rate are shown in Table 1.
  • the third embodiment in which the washing waste water is discharged from the lower drain 6 of the container 1 is more than the first and second embodiments in which the washing waste water is discharged from the concentrated water outlet 8 at the upper portion of the container 1. High turbidity removal.
  • Example 4 in which the hollow fiber membrane 2 is further washed with raw water has higher turbidity removal performance than Example 3.
  • Example 5 in which the hollow fiber membrane 2 is further back-washed with raw water has higher turbidity removal performance than Example 4.
  • Example 2 in which the hollow fiber membrane 2 is back-washed with filtered water is higher in turbidity removal than Example 1.
  • Example 6 According to Example 6 in which the supply amount of bubbling air is increased to three times that of Example 5, turbidity removal performance is improved as compared with Example 5.
  • Comparative Example 1 (Viii) Compared with Comparative Example 2 in which the upper and lower ends of the hollow fiber membrane are fixed, Comparative Example 1 in which only the upper end is fixed exhibits higher turbidity removal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

中空糸膜濾過装置は、処理水出口5及び濃縮水出口8を有する容器1と、中空糸膜2と、中空糸膜2の上端部を固定する上端固定部3と、上端固定部3の上側に形成された透過水室7と、容器1内に原水を供給する導水管4と、中空糸膜2の下側に設けられた散気管10とを有する中空糸膜モジュールを備える。導水管4の側周面に複数の噴出孔4aが設けられている。導水管4に原水配管及び気体導入手段が接続されている。容器1の下部には、排水口6が設けられている。

