WO2018003963A1 - 光学積層体及び表示装置 - Google Patents

光学積層体及び表示装置 Download PDF

Info

Publication number
WO2018003963A1
WO2018003963A1 PCT/JP2017/024090 JP2017024090W WO2018003963A1 WO 2018003963 A1 WO2018003963 A1 WO 2018003963A1 JP 2017024090 W JP2017024090 W JP 2017024090W WO 2018003963 A1 WO2018003963 A1 WO 2018003963A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display device
group
optical laminate
refractive index
Prior art date
Application number
PCT/JP2017/024090
Other languages
English (en)
French (fr)
Inventor
征一 磯嶋
剛志 黒田
Original Assignee
大日本印刷株式会社
小池 康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社, 小池 康博 filed Critical 大日本印刷株式会社
Priority to KR1020197002715A priority Critical patent/KR102091438B1/ko
Priority to US16/312,777 priority patent/US10668690B2/en
Priority to KR1020197038601A priority patent/KR102102679B1/ko
Priority to CN201780046669.6A priority patent/CN109477931B/zh
Priority to JP2018525287A priority patent/JP6696669B2/ja
Publication of WO2018003963A1 publication Critical patent/WO2018003963A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2369/00Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product

Definitions

  • the present invention relates to an optical laminate and a display device.
  • a display device represented by a liquid crystal display device has rapidly advanced in performance such as luminance, resolution, and color gamut.
  • display devices such as portable information terminals and car navigation systems that are assumed to be used outdoors are increasing.
  • the display device may be observed in a state of wearing sunglasses having a polarizing function (hereinafter referred to as “polarized sunglasses”) in order to reduce glare.
  • Patent Document 1 is characterized in that in a liquid crystal display device using a white light emitting diode (white LED) as a backlight light source, a polymer film having a retardation of 3000 to 30000 nm is arranged at a specific angle on the viewing side of the polarizing plate. It is what.
  • the means of Patent Document 1 solves the problem of blackout and color unevenness in a liquid crystal display device using a white light emitting diode (white LED) as a backlight light source.
  • a touch panel-mounted display device that has been rapidly spread in recent years is foldable, and an organic EL display element is suitable as a display element used in the display device.
  • An optical film used for a foldable display device is required to have excellent durability and folding performance that has excellent hardness and does not cause cracks even when folded repeatedly.
  • a display device having a display element, a polarizer, and a polyimide film in this order is observed through polarized sunglasses, it has been found that the above-described color reproducibility problem occurs particularly when observed from an oblique direction. It was.
  • the polyimide film is a film having a so-called negative C plate characteristic.
  • the "films with negative C-plate characteristics” the refractive index in the slow axis direction refractive index is largest and the direction in the plane n x of the film, and the slow axis direction in the plane of the film perpendicular
  • the film satisfies the relationship of n x ⁇ ny > nz , where n y is the refractive index in the fast axis direction, which is the direction of the film, and nz is the refractive index in the thickness direction of the film.
  • the above blackout problem is not solved.
  • the present invention is an optical laminate applied to the viewer side of a display device having a display element and a polarizer in order, even when a film having a negative C plate characteristic such as a polyimide film is used. And an optical layered body that has the above-described color reproducibility when the display screen is observed from any of the oblique directions and can solve the blackout problem, and a display device having the optical layered body. Objective.
  • the present inventors have found that the above-mentioned problems can be solved by designing an optical laminate including at least two kinds of specific films and designing the optical laminate as a whole so as to satisfy predetermined optical characteristics.
  • the present invention provides the following optical laminate and display device.
  • An optical laminate including at least two kinds of films, wherein the optical laminate includes at least a film A satisfying the following condition (1) and a film C satisfying the following condition (2):
  • the retardation value Re (0) observed from the direction perpendicular to the laminate surface is 4,000 to 30,000 nm, the direction perpendicular to the optical laminate surface and the largest refractive index in the plane of the film A
  • the retardation value Re (40) observed from the axial direction inclined by 40 degrees in the slow axis direction from the vertical axis of the optical laminate surface within the plane along the slow axis is 4,000 to 25,000 nm.
  • fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x> n y ⁇ n z .
  • fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x ⁇ n y> n z .
  • the film C is selected from the group consisting of a polyimide film and a polyaramid film.
  • the film A is a stretched polyester film.
  • a display device comprising at least a display element, a polarizer, and the optical laminate according to any one of [1] to [3] in this order.
  • the organic EL display element is a three-color independent organic EL display element.
  • the display device according to any one of [4] to [7] which is a foldable display device.
  • the optical layered body of the present invention is applied to the viewer side of a display device having a display element and a polarizer in order, and even when the display screen is observed from either the front direction or the oblique direction through the polarized sunglasses, without polarized sunglasses. There is little difference in the color appearance from the observed one, and the color reproducibility is good. Moreover, the problem of blackout when the display screen is observed through polarized sunglasses can be solved.
  • the optical layered body of the present invention is suitable as an optical film used on the outermost surface of a foldable display device.
  • the optical laminate of the present invention includes at least two types of films, film A satisfying the following condition (1) and film C satisfying the following condition (2), and is observed from the direction of the vertical axis with respect to the surface of the optical laminate.
  • the retardation value Re (0) is 4,000 to 30,000 nm, is in-plane along the slow axis that is perpendicular to the surface of the optical laminate and has the largest refractive index in the plane of the film A.
  • the retardation value Re (40) observed from the axial direction inclined by 40 degrees in the slow axis direction from the vertical axis of the optical laminate surface is 4,000 to 25,000 nm.
  • fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x> n y ⁇ n z .
  • fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x ⁇ n y> n z .
  • the optical layered body of the present invention has the above-described configuration, so that when applied to the viewer side of a display device having a display element and a polarizer in order, the film satisfying the above condition (2) and having negative C plate characteristics
  • the color reproducibility described above when the display screen is observed from either the front direction or the oblique direction through polarized sunglasses while providing the performance derived from C (for example, durability folding performance when the film C is a polyimide film). can be improved. Further, the blackout problem described above can be solved.
