WO2014157057A1 - 中空糸膜モジュールの洗浄方法 - Google Patents

中空糸膜モジュールの洗浄方法 Download PDF

Info

Publication number
WO2014157057A1
WO2014157057A1 PCT/JP2014/058022 JP2014058022W WO2014157057A1 WO 2014157057 A1 WO2014157057 A1 WO 2014157057A1 JP 2014058022 W JP2014058022 W JP 2014058022W WO 2014157057 A1 WO2014157057 A1 WO 2014157057A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane module
cleaning
air
Prior art date
Application number
PCT/JP2014/058022
Other languages
English (en)
French (fr)
Inventor
羽川和希
小林憲太郎
森川博文
高畠寛生
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014518861A priority Critical patent/JP6492658B2/ja
Priority to CN201480017908.1A priority patent/CN105050697B/zh
Priority to US14/779,793 priority patent/US10159940B2/en
Priority to KR1020157028096A priority patent/KR102118384B1/ko
Publication of WO2014157057A1 publication Critical patent/WO2014157057A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for washing a hollow fiber membrane module in which a stock solution is filtered through a hollow fiber membrane to obtain a filtrate.
  • the membrane separation method has features such as energy saving space and improved filtered water quality, and its use in various fields is expanding.
  • microfiltration membranes and ultrafiltration membranes can be applied to water purification processes that produce industrial water and tap water from river water, groundwater and sewage treated water, and to pretreatment in seawater desalination reverse osmosis membrane treatment processes. can give.
  • Patent Documents 1 to 4 describe cleaning methods in which the liquid level on the stock solution side of the membrane is changed while introducing bubbles from an air diffuser installed inside the membrane module.
  • Patent Document 5 proposes a cleaning method for raising and lowering the liquid surface on the stock solution side of the membrane while introducing bubbles from an air diffuser installed at the lower part of the membrane module. These are aimed at the effect of strongly peeling off contaminants adhering to the film surface by utilizing the fact that the liquid surface pulsates due to the waves generated when the bubbles collapse on the liquid surface.
  • the present invention relates to a cleaning method in which the internal liquid on the raw liquid side of a hollow fiber membrane module is drained from the lower part of the hollow fiber membrane module while introducing the bubbles from a diffuser installed at the lower part of the membrane module. It is an object of the present invention to provide a method for cleaning a hollow fiber membrane module capable of sufficiently introducing the above.
  • a hollow fiber membrane comprising a plurality of hollow fiber membranes in a cylindrical case having an upper side nozzle and a lower side nozzle on the side surface, an upper end nozzle on the upper end surface, and a lower end surface nozzle on the lower end surface
  • a bundle is inserted, and at the upper end portion of the hollow fiber membrane bundle, an upper adhesive portion that is bonded and fixed to the cylindrical case with an adhesive is formed with an end face of the hollow fiber membrane being opened, and the hollow fiber membrane bundle is formed.
  • a lower adhesive portion that is bonded and fixed to the cylindrical case with an adhesive is formed in a state where the end face of the hollow fiber membrane is closed at the lower end portion of the hollow fiber, and a plurality of air diffusion holes are formed in the lower adhesive portion.
  • the internal liquid in the cylindrical case is discharged from the lower end face nozzle while supplying air from the lower end face nozzle, and the drainage speed V (m 3 / sec) of the internal liquid is Maximum value Lm of the minimum diameter of the air diffuser 0.00001 (m 3 / sec) ⁇ V (m 3 / sec) ⁇ S (m 2 ) ⁇ 5.5 (with respect to ax (m) and the total cross-sectional area S (m 2 ) of the diffuser holes m 0.5 / sec) ⁇ Lmax 0.5 (m 0.5 )
  • the internal liquid on the hollow fiber membrane stock side in the cylindrical case is drained from the lower end face nozzle so as to satisfy the relational expression.
  • a method for cleaning a hollow fiber membrane module comprising: air cleaning the hollow fiber membrane module.
  • the method for cleaning a hollow fiber membrane module of the present invention it is possible to sufficiently introduce bubbles into the membrane module while draining the internal liquid on the hollow fiber membrane stock solution side from the lower end face nozzle of the hollow fiber membrane module, It is possible to efficiently remove substances accumulated in the hollow fiber membrane module, which can contribute to stable operation of the hollow fiber membrane module.
  • the cleaning drainage is carried out from above the hollow fiber membrane module while simultaneously performing the back pressure cleaning and the air cleaning. By simultaneously draining not only from the lower side, it is possible to efficiently remove substances accumulated in the hollow fiber membrane module.
  • FIG. 6 is a graph showing the relationship among the maximum value Lmax of the minimum diameter of the air diffuser calculated in Example 1, the total cross-sectional area S of the air diffuser and the drainage velocity V from the lower end face nozzle.
  • a membrane filtration apparatus to which the method for cleaning a hollow fiber membrane module of the present invention is applied includes, for example, a stock solution supply pump 1 for supplying a stock solution, a stock solution valve 2 that is opened when the stock solution is supplied, and a stock solution as shown in FIG.
  • the hollow fiber membrane module 3 for filtering the water, supplying the stock solution, back pressure washing (hereinafter also referred to as “back washing”) and air washing (hereinafter referred to as “empty washing”)
  • the air vent valve 4 that is opened when it is present, the filtrate valve 5 that is opened during membrane filtration, the filtrate storage tank 6 that stores the membrane filtrate, and the membrane filtrate supplied to the hollow fiber membrane module 3
  • the backwashing pump 7 for backwashing, the backwashing valve 8 that opens when backwashing, the chemical supply pump 9 for supplying the chemical solution to the stock solution or the hollow fiber membrane module, and the chemical storage tank for storing the chemical solution 10 and an air blower which is an air supply source for air washing of the hollow fiber membrane module 3 -11, an empty flush valve 12 that is opened when air is supplied to the lower part (lower end face nozzle) of the hollow fiber membrane module 3 to perform air washing, and a primary solution (stock solution side) stock solution of the hollow fiber membrane module 3
  • the drain valve 13 which is opened when drain
  • the liquid supplied to the hollow fiber membrane for membrane separation is expressed as a “raw solution”, and a cleaning method for draining from the lower part of the hollow fiber membrane module while performing air cleaning is an “empty washing drainage method”.
  • a cleaning method for draining from the lower and upper parts of the hollow fiber membrane module while performing back pressure cleaning and air cleaning is expressed as “empty reverse simultaneous cleaning and draining method”.
  • the liquid on the stock side of the hollow fiber membrane module drained by the flush washing drainage method and the blank reverse washing simultaneous drainage method is “internal fluid”, and the fluid used for back pressure washing (backwashing) It is expressed as “washing liquid”.
  • the backwash solution may be anything as long as it is a clear solution, but it is preferable to use membrane filtered water.
  • FIG. 2 is a schematic cross-sectional view showing an example of a pressure-type hollow fiber membrane module.
  • the hollow fiber membrane module 3 includes an upper adhesive portion 20 that is bonded and fixed to the cylindrical case with an adhesive in a state where a large number of hollow fiber membranes are opened, and an adhesive that is closed on the end surface of the hollow fiber membrane.
  • a plurality of air diffusion holes 22 are formed in the lower bonding portion 21 and the lower bonding portion 21 that are bonded and fixed to the cylindrical case.
  • the hollow fiber membrane module 3 drains the upper end face nozzle 18 serving as a filtrate drainage port or a backwashing liquid supply port, the lower end face nozzle 19 serving as an air supply port or a lower drainage port, the washing drainage and air.
  • An upper side nozzle 16 and a lower side nozzle 17 serving as a raw water supply port are provided.
  • the stock solution is supplied to the membrane primary side in the hollow fiber membrane module 3 by operating the stock solution supply pump 1 and opening the stock solution valve 2 and the air vent valve 4.
  • the filtration is performed with the hollow fiber membrane provided in the hollow fiber membrane module 3 by opening the filtrate valve 5.
  • the filtrate is transferred from the membrane secondary side (filtrate side) in the hollow fiber membrane module 3 to the filtrate storage tank 6 through the filtrate valve 5.
  • the air vent valve 4, the backwash valve 8, the air wash valve 12, the drain valve 13, and the lower wash drain valve 14 are all closed.
  • the filtration time is preferably set as appropriate according to the nature of the stock solution and the membrane filtration flux, but the filtration time may be continued until a predetermined membrane filtration differential pressure is reached.
  • a plurality of hollow fibers are provided in a cylindrical case having an upper side nozzle and a lower side nozzle on the side surface, an upper end surface nozzle on the upper end surface, and a lower end surface nozzle on the lower end surface.
  • a hollow fiber membrane bundle made of a membrane is inserted, and an upper adhesive portion that is bonded and fixed to the cylindrical case with an adhesive is formed at an upper end portion of the hollow fiber membrane bundle with an end face of the hollow fiber membrane being opened.
  • a lower adhesive portion that is bonded and fixed to the cylindrical case with an adhesive is formed with the end surface of the hollow fiber membrane being closed, and a plurality of scattering members are formed on the lower adhesive portion.
  • the internal liquid in the cylindrical case is discharged from the lower end face nozzle while supplying air from the lower end face nozzle, and the discharge speed V ( m 3 / sec) is dispersed said And minimum diameter of the maximum value Lmax of the hole (m), the total cross-sectional area of the diffuser pores S relative (m 2), 0.00001 (m 3 / sec) ⁇ V (m 3 / sec) ⁇ S (m 2 ) x 5.5 (m 0.5 / sec) x L max 0.5 (m 0.5 ) so that the inner liquid on the hollow fiber membrane stock solution side in the cylindrical case is filled with the lower part
  • a hollow fiber membrane module cleaning method wherein the hollow fiber membrane module is air cleaned by draining from an end face nozzle.
