WO2020194820A1 - 中空糸膜モジュール及びその洗浄方法 - Google Patents

中空糸膜モジュール及びその洗浄方法 Download PDF

Info

Publication number
WO2020194820A1
WO2020194820A1 PCT/JP2019/041492 JP2019041492W WO2020194820A1 WO 2020194820 A1 WO2020194820 A1 WO 2020194820A1 JP 2019041492 W JP2019041492 W JP 2019041492W WO 2020194820 A1 WO2020194820 A1 WO 2020194820A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
cleaning
fiber membrane
container
membrane module
Prior art date
Application number
PCT/JP2019/041492
Other languages
English (en)
French (fr)
Inventor
貴子 岩見
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020217009095A priority Critical patent/KR20210141912A/ko
Priority to JP2020500751A priority patent/JPWO2020194820A1/ja
Publication of WO2020194820A1 publication Critical patent/WO2020194820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/46Supply, recovery or discharge mechanisms of washing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Definitions

  • the present invention relates to a hollow fiber membrane module and a cleaning method thereof, and more particularly to a hollow fiber membrane module capable of sufficiently cleaning and removing turbid substances adhering to the membrane and a cleaning method thereof.
  • Hollow fiber membrane modules are widely used in the fields of pure water production and wastewater recovery as a means of removing turbid components and organic substances.
  • Microfiltration membranes (MF membranes) and ultrafiltration membranes (UF membranes) are used as the membranes of the hollow fiber membrane modules according to the separation target.
  • the former is around 0.1 ⁇ m and the latter is 0.005 to 0.
  • a pore of .5 ⁇ m is common.
  • the membrane will be clogged, and not only will the frequency of backwashing and chemical cleaning increase, but the frequency of membrane replacement will also increase. It gets higher.
  • a method of reducing the amount of water flowing per unit area of the membrane is common, but this method has a problem that the number of membranes to be installed increases.
  • Patent Document 1 proposes a backwashing method using air and water in order to improve the turbidity removing property of the membrane.
  • this method may not improve the turbidity removability so much depending on the type and amount of turbidity, and a higher performance backwashing method is required.
  • Patent Document 2 describes a container having a treated water outlet and a concentrated water outlet, a central tube for supplying raw water into the container, and a hollow fiber membrane for separating the raw water into permeated water and concentrated water.
  • a plurality of hollow fiber membranes arranged in the vertical direction in the container and an upper end portion of the hollow fiber membrane are fixed, and an upper end fixing portion arranged in the upper part of the container and an upper end fixing portion thereof.
  • a plurality of permeation water chambers formed in the hollow fiber membranes and communicated with each other, and the central tube extends vertically below the upper end fixing portion and ejects raw water on the side peripheral surface.
  • a method for cleaning a hollow fiber membrane module which is provided with a drainage port for discharging cleaning wastewater when performing bubbling cleaning in which gas is blown from the plurality of ejection holes at the bottom of the container.
  • the method for cleaning the hollow fiber membrane module which performs bubbling cleaning by blowing gas from the plurality of ejection holes and discharges the cleaning wastewater from the drainage port, is described.
  • Patent Document 2 a central tube provided with means for introducing raw water and gas is installed in the center of the module, and air is blown into the module from the central tube to alleviate the difference in the intensity of cleaning air generated above and below the module.
  • a higher raw water pressure acts on the membrane on the central side near the central canal than on the outer peripheral side near the housing, and the membrane on the central side is filtered.
  • the amount is larger than that of the outer membrane. Therefore, the film in the module is unevenly contaminated. In other words, a high load is applied to the hollow fiber membrane on the center side of the module, and the effective membrane area tends to decrease due to membrane contamination or the progress of membrane contamination.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a hollow fiber membrane module capable of sufficiently removing turbidity adhering to the hollow fiber membrane and a cleaning method thereof.
  • the hollow fiber membrane module of the present invention is a container having a treated water outlet at the upper part, a raw water supply means for supplying raw water to the lower part of the container, and a hollow fiber membrane for solid-liquid separation of the raw water.
  • a plurality of hollow fiber membranes arranged in the vertical direction and the upper end portion of the hollow fiber membrane are fixed, and the upper end fixing portion arranged in the upper part of the container and the upper end fixing portion are formed above the upper end fixing portion.
  • a central tube provided with a permeation chamber in which the inside of each hollow fiber membrane is communicated, and a plurality of ejection holes extending in the vertical direction below the upper end fixing portion and ejecting gas on the side peripheral surface.
  • a discharge means for discharging gas and cleaning wastewater from the container.
  • the lower end of the central canal faces the opening on the bottom surface of the container.
  • a means for supplying gas is provided in the lower part of the container.
  • the first bubbling cleaning in which gas is blown from a plurality of ejection holes of the central tube is performed, and the exhaust body and the cleaning drainage are discharged from the discharging means.
  • At least one of a first bubbling cleaning in which gas is blown from a plurality of ejection holes in the central tube and a second bubbling cleaning in which gas is blown from a gas supply means provided at the lower part of the container is performed.
  • Exhaust body and cleaning wastewater are discharged from the discharge means.
  • the second bubbling cleaning is performed before or after the first bubbling cleaning, and the cleaning drainage is discharged from the container.
  • backwashing in which backwashing water is supplied from the treated water outlet is performed.
  • a chemical solution is added to the backwash water.
  • the flow rate of gas passing through the central canal is 50 to 300 NL / min.
  • the central tube extends vertically in the container, and gas is blown from a plurality of ejection holes provided in the central tube to perform bubbling cleaning.
  • the air reaches the whole, and the turbidity adhering to the hollow fiber membrane can be sufficiently removed evenly.
  • the drift in the filtration process can be reduced and the membrane can be used uniformly, which prevents the progress of local membrane contamination and the resulting decrease in membrane area ( (Including suppression).
  • FIG. 1 is a cross-sectional view showing the configuration of the hollow fiber membrane module according to the present embodiment.
  • the hollow fiber membrane module includes a container 1 arranged with the axial center line direction of the cylinder in the vertical direction (vertical direction in this embodiment).
  • a plurality of hollow fiber membranes 2 are arranged in the container 1.
  • the hollow fiber membrane 2 is fixed by the synthetic resin potting portion 3 as a fixing portion on the upper side of the container 1, and is not fixed on the lower side of the container 1.
  • the synthetic resin of the potting portion 3 for example, an epoxy resin can be used.
  • the hollow fiber membrane 2 is incorporated in a U shape, and both ends of the hollow fiber membrane are fixed by the potting portions 3.