  • the retardation value Re observed from a vertical direction with respect to the optical layered body surface (0) is the refractive indices n x of the slow axis direction refractive index is largest and the direction in the plane of the optical stack, of the optical stack the refractive index n y in the fast axis direction is a direction perpendicular to the slow axis direction in the plane, by the thickness d of the optical stack are those represented by the following formula.
  • Retardation value Re (0) (n x ⁇ n y ) ⁇ d
  • the retardation value is, for example, a phase difference measuring device “KOBRA-WR” manufactured by Oji Scientific Instruments Co., Ltd., an ultrahigh phase difference measuring device “PAM-UHR100”, or a phase difference measuring device “RETS-” manufactured by Otsuka Electronics Co., Ltd. 100 ".
  • the retardation value in this specification is a retardation value in wavelength 550nm.
  • the refractive index of two axes (the refractive index of the orientation axis and the axis perpendicular to the orientation axis) ( n x , n y ) are obtained by an Abbe refractometer (NAR-4T manufactured by Atago Co., Ltd.).
  • NAR-4T Abbe refractometer
  • an axis showing a larger refractive index is defined as a slow axis.
  • the thickness d of the optical layered body can be calculated from, for example, the thickness of 10 locations from an image of a cross section taken using a scanning transmission electron microscope (STEM) and calculating the average value of 10 locations.
  • the acceleration voltage of STEM is preferably 10 kV to 30 kV, and the magnification is preferably 100 to 700 times.
  • the retardation value can also be calculated from the product of the birefringence (n x ⁇ n y ) and the thickness d (nm) of the optical laminate.
  • the retardation value Re (40) is a slow axis of the film A included in the optical laminate from the vertical axis of the optical laminate surface in a plane perpendicular to the optical laminate surface and along the slow axis of the film A. It is a retardation value observed from an axial direction inclined by 40 degrees in the direction. Re (40) allows light to be incident from an angle inclined by 40 degrees from the vertical axis of the optical laminate surface, and 40 on the light exit surface of the optical laminate from the vertical axis of the light exit surface to the slow axis direction of the film A.
  • the retardation value at a tilted angle is measured using a phase difference measuring device. Specifically, it can be measured by the method described in the examples.
  • Rth may slow the phase axis direction of the refractive indices n x refractive index of the largest direction in the plane of the optical stack, the surface of the optical stack the refractive index n y in the fast axis direction is a direction perpendicular to the slow axis direction in the inner, the refractive index n z in the thickness direction of the optical stack, by the thickness d of the optical stack, the table according to the following formula It is what is done.
  • the appearance of color when the display screen is observed may differ depending on the presence or absence of polarized sunglasses. This is due to the retardation of the optical laminate and the wavelength dependence of birefringence. This is also because the observed retardation value changes depending on the angle at which the optical layered body is observed.
  • the visual line is often viewed so that the line of sight is perpendicular to the display screen.
  • the display screen is viewed in this way, the relationship between the vicinity of the center of the display screen and the line of sight is vertical, but the peripheral area of the display screen and the line of sight have a certain angle. That is, when a human visually recognizes the display device, there are regions having different retardation values in the visual field (more precisely, the retardation values in the visual field continuously change). Further, when a plurality of people observe the display screen at the same time, each person observes a region having a different retardation value.
  • the optical laminated body of this invention contains the film C which satisfy
  • the film C satisfying the condition (2) has no or very small retardation (hereinafter also referred to as “in-plane retardation of the film” or “in-plane retardation”) observed from the direction perpendicular to the film surface. However, there is retardation in the thickness direction of the film.
  • in-plane retardation of the film or “in-plane retardation”
  • the display device X in which the display element, the polarizer, and the film C are sequentially laminated is manufactured, and the display screen of the display device X is observed from the viewer side of the display device X, that is, from the film C side.
  • Polarized sunglasses have a function as a polarizer (analyzer) on the light receiving side.
  • the display device X is observed from the front (vertical axis direction)
  • the retardation value of the film C observed from this direction is extremely small, so that the appearance of the color of the display screen is almost the same regardless of the presence or absence of polarized sunglasses. Be the same.
  • the color appearance may vary greatly depending on the presence or absence of polarized sunglasses.
  • a retardation value of a certain level or more is observed due to retardation in the thickness direction of the film C.
  • the shape of the spectral spectrum of light visually recognized by the human eye differs between when the display device X is observed without polarized sunglasses and when observed through the polarized sunglasses.
  • the display device X when the display device X provided with only the film C on the viewer side is observed from the front direction, the display device X is black at an angle where the polarization absorption axis of the display device X and the polarization absorption axis of the polarized sunglasses are orthogonal to each other. Out occurs.
  • the optical laminate of the invention further includes a film A that satisfies the condition (1).
  • Film A is a film having a so-called positive A-plate characteristic, and there is retardation (retardation in the in-plane direction of the film) observed from the direction perpendicular to the film surface, but there is no retardation in the thickness direction of the film. Or extremely small.
  • the optical layered body of the present invention can solve the above blackout problem. This is because the emitted light from the display element passes through the polarizer and becomes linearly polarized light, but when this linearly polarized light passes through the film A, the polarization is disturbed.
  • the film A when observed tilted from the vertical axis to n x (slow axis) direction, the retardation value becomes smaller as the inclination angle increases. 1, satisfies the condition (1), the retardation value observed from a vertical direction to the film plane of the film A is 3,000 nm, theta from the vertical axis direction in the n x direction (slow axis direction) whenever oblique angle per retardation (solid line in FIG. 1), and an example of n y direction from the vertical direction (fast axis direction) in the ⁇ degree angle inclined by the retardation (broken line in FIG. 1). From Figure 1, film A having a relation of n x> n y ⁇ n z, when observed inclined from the vertical direction in the n x direction, it can be confirmed that the retardation value becomes smaller as the inclination angle increases.
  • the retardation value observed from the axial direction inclined from the vertical axis direction to the nx direction side becomes smaller as the inclination angle becomes larger. Therefore, the optical laminate including the film A was applied to the display device.