  • the air vent valve 4 the lower washing drain valve 14 and the empty The valve 12 is opened and the air blower 11 is operated. At this time, the washing drainage is drained from the lower end face nozzle 19 of the hollow fiber membrane module 3. However, when draining from the lower end face nozzle of the hollow fiber membrane module 3 so that air is supplied to the hollow fiber membrane module 3 while draining the washing drainage from the lower end face nozzle 19 of the hollow fiber membrane module 3.
  • the flow rate adjusting valve 15 is used to set the drainage velocity V from the lower end face nozzle to V (m 3 / sec) ⁇ S (m 2 ) ⁇ 5.5 (m 0 ) with respect to the maximum value Lmax of the minimum diameter of the diffuser holes. .5 / sec) ⁇ Lmax 0.5 (m 0.5 ).
  • the third invention in the present invention is one of the preferred embodiments of the first invention.
  • a third aspect of the present invention there are a plurality of cylindrical casings having an upper side nozzle and a lower side nozzle on the side surface, an upper end surface nozzle on the upper end surface, and a lower end surface nozzle on the lower end surface.
  • a hollow fiber membrane bundle made of a hollow fiber membrane is inserted, and an upper adhesive portion bonded and fixed to the cylindrical case by an adhesive with the end surface of the hollow fiber membrane being opened at the upper end portion of the hollow fiber membrane bundle.
  • a lower adhesive portion is formed at the lower end portion of the hollow fiber membrane bundle and is bonded and fixed to the cylindrical case with an adhesive in a state where the end surface of the hollow fiber membrane is closed, and a plurality of lower adhesive portions are formed on the lower adhesive portion.
  • the third invention in the present invention is the method for cleaning a hollow fiber membrane module according to the first invention, wherein a backwash liquid is supplied from the upper end face nozzle and the filtrate side of the hollow fiber membrane is changed to the stock solution side.
  • the stock solution valve 2 and the filtrate valve 5 are closed, the stock solution supply pump 1 is stopped, and the filtration process in the hollow fiber membrane module 3 is stopped.
  • the valve 14 By opening the valve 14, the backwash valve 8, and the air wash valve 12, and operating the backwash pump 7 and the air blower 11, back pressure washing and air washing using the membrane filtrate in the filtrate storage tank 10 are performed.
  • the cleaning drainage is drained from above (upper side nozzle 16) and below (lower end nozzle 19) of the hollow fiber membrane module 3.
  • the air is supplied to the hollow fiber membrane module 3 while draining the washing drainage from below the hollow fiber membrane module 3 (lower end surface nozzle 19).
  • the flow rate adjusting valve 15 is used to set the draining velocity V from the lower end face nozzle to V (m 3 / sec) ⁇ S (m 2 ) ⁇ with respect to the maximum value Lmax of the minimum diameter of the diffuser holes. adjusted to so as to satisfy the relationship of 5.5 (m 0.5 / sec) ⁇ Lmax 0.5 (m 0.5). That is, the inventors determine whether air is supplied to the hollow fiber membrane module 3 depending on the relationship between the buoyancy (bubble diameter) of air (bubbles) and the force caused by the water flow from above on the air (bubbles).
  • the drainage rate from the lower end face nozzle and “the drainage rate in the air diffuser” are equal to each other.
  • the air diffusion hole 22 formed in the lower adhesive fixing part of the hollow fiber membrane module used in the present invention is a hole penetrating the hollow fiber membrane module lower adhesive fixing part.
  • the cross-sectional shape of the diffuser holes may be arbitrary, such as a circle, an ellipse, or a polygon.
  • V is the drainage speed (m 3 / sec) from the lower end face nozzle when draining from below (lower end face nozzle) of the hollow fiber membrane module 3 during cleaning
  • Lmax is the maximum in the air diffuser hole 22. It is the maximum value (m) of the small diameter
  • S is the total cross-sectional area (m 2 ) of the air diffusion holes 22.
  • 5.5 (m 0.5 / sec) is a coefficient obtained when obtaining a relational expression having the highest correlation with the experimental values of Lmax, V, and S at which air is supplied to the hollow fiber membrane module 3.
  • the minimum diameter of the air diffuser 22 is a length that makes the width minimum in the direction perpendicular to the flow direction of the drainage in the air diffuser 22.
  • the diameter is In the case of an ellipse, it is the length of the minor axis, and when the number of sides is an even number in the regular polygon, the distance between the opposite sides, and in the case of an odd number, the distance between the opposite sides of the vertex It is distance.
  • the maximum value is L1 when all the air holes 22 are circles and the diameters are the same, and all the air holes 22 are circles as shown in FIG. Is different, L2, and in the case of the shape shown in FIG. 5, L4. Also, if the total cross-sectional area S of the diffusing pores 22 in FIG.
  • the above empty reverse simultaneous cleaning and draining method may be performed every time after completion of filtration for a certain time, or may be performed occasionally in combination with another cleaning method.
  • the time for the washing step can be arbitrarily set, but is preferably about 30 seconds to 3 minutes from the viewpoint of the recovery rate.
  • the following drainage process, liquid supply process, and filtration process may be performed after completion
  • the cleaning effect can be enhanced by using a filtrate containing a chemical solution.
  • an aqueous solution containing at least one drug such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, ascorbic acid, sodium sulfite, sodium hydroxide, sodium hypochlorite can be used.
  • a second aspect of the present invention includes an upper side nozzle and a lower side nozzle on a side surface, an upper end surface nozzle on an upper end surface, and a plurality of tubes in a cylindrical case having a lower end surface nozzle on a lower end surface.
  • a hollow fiber membrane bundle made of a hollow fiber membrane is inserted, and an upper adhesive portion bonded and fixed to the cylindrical case by an adhesive with the end surface of the hollow fiber membrane being opened at the upper end portion of the hollow fiber membrane bundle.
  • a lower adhesive portion is formed at the lower end portion of the hollow fiber membrane bundle and is bonded and fixed to the cylindrical case with an adhesive in a state where the end surface of the hollow fiber membrane is closed, and a plurality of lower adhesive portions are formed on the lower adhesive portion.
  • the drainage speed V ( m 3 / sec) is dispersed said And minimum diameter of the maximum value Lmax of the hole (m), the total cross-sectional area of the diffuser pores S relative (m 2), 0.00001 (m 3 / sec) ⁇ V (m 3 / sec) ⁇ S (m 2 ) x 5.5 (m 0.5 / sec) x L max 0.5 (m 0.5 ) so that the inner liquid on the hollow fiber membrane stock solution side in the cylindrical case is filled with the lower part
  • a hollow fiber membrane module cleaning method wherein the hollow fiber membrane module is air cleaned by
  • the second invention in the present invention is the method for cleaning a hollow fiber membrane module according to the first invention, wherein the internal liquid in the cylindrical case is lowered in the method for cleaning an empty fiber membrane module.
  • the cleaning method according to the second invention may be used alone, the cleaning according to the second invention is performed after the above-described cleaning method (the cleaning method according to the first invention or the third invention) is performed.
  • the method is preferably performed from the viewpoint of turbidity from the hollow fiber membrane module. Below, it demonstrates, showing a specific example. However, the present invention is not limited to the specific example.
  • the lower cleaning drain valve 14, the empty cleaning valve 12, and the air vent valve 4 are kept open, and the air blower is further opened. 11 is operated and the washing liquid is drained while lowering the liquid level of the internal liquid on the membrane primary side in the hollow fiber membrane module 3.
  • the drainage velocity V (m 3 / sec) from the lower end face nozzle is the above relational expression for the maximum value Lmax (m) of the diameter of the air diffuser and the total cross-sectional area S (m 2 ) of the air diffuser. Air is supplied from the lower end face nozzle 19 while adjusting the drainage amount of the internal liquid using the flow rate adjusting valve 15 so as to satisfy the condition.
  • the flushing valve 12 and the downward washing drainage valve 14 are closed and the air blower 11 is stopped. Then, the stock solution valve 2 is opened and the stock solution supply pump 1 is operated to perform a liquid supply process. After the membrane primary side of the hollow fiber membrane module 3 is full, the air vent valve 4 is closed and the filtrate valve 5 is opened to return to the filtration step. Then, the filtration is continued until a predetermined membrane filtration differential pressure is reached.
  • the timing for performing the cleaning method according to the second invention (the above-mentioned empty cleaning drainage method), and it may be performed after the empty reverse simultaneous cleaning drainage, or the empty reverse simultaneous cleaning. You may carry out before draining.
  • the time of an empty washing drainage process can be set arbitrarily, it is preferable to set to the time when the internal liquid in the hollow fiber membrane module 3 is fully drained.
  • the pore diameter of the hollow fiber membrane used in the hollow fiber membrane module 3 used in the present invention is not particularly limited as long as it is porous. However, depending on the liquid quality and amount of a desired treatment liquid, an MF membrane (microfiltration membrane) ), A UF membrane (ultrafiltration membrane), or a combination of both. For example, when removing turbid components, Escherichia coli, Cryptosporidium, etc., either the MF membrane or the UF membrane may be used. However, when removing viruses or high molecular organic substances, it is preferable to use the UF membrane. .
  • the material of the hollow fiber membrane used in the present invention is polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoro.
  • inorganic materials such as propylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, polyethersulfone and ceramics It is preferable to contain at least one selected from the group consisting of, and polyvinylidene fluoride (PVDF) is more preferable from the viewpoint of film strength and chemical resistance. , Polyacrylonitrile is more preferable from the viewpoint that a strong high stain resistance lyophilic.
  • PVDF polyvinylidene fluoride
  • the filtration flux control method used in the present invention may be constant flux filtration or constant pressure filtration, but a constant amount of processing liquid can be obtained, and the overall control is easy. To constant flux filtration is preferred.