  • the intermediate portion of the hollow fiber membrane 2 is located at the lower part of the container 1.
  • one end side of the open hollow fiber membrane 2 is fixed by a potting portion 3, and the sealed other end side is used. It is placed at the bottom of the container 1.
  • the hollow fiber membrane 2 may be either a UF membrane or an MF membrane.
  • the hollow fiber membrane 2 is not particularly limited, but usually one having an inner diameter of 0.2 to 1.0 mm, an outer diameter of 0.5 to 2.0 mm, and an effective length of about 300 to 2500 mm is used.
  • the film material of the hollow fiber membrane 2 is also not particularly limited, but PVDF (polyvinylidene fluoride), polyethylene, polypropylene and the like can be used.
  • a treated water chamber (permeated water chamber) 7 and a raw water chamber 10 are partitioned on the upper side and the lower side of the potting portion 3, respectively.
  • the upper end side of the hollow fiber membrane 2 penetrates the potting portion 3, the opening at the upper end faces the treatment water chamber 7, and the inside of the hollow fiber membrane 2 communicates with the treatment water chamber 7.
  • both ends of the hollow fiber membrane 2 penetrate the potting portion 3.
  • the potting portion 3 has, for example, a disk shape, and its outer peripheral surface or outer peripheral surface is in watertight contact with the inner surface of the container 1.
  • a central canal 4 extends in a substantially vertical direction (axial direction of the container 1).
  • the central canal 4 is arranged along the central axis of the container 1, for example.
  • the central canal 4 is a circular tube having a closed tip (upper end), and a plurality of ejection holes 4a are provided on the side peripheral surface as a whole at intervals in the circumferential direction and vertically.
  • the number of the ejection holes 4a is not particularly limited, but is, for example, about 5 to 50.
  • the size and shape of the ejection hole 4a are not particularly limited, but are, for example, a circular shape having a diameter of 5 to 500 mm.
  • the inner diameter of the central canal 4 is, for example, about 10 to 20 mm.
  • the height (length in the vertical direction) of the central canal 4 is not particularly limited, but it is preferable that the upper end of the central canal 4 is located near the lower surface of the potting portion 3.
  • the upper end of the central canal 4 may be embedded in the potting portion 3.
  • the lower end of the central canal 4 faces the opening 11 on the bottom surface of the container 1.
  • a raw water pipe L1 is connected to the opening 11, and a pump P1 and a valve V1 are provided in the raw water pipe L1.
  • the air introduction pipe L2 is branched from the container 1 side of the raw water pipe L1 from the valve V1, and the air introduction pipe L2 is provided with the valve V2.
  • a pipe L7 for discharging cleaning wastewater is connected to the container 1 side of the pipe L1 valve V1, and the valve V7 is provided in the pipe L7.
  • the supply of raw water / air to the container 1 can be switched.
  • valves V1 and V7 By closing the valves V1 and V7 and opening the valves V2 and supplying air from the air introduction pipe L2, air bubbles can be supplied from the opening 11 and the central filament membrane 2 can be bubbling-cleaned. It is also possible to open the valves V1 and V2 and eject a gas-liquid mixed flow from the opening 11.
  • An air pipe L8 is connected to the lower part of the central pipe 4, and a valve V8 is provided in the pipe L8.
  • a valve V8 is provided in the pipe L8.
  • An outlet 5 for treated water is provided at the top of the container 1.
  • an upper discharge port 8 is provided on the upper part of the side surface of the container 1.
  • the upper discharge port 8 is provided near the lower surface of the potting portion 3.
  • the distance from the potting portion 3 to the upper edge of the upper discharge port 8 is preferably 0 to 30 mm, particularly preferably about 0 to 10 mm.
  • a pipe L5 is connected to the upper discharge port 8, and a valve V5 is provided in the pipe L5.
  • the treated water outlet pipe L3 is connected to the treated water outlet 5, and the treated water (membrane permeated water) is taken out through the treated water take-out pipe L3.
  • the treated water is stored in the treated water tank 9.
  • FIG. 1 shows a configuration in which the backwash water pipe L4 is connected to the treated water tank 9 and the treated water is used for the backwash water, but the backwash water may be raw water.
  • the drainage associated with the backwash may be discharged from the opening 11 through the pipe L7, or may be discharged from the upper discharge port 8 through the pipe L5.
  • the discharge from the opening 11 and the discharge from the upper discharge port 8 may be performed at the same time, or may be performed in order (alternately).
  • a chemical solution adding means for adding a chemical solution to the backwash water flowing through the backwash water pipe L4 may be provided.
  • the chemical solution to be added is sodium hypochlorite, a strong alkaline agent, a strong acid agent, or the like, and is selected according to the film deposits.
  • the film deposit is an organic substance or a turbid substance containing an organic substance, it is preferable to add sodium hypochlorite so that 0.05 to 0.3 mgCl 2 / L remains.
  • valves V1 and V3 are opened, valves V2, V4, V5, V7 and V8 are closed, pump P1 is operated, and raw water is supplied to the raw water chamber 10 from the opening 11.
  • This embodiment is a dead end flow, in which the permeated water that has passed through the hollow fiber membrane 2 is taken out from the treated water outlet 5 as treated water and stored in the treated water tank 9 via the treated water take-out pipe L3.
  • the raw water may be filtered by an external pressure method in which raw water is passed through the outside of the hollow fiber membrane 2 by a cross-flow method.
  • the concentrated water that has not passed through the hollow fiber membrane 2 is discharged from the upper discharge port 8 through the pipe L5.
  • the discharged concentrated water may be mixed with raw water and circulated so as to be supplied to the container 1.
  • valves V8 are opened, V1 and V2 are closed, and air is blown from the plurality of ejection holes 4a of the central canal 4 toward the hollow fiber membrane 2. Perform bubbling cleaning.
  • valves V5 and V7 are opened, and the exhaust body and the cleaning drainage are discharged.
  • the valves V5 and V7 may be opened alternately.
  • the first valve V8 is opened, V1 and V2 are closed, and air is blown from the plurality of ejection holes 4a of the central tube 4 toward the hollow fiber membrane 2.
  • Bubbling cleaning and valve V2 are opened, valves V1 and V8 are closed, and at least one of the bubbling cleaning of the second bubbling cleaning in which air is blown from the opening 11 toward the hollow fiber membrane 2 is performed.
  • one or both of the valves V5 and V7 are opened, and the exhaust body and the cleaning drainage are discharged.
  • the valves V5 and V7 may be opened alternately.
  • the second bubbling cleaning is performed before or after the first bubbling cleaning, and the cleaning drainage is discharged from the container.
  • the backwashing that supplies backwashing water from the treated water outlet 5 to the treated water chamber 7 at the same time as the first bubbling washing and / or the second bubbling washing is performed. You may do it.
  • valves V1, V3, and V7 are closed, the valves V2, V4, V5, and V8 are opened, and the openings 11 and the central tube 4 are used.
  • Air is blown into the container 1 to perform bubbling, and the pump P2 is operated to send the treated water as backwash water into the hollow fiber membrane 2 through the treated water chamber 7 to perform backwashing.