  • the display screen is viewed from the axial direction inclined from the vertical axis direction to the nx direction side, it is most disadvantageous in terms of the color reproducibility described above.
  • the optical layered body of the present invention is designed in view of the above circumstances, and includes both the film A satisfying the above condition (1) and the film C satisfying the condition (2).
  • a retardation value Re (0) is 4,000 ⁇ 30,000, which is observed from a vertical direction with respect to the optical multilayer body surface, the axis of the inclined 40 degrees to the n x direction of the film a from the vertical axis of the optical laminated body surface It has been found that the above-described problem of the present invention can be solved if the configuration satisfies the requirement that the retardation value Re (40) observed from the direction is 4,000 to 25,000 nm.
  • Re (0) of the optical laminate is less than 4,000 nm, when applied to a display device, color reproducibility when the display screen is viewed from the front is insufficient.
  • Re (40) of the optical laminate is less than 4,000 nm, when applied to a display device, color reproducibility when the display screen is viewed from an oblique direction is insufficient.
  • Re (40) is an optical layered body from a direction that is perpendicular to the surface of the optical layered body and along the slow axis of the film A and is inclined by 40 degrees from the vertical axis to the nx direction of the film A. This corresponds to the retardation value observed when.
  • the reason why the inclination angle from the vertical axis is set to “axial direction inclined by 40 degrees in the slow axis direction of film A” is that the display screen of the display device is hardly observed at an angle exceeding 40 degrees. It is a thing.
  • the retardation value observed from the axial direction inclined in the slow axis direction from the vertical axis is the smallest in the film A, if the retardation value observed from this direction in the optical layered body is a predetermined value or more, The color reproducibility when the display screen is observed from a wide angle can be improved.
  • Re (0) is preferably 4,000 nm or more, more preferably 5,000 nm or more, and further preferably 7,000 nm or more, and the optical laminate is excessively thickened. From the viewpoint of avoiding the above, it is preferably 20,000 nm or less, more preferably 15,000 nm or less. Further, from the viewpoint of color reproducibility when a display device having a display element, a polarizer and an optical layered body in order is observed from an oblique direction, Re (40) is preferably 4,000 nm or more, more preferably 5,000 nm. As described above, the thickness is more preferably 7,000 nm or more, and preferably 20,000 nm or less, more preferably 15,000 nm or less, from the viewpoint of avoiding an excessively thick optical laminate.
  • the film A included in the optical layered body of the present invention satisfies the following condition (1).
  • Condition (1) fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x> n y ⁇ n z .
  • the retardation value in the thickness direction of the film A is not particularly limited as long as the condition (1) is satisfied, but is preferably 0 nm or more.
  • the in-plane retardation value R A (0) of film A is preferably 4,000 nm or more, more preferably 5,000 nm or more, and even more preferably. Is 7,000 nm or more. Moreover, from the viewpoint of avoiding an excessively thick optical laminate, R A (0) is preferably 25,000 nm or less, more preferably 20,000 nm or less.
  • the thickness of the film A is not particularly limited, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of increasing Re (0) and Re (40) of the optical laminate, and the optical laminate is excessively thick. From the viewpoint of avoiding this, it is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the film A is not particularly limited as long as it satisfies the condition (1) and has optical transparency, and examples thereof include a film obtained by stretching a polyester film, a polycarbonate film, a cycloolefin polymer film, an acrylic film, and the like. .
  • a stretched polyester film is preferable from the viewpoint of increasing mechanical strength and increasing Re (0) and Re (40) of the obtained optical laminate.
  • stretching include longitudinal uniaxial stretching, lateral uniaxial (tenter) stretching, sequential biaxial stretching, and simultaneous biaxial stretching. Among these, since the direction of the slow axis is easily determined, it is preferable to perform longitudinal uniaxial stretching or lateral uniaxial stretching.
  • polyester film examples include a polyethylene terephthalate film (PET film), a polyethylene naphthalate film (PEN film), and a polybutylene terephthalate film (PBT film).
  • PET film polyethylene terephthalate film
  • PEN film polyethylene naphthalate film
  • PBT film polybutylene terephthalate film
  • a PET film or a PEN film is preferable among the polyester films, and a PET film is more preferable. Since these films can obtain high in-plane retardation even if the thickness is thin, Re (0) and Re (40) of the optical laminate can be increased, and the thickness of the entire display device is reduced. It is excellent in that the color reproducibility can be improved.
  • the film C included in the optical layered body of the present invention satisfies the following condition (2).
  • Condition (2) fast axis direction is a direction perpendicular to the slow axis direction in the plane of the refractive index in the slow axis direction refractive index is largest and the direction n x, the film in the plane of the film the refractive index of the n y, the refractive index in the thickness direction of the film upon the n z, is the relationship n x ⁇ n y> n z .
  • the retardation value in the in-plane direction of the film C is preferably 200 nm or less.
  • the film C may satisfy nx > ny , but even in that case, the retardation value in the in-plane direction is preferably 200 nm or less.
  • the slow axis direction of the film A in Re (40) described above This is because it is only necessary to substantially consider only the retardation value observed from the axial direction inclined in the direction. Further, it is not necessary to match the slow axis direction when the film A and the film C are laminated.
  • the retardation value R C th of the thickness direction of the film C is preferably 10nm or more, more preferably 100nm or more, more preferably 200nm or more, more preferably more 1, 000 nm or more, more preferably 2,000 nm or more.
  • R C th is preferably 10,000 nm or less, more preferably 7,000 nm or less.
  • the thickness of the film C is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more from the viewpoint of increasing Re (40) of the optical laminate, and a viewpoint of avoiding excessively thickening the optical laminate. Therefore, it is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less. From the viewpoint of imparting durable folding performance to the optical laminate, the thickness of the film C is preferably 10 to 80 ⁇ m, more preferably 15 to 60 ⁇ m.
  • Examples of the film C that satisfies the condition (2) include a film selected from the group consisting of a polyimide film, a polyaramid film, a polyamideimide film, and a polyether ether ketone film.