Description

中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置
 本発明は中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置に関し、特に、膜に付着した濁質を十分に洗浄除去することができる中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置に関する。
 中空糸膜モジュールは、濁質成分や有機物を除去する手段として、純水製造や排水回収分野などで広く用いられている。中空糸膜モジュールの膜には、精密濾過膜(MF膜)や限外濾過膜(UF膜)などが分離対象に応じて使い分けられており、前者は0.1μm前後、後者は0.005~0.05μmの細孔が一般的である。
 中空糸膜モジュールに供給する懸濁水中に濁質や有機物が大量に含まれている場合、膜の目詰まりが発生し、逆洗頻度、薬品洗浄頻度が高くなるだけでなく、膜交換頻度も高くなる。膜の目詰まりを防止するために、膜の単位面積当たりの通水量を低下させる方法が一般的であるが、この方法では膜設置本数が多くなるという課題があった。
 膜の汚染を低減するために、中空糸膜モジュールの前段で凝集処理工程を行う方法が知られている。しかし、凝集剤による濁質量増加により、膜の濁質汚染が引き起こされる。このような状況の下、膜の濁質除去性を高めるための膜モジュール構造や、逆洗方法の確立が、強く求められている。
 特許文献1には、膜の濁質除去性を向上させるため、空気と水を使った逆洗方法が提案されている。しかし、この方法は、濁質の種類、量によっては、濁質除去性があまり向上しない場合があり、より高性能な逆洗方法が求められている。
 一般的な空気洗浄では、膜モジュール下部から上部へ空気を流すが、空気の強さに上下で差が生まれるために、膜モジュール全体に空気が行き届かず、洗浄不足の箇所が生じる。また、空気洗浄時に下部排水すると、空気が膜モジュール内部に浸透せずに排出されてしまうため、モジュール上部、例えば循環部からしか排水できない。そのため、空気洗浄で剥がれた膜モジュール全体の濁質が膜の上部に付着してしまうことがあった。
 上端のみ固定した中空糸膜の場合、強い空気洗浄は膜モジュール下部の中空糸膜のヨレ、折れを引き起こしてしまう懸念があった。
特開2005-88008号公報 特開平5-96136号公報 特開2002-204930号公報
 本発明は、上記従来の実情に鑑みてなされたものであり、中空糸膜に付着した濁質を万遍なく十分に除去できる中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置を提供することを目的とする。
 本発明の中空糸膜モジュールの洗浄方法は、処理水出口及び濃縮水出口を有する容器と、該容器内に原水を供給する導水管と、原水を透過水と濃縮水とに分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、該上端固定部の上側に形成され、各中空糸膜の内部が連通した処理水室と、該中空糸膜の下側に配置された散気部材と、を備え、前記導水管は、前記上端固定部の下側に上下方向に延在し、側周面に原水を噴出する複数の噴出孔が設けられており、前記容器の下部には、洗浄排水を排出する排水口が設けられている中空糸膜モジュールの洗浄方法であって、前記散気部材から気体を吹き込むバブリング洗浄と、前記処理水出口から前記中空糸膜内に逆洗水を供給する水逆洗とを行うことを特徴とする。
 本発明の一態様では、前記導水管から空気又は空気と原水を供給した後/又は同時に、前記水逆洗を行う。
 本発明の一態様では、前記導水管から空気又は空気と原水を供給した後/又は水逆洗を行った後に、前記排水口から排水する。
 本発明の一態様では、前記バブリング洗浄後、前記導水管から空気又は空気と原水を供給した後/又は同時に、前記水逆洗を行う。
 本発明の一態様では、前記逆洗水に薬液を添加する。
 本発明の一態様では、前記上端固定部でのみ前記中空糸膜が固定されている。
 本発明の一態様では、前記導水管は前記容器の底面を貫通して前記容器内に延設されており、該導水管に複数の噴出孔が設けられている。
 本発明の中空糸膜濾過装置は、処理水出口及び濃縮水出口を有する容器と、該容器内に原水を供給する導水管と、原水を透過水と濃縮水とに分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、該上端固定部の上側に形成され、各中空糸膜の内部が連通した処理水室と、該中空糸膜の下側に配置された散気部材と、を有する中空糸膜モジュールを備え、前記導水管は、前記上端固定部の下側に上下方向に延在し、側周面に原水を噴出する複数の噴出孔が設けられており、前記容器の下部には、洗浄排水を排出する排水口が設けられており、前記導水管に原水配管及び気体導入手段が接続されていることを特徴とする。
 本発明の中空糸膜濾過装置では、中空糸膜の下側に設けられた散気部材から気体を吹き込んでバブリング洗浄を行うようになっているため、膜モジュール全体に空気が行き届き、中空糸膜に付着した濁質を万遍なく十分に除去できる。
実施の形態に係る中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 洗浄処理時の中空糸膜濾過装置の模式図である。 容器底部に設けられた排水口の模式図である。
 以下、図1~図4を参照して実施の形態について説明する。
 図1は、本実施形態に係る中空糸膜モジュールを備えた中空糸膜濾過装置の濾過工程を示す模式図である。図1に示すように、中空糸膜モジュールは、円筒の軸心線方向を上下方向(この実施形態では鉛直方向)にして配置された容器1を備えている。この容器1内に、複数の中空糸膜2が配置されている。
 中空糸膜2は、容器1の上部側において、固定部としての合成樹脂製ポッティング部3で固定され、容器1の下部側では固定されていない。ポッティング部3の合成樹脂としては例えばエポキシ樹脂を用いることができる。