  • a chemical solution may be added to the backwash water.
  • the cleaning drainage and exhaust air are discharged from the upper discharge port 8 to the outside of the system via the pipe L5. After bubbling, the cleaning drainage may be discharged from the pipe L7 with the valve V7 opened.
  • the amount of air supplied from the central canal 4 is preferably about 30 to 500 NL / min, particularly preferably 50 to 300 NL / min.
  • the central canal 4 is provided with a large number of ejection holes 4a in the entire vertical direction, air bubbles are injected into the entire hollow fiber membrane 2 including the vicinity of the upper end fixing portion (near the potting portion 3) of the hollow fiber membrane 2. , The turbidity can be thoroughly washed and removed. Further, even if the amount of air during bubbling cleaning is increased, it is possible to prevent the hollow fiber membrane 2 from being twisted or broken as compared with the method in which air is flowed from only the lower part of the module to the upper part.
  • the backwash may be air backwash instead of water backwash.
  • air may be ejected only from the central tube 4.
  • a gas-liquid mixed flow may be supplied from the central canal 4 instead of air.
  • a dispersion plate 12 having a large number of small holes 12a may be provided in the lower part of the container 1 to disperse the raw water from the opening 11 in the container 1.
  • the dispersion plate 12 is provided below the lower end of the hollow fiber membrane 2.
  • the dispersion plate 12 may be made of a potting material, and the lower end of the hollow fiber membrane 2 may be embedded in the dispersion plate 12 as shown in FIG. In FIG. 3, the small holes 12a are shown only partially, but in reality, they are provided over the entire surface of the dispersion plate 12.
  • Example 1 Raw water was passed through the hollow fiber membrane module provided with the hollow fiber membrane module shown in FIG. 3 for 30 minutes via the pipe L1 for filtration treatment.
  • Tap water was stored in the raw water tank, bentonite was added at 10 mg / L, and sodium hydrogencarbonate manufactured by Kishida Chemical Co., Ltd., and then the pH was adjusted to 8.0 with sulfuric acid manufactured by Kishida Chemical Co., Ltd.
  • Water was pumped from the raw water tank to the coagulation tank, and the residence time was set to 10 minutes.
  • a product obtained by adding 100 mg / L of industrial ferric chloride (concentration 38%) before the coagulation tank was used as raw water.
  • the configuration of the hollow fiber membrane module is as follows.
  • Container 1 Inner diameter 200 mm, height 1500 mm
  • Hollow fiber UF membrane made of polyvinyl fluoride den with an outer diameter of 1.4 mm, membrane area 32 m 2
  • Central canal 4 Length 1300 mm, inner diameter 13 mm, outer diameter 18 mm extending in the container 1
  • Ejection hole 4a Diameter 10 mm, 48 pieces
  • Small hole 12a of dispersion plate 12 Diameter 8 mm, 44 pieces
  • Example 2 The same treatment as in Example 1 was performed except that the backwash water was discharged from the pipe L7 through the opening 11. The measurement results are shown in Table 1.
  • Example 3 Before supplying air from the central pipe 4, backwashing was performed for 30 seconds, and the same treatment as in Example 2 was performed except that a step of draining the backwashing water from the upper discharge port 8 was added. The measurement results are shown in Table 1.
  • Example 4 The same treatment as in Example 3 was performed except that the supply amount of bubbling air was set to 150 NL / min. The measurement results are shown in Table 1.
  • Example 5 The same treatment as in Example 4 was carried out except that sodium hypochlorite was added to the backwash water so as to have a concentration of 300 mgCl 2 / L. The measurement results are shown in Table 1.
  • Example 6 Before supplying air from the central pipe 4, bubbling cleaning was performed in which air was supplied from the lower opening 11 of the container 1 at 150 NL / min for 30 seconds, and a step of discharging the drainage and the exhaust air from the upper discharge port 8 was added. Except for this, the same treatment as in Example 4 was performed. The measurement results are shown in Table 1.
  • Example 1 A hollow fiber membrane module not provided with the central tube 4 was used, and the same treatment as in Example 1 was performed except that the bug ring cleaning using the central tube 4 was omitted. The measurement results are shown in Table 1.
  • Comparative Example 2 A hollow fiber membrane module without a central tube 4 is used, air cleaning using the central tube 4 is omitted, and instead, air for bag ring is blown from the container lower opening 11 of the hollow fiber membrane module during back cleaning.
  • the same treatment as in Comparative Example 1 was carried out except that 80 NL / min was supplied and backwash water and exhaust air were discharged from the upper discharge port 8. The measurement results are shown in Table 1.
  • Example 1 had a higher turbidity removal rate by cleaning than cleaning with only back cleaning (Comparative Example 1) and cleaning with bubbling air blown from the lower part of the container (Comparative Example 2).
  • Example 2 by draining the washing drainage from the drainage port at the bottom of the container, a higher turbidity exclusion rate was obtained as compared with the washing (Example 1) in which the washing drainage was discharged from the upper drainage port.
  • Example 3 a higher turbidity exclusion rate than in Example 2 was obtained by adding backwash before the cleaning in Example 2.
  • Example 4 the amount of bubbling air was increased from 80 NL / min to 150 NL / min to obtain a higher turbidity exclusion rate than in Example 3.
  • Example 5 by adding an oxidizing agent to the backwash water, a higher turbidity exclusion rate than in the non-addition condition (Example 4) was obtained.
  • Example 6 a higher turbidity exclusion rate than in Example 4 was obtained by introducing air cleaning in which bubbling air is supplied from the lower part of the container before the cleaning in Example 4.
  • Example 7 Well water was passed through the hollow fiber membrane module used in Example 1, and the change over time of the intermembrane differential pressure was measured. The results are shown in FIG.
  • the opening 11 and the drainage pipe L7 are omitted, and instead, a drainage port 6 is provided at the lower part of the side surface of the container 1.
  • the drain port 6 is provided near the bottom surface of the container 1.
  • a pipe L6 is connected to the drain port 6, and a valve V6 is provided in the pipe L6.
  • the air pipe L8 is omitted, and instead, the pipe L1 is connected to the lower part of the central pipe 4.
  • the configuration of the hollow fiber membrane module of FIG. 4 is as follows.
  • Container 1 Inner diameter 200 mm, height 1300 mm
  • Hollow fiber UF membrane made of polyvinyl fluoride den with an outer diameter of 1.25 mm, membrane area 30 m 2
  • Central canal 4 Length 1000 mm, inner diameter 20 mm, outer diameter 25 mm extending in the container 1
  • Ejection hole 4a 10 mm in diameter
  • Example 7 the increase in the intermembrane differential pressure was suppressed and stabilized in Example 7 in which the raw water was supplied from the lower part of the raw water chamber, as compared with Comparative Example 3 in which the raw water was supplied from the central pipe.
  • the structure of the present invention is less likely to cause the drift of raw water in the module, and the entire membrane can be used for filtration evenly, so that the membrane contamination is not locally accelerated, and the effective membrane generated thereby. This is because the area did not decrease.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