  • a film selected from the group consisting of a polyimide film and a polyaramid film is preferable, and a polyimide film is more preferable.
  • a polyimide film and a polyaramid film have an aromatic ring in the molecule, and thus are generally colored (yellow).
  • transparent polyimide or “transparent polyaramid” which has a changed skeleton to enhance transparency.
  • transparent polyimide or “transparent polyaramid” which has a changed skeleton to enhance transparency.
  • a colored conventional polyimide film or the like is preferably used for an electronic material such as a printer or an electronic circuit in terms of heat resistance and flexibility.
  • X 1 in the general formula (I) includes at least one tetravalent organic group selected from the group consisting of an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group.
  • the cycloaliphatic group include a monocyclic aliphatic group, a condensed polycyclic aliphatic group, and a non-condensed polycyclic aliphatic group in which two or more aliphatic rings are connected directly or through a bonding group. It is done.
  • the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which two or more aromatic rings are connected directly or through a bonding group.
  • Examples of the bonding group include an alkylene group having 1 to 10 carbon atoms, an alkylidene group having 2 to 10 carbon atoms, —O—, —SO 2 —, —CO—, and —CO—NR— (R represents 1 to 3 carbon atoms).
  • At least one of the hydrogen atoms of the alkylene group having 1 to 10 carbon atoms and the alkylidene group having 2 to 10 carbon atoms may be substituted with a fluorine-containing group.
  • Examples of the fluorine-containing group include a fluoro group and a trifluoromethyl group.
  • X 1 is a cycloaliphatic group or an aromatic group
  • a part of carbon atoms may be replaced with a hetero atom.
  • heteroatoms include O, N, and S.
  • X 1 has preferably 2 to 32 carbon atoms, more preferably 4 to 24 carbon atoms, and still more preferably 4 to 18 carbon atoms.
  • X 1 may have a substituent such as the fluorine-containing group, a hydroxyl group, a sulfone group, or an alkyl group having 1 to 10 carbon atoms. From the viewpoint of transparency of the obtained polyimide film, among the above substituents, a fluorine-containing group is preferable.
  • tetravalent organic group represented by X 1 is a group containing at least one selected from the group consisting of cyclic aliphatic and aromatic groups that Are preferable, and a group selected from the group consisting of a cyclic aliphatic group and an aromatic group is more preferable.
  • the tetravalent organic group represented by X 1 is selected from the group consisting of a cyclic aliphatic group and an aromatic group having a fluorine-containing group. Is more preferably a group selected from the group consisting of a cyclic aliphatic group and an aromatic group having a fluorine-containing group, and more preferably an aromatic group having a fluorine-containing group. Is even more preferable.
  • examples of X 1 include a tetravalent group represented by any of the following formulas (i) to (xi).
  • Y 1 to Y 3 are each independently a single bond, —O—, —CO—, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CF 2 —, —CH (CF 3 ) —, —C (CF 3 ) 2 —, or —SO 2 — is represented. * In the formula indicates a bond.
  • At least one of the hydrogen atoms of the aliphatic ring and aromatic ring may be substituted with a substituent such as the fluorine-containing group, hydroxyl group, sulfone group, or alkyl group having 1 to 10 carbon atoms.
  • R 1 in formula (I) include at least one divalent organic group selected from the group consisting of an acyclic aliphatic group, a cyclic aliphatic group, and an aromatic group.
  • the cycloaliphatic group include a monocyclic aliphatic group, a condensed polycyclic aliphatic group, and a non-condensed polycyclic aliphatic group in which two or more aliphatic rings are connected directly or through a bonding group. It is done.
  • the aromatic group include a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group in which two or more aromatic rings are connected directly or through a bonding group.
  • Examples of the bonding group include an alkylene group having 1 to 10 carbon atoms, an alkylidene group having 2 to 10 carbon atoms, —O—, —SO 2 —, —CO—, and —CO—NR— (R represents 1 to 3 carbon atoms).
  • At least one of the hydrogen atoms of the alkylene group having 1 to 10 carbon atoms and the alkylidene group having 2 to 10 carbon atoms may be substituted with a fluorine-containing group.
  • Examples of the fluorine-containing group include a fluoro group and a trifluoromethyl group.
  • R 1 is a cycloaliphatic group or an aromatic group
  • some of the carbon atoms may be replaced with heteroatoms.
  • heteroatoms include O, N, and S.
  • the carbon number of R 1 is preferably 2 to 40, more preferably 4 to 32, still more preferably 5 to 24, and still more preferably 5 to 18.
  • R 1 may have a substituent such as the fluorine-containing group, a hydroxyl group, a sulfone group, or an alkyl group having 1 to 10 carbon atoms. From the viewpoint of transparency of the obtained polyimide film, among the above substituents, a fluorine-containing group is preferable.
  • the divalent organic group represented by R 1 is a group containing at least one selected from the group consisting of a cyclic aliphatic group and an aromatic group. Are preferable, and a group selected from the group consisting of a cyclic aliphatic group and an aromatic group is more preferable.
  • the divalent organic group represented by R 1 is selected from the group consisting of a cyclic aliphatic group and an aromatic group having a fluorine-containing group. Is more preferably a group selected from the group consisting of a cyclic aliphatic group and an aromatic group having a fluorine-containing group, and an aromatic group having a fluorine-containing group is still more preferable. preferable.
  • examples of R 1 include a divalent group represented by any of the following formulas (xii) to (xviii).
  • Y 4 to Y 6 are each independently a single bond, —O—, —CO—, —CH 2 —, —CH (CH 3 ) —, —C (CH 3 ) 2 —, —CF 2 —, —CH (CF 3 ) —, —C (CF 3 ) 2 —, or —SO 2 — is represented. * In the formula indicates a bond.
  • At least one of the hydrogen atoms of the aliphatic ring and aromatic ring may be substituted with a substituent such as the fluorine-containing group, hydroxyl group, sulfone group, or alkyl group having 1 to 10 carbon atoms.
  • At least one of X 1 and R 1 in the general formula (I) has a fluorine-containing group.