 例えば、中空糸膜2をU字型に組み込み、中空糸膜の両端をポッティング部3で固定する。この場合、中空糸膜2の中間部が容器1の下部に位置する。
 また、一端が開口し、他端が封止された中空糸膜2を用いる場合は、開口している中空糸膜2の一端側をポッティング部3で固定し、封止された他端側を容器1の下部に配置する。
 中空糸膜2は、UF膜やMF膜などのいずれでもよい。中空糸膜2は特に制限はないが、通常、内径0.2~1.0mm、外径0.5~2.0mm、有効長さ300~2500mm程度のものが用いられる。このような中空糸膜2が容器1内に500~70,000本装填された全膜面積5~100m程度のものが適当である。中空糸膜2の膜素材についても特に制限はないが、PVDF(ポリフッ化ビニリデン)、ポリエチレン、ポリプロピレン等を用いることができる。本実施形態では、中空糸膜2を有する中空糸膜モジュールについて説明するが、管状膜を用いた膜モジュールであればよい。
 ポッティング部3の上側には処理水室7が区画形成されている。中空糸膜2の上端側はポッティング部3を貫通しており、その上端の開口は処理水室7に臨み、中空糸膜2の内部は処理水室7に連通している。中空糸膜2をU字型に組み込む場合は、中空糸膜2の両端がポッティング部3を貫通する。
 ポッティング部3は例えば円盤状であり、その外周面又は外周縁部が容器1の内面に水密的に接している。
 容器1内の下部には、中空糸膜2の下方に、散気部材として散気管10が設けられている。該散気管10に、バルブV9を有した配管L9の一端が接続されている。配管L9の他端は、エアポンプ等を有した空気圧源(図示略)に接続されている。
 容器1の内部には、導水管4が略鉛直方向(容器1の軸方向)に延びている。導水管4は、例えば容器1の中心軸に沿って配置されている。導水管4は先端(上端)が閉じた円管であり、側周面には上下にわたって、かつ周方向に、間隔を空けて複数の噴出孔4aが全体的に設けられている。噴出孔4aの数は特に限定されないが、例えば5~50個程度である。
 導水管4の高さ(上下方向の長さ)は特に限定されないが、導水管4の上端がポッティング部3の下面近傍に位置していることが好ましい。噴出孔4aの大きさや形状は特に限定されないが、例えば口径5~50mmの円形である。導水管4の内径は例えば10~100mm程度である。また、導水管の上端がポッティング部3に埋設されていてもよい。
 導水管4の下部は、容器1の底面を貫通して延設し、容器1の外部にまで延びている。導水管4には原水配管L1が接続され、原水配管L1にはポンプP1及びバルブV1が設けられている。原水配管L1には空気導入用配管L2の一端が接続されており、空気導入用配管L2にはバルブV2が設けられている。該配管L2の他端は、エアポンプ等を有した空気圧源(図示略)に接続されている。
 バルブV1とバルブV2の開閉を切り替えることで、容器1への原水/空気の供給を切り替えることができる。バルブV1を開、バルブV2を閉とし、ポンプP1により原水配管L1を介して原水を送り出すことで、導水管4の噴出孔4aから放射方向に原水を噴出させ、容器1内に原水を供給することができる。
 バルブV1を閉、バルブV2を開とし、空気導入用配管L2から空気を供給することで、導水管4の噴出孔4aから放射方向に気泡を噴出させ、バブリング洗浄を行うことができる。バルブV1及びV2を開とし、噴出孔4aから気液混合流を噴出させることもできる。
 容器1の頂部には処理水(濾過水)の出口5が設けられている。また、容器1の側面の上部には濃縮水出口8が設けられている。濃縮水出口8はポッティング部3の下面近傍に設けられている。ポッティング部3から濃縮水出口8の上縁までの距離は0~30mm、特に0~10mm程度が好ましい。濃縮水出口8には配管L5が接続され、配管L5にはバルブV5が設けられている。
 容器1の側面の下部には排水口6が設けられている。排水口6は、容器1の底面近傍に設けられている。排水口6には配管L6が接続され、配管L6にはバルブV6が設けられている。
 処理水出口5には処理水取出配管L3が接続されており、処理水取出配管L3を介して処理水(濾過水)が排出される。処理水は処理水タンク9に貯留される。
 処理水取出配管L3には、処理水取出配管L3に設けられたバルブV3と処理水出口5との間の位置に逆洗水配管L4の一端が接続されている。逆洗水配管L4の他端側はバルブV4及びポンプP2を介して処理水タンク9に接続されている。バルブV3を閉、バルブV4を開とし、ポンプP2を作動させることにより逆洗水配管L4を介して処理水出口5から容器1に濾過水を流し、中空糸膜2の逆洗を行うことができる。図1は、逆洗水配管L4を処理水タンク9に接続し、逆洗水に濾過水を用いる構成を示しているが、逆洗水は原水であってもよい。
 逆洗水配管L4を流れる逆洗水に薬液を添加するように、配管L7及びバルブV7を有した薬液添加手段(図示略)が配管L4のポンプP2の上流側に接続されている。添加する薬液は、次亜塩素酸ナトリウム、強アルカリ性剤、強酸性剤等であり、膜付着物によって選択される。例えば、膜付着物が有機物、有機物を含む濁質等の場合、次亜塩素酸ナトリウムが0.05~0.3mgCl/L残留するように添加することが好ましい。
 バルブV3と処理水出口5との間の配管L3に空気を供給するように、バルブV8を有した配管L8の一端が配管L3に接続されている。配管L8の他端には、エアポンプ等を有した空気圧源(図示略)への接続と大気への開放とを切り替える切替バルブ(図示略)が設けられている。
[濾過処理]
 この中空糸膜濾過装置による濾過処理では、図1に示すように、バルブV1、V3、V5を開、バルブV2、V4、V6、V7、V8、V9を閉とし、ポンプP1を作動させ、導水管4へ原水を供給する。導水管4から孔4aを介して容器1内に供給された原水のうち、中空糸膜2を透過した透過水が処理水として処理水出口5から取り出され、処理水取出配管L3を介して処理水タンク9に貯留される。
 中空糸膜2を透過しなかった濃縮水は、濃縮水出口8から配管L5を介して排出される。排出された濃縮水を原水と混合して容器1に供給するように循環させてもよい。