中空糸膜モジュールは、処理水出口5及び上部排出口8を有する容器1と、原水を固液分離するための中空糸膜2であって、容器1内に上下方向に配置された複数の中空糸膜2と、中空糸膜2の上端部を固定しており、容器1内の上部に配置された上端固定部3と、上端固定部3の上側に形成され、各中空糸膜2の内部が連通した透過水室7と、容器1内に原水を供給する配管L1と、バブリング洗浄を行うための中心管4とを有する。中心管4は、上端固定部3の下側に上下方向に延在し、側周面に気体を噴出する複数の噴出孔4aが設けられている。

Description

中空糸膜モジュール及びその洗浄方法
 本発明は中空糸膜モジュール及びその洗浄方法に関し、特に、膜に付着した濁質を十分に洗浄除去することができる中空糸膜モジュール及びその洗浄方法に関する。
 中空糸膜モジュールは、濁質成分や有機物を除去する手段として、純水製造や排水回収分野などで広く用いられている。中空糸膜モジュールの膜には、精密濾過膜(MF膜)や限界濾過膜(UF膜)などが分離対象に応じて使い分けられており、前者は0.1μm前後、後者は0.005~0.5μmの細孔が一般的である。
 中空糸膜モジュールに供給する懸濁水中に濁質や有機物が大量に含まれている場合、膜の目詰まりが発生し、逆洗頻度、薬品洗浄頻度が高くなるだけでなく、膜交換頻度も高くなる。膜の目詰まりを防止するために、膜の単位面積当たりの通水量を低下させる方法が一般的であるが、この方法では膜設置本数が多くなるという課題があった。
 特許文献1には、膜の濁質除去性を向上させるため、空気と水を使った逆洗方法が提案されている。しかし、この方法は、濁質の種類、量によっては、濁質除去性があまり向上しない場合があり、より高性能な逆洗方法が求められている。
 一般的な空気洗浄では、膜モジュール下部から上部へ空気を流すが、空気の強さに上下で差が生まれるために、膜モジュール全体に空気が行き届かず、洗浄不足の箇所が生じる。また、空気洗浄時に下部排水すると、空気が膜モジュール内部に浸透せずに排出されてしまうため、モジュール上部、例えば循環部からしか排水できない。そのため、空気洗浄で剥がれた膜モジュール全体の濁質が膜の上部に付着してしまうことがあった。
 特許文献2には、処理水出口及び濃縮水出口を有する容器と、該容器内に原水を供給する中心管と、原水を透過水と濃縮水とに分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、該上端固定部の上側に形成され、各中空糸膜の内部が連通した透過水室と、を備え、前記中心管は、前記上端固定部の下側に上下方向に延在し、側周面に原水を噴出する複数の噴出孔が設けられており、前記容器の下部には、前記複数の噴出孔から気体を吹き込むバブリング洗浄を行う際の洗浄排水を排出する排水口が設けられている中空糸膜モジュールの洗浄方法であって、前記複数の噴出孔から気体を吹き込むバブリング洗浄を行い、洗浄排水を前記排水口から排出する中空糸膜モジュールの洗浄方法が記載されている。
 特許文献2では、原水および気体を導入する手段を備えた中心管をモジュールの中心に設置し、中心管から空気をモジュール内に吹き込むことで、モジュール上下に生じる洗浄空気の強度差を緩和している。特許文献2では、原水を中心管から送水しているため、中心管に近い中央側の膜に対し、ハウジングに近い外周側の膜よりも、高い原水圧が作用し、中央側の膜の濾過量が外周側の膜よりも多くなる。このため、モジュール内の膜の汚染にムラが生じる。換言すると、モジュール中央側の中空糸膜に高い負荷がかかり、膜汚染や、膜汚染の進行による有効膜面積の低下が生じやすい。
特開2005-88008号公報 特開2017-176966号公報
 本発明は、上記従来の実情に鑑みてなされたものであり、中空糸膜に付着した濁質を万遍なく十分に除去できる中空糸膜モジュール及びその洗浄方法を提供することを目的とする。
 本発明の中空糸膜モジュールは、上部に処理水出口を有する容器と、該容器の下部に原水を供給する原水供給手段と、原水を固液分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、該上端固定部の上側に形成され、各中空糸膜の内部が連通した透過水室と、前記上端固定部の下側に上下方向に延在し、側周面に気体を噴出する複数の噴出孔が設けられている中心管と、前記容器から気体及び洗浄排水を排出する排出手段とを有する。
 本発明の一態様では、前記中心管の下端は前記容器の底面の開口に臨んでいる。
 本発明の一態様では、前記容器の下部に気体を供給する手段が設けられている。
 本発明の中空糸膜モジュールの洗浄方法では、前記中心管の複数の噴出孔から気体を吹き込む第1バブリング洗浄を行い、排気体及び洗浄排水を前記排出手段から排出する。
 本発明の一態様では、前記中心管の複数の噴出孔から気体を吹き込む第1バブリング洗浄および前記容器の下部に設けた気体供給手段から気体を吹き込む第2バブリング洗浄の少なくとも一方のバブリング洗浄を行い、排気体及び洗浄排水を前記排出手段から排出する。
 本発明の一態様では、前記第1バブリング洗浄の前又は後に、前記第2バブリング洗浄を行い、その洗浄排水を容器から排出する。
 本発明の一態様では、前記第1バブリング洗浄及び/又は第2バブリング洗浄と同時に、前記処理水出口から逆洗水を供給する逆洗浄を行う。
 本発明の一態様では、前記逆洗水に薬液を添加する。
 本発明の一態様では、前記中心管を通る気体の流量が50~300NL/minである。