  • examples of the polyimide film include those having structures represented by the following formulas (1) to (17).
  • n is a repeating unit and represents an integer of 2 or more.
  • the polyimide constituting the polyimide film may contain a polyamide structure in a part thereof.
  • the polyamide structure include a polyamideimide structure containing a repeating unit derived from a tricarboxylic acid such as trimellitic anhydride, and a polyamide structure containing a repeating unit derived from a dicarboxylic acid such as isophthalic acid or terephthalic acid.
  • examples of commercially available polyimide films include “Neoprim” manufactured by Mitsubishi Gas Chemical Co., Ltd., and examples of commercially available polyaramid films include “Mictron” manufactured by Toray Industries, Inc.
  • the polyimide film and the polyaramid film may be produced using a resin synthesized by a known method.
  • the polyimide constituting the polyimide film can be usually obtained by subjecting a tetracarboxylic acid compound such as tetracarboxylic acid anhydride and a diamine compound to a polycondensation reaction by a known method.
  • a method for synthesizing a polyimide resin having a structure represented by the above formula (1) is described in JP-A-2009-132091. Specifically, the following formula (21);
  • FPA 4,4′-hexafluoropropylidenebisphthalic dianhydride
  • TFDB 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl
  • the weight average molecular weight of the resin constituting the polyimide film or polyaramid film is preferably in the range of 3,000 to 500,000, more preferably in the range of 5,000 to 300,000. More preferably, it is the range. If the weight average molecular weight is 3,000 or more, sufficient strength can be obtained, and if it is 500,000 or less, a film having a smooth surface and a uniform film thickness can be easily obtained.
  • a weight average molecular weight is a polystyrene conversion value measured by gel permeation chromatography (GPC).
  • a polyimide film or polyaramid film having a structure in which charge transfer within a molecule or between molecules is unlikely to occur is preferable because of excellent transparency.
  • a polyimide film containing a cycloaliphatic group having a structure of the above, or a polyaramid film having a halogen group and having the structure of the above formula (20) is preferable, and selected from the group consisting of the above formulas (1) to (8) More preferred is a fluorinated polyimide film having one or more kinds of structures or an aramid film having a halogen group and having the structure of the formula (20).
  • the said fluorinated polyimide film has a fluorinated structure, it has high heat resistance, and since it is not colored by the heat at the time of polyimide film manufacture, it has the outstanding transparency.
  • the outstanding transparency and very outstanding hardness can be provided, it is more preferable to use the polyimide film which has a structure represented by said Formula (1).
  • the optical laminated body of this invention should just contain the 2 types of film of the said film A and the film C at least, and the aspect by which the film A and the film C were each laminated
  • the direction of the slow axis is substantially the same” means that the angle between the slow axis of the film and the slow axis of the other film is based on the slow axis of the film having the largest in-plane retardation. Is in a range of less than ⁇ 10 °.
  • the optical layered body of the present invention can further include a functional layer in addition to the film A and the film C described above.
  • the functional layer include a hard coat layer, an antifouling layer, a conductive layer, an antireflection layer, an antiglare layer, an ultraviolet absorption layer, and an antistatic layer.
  • the optical laminated body used for the display apparatus which can be folded contains a hard-coat layer from a viewpoint which provides hardness and durable folding performance.
  • the hard coat layer is preferably a cured product of the curable resin composition from the viewpoint of mechanical strength.
  • the curable resin composition include a thermosetting resin composition or an ionizing radiation curable resin composition, and an ionizing radiation curable resin composition is preferable from the viewpoint of improving mechanical strength.
  • the ionizing radiation means an electromagnetic wave or a charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used.
  • electromagnetic waves such as X-rays and ⁇ -rays, and charged particle beams such as ⁇ -rays and ion beams can also be used.
  • the ionizing radiation curable resin composition is a composition containing a compound having an ionizing radiation curable functional group (hereinafter also referred to as “ionizing radiation curable compound”).
  • a compound having an ionizing radiation curable functional group include an ethylenically unsaturated bond group such as a (meth) acryloyl group, a vinyl group, and an allyl group, an epoxy group, and an oxetanyl group.
  • a compound having an ethylenically unsaturated bond group is preferable, and a compound having two or more ethylenically unsaturated bond groups is more preferable.
  • a (meth) acryloyl group is preferable as the ethylenically unsaturated bond group. More preferred are polyfunctional (meth) acrylates having two or more of.
  • the polyfunctional (meth) acrylate any of a monomer, an oligomer, and a polymer can be used.
  • (meth) acrylate” refers to methacrylate and acrylate.
  • polyfunctional (meth) acrylate monomers those having 3 to 6 functional groups are preferable from the viewpoint of imparting high hardness to the hard coat layer.
  • polyfunctional (meth) acrylate monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • multifunctional (meth) acrylate oligomers include epoxy (meth) acrylate oligomers, urethane (meth) acrylate oligomers, polyester (meth) acrylate oligomers, polyether (meth) acrylate oligomers, and silicone (meth) acrylate oligomers.
  • epoxy (meth) acrylate oligomers urethane (meth) acrylate oligomers
  • polyester (meth) acrylate oligomers polyester (meth) acrylate oligomers
  • polyether (meth) acrylate oligomers polyether (meth) acrylate oligomers
  • silicone (meth) acrylate oligomers can be mentioned.
  • urethane (meth) acrylate oligomers are preferable from the viewpoints of curability and cured product performance.
  • the polyfunctional (meth) acrylate oligomer is preferably trifunctional or higher, more preferably 3 to 12 functional, from the viewpoint of imparting high hardness to the hard coat layer.
  • Examples of the polyfunctional (meth) acrylate polymer include a polymer in which a (meth) acryloyl group is introduced into the side chain.
  • the main chain of the polyfunctional (meth) acrylate polymer is preferably an acrylic polymer or a urethane polymer, and more preferably an acrylic polymer.
  • a polyfunctional (meth) acrylate polymer Taisei Fine Chemical Co., Ltd. 8BR series, 8KX series, 8UH series etc. are mentioned, for example.