  • the filtration method may be a full-flow filtration module or a cross-flow filtration module, but a full-flow filtration module is preferred from the viewpoint of low energy consumption.
  • the substance accumulated in the hollow fiber membrane module can be effectively decomposed and removed by the cleaning method of the present invention, so that the membrane filtration differential pressure is stable for a longer period than in the prior art.
  • a pressure gauge is installed in the undiluted solution supply pipe (membrane primary side) and membrane filtrate pipe (membrane secondary side) connected to the hollow fiber membrane module 3, and the pressure on the membrane secondary side is subtracted from the pressure on the membrane primary side. Calculated.
  • Example 1 In the apparatus as shown in FIG. 1, the total cross-sectional area S of the air holes is the same, the shape of the air holes is a cross-sectional shape as shown in FIG. 3, and the maximum value of the minimum diameter of the air holes is 0.003, 0.00.
  • the drainage velocity V (m 3 / sec) from the lower end face nozzle when the air supplied from below the hollow fiber membrane module is not supplied into the hollow fiber membrane module was measured. That is, first, the flow rate adjusting valve 15 was closed, and it was confirmed that air supplied from below the hollow fiber membrane module (lower end face nozzle) was supplied into the hollow fiber membrane module. Thereafter, the flow rate adjustment valve 15 was opened to vary the drainage speed V (m 3 / sec) from the lower end face nozzle. And the drainage velocity V (m ⁇ 3 > / sec) from the lower end surface nozzle when the air supplied from the hollow fiber membrane module lower part (lower end surface nozzle) is no longer supplied in a hollow fiber membrane module was calculated
  • the maximum value of the minimum diameter in the air diffuser portion when draining from the lower part (lower end face nozzle) of the hollow fiber membrane module at the time of cleaning is 0.01 m, and the air hole portion is totally cut off.
  • area using one of the external pressure type PVDF ultrafiltration hollow fiber membrane module is 0.0035m 2, by opening the filtrate valve 5 and stock valve 2, 3m 3 / filtration flux river water (m 2 ⁇ d) At a constant flow rate.
  • the stock solution valve 2 and the filtrate valve 5 are closed, and then the air vent valve 4, the lower washing drainage valve 14, the backwash valve 8, and the air washing valve 12 are opened, and the backwash pump 7 and the air blower 11 are operated, and the back pressure washing is performed so that the back washing liquid permeates from the filtrate side to the stock side of the hollow fiber membrane module 3 with a flux of 3.3 m 3 / (m 2 ⁇ d), and the air flow rate is 100 NL.
  • the air cleaning for supplying air from the lower end face nozzle of the hollow fiber membrane module 3 at / min was simultaneously performed for 60 seconds.
  • the air supplied from the lower part of the hollow fiber membrane module (lower end face nozzle) is discharged from the lower part of the hollow fiber membrane module so that the air is supplied to the hollow fiber membrane module (that is, the lower part)
  • the flow rate of the lower drainage port was adjusted so that the drainage speed from the end face nozzle was 0.001 m 3 / sec.
  • V is 0.001 m 3 / sec
  • S is 0.0035 m 2
  • Lmax is 0.01 m
  • S ⁇ 5.5 ⁇ Lmax 0.5 0.001925.
  • the drainage speed V satisfies the relational expression of 0.00001 ⁇ V ⁇ S ⁇ 5.5 ⁇ Lmax 0.5 .
  • the backwashing valve 8 is closed, the backwashing pump 7 is stopped, the air vent valve 4, the lower washing drainage valve 14 and the air washing valve 12 are opened, and the air blower 11 is operated and the hollow fiber membrane is operated.
  • the internal liquid in the module 3 was drained.
  • the drain speed V from the lower end face nozzle is set to 0.001 m.
  • the drainage rate was adjusted by the flow rate adjusting valve 15 to be 3 / sec.
  • the stock solution valve 2 is opened and the stock solution supply pump 1 is operated to fill the membrane primary side in the hollow fiber membrane module 3 with the stock solution, and then the filtrate valve 5 was opened, the air vent valve 4 was closed, the flow returned to the filtration step, and the above steps were repeated.
  • the filtration differential pressure of the hollow fiber membrane module 3 was 30 kPa immediately after the start of operation, but was 40 kPa after one month, and stable operation could be performed over a long period of time.
  • Example 2 In the apparatus as shown in FIG. 1, the maximum value of the minimum diameter in the air diffused hole portion at the time of draining from the lower end face nozzle of the hollow fiber membrane module during cleaning is 0.01 m, and the total cross-sectional area of the air diffused hole portion is One external pressure PVDF ultra-hollow fiber membrane module of 0.0035 m 2 is used, the stock solution valve 2 and the filtrate valve 5 are opened, and the river water is determined at a filtration flux of 3 m 3 / (m 2 ⁇ d). The flow rate was filtered.
  • the stock solution valve 2 and the filtrate valve 5 are closed, the air vent valve 4, the backwash valve 8 and the air wash valve 12 are opened, and the backwash pump 7 and the air blower 11 are operated.
  • back pressure washing that allows the backwash solution to permeate from the filtrate side to the stock solution side of the hollow fiber membrane module 3 with a flux of 3.3 m 3 / (m 2 ⁇ d), and the hollow fiber membrane module at an air flow rate of 100 NL / min.
  • the air cleaning for supplying air from the lower end face nozzle 19 was simultaneously performed for 60 seconds.
  • the backwash valve 8 is closed, the backwash pump 7 is stopped, the air vent valve 4, the lower washing drain valve 14, and the air washing valve 12 are opened, and the air blower 11 is kept in operation and hollow.
  • the internal liquid in the thread membrane module 3 was drained. At this time, as the internal liquid was drained, the liquid level of the hollow fiber membrane module 3 decreased.
  • the drainage speed from the lower end face nozzle 19 is 0.001 m 3.
  • the drainage speed was adjusted by the flow rate adjusting valve 15 so as to be / sec.
  • the stock solution valve 2 is opened and the stock solution supply pump 1 is operated to fill the membrane primary side in the hollow fiber membrane module 3 with the stock solution. It opened, the air vent valve 4 was closed, it returned to the filtration process, and the said process was repeated.
  • the filtration differential pressure of the hollow fiber membrane module 3 was 30 kPa immediately after the start of operation, but was 44 kPa after one month, and stable operation could be performed over a long period of time.
  • Comparative Example 1 The following Comparative Example 1 was carried out in order to confirm the effect when the back-pressure washing drainage was performed simultaneously with the empty reverse washing without draining from the lower part (lower end face nozzle) of the hollow fiber membrane module.
  • the stock solution valve 2 and the filtrate valve 5 are closed, the air vent valve 4, the backwash valve 8 and the air wash valve 12 are opened, and the backwash pump 7 and the air blower 11 are operated.
  • back pressure washing that allows the backwash solution to permeate from the filtrate side to the stock solution side of the hollow fiber membrane module 3 with a flux of 3.3 m 3 / (m 2 ⁇ d), and the hollow fiber membrane module at an air flow rate of 100 NL / min.
  • the air cleaning for supplying air from No. 3 lower end face nozzle was simultaneously performed for 60 seconds.
  • the drainage valve 13 was opened, and all the liquid on the membrane primary side in the hollow fiber membrane module 3 was drained. Then, simultaneously with closing the drainage valve 13, the stock solution valve 2 is opened, the stock solution supply pump 1 is operated, the membrane primary side in the hollow fiber membrane module 3 is filled with the stock solution, and then the filtrate valve 5 is opened. Then, the air vent valve 4 was closed, the flow returned to the filtration step, and the above steps were repeated.
  • the filtration differential pressure of the hollow fiber membrane module 3 was 30 kPa immediately after the start of operation, but increased to 74 kPa after one month, and the rate of increase of the filtration differential pressure was 4 times that of Example 1. It turned out to be faster and it was found that stable operation was not possible.
  • Comparative Example 2 The following comparative example 2 was carried out in order to confirm the effect when the drainage speed V from the lower end face nozzle at the time of cleaning was made larger than S ⁇ 5.5 ⁇ Lmax 0.5 and the reverse air simultaneous cleaning was performed. did.
  • Example 1 As shown in FIG. 1, the same hollow fiber membrane module as in Example 1 was used, the stock solution valve 2 and the filtrate valve 5 were opened, and the river water was filtered with a flux of 3 m 3 / (m 2 ⁇ d). At a constant flow rate.
  • the stock solution valve 2 and the filtrate valve 5 are closed, and then the air vent valve 4, the lower washing drainage valve 14, the backwash valve 8, and the air washing valve 12 are opened, and the backwash pump 7 and the air blower 11 are operated, and the back pressure washing is performed so that the back washing liquid permeates from the filtrate side to the stock side of the hollow fiber membrane module 3 with a flux of 3.3 m 3 / (m 2 ⁇ d), and the air flow rate is 100 NL.
  • the air cleaning for supplying air from the lower end face nozzle of the hollow fiber membrane module 3 at / min was simultaneously performed for 60 seconds.
  • V is 0.0022 m 3 / sec
  • S is 0.0035 m 2
  • Lmax is 0.01 m
  • S ⁇ 5.5 ⁇ Lmax 0.5 0.001925.
  • the drainage speed V does not satisfy the relational expression of 0.00001 ⁇ V ⁇ S ⁇ 5.5 ⁇ Lmax 0.5 .
  • the backwashing valve 8 is closed, the backwashing pump 7 is stopped, the air vent valve 4, the lower washing drainage valve 14 and the air washing valve 12 are opened, and the air blower 11 is operated and the hollow fiber membrane is operated.
  • the internal liquid in the module 3 was drained. Also at this time, adjustment of the drainage speed when draining the internal liquid from the lower end face nozzle 19 of the hollow fiber membrane module 3 was not performed.
  • the stock solution valve 2 is opened and the stock solution supply pump 1 is operated to fill the membrane primary side in the hollow fiber membrane module 3 with the stock solution, and then the filtrate valve 5 was opened, the air vent valve 4 was closed, the flow returned to the filtration step, and the above steps were repeated.
  • the filtration differential pressure of the hollow fiber membrane module 3 was 30 kPa immediately after the start of operation, whereas it rapidly increased to 160 kPa 10 days after the start of operation. It was about 40 times faster, indicating that stable operation was not possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