 本発明の中空糸膜モジュールでは、中心管が容器内に上下方向に延在し、中心管に設けられた複数の噴出孔から気体を吹き込んでバブリング洗浄を行うようになっているため、膜モジュール全体に空気が行き届き、中空糸膜に付着した濁質を万遍なく十分に除去できる。
 また、原水をモジュールの下部から導入することにより、濾過工程における偏流を低減し、膜を均一に使用することができるため、局所的な膜汚染の進行や、それによる膜面積の低下が防止(抑制を含む)される。
 小孔を有する分散板を設置し、原水を分散させることにより、原水の偏流がさらに低減される。
実施の形態に係る中空糸膜モジュールの断面図である。 別の実施の形態に係る中空糸膜モジュールの断面図である。 別の実施の形態に係る中空糸膜モジュールの断面図である。 従来例の中空糸膜モジュールの断面図である。 実施例7及び比較例3の結果を示すグラフである。
 以下、図1~図3を参照して実施の形態について説明する。
 図1は、本実施形態に係る中空糸膜モジュールの構成を示す断面図である。図1に示すように、中空糸膜モジュールは、円筒の軸心線方向を上下方向(この実施形態では鉛直方向)にして配置された容器1を備えている。この容器1内に、複数の中空糸膜2が配置されている。
 中空糸膜2は、容器1の上部側において、固定部としての合成樹脂製ポッティング部3で固定され、容器1の下部側では固定されていない。ポッティング部3の合成樹脂としては例えばエポキシ樹脂を用いることができる。
 例えば、中空糸膜2をU字型に組み込み、中空糸膜の両端をポッティング部3で固定する。この場合、中空糸膜2の中間部が容器1の下部に位置する。
 また、一端が開口し、他端が封止された中空糸膜2を用いる場合は、開口している中空糸膜2の一端側をポッティング部3で固定し、封止された他端側を容器1の下部に配置する。
 中空糸膜2は、UF膜やMF膜などのいずれでもよい。中空糸膜2は特に制限はないが、通常、内径0.2~1.0mm、外径0.5~2.0mm、有効長さ300~2500mm程度のものが用いられる。このような中空糸膜2が容器1内に500~70,000本装填された全膜面積5~100m程度のものが適当である。中空糸膜2の膜素材についても特に制限はないが、PVDF(ポリフッ化ビニリデン)、ポリエチレン、ポリプロピレン等を用いることができる。
 ポッティング部3の上側と下側にはそれぞれ処理水室(透過水室)7と原水室10とが区画形成されている。中空糸膜2の上端側はポッティング部3を貫通しており、その上端の開口は処理水室7に臨み、中空糸膜2の内部は処理水室7に連通している。中空糸膜2をU字型に組み込む場合は、中空糸膜2の両端がポッティング部3を貫通する。
 ポッティング部3は例えば円盤状であり、その外周面又は外周縁部が容器1の内面に水密的に接している。
 容器1の内部(原水室10)には、中心管4が略鉛直方向(容器1の軸方向)に延びている。中心管4は、例えば容器1の中心軸に沿って配置されている。中心管4は先端(上端)が閉じた円管であり、側周面には上下にわたって、かつ周方向に、間隔を空けて複数の噴出孔4aが全体的に設けられている。噴出孔4aの数は特に限定されないが、例えば5~50個程度である。噴出孔4aの大きさや形状は特に限定されないが、例えば口径5~500mmの円形である。中心管4の内径は例えば10~20mm程度である。
 中心管4の高さ(上下方向の長さ)は特に限定されないが、中心管4の上端がポッティング部3の下面近傍に位置していることが好ましい。なお、中心管4の上端がポッティング部3に埋設されていてもよい。
 中心管4の下端は、容器1の底面の開口11に臨んでいる。開口11には原水配管L1が接続され、原水配管L1にはポンプP1及びバルブV1が設けられている。原水配管L1のバルブV1よりも容器1側からは空気導入用配管L2が分岐しており、空気導入用配管L2にはバルブV2が設けられている。
 配管L1のバルブV1よりも容器1側に洗浄排水排出用の配管L7が接続されており、該配管L7にバルブV7が設けられている。
 バルブV1とバルブV2の開閉を切り替えることで、容器1への原水/空気の供給を切り替えることができる。バルブV1を開、バルブV2,V7を閉とし、ポンプP1により原水配管L1を介して原水を送り出すことで、原水室10の下部から原水を供給することができる。
 バルブV1,V7を閉、バルブV2を開とし、空気導入用配管L2から空気を供給することで、開口11から気泡を供給し、中心糸膜2をバブリング洗浄することができる。バルブV1及びV2を開とし、開口11から気液混合流を噴出させることもできる。
 中心管4の下部に空気配管L8が接続され、配管L8にバルブV8が設けられている。配管L8から空気を供給することにより、中心管4の噴出孔4aから放射方向に気泡を噴出させ、中空糸膜2のバブリング洗浄を行うことができる。
 容器1の頂部には処理水(膜透過水)の出口5が設けられている。また、容器1の側面の上部には上部排出口8が設けられている。上部排出口8はポッティング部3の下面近傍に設けられている。ポッティング部3から上部排出口8の上縁までの距離は0~30mm、特に0~10mm程度が好ましい。上部排出口8には配管L5が接続され、配管L5にはバルブV5が設けられている。
 処理水出口5には処理水取出配管L3が接続されており、処理水取出配管L3を介して処理水(膜透過水)が取り出される。処理水は処理水タンク9に貯留される。