  • a monofunctional (meth) acrylate monomer can also be used together for the purpose of reducing a viscosity.
  • the hard coat layer may further contain silica fine particles.
  • the silica fine particles to be blended in the curable resin composition for forming the hard coat layer are preferably reactive silica fine particles.
  • the reactive silica fine particles are silica fine particles that can form a crosslinked structure with the curable compound such as the polyfunctional (meth) acrylate.
  • the curable resin composition for forming the hard coat layer contains the reactive silica fine particles, the hardness of the hard coat layer can be sufficiently increased.
  • the reactive silica fine particles preferably have a reactive functional group on the surface, and as the reactive functional group, for example, a polymerizable unsaturated group is preferably used, and more preferably a photocurable unsaturated group.
  • ionizing radiation-curable unsaturated groups are particularly preferred.
  • the reactive functional group include an ethylenically unsaturated bond group such as a (meth) acryloyl group, a vinyl group and an allyl group, and an epoxy group.
  • the silica fine particles preferably have an average primary particle diameter of 5 to 200 nm.
  • the content of silica fine particles in the hard coat layer is preferably 5 to 60 parts by mass with respect to 100 parts by mass of the resin component in the curable resin composition constituting the hard coat layer.
  • the average primary particle diameter of the silica fine particles can be calculated by the following operations (1) to (3).
  • the cross section of the optical laminated body of this invention is imaged by TEM or STEM.
  • the acceleration voltage of TEM or STEM is preferably 10 kV to 30 kV, and the magnification is preferably 50,000 to 300,000 times.
  • Ten arbitrary particles are extracted from the observed image, and the particle diameter of each particle is calculated. The particle diameter is measured as a distance between straight lines in a combination of two straight lines that maximizes the distance between the two straight lines when the cross section of the particle is sandwiched between two parallel straight lines.
  • (3) The same operation is performed five times on the observation image of another screen of the same sample, and the value obtained from the number average of the particle diameters for a total of 50 particles is taken as the average primary particle diameter of the particles.
  • a photopolymerization initiator In the hard coat layer or the curable resin composition for forming the hard coat layer, if necessary, a photopolymerization initiator, a photopolymerization accelerator, a lubricant, a plasticizer, a filler, an antistatic agent, an antiblocking agent, Other components such as a crosslinking agent, a light stabilizer, an ultraviolet absorber, an antioxidant, a conductive agent, a refractive index adjuster, a solvent, and a colorant such as a dye and a pigment may be contained.
  • the thickness of the hard coat layer is preferably 2.5 to 10 ⁇ m, and more preferably 3.5 to 8.0 ⁇ m. If the thickness of the hard coat layer is 2.5 ⁇ m or more, the hardness is good, and if it is 10 ⁇ m or less, the workability is excellent.
  • the thickness of the hard coat layer can be calculated, for example, by measuring the thickness of 10 locations from a cross-sectional image taken using a scanning transmission electron microscope (STEM) and calculating the average value of 10 locations.
  • the acceleration voltage of STEM is preferably 10 kV to 30 kV.
  • the STEM magnification is preferably 1000 to 7000 times when the measured film thickness is in the micron order, and preferably 50,000 to 300,000 times when the measured film thickness is in the nano order.
  • a hard-coat layer there is no restriction
  • the hard coat layer is a cured product of an ionizing radiation curable resin composition
  • Examples include a method of applying a layer forming composition to form a coating layer, drying the coating layer, and then curing by irradiating the ionizing radiation described above.
  • Examples of the method for forming the coating layer include a gravure coating method, a spin coating method, a dip method, a spray method, a die coating method, a bar coating method, a roll coater method, a meniscus coater method, a flexographic printing method, a screen printing method, and a bead.
  • Various known methods such as a coater method can be listed.
  • the method for drying the coating layer is not particularly limited, but it is generally preferable to dry at 30 to 120 ° C. for 10 to 120 seconds.
  • FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of the optical layered body of the present invention.
  • 10 is an optical laminate of the present invention
  • 1 is a film A
  • 2 is a film C
  • 3 is a hard coat layer.
  • the optical layered body of the present invention may include two or more hard coat layers.
  • the hard coat layer 3 of FIG. 2 may have a two-layer structure.
  • the display device of the present invention includes at least a display element, a polarizer, and the optical layered body described above in order.
  • the display device of the present invention is preferably a foldable display device. This is because the optical layered body described above can play a role as a surface protective material without using a glass plate or the like as a surface protective material for a display device, and further a durable folding performance is imparted. From the viewpoint of a foldable display device, the display device of the present invention preferably does not have a glass plate.
  • the display device of the present invention is preferably a display device equipped with a touch panel described later.
  • FIG. 3 is a schematic cross-sectional view showing an example of an embodiment of the display device of the present invention.
  • reference numeral 100 denotes a display device of the present invention, which has a display element 4, a polarizer 5, and an optical laminate 10 in this order.
  • the film C included in the optical laminate 10 is arranged on the viewer side from the film A from the viewpoint of providing durable folding performance.
  • the optical laminate 10 includes a film A (1), a film C (2), and a hard coat layer 3 in order from the display element 4 side.
  • the hard coat layer 3 is preferably provided on the film C included in the optical laminate 10.
  • the hard coat layer 3 is disposed so as to be the outermost surface of the display device.
  • each member which comprises the display apparatus of this invention is demonstrated.
  • the display element examples include a liquid crystal display element, an organic EL display element, an inorganic EL display element, and a plasma display element.
  • the liquid crystal display element may be an in-cell touch panel type liquid crystal display element having a touch panel function in the element.
  • the display element is preferably an organic EL display element.
  • Organic EL display elements are mainly classified into three types: a color conversion method, a color filter method, and a three-color independent method.
  • the color conversion method has a basic configuration of a metal electrode, a blue light emitting layer, a fluorescent layer (red fluorescent layer, green fluorescent layer), a color filter (blue color filter), a transparent electrode, and a transparent substrate.
  • a color conversion method light from the blue light emitting layer is converted into red and green by the red fluorescent layer and the green fluorescent layer, and blue is highly saturated through a color filter.