【課題】中空糸膜モジュール内に蓄積している物質を効率的に除去することが可能な中空糸膜モジュールの効率的な洗浄方法を提供する。 【解決手段】中空糸膜モジュール3の原液側の内部液を中空糸膜モジュール3の下部端面ノズル19から排液させながら空気洗浄を実施する。中空糸膜モジュール3の下部端面ノズルから散気孔を通して供給する空気が中空糸膜モジュール3に供給されるよう中空糸膜モジュール3の下部端面ノズルより内部液を排液する際の下部端面ノズルからの排液速度を調節すること排液を特徴とする中空糸膜モジュールの洗浄方法。

Description

中空糸膜モジュールの洗浄方法
 本発明は、原液を中空糸膜でろ過してろ過液を得る中空糸膜モジュールの洗浄方法に関するものである。
 膜分離法は、省エネルギー・スペース、およびろ過水質向上等の特長を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜を河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理への適用があげられる。
 原液を膜ろ過すると、膜ろ過液量に伴って、膜表面や膜細孔内に付着する汚染物質の量が増大していき、ろ過液量の低下あるいは膜差圧の上昇が問題となってくる。
 そこで、膜の原液側に気泡を導入し、膜を揺動させ、膜同士を触れ合わせることにより膜表面に付着した汚染物質を掻き落とす空気洗浄や、膜のろ過方法とは逆方向に膜ろ過液あるいは清澄液を圧力で押し込み、膜表面や膜細孔内に付着していた汚染物質を排除する逆圧洗浄を実施する等の物理洗浄が実用化されている。
 原液中の汚染物質の量が多い場合には、上記の洗浄方法では膜表面に付着した汚染物質の除去が不十分な場合がある。洗浄効果を高める方法として、特許文献1~4には、膜のモジュール内部に設置した散気装置より気泡を導入しながら、膜の原液側の液面を変化させる洗浄方法が記載されている。また特許文献5には、膜モジュール下部に設置した散気装置より気泡を導入しながら、膜の原液側の液面を上下させる洗浄方法が提案されている。これらは、液面にて気泡が崩壊する際に発生する波により液面が脈動することを利用することによって、膜表面に付着した汚染物質を強力に剥離させる効果を狙ったものである。
特開2007-289940号公報 特開2006-281163号公報 特開平2-164423号公報 特開平4-126528号公報 特開2003-265935号公報
 しかし、特許文献1~4に記載されるような、膜のモジュール内部に設置した散気装置より気泡を導入しながら、膜の原液側の液面を変化させる方法は、ある程度の洗浄効果をもたらすが、充分とは言えない。
 また、特許文献5に記載されるような、膜モジュール下部に設置した散気装置より膜モジュール内部に気泡を導入しながら、膜の原液側の液面を下降させる場合、膜モジュールの散気孔より膜モジュール内部に気泡が導入されず、空気洗浄が実施できなくなって、膜モジュール内部に蓄積している物質を十分除去できずに、中空糸膜の運転を十分に安定化できないといった問題がある。
 本発明は、膜モジュール下部に設置した散気装置より気泡を導入しながら、中空糸膜モジュールの原液側の内部液を中空糸膜モジュールの下部より排液する洗浄方法において、膜モジュール内部に気泡を十分導入させることが可能な中空糸膜モジュールの洗浄方法を提供することにある。
 上記課題を解決するため、本発明の中空糸膜モジュールの洗浄方法は、次のように特定されるものである。
(1) 側面に上部側面ノズルと下部側面ノズルを有し、上部端面に上部端面ノズルを有し、下部端面に下部端面ノズルを有する筒状ケース内に複数本の中空糸膜からなる中空糸膜束が挿入され、前記中空糸膜束の上端部では前記中空糸膜の端面が開口された状態で接着剤により前記筒状ケースと接着固定された上部接着部が形成され、前記中空糸膜束の下端部では前記中空糸膜の端面が閉塞された状態で接着剤により前記筒状ケースと接着固定された下部接着部が形成され、前記下部接着部には複数の散気孔が形成された中空糸膜モジュールの洗浄方法において、前記下部端面ノズルから空気を供給しつつ前記筒状ケース内の内部液を前記下部端面ノズルより排液し、内部液の排液速度V(m/sec)が前記散気孔の最小径の最大値Lmax(m)と、前記散気孔の総断面積S(m)に対して、0.00001(m/sec)≦V(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように、前記筒状ケース内の中空糸膜原液側の内部液を前記下部端面ノズルより排液することによって中空糸膜モジュールの空気洗浄を行うことを特徴とする中空糸膜モジュールの洗浄方法。
(2) 前記(1)の中空糸膜モジュールの洗浄方法において、前記筒状ケース内の内部液を下降させながら、洗浄を行う請求項1記載の中空糸膜モジュールの洗浄方法。
(3) 前記(1)の中空糸膜モジュールの洗浄方法において、前記上部端面ノズルから逆洗液を供給して前記中空糸膜のろ過液側から原液側に前記逆洗液を透過させる逆圧洗浄を実施しながら、洗浄を行う請求項1記載の中空糸膜モジュールの洗浄方法。
 本発明の中空糸膜モジュールの洗浄方法によれば、中空糸膜原液側の内部液を中空糸膜モジュールの下部端面ノズルから排液しながら、膜モジュール内部に気泡を十分導入させることができ、中空糸膜モジュール内に蓄積している物質を効率的に除去することが可能となり、中空糸膜モジュールの安定運転に貢献できる。
 また、本発明の中空糸膜モジュールの洗浄方法の一つである上記(3)の洗浄方法によれば、逆圧洗浄と空気洗浄を同時に実施しながら、洗浄排液を中空糸膜モジュール上方からだけでなく下方からも同時に排液することにより、中空糸膜モジュール内に蓄積している物質を効率的に除去することが可能となる。
本発明が適用される膜ろ過装置の一例を示す装置概略フロー図である。 本発明が適用される加圧型の中空糸膜モジュールの一例を示す概略断面図である。 図2の概略断面図中の線ZZで中空糸膜モジュールを切断した際の断面を、中空糸膜モジュール下方から見た概略横断面図の一例である。 図2の概略断面図中の線ZZで中空糸膜モジュールを切断した際の断面を、中空糸膜モジュール下方から見た概略横断面図の別の一例である。 図2の概略断面図中の線ZZで中空糸膜モジュールを切断した際の断面を、中空糸膜モジュール下方から見た概略横断面図のさらに別の一例である。 実施例1において算出した散気孔の最小径の最大値Lmax、散気孔の総断面積Sと下部端面ノズルからの排液速度Vの関係を示すグラフである。
 以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。
 本発明の中空糸膜モジュールの洗浄方法が適用される膜ろ過装置は、例えば、図1に示すように、原液を供給する原液供給ポンプ1と、原液供給時に開となる原液弁2と、原液をろ過する中空糸膜モジュール3と、原液を供給したり、逆圧洗浄(以下、「逆洗」と称されることもある)や空気洗浄(以下、「空洗」と称されることもある)する場合に開となるエア抜き弁4と、膜ろ過時に開となるろ過液弁5と、膜ろ過液を貯留するろ過液貯留槽6と、膜ろ過液を中空糸膜モジュール3に供給して逆圧洗浄する逆洗ポンプ7と、逆圧洗浄する時に開となる逆洗弁8と、原液あるいは中空糸膜モジュールに薬液を供給する薬液供給ポンプ9と、薬液を貯留する薬液貯留槽10と、中空糸膜モジュール3の空気洗浄の空気供給源であるエアブロワー11と、空気を中空糸膜モジュール3の下部(下部端面ノズル)に供給し空気洗浄する場合に開となる空洗弁12と、中空糸膜モジュール3の1次側(原液側)の原液を排液する場合に開となる排液弁13と逆圧洗浄と空気洗浄を同時に実施しながら下方(中空糸膜モジュール3の下部端面ノズル)から洗浄排液を排液する場合に開となる下方洗浄排液弁14と流量調整バルブ15が設けられている。
 本明細書では、膜分離のために中空糸膜に供給する液を「原液」と表現し、空気洗浄を実施しながら中空糸膜モジュール下部より排液する洗浄方法を「空洗排液法」、逆圧洗浄と空気洗浄を実施しながら、中空糸膜モジュール下部及び上部より排液する洗浄方法を「空逆同時洗浄排液法」と表現する。また、空洗排液法及び空逆同時洗浄排液法により排液される中空糸膜モジュールの原液側の液を「内部液」、逆圧洗浄(逆洗)する際に用いる液を「逆洗液」と表現する。逆洗液は清澄な液であれば、何でも構わないが、膜ろ過水を用いることが好ましい。