 処理水取出配管L3には、処理水取出配管L3に設けられたバルブV3と処理水出口5との間の位置に逆洗水配管L4の一端が接続されている。逆洗水配管L4の他端は処理水タンク9に接続されている。逆洗水配管L4にはバルブV4及びポンプP2が設けられている。バルブV3を閉、バルブV4を開とし、ポンプP2により逆洗水配管L4を介して処理水出口5から原水室10に処理水を流すことで、中空糸膜2の逆洗を行うことができる。図1は、逆洗水配管L4を処理水タンク9に接続し、逆洗水に処理水を用いる構成を示しているが、逆洗水は原水であってもよい。
 逆洗に伴う排水は、開口11から配管L7を介して排出してもよいし、上部排出口8から配管L5を介して排出してもよい。開口11からの排出と上部排出口8からの排出とを同時に行ってもよく、順番に(交互に)行ってもよい。配管L7からの逆洗水の排出と、上部排出口8からの逆洗水の排出とを同時に又は交互に行うことで、中空糸膜2から剥がれた濁質を効率良く排出できる。
 逆洗水配管L4を流れる逆洗水に薬液を添加する薬液添加手段(図示略)が設けられていてもよい。添加する薬液は、次亜塩素酸ナトリウム、強アルカリ性剤、強酸性剤等であり、膜付着物に応じて選択される。例えば、膜付着物が有機物又は有機物を含む濁質等の場合、次亜塩素酸ナトリウムが0.05~0.3mgCl/L残留するように添加することが好ましい。
 この中空糸膜モジュールによる濾過処理では、バルブV1、V3を開、バルブV2、V4、V5、V7、V8を閉とし、ポンプP1を作動させ、開口11から原水室10に原水を供給する。この実施の形態は、デッドエンドフローであり、中空糸膜2を透過した透過水が処理水として処理水出口5から取り出され、処理水取出配管L3を介して処理水タンク9に貯留される。
 ただし、中空糸膜2の外側に原水をクロスフロー方式で通水する外圧式で濾過処理してもよい。この場合、中空糸膜2を透過しなかった濃縮水は、上部排出口8から配管L5を介して排出される。排出された濃縮水を原水と混合して容器1に供給するように循環させてもよい。
 この濾過処理を継続して行うと、中空糸膜2に濁質が蓄積してくる。そこで、濾過処理を所定時間行った後、又は処理水量が減少してきた場合、中空糸膜2に捕捉された濁質を洗浄する洗浄処理を行う。
 この中空糸膜モジュールを洗浄する方法の第1形態においては、バルブV8を開、V1,V2を閉とし、中心管4の複数の噴出孔4aから中空糸膜2に向って空気を吹き込む第1バブリング洗浄を行う。
 この際、バルブV5,V7の一方又は双方を開とし、排気体及び洗浄排水を排出する。バルブV5,V7を交互に開としてもよい。
 この中空糸膜モジュールを洗浄する方法の第2形態においては、バルブV8を開、V1,V2を閉とし、中心管4の複数の噴出孔4aから中空糸膜2に向って空気を吹き込む第1バブリング洗浄およびバルブV2を開、バルブV1,V8を閉とし、開口11から中空糸膜2に向って空気を吹き込む第2バブリング洗浄の少なくとも一方のバブリング洗浄を行う。この際、バルブV5,V7の一方又は双方を開とし、排気体及び洗浄排水を排出する。バルブV5,V7を交互に開としてもよい。
 この第2形態の一態様においては、前記第1バブリング洗浄の前又は後に、前記第2バブリング洗浄を行い、その洗浄排水を容器から排出する。
 第1形態及び第2形態のいずれの洗浄方法においても、前記第1バブリング洗浄及び/又は第2バブリング洗浄と同時に、前記処理水出口5から逆洗水を処理水室7に供給する逆洗浄を行うようにしてもよい。
 このようにバブリング洗浄と逆洗浄とを同時に行うには、具体的には、例えば、バルブV1、V3、V7を閉、バルブV2、V4、V5、V8を開とし、開口11及び中心管4から空気を容器1に吹き込みバブリングを行うと共に、ポンプP2を作動させ、処理水室7を介して逆洗水として処理水を中空糸膜2内に送り込み、逆洗浄を行う。逆洗水には薬液が添加されていてもよい。洗浄排水及び排空気は、上部排出口8から配管L5を介して系外に排出される。バブリング後であれば、洗浄排水はバルブV7を開として配管L7から排出されてもよい。
 第1形態及び第2形態のいずれにおいても、中心管4から供給する空気量は30~500NL/min程度、特に50~300NL/minであることが好ましい。
 中心管4には上下方向の全体にわたって多数の噴出孔4aが設けられているため、中空糸膜2の上端固定部近傍(ポッティング部3近傍)も含め中空糸膜2の全体に気泡を噴射し、濁質を万遍なく十分に洗浄し、除去することができる。また、バブリング洗浄の際の空気量を多くしても、モジュール下部のみから上部へ空気を流す方式と比較して、中空糸膜2のヨレや折れを防止できる。
 逆洗浄は、水逆洗でなく、空気逆洗でもよい。バブリング洗浄では、中心管4のみから空気を噴出させてもよい。また、中心管4から空気ではなく気液混合流を供給してもよい。
 本発明では、図2のように、容器1の下部に、多数の小孔12aを有した分散板12を設け、開口11からの原水を容器1内に分散させるようにしてもよい。図2では、分散板12は中空糸膜2の下端よりも下位に設けられている。
 本発明では、この分散板12をポッティング材にて構成し、図3の通り、中空糸膜2の下端を分散板12に埋設してもよい。図3では、小孔12aが部分的にのみ図示されているが、実際には、分散板12の全面にわたって設けられている。
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。
[実施例1]