  • the color filter system has a basic configuration including a metal electrode, a white light emitting layer, a color filter (color filters of three colors of red, green, and blue), a transparent electrode, and a transparent substrate.
  • a color filter color filters of three colors of red, green, and blue
  • the three-color independent system has a basic configuration of a metal electrode, a light emitting layer (a red light emitting layer, a green light emitting layer, and a blue light emitting layer exist independently), a transparent electrode, and a transparent substrate.
  • the transparent substrate is preferably a plastic substrate.
  • a three-color independent organic EL display element is preferable as the organic EL display element in the display device of the present invention.
  • the spectral spectrum of the light emitted from the display element and incident on the optical laminate tends to be sharp, and the effects of the present invention can be effectively exhibited. This is because the sharper the spectral spectrum, the more likely the problem of color reproducibility described above occurs.
  • the organic EL display element has a problem of light extraction efficiency, and the three-color independent organic EL display element is provided with a microcavity structure in order to improve the light extraction efficiency.
  • the three-color independent organic EL display element having the microcavity structure is likely to have a sharper spectral spectrum of light emitted from the display element and incident on the optical laminate as the light extraction efficiency is improved.
  • the effect of the present invention is easily exhibited effectively.
  • ITU-R recommendation BT.2020 (hereinafter referred to as“ BT.2020 ”)” and the like can be cited.
  • ITU-R is an abbreviation for “International Telecommunication Union-Radiocommunication Sector”.
  • 2020 is an international standard for the color gamut of Super Hi-Vision.
  • the display element has a BT.
  • the coverage of 2020 is preferably 60% or more, more preferably 65% or more, and even more preferably 70% or more.
  • [BT. Formula expressing coverage ratio of 2020] [Of the area of the CIE-xy chromaticity diagram of the display element, BT. Area overlapping with area of 2020 CIE-xy chromaticity diagram / BT. Area of 2020 CIE-xy chromaticity diagram] ⁇ 100 (%)
  • the “area of the CIE-xy chromaticity diagram of the display element” necessary for calculating the coverage ratio of 2020 is the x value and y of the CIE-Yxy color system for red display, green display, and blue display. Each value is measured, and can be calculated from “red vertex coordinates”, “green vertex coordinates”, and “blue vertex coordinates” obtained from the measurement results.
  • the x value and y value of the CIE-Yxy color system can be measured, for example, with a spectral radiance meter CS-2000 manufactured by Konica Minolta.
  • the polarizer is disposed on the emission surface of the display element and closer to the display element than the optical laminate.
  • the polarizer include sheet-type polarizers such as polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer saponified film, which are dyed and stretched with iodine.
  • sheet-type polarizers such as polyvinyl alcohol film, polyvinyl formal film, polyvinyl acetal film, ethylene-vinyl acetate copolymer saponified film, which are dyed and stretched with iodine.
  • wire grid type polarizer made of a large number of metal wires
  • a coating type polarizer coated with a lyotropic liquid crystal or a dichroic guest-host material and a multilayer thin film type polarizer.
  • These polarizers may be reflective polarizers having a function of reflecting a polarization component that does not transmit. It is preferable to cover both surfaces of the polarizer with a transparent protective plate such as a plastic film or glass. It is also possible to use the optical layered body of the present invention as a transparent protective plate.
  • the polarizer is used, for example, for imparting antireflection properties by combination with a 1 / 4 ⁇ plate.
  • the 1 ⁇ 4 ⁇ plate and the retardation film general-purpose ones can be used.
  • the 1 ⁇ 4 ⁇ plate is preferably arranged on the organic EL display element side of the polarizer. It is preferable to arrange the retardation film on the organic EL display element side of the polarizer.
  • a back polarizer is installed on the light incident surface side of the liquid crystal display element, and the absorption axis of the polarizer located above the liquid crystal display element and the position below the liquid crystal display element It is used to provide the function of a liquid crystal shutter by arranging the back polarizer to be orthogonal to the absorption axis.
  • the direction of the absorption axis of the polarizer of polarized sunglasses is also in principle horizontal.
  • Two or more polarizers may be provided between the display element and the optical laminate.
  • the polarizer and the optical laminate are such that the smallest angle between the absorption axis of the polarizer and the slow axis of the film A included in the optical laminate is within a range of less than 45 ⁇ 10 °. It is preferable to install.
  • the display device of the present invention may be a touch panel mounted display device having a touch panel on the emission surface of the display element.
  • the positional relationship between the touch panel and the optical laminate is not particularly limited.
  • a touch panel may be provided between the display element and the optical laminate, or a touch panel may be provided on the optical laminate.
  • Examples of the touch panel include a resistive touch panel, a capacitive touch panel, an electromagnetic induction touch panel, an optical touch panel, and an ultrasonic touch panel.
  • the capacitive touch panel includes a surface type and a projection type, and a projection type is often used.
  • a projected capacitive touch panel is configured by connecting a circuit to a basic configuration in which an X-axis electrode and a Y-axis electrode orthogonal to the X-axis electrode are arranged via an insulator.
  • the basic configuration will be described more specifically. (1) A mode in which X-axis electrodes and Y-axis electrodes are formed on separate surfaces on one transparent substrate, (2) X-axis electrodes and insulators on the transparent substrate A mode in which the layers and the Y-axis electrode are formed in this order.
  • a resistive touch panel has a basic configuration in which a conductive film of a pair of upper and lower transparent substrates having a conductive film is arranged with a spacer so as to face each other, and a circuit is connected to the basic configuration. is there.
  • Specific examples of using the optical laminate of the present invention as a constituent member of a touch panel include a configuration using an optical laminate as a transparent substrate of the capacitive touch panel, and an optical laminate as a transparent substrate of the resistive touch panel. Is mentioned.
  • a backlight is disposed on the back surface of the display element.
  • the backlight either an edge light type backlight or a direct type backlight can be used.
  • the light source of the backlight include LEDs and CCFLs, but the backlight using quantum dots as the light source tends to sharpen the spectral spectrum of the light emitted from the display element and incident on the optical laminate. The effect of is easy to be demonstrated effectively.