 図2は、加圧型の中空糸膜モジュールの一例を示す概略断面図である。この中空糸膜モジュール3は、多本数の中空糸膜が開口された状態で接着剤により筒状ケースと接着固定された上部接着部20、中空糸膜の端面が閉塞された状態で接着剤により筒状ケースと接着固定された下部接着部21、下部接着部21には複数の散気孔22が形成されている。また、中空糸膜モジュール3はろ過液排液口または逆洗液供給口となる上部端面ノズル18、エア供給口または下方排液口となる下部端面ノズル19、洗浄排液及びエアを排液する上部側面ノズル16、原水供給口となる下部側面ノズル17を有している。
 上述の膜ろ過装置において、原液は原液供給ポンプ1を稼動し、原液弁2とエア抜き弁4を開にすることで、中空糸膜モジュール3内の膜1次側に供給される。エア抜き弁4を閉とした後、ろ過液弁5を開にすることで中空糸膜モジュール3内に備えられた中空糸膜でろ過が行われる。ろ過液は中空糸膜モジュール3内の膜2次側(ろ過液側)からろ過液弁5を経てろ過液貯留槽6へと移送される。全量ろ過の場合、エア抜き弁4、逆洗弁8、空洗弁12、排液弁13、下方洗浄排液弁14はいずれも閉である。ろ過時間は原液の性質や膜ろ過流束に応じて適宜設定するのが好ましいが、所定の膜ろ過差圧に到達するまでろ過時間を継続させてもよい。
 次いで、本発明における第1の発明について説明する。
 本発明における第1の発明は、側面に上部側面ノズルと下部側面ノズルを有し、上部端面に上部端面ノズルを有し、下部端面に下部端面ノズルを有する筒状ケース内に複数本の中空糸膜からなる中空糸膜束が挿入され、前記中空糸膜束の上端部では前記中空糸膜の端面が開口された状態で接着剤により前記筒状ケースと接着固定された上部接着部が形成され、前記中空糸膜束の下端部では前記中空糸膜の端面が閉塞された状態で接着剤により前記筒状ケースと接着固定された下部接着部が形成され、前記下部接着部には複数の散気孔が形成された中空糸膜モジュールの洗浄方法において、前記下部端面ノズルから空気を供給しつつ前記筒状ケース内の内部液を前記下部端面ノズルより排液し、内部液の排液速度V(m/sec)が前記散気孔の最小径の最大値Lmax(m)と、前記散気孔の総断面積S(m)に対して、0.00001(m/sec)≦V(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように、前記筒状ケース内の中空糸膜原液側の内部液を前記下部端面ノズルより排液することによって中空糸膜モジュールの空気洗浄を行うことを特徴とする中空糸膜モジュールの洗浄方法である。
 第1の発明では、ろ過液弁5を閉にして、原液供給ポンプ1を停止して中空糸膜モジュール3でのろ過工程を停止した後、エア抜き弁4と下方洗浄排液弁14と空洗弁12を開にして、エアブロワー11を稼働させる。この時、洗浄排液が中空糸膜モジュール3の下部端面ノズル19から排液される。ただし、中空糸膜モジュール3の下部端面ノズル19から洗浄排液を排液しつつも中空糸膜モジュール3に空気が供給されるように、中空糸膜モジュール3の下部端面ノズルより排液する際、流量調整バルブ15を用いて下部端面ノズルからの排液速度Vを散気孔の最小径の最大値Lmaxに対してV(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように調整する。空気洗浄を実施しながら中空糸膜モジュール下部より排液することにより、中空糸膜モジュール下部に蓄積した濁質を効率的に除去できる。
 続いて、本発明における第3の発明について説明する(第2の発明の詳細は後述する)。
 本発明における第3の発明は、第1の発明の好ましい態様の一つである。
そして、本発明における第3の発明は、側面に上部側面ノズルと下部側面ノズルを有し、上部端面に上部端面ノズルを有し、下部端面に下部端面ノズルを有する筒状ケース内に複数本の中空糸膜からなる中空糸膜束が挿入され、前記中空糸膜束の上端部では前記中空糸膜の端面が開口された状態で接着剤により前記筒状ケースと接着固定された上部接着部が形成され、前記中空糸膜束の下端部では前記中空糸膜の端面が閉塞された状態で接着剤により前記筒状ケースと接着固定された下部接着部が形成され、前記下部接着部には複数の散気孔が形成された中空糸膜モジュールの洗浄方法であって、前記上部端面ノズルから逆洗液を供給して前記中空糸膜のろ過液側から原液側に前記逆洗液を透過させる逆圧洗浄と前記下部端面ノズルから空気を供給する空気洗浄とを同時に実施し、内部液を上部側面ノズルおよび下部端面ノズルから前記中空糸膜モジュールの外に排液する際、下部端面ノズルからの排液速度V(m/sec)を前記散気孔の最小径の最大値Lmax(m)、前記散気孔の総断面積S(m)に対して0.00001(m/sec)≦V(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように調整することを特徴とする中空糸膜モジュールの洗浄方法である。
 つまり、本発明における第3の発明は、前記第1の発明である中空糸膜モジュールの洗浄方法において、前記上部端面ノズルから逆洗液を供給して前記中空糸膜のろ過液側から原液側に前記逆洗液を透過させる逆圧洗浄を実施しながら、請求項1記載の洗浄を行う中空糸膜モジュールの洗浄方法である。
 第3の発明では、原液弁2とろ過液弁5を閉にして、原液供給ポンプ1を停止して中空糸膜モジュール3でのろ過工程を停止した後、エア抜き弁4と下方洗浄排液弁14と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼動することでろ過液貯留槽10内の膜ろ過液を用いた逆圧洗浄と空気洗浄を同時に実施しながら、洗浄排液が中空糸膜モジュール3の上方(上部側面ノズル16)と下方(下部端面ノズル19)から排液される。ただし、中空糸膜モジュール3の下方(下部端面ノズル19)から洗浄排液を排液しつつも中空糸膜モジュール3に空気が供給されるように、中空糸膜モジュール3の下方(下部端面ノズル)より排液する際、流量調整バルブ15を用いて下部端面ノズルからの排液速度Vを散気孔の最小径の最大値Lmaxに対してV(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように調整する。つまり、発明者らは、中空糸膜モジュール3に空気が供給されるかは、空気(気泡)の浮力(気泡径)と空気(気泡)にかかる上からの水流による力の関係に依存することを見出し、そして、中空糸膜モジュール3に空気が供給される条件として、散気孔における排液速度V、散気孔22の総断面積S及び散気孔の最小径の最大値Lmaxの上記関係式を実験的に見出した。
 なお、一般的に「下部端面ノズルからの排液速度」と「散気孔における排液速度」とは互いに等しい。
 本発明にて用いられる中空糸膜モジュールの下部接着固定部に形成される散気孔22とは、中空糸膜モジュール下部接着固定部を貫通している孔である。ここで散気孔の断面形状は、円形、楕円形や多角形など任意で構わない。
 上記式において、Vは洗浄時に中空糸膜モジュール3の下方(下部端面ノズル)より排液する際の下部端面ノズルからの排液速度(m/sec)であり、Lmaxは散気孔22における最小径の最大値(m)であり、Sは散気孔22の総断面積(m)である。また、5.5(m0.5/sec)は中空糸膜モジュール3に空気が供給されるLmax、V、Sの実験値と最も相関の高い関係式を求める際に得られた係数である。散気孔22の最小径とは、散気孔22における排液の流れ方向と垂直の方向において、幅が最小となる長さであり、例えば、散気孔22の断面形状が円形の場合は、その直径の長さとなり、楕円形の場合は、その短軸の長さとなり、正多角形のうち辺の数が偶数の場合は相対する辺同士の間隔、奇数の場合は頂点と相対する辺との距離のことである。その最大値は図3に示すように全ての散気孔22が円であり、その直径が同じである場合、L1となり、図4に示すように全ての散気孔22が円であるが、その孔径が異なる場合、L2となり、図5のような形状の場合、L4となる。また、散気孔22の総断面積Sは図3の場合、12×π×L1/4(m)と計算でき、図4の場合は、π×L2/4+8×π×L3/4(m)と計算でき、図5の場合は、L4+4×L5(m)と計算することが出来る。
 下部端面ノズルからの排液速度V(m/sec)がS×5.5×L0.5以上で排液された場合、中空糸膜モジュール3に十分に空気が供給されず、中空糸膜モジュール3の洗浄が不十分となる。また、下部端面ノズルからの排液速度Vが0.00001(m/sec)未満で排液された場合、中空糸膜モジュール下部に蓄積した物質が十分に排液されず、洗浄が不十分となる。
 上記空逆同時洗浄排液法は、一定時間のろ過終了後に毎回行っても構わないし、別の洗浄方法と組み合わせて時々行っても構わない。また、洗浄工程の時間は任意に設定できるが、回収率の観点から、30秒~3分程度であることが好ましい。
 また、洗浄終了後、以下の排液工程、給液工程およびろ過工程が行われても良い。