 このように、図1に示す中空糸膜濾過装置は、中空糸膜2の外側に原水をクロスフロー方式で通水する外圧式で濾過処理する。
 この濾過処理を継続して行うと、中空糸膜2に濁質が蓄積してくる。そこで、濾過処理を所定時間行った後、又は処理水量が減少してきた場合、中空糸膜2に捕捉された濁質を洗浄する洗浄処理を次の通り行う。
[洗浄処理]
 中空糸膜濾過装置の洗浄処理では、まず、図2に示すように、空気逆洗を行う。即ち、バルブV1、V2、V3、V4、V6、V7、V9を閉、バルブV5、V8を開とし、配管L8を介して空気を処理水室7から中空糸膜2内に供給し、中空糸膜2内の透過水を原水側に押し出す空気逆洗を行う。
 その後、バルブV8を閉とし、バルブV3を開とする等して中空糸膜2内及び処理水室7内を大気に開放させ、圧力を解放する。
 次いで、図3の通り、バルブV5、V6を開とし、容器1内の水を配管L6を介して排水する。
 次いで、図4の通り、バルブV6を閉とし、バルブV1、V5を開とし、配管L1、導水管4及び孔4aを介して容器1内に原水を供給し、容器1内に水張りする。
 次いで、図5の通り、バルブV1を閉とし、バルブV5、V9を開とし、散気管10から空気を容器1に吹き込み散気管バブリングを行う。洗浄排水は、濃縮水出口8から配管L5を介して系外に排出される。
 この場合、図5の通り、バブリング洗浄と逆洗浄とを同時に行ってもよい。即ち、バルブV1、V2、V3、V6、V8を閉、バルブV9、V4、V5を開とし、散気管10から空気を容器1に吹き込みバブリングを行うと共に、ポンプP2を作動させ、処理水室7を介して濾過水を中空糸膜2内に送り込み、逆洗浄を行ってもよい。この際、バルブV7を開とすることにより、逆洗水に薬液を添加してもよい。また、バルブV7に代えてチャッキ弁を設置し薬注ポンプ(図示しない)を稼働させることによって薬液を添加するようにしてもよい。さらに、濾過水の代わりに濾過水を逆浸透膜で処理した水を送り込むようにしてもよく、その場合、薬液は当該処理した水に添加するようにバルブ、配管等を設置する。
 図示は省略するが、このバブリング洗浄処理時に、バルブV5を閉、バルブV6を開とし、洗浄排水を排水口6から排出してもよい。また、濃縮水出口8からの逆洗水の排出を所定時間行った後、バルブV6を開、バルブV5を閉として、排水口6から逆洗排水を排出するようにしてもよい。
 次いで、図6の通り、バルブV1を閉とした後、バルブV2を開とし、配管L2から空気を導水管4に供給し、噴出孔4aから気泡を噴出させ、中空糸膜2を洗浄する。
 導水管4には上下方向の全体にわたって多数の噴出孔4aが設けられているため、中空糸膜2の上端固定部近傍(ポッティング部3近傍)も含め中空糸膜2の全体に気泡を噴射し、濁質を万遍なく十分に洗浄し、除去することができる。また、バブリング洗浄の際の空気量を多くしても、モジュール下部から上部へ空気を流す方式と比較して、中空糸膜2のヨレや折れを防止できる。
 図6では、導水管4内に配管L2から空気のみを供給しているが、バルブV1、V2を開とし、水及び空気を噴出孔4aから噴出させてもよい。
 その後、バルブV1、V2を閉とし、バルブV6を開とすることにより、前記図4と同一要領で容器1内の水を配管L6から排水する。
 次いで、図7の通り、バルブV4を開とし、ポンプP2を作動させ、処理水タンク9内の処理水(濾過水)を処理水室7を介して中空糸膜2内に供給し、中空糸膜2を水逆洗する。図7では、この際、バルブV7を開とし、処理水タンク9からの濾過水に対し薬剤を添加し、薬液にて中空糸膜2を逆洗するようにしているが、この薬剤添加は行わなくてもよい。なお、前述の通り、チャッキ弁と薬注ポンプを用いる構成としても良く、逆浸透膜の処理水を送り込む構成としても良い。
 図7では、バルブV6を開、バルブV5を閉とし、洗浄排水を排水口6から排出しているが、バルブV6を閉、バルブV5を開として、濃縮水出口8から逆洗排水を排出するようにしてもよい。また、図7では、濾過水によって中空糸膜2を逆洗しているが、原水によって中空糸膜2を逆洗してもよい。なお、図6に示した導水管への空気又は空気と原水の供給工程と同時に、水逆洗を実施してもよい。
 その後、図8の通り、バルブV4、V7を閉とし、バルブV2、V6を開とし、導水管4内に空気を供給し、噴出孔4aから気泡を噴出させて中空糸膜2を洗浄すると共に、容器1内の水を配管L6から排水する。
 図8ではバルブV1を閉とし、導水管4内に配管L2から空気のみを供給しているが、バルブV1及びV2を開とし、導水管4に原水及び空気を供給してもよい。
 その後、バルブV2、V6を閉、バルブV1、V3、V5を開とし、容器1内に原水の水張りを行い、次いで、図1の通り濾過工程を再開する。
 上記説明では、図7に示した水逆洗を行った後、図8に示した導水管4への空気(又は空気と原水)供給及び配管L6からの排水を行うものとしているが、図7の水逆洗を行っているときに併せて導水管4への空気(又は空気と原水)供給及び配管L6からの排水を行ってもよい。また、図7に示した水逆洗を行っている途中で、水逆洗を続行した状態で、導水管4への空気(又は空気と原水)供給及び配管L6からの排水を開始してもよい。
 図6,8に示した導水管への空気又は空気と原水の供給工程のいずれかは省略することもできる。また、図6~8に示した洗浄工程においては、各工程を順番に行うのではなく、導水管への空気又は空気と原水の供給を行っている時間帯の一部で水逆洗を同時に行うようにしてもよいし、水逆洗を行っている時間帯の一部で導水管への空気又は空気と原水の供給を同時に行うようにしてもよい。この場合、最終的な洗浄排水は排水口6から排出することが好適である。
 上記説明では、図5に示した散気管バブリングの後、図6に示した導水管への空気(又は空気と原水)供給を行うものとしているが、その間に図3、図4で示した排水と水張りを行ってもよい。
 上記説明では、排水口6は容器1の下部側面に設けられているが、排水口6は、容器1の底部に設けられてもよい。例えば、図9に示すように、容器1の底部において、導水管4の周囲が排水口6が形成されていると、濁質が容器内から効率良く排出され、濁質除去率が向上する。