 図3に示す中空糸膜モジュールを備えた中空糸膜モジュールに、配管L1を介して原水を30分間通水して濾過処理を行った。原水槽に水道水を貯水してベントナイトを10mg/L、及びキシダ化学製炭酸水素ナトリウムを添加した後、キシダ化学製硫酸によりpHを8.0に調整した。原水槽からポンプで凝集槽に送水し、滞留時間を10分とした。凝集槽前に工業用塩化第二鉄(濃度38%)を100mg/L添加したものを原水として使用した。中空糸膜モジュールの構成は次の通りである。
  容器1:内径200mm、高さ1500mm
  中空糸:外径1.4mmのポリフッ化ビニルデン製UF膜、膜面積32m
  中心管4:容器1内に延在する長さ1300mm、内径13mm、外径18mm
  噴出孔4a:口径10mm、48個
  分散板12の小孔12a:直径8mm、44個
 濾過処理後、中心管4から空気を供給してバブリング洗浄を行うと共に逆洗浄を行った。洗浄処理は1分間行った。逆洗水は上部排出口8から排出した。バブリング用空気の供給量は80NL/minとした。逆洗浄の給水量を80L/minとし、逆洗浄の給水としては濾過処理水を用いた。
 濾過処理及び洗浄処理を交互にそれぞれ5回行った。サイクル毎に排出される逆洗水を採取し、逆洗水中の濁質量を計測した。5サイクルの中で供給した全濁質量に対する逆洗で排出された濁質量(濁質除去率)を表1に示す。
[実施例2]
 逆洗水を開口11を介して配管L7から排出したこと以外は実施例1と同様の処理を行った。測定結果を表1に示す。
[実施例3]
 中心管4から空気を供給する前に、30秒間の逆洗を行い、その逆洗水を上部排出口8から排水する工程を追加したこと以外は実施例2と同様の処理を行った。測定結果を表1に示す。
[実施例4]
 バブリング用空気の供給量を150NL/minとしたこと以外は実施例3と同様の処理を行った。測定結果を表1に示す。
[実施例5]
 逆洗水に次亜塩素酸ナトリウムを300mgCl/Lとなるように添加したこと以外は実施例4と同様の処理を行った。測定結果を表1に示す。
[実施例6]
 中心管4から空気を供給する前に、容器1の下部開口11から空気を150NL/minで30秒間供給するバブリング洗浄を行い、その排水及び排空気を上部排出口8から排出する工程を追加したこと以外は実施例4と同様の処理を行った。測定結果を表1に示す。
[比較例1]
 中心管4が設けられていない中空糸膜モジュールを使用し、中心管4を使用したバグリング洗浄を省略したこと以外は実施例1と同様の処理を行った。測定結果を表1に示す。
[比較例2]
 中心管4が設けられていない中空糸膜モジュールを使用し、中心管4を使用した空気洗浄を省略し、代わりに逆洗浄の際に中空糸膜モジュールの容器下部開口11からバグリング用空気を80NL/min供給し、逆洗水及び排空気を上部排出口8から排出したこと以外は比較例1と同様の処理を行った。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の通り、実施例1は、逆洗浄のみの洗浄(比較例1)および容器下部からバブリング空気を送気する洗浄(比較例2)に比べ、洗浄による濁質排除率が高かった。
 実施例2では、洗浄排水を容器下部の排水口から排水することで、洗浄排水を上部排水口から排出する洗浄(実施例1)よりも高い濁質排除率を得た。
 実施例3では、実施例2の洗浄の前に逆洗浄を追加することで、実施例2よりも高い濁質排除率を得た。
 実施例4では、バブリング空気の量を80NL/minから150NL/minに増量することで、実施例3よりも高い濁質排除率を得た。
 実施例5では、逆洗水に酸化剤を添加することで無添加条件(実施例4)よりも高い濁質排除率を得た。
 実施例6では、実施例4の洗浄の前に容器下部からバブリング空気を供給する空気洗浄を導入することで、実施例4よりも高い濁質排除率を得た。
[実施例7]
 実施例1で使用した中空糸膜モジュールに井戸水を通水し、膜間差圧の経時変化を測定した。結果を図5に示す。
[比較例3]
 図4に示す中空糸膜モジュールを用い、実施例7と同様の試験を行った。結果を図5に示す。
 なお、図4では、開口11及び排水用配管L7が省略され、その代りに容器1の側面の下部に排水口6が設けられている。排水口6は、容器1の底面近傍に設けられている。排水口6には配管L6が接続され、配管L6にはバルブV6が設けられている。また、空気用配管L8が省略され、その代りに配管L1が中心管4の下部に接続されている。図4の中空糸膜モジュールの構成は次の通りである。
  容器1:内径200mm、高さ1300mm
  中空糸:外径1.25mmのポリフッ化ビニルデン製UF膜、膜面積30m
  中心管4:容器1内に延在する長さ1000mm、内径20mm、外径25mm
  噴出孔4a:口径10mm、10個
 図5の通り、原水を中心管から供給する比較例3に比べて、原水を原水室下部から供給する実施例7の方が、膜間差圧の上昇が抑えられ、安定化した。これは、本発明の構造のほうが、モジュール内の原水の偏流が生じにくく、膜全体を万遍なく濾過に使用できたため、局所的に膜汚染が加速されることがなく、それによって生じる有効膜面積の低下が起こらなかったためである。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月27日付で出願された日本特許出願2019-060929に基づいており、その全体が引用により援用される。
 1 容器
 2 中空糸膜
 3 ポッティング部
 4 中心管
 5 処理水出口
 6 排水口
 7 処理水室
 8 上部排出口
 9 処理水タンク
 10 原水室