すなわち、逆洗弁8と空洗弁12と下方洗浄排液弁14を閉にして、逆洗ポンプ7とエアブロワー11を停止した後に、排液弁13が開になることで排液工程が行われる。排液工程終了後、排液弁13が閉、原液弁2が開となり、原液供給ポンプ1が稼動して給液工程が行われ、中空糸膜モジュール3の膜1次側が満液になった後、エア抜き弁4が閉、ろ過液弁5が開となることで、ろ過工程に戻り、上記工程を繰り返す。
 本発明における洗浄工程を行う際において、薬液を含むろ過液を使用することにより、洗浄効果を高めることができる。
 薬液としては、塩酸、硫酸、硝酸、クエン酸、シュウ酸、アスコルビン酸、亜硫酸ナトリウム、水酸化ナトリウム、次亜塩素酸ナトリウムなどの薬剤を少なくとも1つ以上含有する水溶液を使用することができる。
 次いで、本発明における第2の発明について説明する。
本発明における第2の発明は、第1の発明の別の好ましい態様の一つである。
そして、本発明における第2の発明は、側面に上部側面ノズルと下部側面ノズルを有し、上部端面に上部端面ノズルを有し、下部端面に下部端面ノズルを有する筒状ケース内に複数本の中空糸膜からなる中空糸膜束が挿入され、前記中空糸膜束の上端部では前記中空糸膜の端面が開口された状態で接着剤により前記筒状ケースと接着固定された上部接着部が形成され、前記中空糸膜束の下端部では前記中空糸膜の端面が閉塞された状態で接着剤により前記筒状ケースと接着固定された下部接着部が形成され、前記下部接着部には複数の散気孔が形成された中空糸膜モジュールの洗浄方法において、前記下部端面ノズルから空気を供給しつつ前記筒状ケース内の内部液の液面を下降させながら、内部液の排液速度V(m/sec)が前記散気孔の最小径の最大値Lmax(m)と、前記散気孔の総断面積S(m)に対して、0.00001(m/sec)≦V(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように、前記筒状ケース内の中空糸膜原液側の内部液を前記下部端面ノズルより排液することによって中空糸膜モジュールの空気洗浄を行うことを特徴とする中空糸膜モジュールの洗浄方法である。
 つまり、本発明における第2の発明は、前記第1の発明である中空糸膜モジュールの洗浄方法において、空糸膜モジュールの洗浄方法において、前記筒状ケース内の内部液を下降させながら、請求項1記載の洗浄を行う中空糸膜モジュールの洗浄方法である。
 第2の発明に係る洗浄方法は単独で用いられてもよいが、上記の洗浄方法(第1の発明または第3の発明に係る洗浄方法)が実施された後に、第2の発明に係る洗浄方法が実施されることが、中空糸膜モジュールからの排濁性の観点から好ましい。以下に、具体例を示しつつ説明する。ただし、本発明は、当該具体例に限定されるものではない。
 上記の洗浄方法(第1の発明または第3の発明に係る洗浄方法)が実施された後に、下方洗浄排液弁14、空洗弁12ならびにエア抜き弁4を開にしたまま、さらにエアブロワー11を稼働させたまま、中空糸膜モジュール3内の膜一次側の内部液の液面を下降させながら空洗排液を行う。ただし、中空糸膜モジュール3の下方から内部液を排液しつつ中空糸膜モジュール3に空気が供給されるように、中空糸膜モジュール3の下方より内部液を排液する際、内部液の下部端面ノズルからの排液速度V(m/sec)が前記散気孔の直径の最大値Lmax(m)と、前記散気孔の総断面積S(m)に対して、上記関係式を満たすように、流量調整バルブ15を用いて内部液の排液量を調整しつつ、前記下部端面ノズル19から空気を供給する。
 排液終了後、空洗弁12と下方洗浄排液弁14を閉にして、エアブロワー11を停止した後に、原液弁2を開とし、原液供給ポンプ1を稼動させて給液工程が行われ、中空糸膜モジュール3の膜1次側が満液になった後、エア抜き弁4を閉、ろ過液弁5を開とすることで、ろ過工程に戻る。そして、所定の膜ろ過差圧に到達するまでろ過を継続する。
 前述のとおり、第2の発明に係る洗浄方法(上記の空洗排液法)を実施するタイミングに特に限定はなく、空逆同時洗浄排液の後に実施しても良いし、空逆同時洗浄排液の前に実施しても良い。また、空洗排液工程の時間は任意に設定できるが、中空糸膜モジュール3内の内部液が十分排液される時間に設定することが好ましい。
 本発明において用いられる中空糸膜モジュール3で使用される中空糸膜の孔径としては、多孔質であれば特に限定しないが、所望の処理液の液質や液量によって、MF膜(精密ろ過膜)を用いたり、UF膜(限外ろ過膜)を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合はMF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いるのが好ましい。
 本発明において用いられる中空糸膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン-エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホンやセラミック等の無機素材からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親液性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。
 本発明において用いられるろ過流束制御方法としては、定流束ろ過であっても定圧ろ過であってもよいが、一定の処理液量が得られ、また、全体の制御が容易であるという点から定流束ろ過である方が好ましい。
 ろ過方式としては全量ろ過型モジュールでもクロスフローろ過型モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から全量ろ過型モジュールである方が好ましい。
 本発明の洗浄方法により、中空糸膜モジュール内に蓄積した物質を効果的に分解・除去できるので、膜ろ過差圧が従来技術よりも長期間安定する。
 <膜ろ過差圧の評価方法>
 中空糸膜モジュール3と接続する原液供給配管(膜1次側)と膜ろ過液配管(膜2次側)に圧力計を設置し、膜1次側の圧力から膜2次側の圧力を差し引いて算出した。
 (実施例1)
 図1に示すような装置において、散気孔の総断面積Sが同じで、散気孔の形状が図3に示す様な断面形状で、散気孔の最小径の最大値が0.003、0.005、0.01、0.03mと異なる4本の透明中空糸膜ジュールを使用し、エア抜き弁4と下方洗浄排液弁14と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼働し、流束3.3m /(m・d)の逆圧洗浄とエア流量20、50、100、200NL/min(「NL/min」は”normal liter per minute”を示す)の空気洗浄を60秒間実施した。
 この時、中空糸膜モジュール下方から供給する空気が中空糸膜モジュールに供給されなくなる中空糸膜モジュール下方からの排液速度V(m/sec)を測定した。
 つまり、中空糸膜モジュール下方から供給される空気が、中空糸膜モジュール内に供給されなくなるときの下部端面ノズルからの排液速度V(m/sec)を測定した。すなわち、最初に、流量調整バルブ15を閉じておき、中空糸膜モジュール下方(下部端面ノズル)から供給される空気が、中空糸膜モジュール内に供給されることを確認した。その後、流量調整バルブ15を開くことによって、下部端面ノズルからの排液速度V(m/sec)を変動せしめた。そして、中空糸膜モジュール下方(下部端面ノズル)から供給される空気が、中空糸膜モジュール内に供給されなくなるときの下部端面ノズルからの排液速度V(m/sec)を求めた。中空糸膜モジュール内に空気が供給されているかは目視で確認を行った。
 結果を図6に示す。
なお、散気孔の最小径の最大値が0.003mである中空糸膜ジュールを用いた場合であって、エア流量を20、50、100および200NL/minとせしめた場合の排液速度V(図6ではV/S)は実質的に同じであった。
同様に、散気孔の最小径の最大値が0.005mである中空糸膜ジュールを用いた場合であって、エア流量を20、50、100および200NL/minとせしめた場合の排液速度V(図6ではV/S)は実質的に同じであった。
同様に、散気孔の最小径の最大値が0.01mである中空糸膜ジュールを用いた場合であって、エア流量を20、50、100および200NL/minとせしめた場合の排液速度V(図6ではV/S)は実質的に同じであった。
同様に、散気孔の最小径の最大値が0.03mである中空糸膜ジュールを用いた場合であって、エア流量を20、50、100および200NL/minとせしめた場合の排液速度V(図6ではV/S)は実質的に同じであった。