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。例えば、一部の洗浄処理工程は省略されてもよい。また、一部の洗浄処理工程の順番を入れ替えてもよい。
[実施例1]
 原水槽に富栄養化が進む濁度が6.7NTUのA地区工業用水を貯水した。原水槽からポンプで凝集槽に送水し、滞留時間を10分とした。凝集槽前で工業用塩化第二鉄(濃度38%)を100mg/L添加した。凝集剤添加後、塩酸と水酸化ナトリウムでpHを6.2に調整した。
<濾過処理>
 この凝集槽内の水(以下原水という。)を図1に示す中空糸膜モジュールの導水管4にポンプP1及び原水配管L1を介して供給し、図1の通り濾過処理を行った。処理量は、80L/min×30min×5サイクルである(1サイクル:12m)。
 中空糸膜モジュールの構成は次の通りである。
  容器1:内径200mm、高さ1300mm
  中空糸:内径0.75mm、外径1.25mm、有効長さ990mmのポリフッ化ビニルデン製UF膜、膜面積30m
  導水管4:容器1内に延在する長さ1000mm、内径20mm、外径25mm
  噴出孔4a:口径10mm、10個
<洗浄処理>
 洗浄は次の(1)~(4)により行った。
(1) 濾過処理後、図2のように配管L8を介して空気を0.15MPaで10秒間処理水室7から中空糸膜2内に供給し、中空糸膜2内の透過水を原水側に押し出す空気逆洗を行った後、図3,4のように排水、水張りを行った。その後、図5のように、散気管10から空気を50NL/minで供給してバブリング洗浄を30秒間行った。
(2) 次いで、図6のように、導水管4から空気を50NL/minで30秒間供給した。
(3) その後、処理水タンク9内の濾過水を配管L4から処理水室7を介して中空糸膜2に供給して水逆洗を行った。この水逆洗は80L/miで30秒間行った。逆洗排水は濃縮水出口8から排出した。
(4) その後、導水管4から原水を80L/minで30秒間供給し、濾過せず、濃縮水出口8から排出した。
<濁質除去率の測定>
 上記の濾過処理及び洗浄処理を交互にそれぞれ5回行った。サイクル毎に排出される洗浄排水を採取し、洗浄排水中の濁質量を計測した。5サイクルの間に供給した全濁質量に対する洗浄で排出された濁質量(濁質除去率)を表1に示す。
[実施例2]
 導水管4から空気を送る工程(2)において、併せて配管L4及び処理水室7を介して中空糸膜2内に濾過水を80L/minで供給して逆洗したこと以外は実施例1と同様の処理を行った(つまり、工程(2)と工程(3)を同時に行った後に工程(4)を行う。)。濁質除去率の測定結果を表1に示す。
[実施例3]
 工程(3)で逆洗排水を排水口6から排出したこと以外は実施例1と同様の処理を行った。濁質除去率の測定結果を表1に示す。
[実施例4]
 工程(2)において、導水管4から空気と共に原水を80L/minで供給したこと以外は実施例3と同様の処理を行った。濁質除去率の測定結果を表1に示す。
[実施例5]
 工程(2)において、導水管4から空気と共に原水を80L/minで供給し、併せて処理水室7を介して中空糸膜2内に濾過水を80L/minで供給し、逆洗排水を排水口6から排出したこと以外は実施例3と同様の処理を行った(つまり、空気と原水を供給するようにした工程(2)と排水口6から排出ようにした工程(3)を同時に行った後に、工程(4)を行う。)。濁質除去率の測定結果を表1に示す。
[実施例6]
 工程(2)におけるバブリング用空気の供給量を150NL/minとしたこと以外は実施例5と同様の処理を行った。濁質除去率の測定結果を表1に示す。
[実施例7]
 工程(2)及び(3)において、逆洗水(濾過水)に次亜塩素酸ナトリウムを100mgCl/Lとなるように添加したこと以外は実施例6と同様の処理を行った。濁質除去率の測定結果を表1に示す。
[比較例1]
 導水管4が設けられていない中空糸膜モジュールを使用し、工程(2),(4)を省略したこと以外は実施例1と同様の処理を行った。濁質除去率の測定結果を表1に示す。
[比較例2]
 中空糸膜の下端をポッティング部に埋設して固定したこと以外は比較例1と同様の処理を行った。濁質除去率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<考察>
 表1の通り、上記実施例及び比較例より、次の(i)~(viii)が認められた。
(i) 実施例1~7では、導水管4を設置していない比較例1,2と比較して、濁質除去率が高い。
(ii) 工程(3)において、容器1の下部の排水口6から洗浄排水を排出する実施例3は、容器1の上部の濃縮水出口8から洗浄排水を排出する実施例1、2よりも濁質除去性が高い。
(iii) 導水管4から空気を送る工程(2)において、さらに原水によって中空糸膜2を洗浄する実施例4は、実施例3よりも濁質除去性が高い。
(vi) 導水管4から空気及び原水を送る工程(2)において、さらに原水によって中空糸膜2を逆洗する実施例5は、実施例4よりも濁質除去性が高い。
(v) 導水管4から空気を送る工程(3)において、さらに濾過水によって中空糸膜2を逆洗する実施例2は、実施例1よりも濁質除去性が高い。
(vi) バブリング用空気の供給量を実施例5の3倍に増大させた実施例6によると、実施例5よりも濁質除去性が向上する。
(vii) 実施例7の通り、次亜塩素酸ナトリウムを逆洗水に添加することにより、濁質除去性が向上する。
(viii) 中空糸膜の上下両端を固定した比較例2より、上端のみ固定した比較例1の方が高い濁質除去性を示す。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年3月29日付で出願された日本特許出願2017-065529に基づいており、その全体が引用により援用される。
 1 容器
 2 中空糸膜
 3 ポッティング部
 4 導水管
 5 処理水出口
 6 排水口
 7 処理水室
 8 濃縮水出口
 9 処理水タンク
 10 散気管