Claims (9)

  1.  上部に処理水出口を有する容器と、
     該容器の下部に原水を供給する原水供給手段と、
     原水を固液分離するための中空糸膜であって、該容器内に上下方向に配置された複数の中空糸膜と、
     該中空糸膜の上端部を固定しており、該容器内の上部に配置された上端固定部と、
     該上端固定部の上側に形成され、各中空糸膜の内部が連通した透過水室と、
     前記上端固定部の下側に上下方向に延在し、側周面に気体を噴出する複数の噴出孔が設けられている中心管と、
     前記容器から気体及び洗浄排水を排出する排出手段と
    を有する中空糸膜モジュール。
  2.  請求項1において、前記中心管の下端は前記容器の底面の開口に臨んでいることを特徴とする中空糸膜モジュール。
  3.  請求項1又は2において、前記容器の下部に気体を供給する手段が設けられていることを特徴とする中空糸膜モジュール。
  4.  請求項1~3のいずれかの中空糸膜モジュールを洗浄する方法であって、
     前記中心管の複数の噴出孔から気体を吹き込む第1バブリング洗浄を行い、排気体及び洗浄排水を前記排出手段から排出することを特徴とする中空糸膜モジュールの洗浄方法。
  5.  請求項3の中空糸膜モジュールを洗浄する方法であって、
     前記中心管の複数の噴出孔から気体を吹き込む第1バブリング洗浄および前記容器の下部に設けた気体供給手段から気体を吹き込む第2バブリング洗浄の少なくとも一方のバブリング洗浄を行い、
     排気体及び洗浄排水を前記排出手段から排出することを特徴とする中空糸膜モジュールの洗浄方法。
  6.  請求項5において、前記第1バブリング洗浄の前又は後に、前記第2バブリング洗浄を行い、その洗浄排水を容器から排出することを特徴とする中空糸膜モジュールの洗浄方法。
  7.  請求項4乃至6のいずれか1項において、前記第1バブリング洗浄及び/又は第2バブリング洗浄と同時に、前記処理水出口から逆洗水を供給する逆洗浄を行うことを特徴とする中空糸膜モジュールの洗浄方法。
  8.  請求項7において、前記逆洗水に薬液を添加することを特徴とする中空糸膜モジュールの洗浄方法。
  9.  請求項4乃至8のいずれかにおいて、前記中心管を通る気体の流量が50~300NL/minであることを特徴とする中空糸膜モジュールの洗浄方法。
PCT/JP2019/041492 2019-03-27 2019-10-23 中空糸膜モジュール及びその洗浄方法 WO2020194820A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217009095A KR20210141912A (ko) 2019-03-27 2019-10-23 중공사막 모듈 및 그 세정 방법
JP2020500751A JPWO2020194820A1 (ja) 2019-03-27 2019-10-23 中空糸膜モジュール及びその洗浄方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060929 2019-03-27
JP2019060929 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020194820A1 true WO2020194820A1 (ja) 2020-10-01

Family

ID=72610809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041492 WO2020194820A1 (ja) 2019-03-27 2019-10-23 中空糸膜モジュール及びその洗浄方法

Country Status (4)

Country Link
JP (1) JPWO2020194820A1 (ja)
KR (1) KR20210141912A (ja)
TW (1) TW202110528A (ja)
WO (1) WO2020194820A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596136A (ja) * 1991-10-04 1993-04-20 Toray Ind Inc 中空糸膜モジユールおよびその使用方法
JP2015226883A (ja) * 2014-06-02 2015-12-17 栗田工業株式会社 中空糸膜モジュール
JP2017176966A (ja) * 2016-03-29 2017-10-05 栗田工業株式会社 中空糸膜モジュールの洗浄方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154356A (ja) * 1991-12-10 1993-06-22 Sanki Eng Co Ltd 膜濾過モジュール
JP3094407B2 (ja) * 1994-06-29 2000-10-03 株式会社石垣 中空糸膜を用いた濃縮装置
JP4269171B2 (ja) 2004-11-26 2009-05-27 旭化成ケミカルズ株式会社 エアレーションフラッシング用外圧式中空糸膜モジュールのろ過方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596136A (ja) * 1991-10-04 1993-04-20 Toray Ind Inc 中空糸膜モジユールおよびその使用方法
JP2015226883A (ja) * 2014-06-02 2015-12-17 栗田工業株式会社 中空糸膜モジュール
JP2017176966A (ja) * 2016-03-29 2017-10-05 栗田工業株式会社 中空糸膜モジュールの洗浄方法

Also Published As

Publication number Publication date
JPWO2020194820A1 (ja) 2021-04-08
KR20210141912A (ko) 2021-11-23
TW202110528A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP6122525B1 (ja) 中空糸膜モジュールの洗浄方法
KR102349872B1 (ko) 중공사막 모듈의 세정 방법 및 중공사막 여과 장치
JP4896025B2 (ja) 膜モジュールから固形分を除去するための方法および装置
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JP3887072B2 (ja) 中空糸膜モジュールの洗浄方法およびその方法に用いる濾過装置
US5651889A (en) Sludge treatment membrane apparatus
EP0734758A1 (en) Membrane device having means for charging the membranes
JP2014018782A (ja) バラスト水処理用濾過膜の洗浄システム及び洗浄方法
JP6618708B2 (ja) 中空糸膜モジュールの運転方法及び濾過装置
JP2827877B2 (ja) 膜分離装置及びその洗浄方法
WO2020194820A1 (ja) 中空糸膜モジュール及びその洗浄方法
JP5949834B2 (ja) 中空糸膜モジュール及びその洗浄方法
JP2017176951A (ja) 分離膜モジュールの洗浄方法
KR20160146725A (ko) 제탁막 모듈의 운전 방법
JP2020157250A (ja) 中空糸膜モジュールの洗浄方法
JP2002113336A (ja) 膜ろ過装置の洗浄方法および水処理装置
WO2017009966A1 (ja) 中空糸膜モジュール及びその洗浄方法
JP2004130307A (ja) 中空糸膜の濾過方法
JP2015123436A (ja) 水処理方法
KR102631339B1 (ko) 농축수 희석 공급구조를 갖는 농축수 순환 공급형 산업용정수시스템
CN211328946U (zh) 一种基于原料液过滤的超滤装置
CN113453789B (zh) 膜过滤单元的运转方法及膜过滤单元
JP2012239936A (ja) 浄水処理方法及び装置
KR20210112997A (ko) 분리막 세정방법
JP2019202274A (ja) 膜ろ過装置、膜ろ過装置の洗浄方法および水処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020500751

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921851

Country of ref document: EP

Kind code of ref document: A1