 図6から、逆圧洗浄と空気洗浄を同時に実施しながら、洗浄排液を中空糸膜モジュール上方(上部側面ノズル)および下方(下部側面ノズル)から中空糸膜モジュールの外に同時に排液する際に、中空糸膜モジュール下方(下部側面ノズル)から供給される空気が、中空糸膜モジュールに供給されるためには、V<S×5.5×L0.5の関係式を満たすように中空糸膜モジュールの下方(下部側面ノズル)からの排液速度を調整する必要があることが分かった。
 次いで、図1に示すような、洗浄時に中空糸膜モジュールの下方(下部端面ノズル)より排液する際の散気孔部分における最小径の最大値が0.01mであり、散気孔部分の総断面積が0.0035mである外圧式PVDF限外中空糸膜モジュールを1本使用し、原液弁2とろ過液弁5を開いて、河川水をろ過流束3m /(m・d)で定流量ろ過した。
 定流量ろ過開始から30分後に原液弁2とろ過液弁5を閉じた後、エア抜き弁4と下方洗浄排液弁14と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼働し、流束3.3m /(m・d)で中空糸膜モジュール3のろ過液側から原液側に逆洗液を透過させる逆圧洗浄と、エア流量100NL/minで中空糸膜モジュール3の下部端面ノズルから空気を供給する空気洗浄とを同時に60秒間実施した。
 この時、中空糸膜モジュール下方(下部端面ノズル)から供給される空気が、中空糸膜モジュールに供給されるように、中空糸膜モジュールの下方より排液する際の排液速度(つまり、下部端面ノズルからの排液速度)が0.001m/secとなるよう下方排液口(下部端面ノズル)の流量を調節した。
 ここで、Vは0.001m/sec、Sは0.0035m、Lmaxは0.01mであり、S×5.5×Lmax0.5=0.001925となるため、下部端面ノズルからの排液速度Vは0.00001≦V<S×5.5×Lmax0.5の関係式を満たす。
 その後、逆洗弁8を閉にして、逆洗ポンプ7を停止し、エア抜き弁4及び下方洗浄排液弁14及び空洗弁12を開、エアブロワー11を稼動させたまま、中空糸膜モジュール3内の内部液を排液した。この時、中空糸膜モジュール3の下部端面ノズルから供給される空気が中空糸膜モジュール3に供給されるようにするために、下部端面ノズルからの排液速度Vを排液速度が0.001m/secとなるよう流量調整バルブ15にて排液速度を調節した。
 その後、下方洗浄排液弁14を閉じると同時に、原液弁2を開き、原液供給ポンプ1を稼動して、中空糸膜モジュール3内の膜1次側を原液で満たした後、ろ過液弁5を開き、エア抜き弁4を閉じて、ろ過工程に戻り、上記工程を繰り返した。その結果、中空糸膜モジュール3のろ過差圧は、運転開始直後は30kPaであったのに対し、1カ月後も40kPaであり、長期間に渡って安定運転を行うことができた。
 (実施例2)
 図1に示すような装置において、洗浄時に、中空糸膜モジュールの下部端面ノズルより排液する際の散気孔部分における最小径の最大値が0.01mであり、散気孔部分の総断面積が0.0035mである外圧式PVDF限外中空糸膜モジュールを1本使用し、原液弁2とろ過液弁5を開いて、河川水をろ過流束3m /(m・d)で定流量ろ過した。
 定流量ろ過開始から30分後に原液弁2とろ過液弁5を閉じた後、エア抜き弁4と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼働し、流束3.3m /(m・d)で中空糸膜モジュール3のろ過液側から原液側に逆洗液を透過させる逆圧洗浄と、エア流量100NL/minで中空糸膜モジュール3の下部端面ノズル19から空気を供給する空気洗浄とを同時に60秒間実施した。
 その後、逆洗弁8を閉にして、逆洗ポンプ7を停止し、エア抜き弁4及び下方洗浄排液弁14及び空洗弁12を開にして、エアブロワー11を稼動させたまま、中空糸膜モジュール3内の内部液を排液した。この時、内部液を排液するにつれて、中空糸膜モジュール3の液面は低下した。
 また、この時、中空糸膜モジュール3の下部端面ノズルから供給される空気が、中空糸膜モジュール3に供給されるようにするために、下部端面ノズル19からの排液速度が0.001m/secとなるよう流量調整バルブ15にて排液速度を調節した。
 その後、下方洗浄排液弁を閉じると同時に、原液弁2を開き、原液供給ポンプ1を稼動して、中空糸膜モジュール3内の膜1次側を原液で満たした後、ろ過液弁5を開き、エア抜き弁4を閉じて、ろ過工程に戻り、上記工程を繰り返していった。その結果、中空糸膜モジュール3のろ過差圧は、運転開始直後は30kPaであったのに対し、1カ月後も44kPaであり、長期に渡って安定運転を行うことができた。
 (比較例1)
 逆圧洗浄排液を洗浄時に中空糸膜モジュールの下方(下部端面ノズル)からは排液せずに空逆同時洗浄をした場合の効果を確認するために以下の比較例1を実施した。
 図1に示すような装置において、実施例1と同様の中空糸膜モジュールを1本使用し、原液弁2とろ過液弁5を開いて、河川水をろ過流束3m /(m・d)で定流量ろ過した。
 定流量ろ過開始から30分後に原液弁2とろ過液弁5を閉じた後、エア抜き弁4と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼働し、流束3.3m /(m・d)で中空糸膜モジュール3のろ過液側から原液側に逆洗液を透過させる逆圧洗浄と、エア流量100NL/minで中空糸膜モジュール3の下部端面ノズルから空気を供給する空気洗浄とを同時に60秒間実施した。
 その後、排液弁13を開にし、中空糸膜モジュール3内の膜1次側の液を全量排液した。その後、排液弁13を閉じると同時に、原液弁2を開き、原液供給ポンプ1を稼動して、中空糸膜モジュール3内の膜1次側を原液で満たした後、ろ過液弁5を開き、エア抜き弁4を閉じて、ろ過工程に戻り、上記工程を繰り返した。その結果、中空糸膜モジュール3のろ過差圧は、運転開始直後は30kPaであったのに対し、1カ月後には74kPaに上昇し、実施例1に対してろ過差圧の上昇速度は4倍程度速くなり、安定した運転ができないことが分かった。
 (比較例2)
 洗浄時の下部端面ノズルからの排液速度VをS×5.5×Lmax0.5よりも大きくし、空逆同時洗浄を実施した場合の効果を確認するために以下の比較例2を実施した。
 図1に示すように、実施例1と同様の中空糸膜モジュールを1本使用し、原液弁2とろ過液弁5を開いて、河川水をろ過流束3m /(m・d)で定流量ろ過した。
 定流量ろ過開始から30分後に原液弁2とろ過液弁5を閉じた後、エア抜き弁4と下方洗浄排液弁14と逆洗弁8と空洗弁12を開にして、逆洗ポンプ7とエアブロワー11を稼働し、流束3.3m /(m・d)で中空糸膜モジュール3のろ過液側から原液側に逆洗液を透過させる逆圧洗浄と、エア流量100NL/minで中空糸膜モジュール3の下部端面ノズルから空気を供給する空気洗浄とを同時に60秒間実施した。
 この時、中空糸膜モジュールの下方(下部端面ノズル)より排液する際の下部端面ノズルからの排液速度の調節は行わなかった。この時の下部端面ノズルからの排液速度は0.0022m/secであった。
 ここで、Vは0.0022m/sec、Sは0.0035m、Lmaxは0.01mであり、S×5.5×Lmax0.5=0.001925となるため、下部端面ノズルからの排液速度Vは、0.00001≦V<S×5.5×Lmax0.5の関係式を満たさない。
 その後、逆洗弁8を閉にして、逆洗ポンプ7を停止し、エア抜き弁4及び下方洗浄排液弁14及び空洗弁12を開、エアブロワー11を稼動させたまま、中空糸膜モジュール3内の内部液を排液した。この時も、中空糸膜モジュール3の下部端面ノズル19より内部液を排液する際の排液速度の調節は行わなかった。
 その後、下方洗浄排液弁14を閉じると同時に、原液弁2を開き、原液供給ポンプ1を稼動して、中空糸膜モジュール3内の膜1次側を原液で満たした後、ろ過液弁5を開き、エア抜き弁4を閉じて、ろ過工程に戻り、上記工程を繰り返した。その結果、中空糸膜モジュール3のろ過差圧は、運転開始直後は30kPaであったのに対し、運転開始10日後には160kPaに急上昇し、実施例1に対してろ過差圧の上昇速度は40倍程度速くなり、安定した運転ができないことが分かった。
 1:原液供給ポンプ
 2:原液弁
 3:中空糸膜モジュール
 4:エア抜き弁
 5:ろ過液弁
 6:ろ過液貯留槽
 7:逆洗ポンプ
 8:逆洗弁
 9:薬液供給ポンプ
10:薬液貯留槽
11:エアブロワー
12:空洗弁
13:排液弁
14:下方洗浄排液弁
15:流量調整バルブ
16:上部側面ノズル
17:下部側面ノズル
18:上部端面ノズル
19:下部端面ノズル
20:上部接着部
21:下部接着部
22:散気孔
 