Claims (8)

  1.  処理水出口及び濃縮水出口を有する容器と、
     該容器内に原水を供給する導水管と、
     原水を透過水と濃縮水とに分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、
     該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、
     該上端固定部の上側に形成され、各中空糸膜の内部が連通した処理水室と、
     該中空糸膜の下側に配置された散気部材と、
     を備え、
     前記導水管は、前記上端固定部の下側に上下方向に延在し、側周面に原水を噴出する複数の噴出孔が設けられており、
     前記容器の下部には、洗浄排水を排出する排水口が設けられている中空糸膜モジュールの洗浄方法であって、
     前記散気部材から気体を吹き込むバブリング洗浄と、
     前記処理水出口から前記中空糸膜内に逆洗水を供給する水逆洗と
    を行うことを特徴とする中空糸膜モジュールの洗浄方法。
  2.  請求項1において、前記導水管から空気又は空気と原水を供給した後/又は同時に、前記水逆洗を行うことを特徴とする中空糸膜モジュールの洗浄方法。
  3.  請求項2において、前記導水管から空気又は空気と原水を供給した後/又は水逆洗を行った後に、前記排水口から排水することを特徴とする中空糸膜モジュールの洗浄方法。
  4.  請求項1~3のいずれかにおいて、前記バブリング洗浄後、前記導水管から空気又は空気と原水を供給した後/又は同時に、前記水逆洗を行うことを特徴とする中空糸膜モジュールの洗浄方法。
  5.  請求項1~4のいずれかにおいて、前記逆洗水に薬液を添加することを特徴とする中空糸膜モジュールの洗浄方法。
  6.  請求項1~5のいずれかにおいて、前記上端固定部でのみ前記中空糸膜が固定されていることを特徴とする中空糸膜モジュールの洗浄方法。
  7.  請求項1~6のいずれかにおいて、前記導水管は前記容器の底面を貫通して前記容器内に延設されており、
     該導水管に複数の噴出孔が設けられていることを特徴とする中空糸膜モジュールの洗浄方法。
  8.  処理水出口及び濃縮水出口を有する容器と、
     該容器内に原水を供給する導水管と、
     原水を透過水と濃縮水とに分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、
     該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、
     該上端固定部の上側に形成され、各中空糸膜の内部が連通した処理水室と、
     該中空糸膜の下側に配置された散気部材と、
     を有する中空糸膜モジュールを備え、
     前記導水管は、前記上端固定部の下側に上下方向に延在し、側周面に原水を噴出する複数の噴出孔が設けられており、
     前記容器の下部には、洗浄排水を排出する排水口が設けられており、
     前記導水管に原水配管及び気体導入手段が接続されていることを特徴とする中空糸膜濾過装置。
PCT/JP2017/033549 2017-03-29 2017-09-15 中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置 WO2018179502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197023086A KR102349872B1 (ko) 2017-03-29 2017-09-15 중공사막 모듈의 세정 방법 및 중공사막 여과 장치
SG11201908900R SG11201908900RA (en) 2017-03-29 2017-09-15 Method for washing hollow fiber membrane module and hollow fiber membrane filtration device
CN201780085726.1A CN110248721A (zh) 2017-03-29 2017-09-15 中空纤维膜组件的清洗方法及中空纤维膜过滤装置
US16/497,476 US20200016544A1 (en) 2017-03-29 2017-09-15 Method for washing hollow fiber membrane module and hollow fiber membrane filtration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065529 2017-03-29
JP2017065529A JP6319493B1 (ja) 2017-03-29 2017-03-29 中空糸膜モジュールの洗浄方法