Claims (3)

  1.  側面に上部側面ノズルと下部側面ノズルを有し、上部端面に上部端面ノズルを有し、下部端面に下部端面ノズルを有する筒状ケース内に複数本の中空糸膜からなる中空糸膜束が挿入され、前記中空糸膜束の上端部では前記中空糸膜の端面が開口された状態で接着剤により前記筒状ケースと接着固定された上部接着部が形成され、前記中空糸膜束の下端部では前記中空糸膜の端面が閉塞された状態で接着剤により前記筒状ケースと接着固定された下部接着部が形成され、前記下部接着部には複数の散気孔が形成された中空糸膜モジュールの洗浄方法において、前記下部端面ノズルから空気を供給しつつ前記筒状ケース内の内部液を前記下部端面ノズルより排液し、内部液の排液速度V(m/sec)が前記散気孔の最小径の最大値Lmax(m)と、前記散気孔の総断面積S(m)に対して、0.00001(m/sec)≦V(m/sec)<S(m)×5.5(m0.5/sec)×Lmax0.5(m0.5)の関係式を満たすように、前記筒状ケース内の中空糸膜原液側の内部液を前記下部端面ノズルより排液することによって中空糸膜モジュールの空気洗浄を行うことを特徴とする中空糸膜モジュールの洗浄方法。
  2.  請求項1に記載の中空糸膜モジュールの洗浄方法において、前記筒状ケース内の内部液を下降させながら、請求項1記載の洗浄を行う中空糸膜モジュールの洗浄方法。
  3.  請求項1に記載の中空糸膜モジュールの洗浄方法において、前記上部端面ノズルから逆洗液を供給して前記中空糸膜のろ過液側から原液側に前記逆洗液を透過させる逆圧洗浄を実施しながら、請求項1記載の洗浄を行う中空糸膜モジュールの洗浄方法。
     
PCT/JP2014/058022 2013-03-25 2014-03-24 中空糸膜モジュールの洗浄方法 WO2014157057A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014518861A JP6492658B2 (ja) 2013-03-25 2014-03-24 中空糸膜モジュールの洗浄方法
CN201480017908.1A CN105050697B (zh) 2013-03-25 2014-03-24 中空丝膜组件的清洗方法
US14/779,793 US10159940B2 (en) 2013-03-25 2014-03-24 Method for cleaning hollow fiber membrane module
KR1020157028096A KR102118384B1 (ko) 2013-03-25 2014-03-24 중공사막 모듈의 세정 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013061435 2013-03-25
JP2013-061435 2013-03-25
JP2013180894 2013-09-02
JP2013-180894 2013-09-02

Publications (1)

Publication Number Publication Date
WO2014157057A1 true WO2014157057A1 (ja) 2014-10-02

Family

ID=51624031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058022 WO2014157057A1 (ja) 2013-03-25 2014-03-24 中空糸膜モジュールの洗浄方法

Country Status (5)

Country Link
US (1) US10159940B2 (ja)
JP (1) JP6492658B2 (ja)
KR (1) KR102118384B1 (ja)
CN (1) CN105050697B (ja)
WO (1) WO2014157057A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
JP6319493B1 (ja) * 2017-03-29 2018-05-09 栗田工業株式会社 中空糸膜モジュールの洗浄方法
US20200171440A1 (en) * 2016-03-29 2020-06-04 Kurita Water Industries Ltd. Method for washing hollow fiber membrane module and hollow fiber membrane filtration device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675929B2 (en) * 2014-11-17 2017-06-13 Hamilton Sundstrand Corporation Air separation module with increased permeate area
KR101978329B1 (ko) * 2017-12-21 2019-05-15 (주)한경글로벌 막여과 장치 및 이를 이용한 막모듈 세척방법
KR102560481B1 (ko) * 2020-10-12 2023-07-27 한국생산기술연구원 부유 세균 또는 부유 바이러스 제거방법 및 제거장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045656A (ja) * 2000-08-04 2002-02-12 Toray Ind Inc 中空糸膜モジュール
JP2011115796A (ja) * 2007-05-22 2011-06-16 Asahi Kasei Chemicals Corp 中空糸膜モジュールとその製造方法および中空糸膜モジュール組立体とそれらを使用した懸濁水の浄化方法
JP2012115747A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 中空糸膜モジュールおよび中空糸膜モジュール濾過装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671540B2 (ja) 1988-12-20 1994-09-14 株式会社東芝 中空糸膜フィルタの洗浄方法
JP2904564B2 (ja) * 1990-08-31 1999-06-14 オルガノ株式会社 中空糸膜を用いる濾過塔のスクラビング方法
JPH04126528A (ja) 1990-09-17 1992-04-27 Ebara Infilco Co Ltd 中空糸膜濾過装置の洗浄方法および中空糸膜濾過装置
US20030038075A1 (en) 2000-08-02 2003-02-27 Tatsuo Akimoto Hollow yarn membrane module, hollow yarn membrane module unit, and method of producing hollow yarn membrane modules
JP3702419B2 (ja) 2002-03-15 2005-10-05 水道機工株式会社 膜ろ過モジュールの洗浄方法および膜ろ過装置
JP4698274B2 (ja) 2005-04-04 2011-06-08 旭化成ケミカルズ株式会社 濾過膜の洗浄方法
JP5453711B2 (ja) 2006-03-29 2014-03-26 東レ株式会社 外圧式中空糸膜モジュールの洗浄方法
CN100569346C (zh) * 2007-06-12 2009-12-16 天津膜天膜工程技术有限公司 一种浸没式中空纤维膜分离装置及其运行方法
KR101495375B1 (ko) * 2007-07-04 2015-02-24 미쯔비시 레이온 가부시끼가이샤 산기 장치의 세정 방법
JP2011110439A (ja) * 2009-11-24 2011-06-09 Toray Ind Inc 膜モジュールの洗浄方法
EP2633898A4 (en) * 2010-10-27 2014-10-01 Toray Industries HOLLOW FIBER MEMBRANE FILTRATION DEVICE AND METHOD FOR WASHING A HOLLOW FIBER MEMBRANE MODULE
KR101858754B1 (ko) * 2011-04-28 2018-05-17 코오롱베니트 주식회사 여과 시스템 및 여과방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045656A (ja) * 2000-08-04 2002-02-12 Toray Ind Inc 中空糸膜モジュール
JP2011115796A (ja) * 2007-05-22 2011-06-16 Asahi Kasei Chemicals Corp 中空糸膜モジュールとその製造方法および中空糸膜モジュール組立体とそれらを使用した懸濁水の浄化方法
JP2012115747A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 中空糸膜モジュールおよび中空糸膜モジュール濾過装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
US20200171440A1 (en) * 2016-03-29 2020-06-04 Kurita Water Industries Ltd. Method for washing hollow fiber membrane module and hollow fiber membrane filtration device
JP6319493B1 (ja) * 2017-03-29 2018-05-09 栗田工業株式会社 中空糸膜モジュールの洗浄方法
WO2018179502A1 (ja) * 2017-03-29 2018-10-04 栗田工業株式会社 中空糸膜モジュールの洗浄方法及び中空糸膜濾過装置
JP2018167162A (ja) * 2017-03-29 2018-11-01 栗田工業株式会社 中空糸膜モジュールの洗浄方法

Also Published As

Publication number Publication date
CN105050697A (zh) 2015-11-11
JPWO2014157057A1 (ja) 2017-02-16
JP6492658B2 (ja) 2019-04-03
US20160051937A1 (en) 2016-02-25
CN105050697B (zh) 2017-03-29
KR102118384B1 (ko) 2020-06-03
KR20150133213A (ko) 2015-11-27
US10159940B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
JP6492658B2 (ja) 中空糸膜モジュールの洗浄方法
JP2004073950A (ja) 膜洗浄方法
US20170274325A1 (en) Water treatment method
EP2703066A1 (en) Method for cleaning membrane module
WO2013176145A1 (ja) 分離膜モジュールの洗浄方法
JP2012239948A (ja) ろ過材の洗浄方法および水処理装置
WO2013111826A1 (ja) 造水方法および造水装置
JP4969580B2 (ja) 膜分離装置の運転方法
JP2007296500A (ja) 膜分離装置及び膜ろ過方法
JP2018023965A (ja) 外圧式濾過モジュールの洗浄方法及び濾過装置
JP6191464B2 (ja) 除濁膜モジュールの運転方法
JP4698274B2 (ja) 濾過膜の洗浄方法
JP5151009B2 (ja) 膜分離装置及び膜分離方法
JP5181987B2 (ja) 浸漬型膜モジュールの洗浄方法
JP2013212497A (ja) 水処理方法
JP7103526B2 (ja) 造水装置の洗浄トラブル判定方法および洗浄トラブル判定プログラム
JP2009214062A (ja) 浸漬型膜モジュールの運転方法
JP2011110439A (ja) 膜モジュールの洗浄方法
JP7352125B2 (ja) 膜分離装置および膜分離方法
WO2015163429A1 (ja) 除濁膜モジュールの運転方法
JP5251472B2 (ja) 膜モジュールの洗浄方法
JP4943662B2 (ja) 膜分離装置の運転方法
JP4872391B2 (ja) 膜分離装置及び膜分離方法
JP7213711B2 (ja) 水処理装置および水処理方法
JP2002028453A (ja) スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017908.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014518861

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779793

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028096

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14772612

Country of ref document: EP

Kind code of ref document: A1