Publications (1)

Publication Number Publication Date
WO2018179502A1 true WO2018179502A1 (ja) 2018-10-04

Family

ID=62106152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033549 WO2018179502A1 (ja) 2017-03-29 2017-09-15 中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置

Country Status (7)

Country Link
US (1) US20200016544A1 (ja)
JP (1) JP6319493B1 (ja)
KR (1) KR102349872B1 (ja)
CN (1) CN110248721A (ja)
SG (1) SG11201908900RA (ja)
TW (1) TWI766881B (ja)
WO (1) WO2018179502A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3378553A4 (en) * 2015-11-19 2019-07-03 Kuraray Co., Ltd. HOLLOW FIBER MEMBRANE MODULE AND CLEANING METHOD THEREOF
JP2020157250A (ja) * 2019-03-27 2020-10-01 栗田工業株式会社 中空糸膜モジュールの洗浄方法
AU2022270622A1 (en) * 2021-05-06 2023-12-14 Prosper Technologies, Llc Systems and methods of gas infusion for wastewater treatment
CN113842780B (zh) * 2021-09-09 2024-05-14 华能嘉祥发电有限公司 一种组合架管道用超滤过滤装置
JP7222055B1 (ja) 2021-11-11 2023-02-14 株式会社ヤマト 膜濾過機及び膜濾過機の洗浄方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170324A (ja) * 1997-08-29 1999-03-16 Kuraray Co Ltd 中空糸膜モジュール
JP2001190936A (ja) * 2000-01-12 2001-07-17 Toshiba Corp 濾過装置
JP2002058968A (ja) * 2000-08-18 2002-02-26 Suehiro Tadashi 濾過装置
JP2003053157A (ja) * 2001-08-09 2003-02-25 Asahi Kasei Corp 外圧型中空糸膜モジュール
JP2003053160A (ja) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd 分離膜の洗浄方法及び膜濾過装置
JP2010069361A (ja) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd 膜洗浄装置、膜分離装置および排水処理装置
JP2012115747A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 中空糸膜モジュールおよび中空糸膜モジュール濾過装置
WO2014157057A1 (ja) * 2013-03-25 2014-10-02 東レ株式会社 中空糸膜モジュールの洗浄方法
WO2017086313A1 (ja) * 2015-11-19 2017-05-26 株式会社クラレ 中空糸膜モジュール及びその洗浄方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376733B2 (ja) * 1994-11-30 2003-02-10 日立プラント建設株式会社 中空糸型膜モジュール
JP2002204930A (ja) 2001-01-10 2002-07-23 Toyobo Co Ltd 中空糸膜モジュール
JP3871567B2 (ja) 2001-01-31 2007-01-24 株式会社東芝 ろ過器、ろ過器の逆洗方法および発電プラント
JP4269171B2 (ja) 2004-11-26 2009-05-27 旭化成ケミカルズ株式会社 エアレーションフラッシング用外圧式中空糸膜モジュールのろ過方法
CN100375648C (zh) * 2005-11-11 2008-03-19 清华大学 用于膜-生物反应器的在线化学清洗方法
CA2655917A1 (en) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Filtration apparatus featuring hollow fiber membranes in a holding member
DE102008039676A1 (de) * 2008-08-26 2010-03-04 Inge Watertechnologies Ag Einrichtung und Verfahren zum Rückspülen von Filtermembranmodulen
TW201217045A (en) * 2010-09-27 2012-05-01 Sumitomo Electric Industries Method for cleaning filter membrane, and membrane filter
JP2014008439A (ja) 2012-06-28 2014-01-20 Toray Ind Inc 膜分離式水処理装置および水処理分離膜の洗浄方法
EP3107644A1 (en) * 2014-02-19 2016-12-28 Basf Se Filtration apparatus with multiple hollow fibre membrane bundles for inside-out filtration
JP5874866B1 (ja) * 2014-04-25 2016-03-02 東レ株式会社 除濁膜モジュールの運転方法
JP2016055236A (ja) * 2014-09-08 2016-04-21 住友電気工業株式会社 濾過装置及び濾過膜の洗浄方法
CN204952680U (zh) * 2015-07-20 2016-01-13 四川久润环保科技有限公司 一种中空纤维束式膜组件
CN106390756A (zh) * 2016-11-28 2017-02-15 中国人民解放军空军勤务学院 一种中空纤维膜组件的清洗方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170324A (ja) * 1997-08-29 1999-03-16 Kuraray Co Ltd 中空糸膜モジュール
JP2001190936A (ja) * 2000-01-12 2001-07-17 Toshiba Corp 濾過装置
JP2002058968A (ja) * 2000-08-18 2002-02-26 Suehiro Tadashi 濾過装置
JP2003053157A (ja) * 2001-08-09 2003-02-25 Asahi Kasei Corp 外圧型中空糸膜モジュール
JP2003053160A (ja) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd 分離膜の洗浄方法及び膜濾過装置
JP2010069361A (ja) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd 膜洗浄装置、膜分離装置および排水処理装置
JP2012115747A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 中空糸膜モジュールおよび中空糸膜モジュール濾過装置
WO2014157057A1 (ja) * 2013-03-25 2014-10-02 東レ株式会社 中空糸膜モジュールの洗浄方法
WO2017086313A1 (ja) * 2015-11-19 2017-05-26 株式会社クラレ 中空糸膜モジュール及びその洗浄方法

Also Published As

Publication number Publication date
US20200016544A1 (en) 2020-01-16
JP6319493B1 (ja) 2018-05-09
CN110248721A (zh) 2019-09-17
SG11201908900RA (en) 2019-10-30
KR102349872B1 (ko) 2022-01-10
KR20190129834A (ko) 2019-11-20
TW201836706A (zh) 2018-10-16
JP2018167162A (ja) 2018-11-01
TWI766881B (zh) 2022-06-11

Similar Documents

Publication Publication Date Title
WO2018179502A1 (ja) 中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置
JP6122525B1 (ja) 中空糸膜モジュールの洗浄方法
WO2006116797A1 (en) Chemical clean for membrane filter
JP2015229146A (ja) 膜モジュールの洗浄方法
JP6358878B2 (ja) 膜ろ過装置
KR101858754B1 (ko) 여과 시스템 및 여과방법
JP6618708B2 (ja) 中空糸膜モジュールの運転方法及び濾過装置
JP2008246424A (ja) 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置
JP6653154B2 (ja) 中空糸膜モジュールの洗浄方法及び濾過装置
JP2001187324A (ja) 膜ろ過装置の洗浄方法および水処理装置
JP2009039677A (ja) 浸漬型膜モジュールの洗浄方法および浸漬型膜ろ過装置
JP2017176951A (ja) 分離膜モジュールの洗浄方法
WO2020194820A1 (ja) 中空糸膜モジュール及びその洗浄方法
JP2013034938A (ja) 膜モジュールの洗浄方法
KR20160146725A (ko) 제탁막 모듈의 운전 방법
JP4156984B2 (ja) 分離膜モジュールの洗浄方法
JP2015123436A (ja) 水処理方法
WO2017009966A1 (ja) 中空糸膜モジュール及びその洗浄方法
CN113453789B (zh) 膜过滤单元的运转方法及膜过滤单元
JP2012239936A (ja) 浄水処理方法及び装置
JP2010137119A (ja) 膜モジュールの洗浄方法
JP2020157250A (ja) 中空糸膜モジュールの洗浄方法
JP2008194698A (ja) 分離膜モジュールの洗浄方法
JP2014117645A (ja) 水処理装置及び水処理方法
JP2019202274A (ja) 膜ろ過装置、膜ろ過装置の洗浄方法および水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903496

Country of ref document: EP

Kind code of ref document: A1