  • a backlight using quantum dots as a light source includes at least a primary light source that emits primary light and a secondary light source that includes quantum dots that absorb primary light and emit secondary light.
  • the primary light source emits primary light having a wavelength corresponding to blue
  • the quantum dot that is the secondary light source absorbs the primary light and emits secondary light having a wavelength corresponding to red
  • Quantum dots are nanometer-sized fine particles of semiconductors that have specific optical and electrical properties due to the quantum confinement effect (quantum size effect) in which electrons and excitons are confined in small crystals of nanometer size. It exhibits properties and is also called semiconductor nanoparticles or semiconductor nanocrystals.
  • the quantum dot is a semiconductor nanometer-sized fine particle and is not particularly limited as long as it is a material that produces a quantum confinement effect (quantum size effect). What is necessary is just to contain a quantum dot in the optical film which comprises a backlight.
  • Preparation of Film A Polyethylene terephthalate (PET) was melted at 290 ° C., extruded into a sheet through a film-forming die, and brought into close contact with a water-cooled and cooled rapid quenching drum to produce an unstretched film.
  • This unstretched film was preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (Toyo Seiki Co., Ltd.), and then stretched uniaxially at a fixed end of 4.0 times at 120 ° C. to produce a film A0.
  • the refractive index was determined from the average value of 10 measurements using an Abbe refractometer (NAR-4T manufactured by Atago Co., Ltd.).
  • the thickness of the film A0 was adjusted to obtain films A1 to A4 having in-plane retardation values (R A (0)) observed from the direction perpendicular to the film surface as follows.
  • R A (0) 4,000 nm
  • Film A2: R A (0) 8,500 nm
  • Film A3: R A (0) 12,000 nm
  • Film A4: R A (0) 3,000 nm
  • the in-plane retardation value R A (0) of the film A and the retardation values Re (0) and Re (40) of the optical laminate described in this example are the ultrahigh phase difference measuring device manufactured by Oji Scientific Instruments. Retardation value measured at “PAM-UHR100” at a wavelength of 550 nm.
  • the in-plane retardation value R C (0) of the film C is a retardation value at a wavelength of 550 nm measured by a retardation measuring device “RETS-100” manufactured by Otsuka Electronics Co., Ltd.
  • Retardation values R A (0), R C (0), and Re (0) are values measured at an incident angle of 0 °
  • retardation values Re (40) are values measured at an incident angle of 40 °.
  • the thickness of the film described in the present Example and the optical laminated body was calculated from the average value of the values at 10 locations by measuring the thickness at 10 locations from a cross-sectional image taken using a scanning transmission electron microscope (STEM). did.
  • the retardation value (Rcth) in the thickness direction of the film C was calculated by the following formula from the refractive index and thickness of each film measured by the above method.
  • Rcth [ ⁇ (n x + n y ) / 2 ⁇ ⁇ n z ] ⁇ d
  • n x Refractive index in the slow axis direction that is the direction in which the refractive index is the largest in the film plane
  • n y Refractive index in the fast axis direction that is a direction orthogonal to the slow axis direction in the film plane
  • n z Refractive index nz in the thickness direction of the film d: Film thickness
  • an ionizing radiation curable resin composition for forming a hard coat layer having the following composition was applied by a gravure coating method so that the thickness after curing was 8 ⁇ m to form a coating layer. did.
  • the formed coating layer is heated at 70 ° C. for 1 minute to evaporate the solvent in the coating layer, and then an ultraviolet ray with an oxygen concentration of 200 ppm or less using an ultraviolet irradiation device (light source H bulb manufactured by Fusion UV System Japan).
  • the hard coat layer 1 was formed by completely irradiating the coating layer by irradiation so that the integrated light amount was 200 mJ / cm 2 under the conditions described above.
  • the thickness of the hard coat layer was calculated from the average value of 10 locations by measuring the thickness of 10 locations from an image of a cross section taken using a scanning transmission electron microscope (STEM).
  • STEM scanning transmission electron microscope
  • Display devices A, B, and C having the following configurations were prepared. Except for the optical laminate, all the display devices are commercially available.
  • ⁇ Display device A> A display device having a polarizer and an optical laminate on a three-color independent organic EL display element having a microcavity structure.
  • BT. Based on CIE-xy chromaticity diagram. 2020 coverage: 77%.
  • ⁇ Display device B> A display device in which a display element is a liquid crystal display element with a color filter, a light source of a backlight is a white LED, and a polarizer and an optical laminate are provided on the display element.
  • BT. Based on CIE-xy chromaticity diagram. 2020 coverage: 49%.
  • ⁇ Display device C> A display device in which a display element is a liquid crystal display element with a color filter, a primary light source of a backlight is a blue LED, a secondary light source is a quantum dot, and a polarizer and an optical laminate are provided on the display element.
  • Evaluation 5 The optical laminate produced in (1) was placed on the outermost surface of each display device shown in Table 1, and the following evaluation was performed.
  • the film C included in the optical laminate was disposed so as to be closer to the viewer than the film A.
  • the optical laminated body was arrange
  • the optical laminated body of the comparative example 2 contains the film A and the film C, since it did not satisfy
  • the display device A used in the evaluation of Examples 1 to 5 and the display device C used in the evaluation of Example 7 are emitted from the display element as compared with the display device B used in Example 6.
  • the spectrum of light incident on the optical laminate tends to be sharp, and color reproducibility is likely to occur.
  • the effects of the present invention are also effectively exhibited in the display devices A and C.
  • BT Based on the CIE-xy chromaticity diagram. The higher the coverage ratio of 2020 (in the order of A, C, and B), the more realistic the image was.
  • the optical layered body of the present invention is applied to the viewer side of a display device having a display element and a polarizer in order, and even when the display screen is observed from either the front direction or the oblique direction through the polarized sunglasses, without polarized sunglasses. There is little difference in the color appearance from the observed one, and the color reproducibility is good. Moreover, the problem of blackout when the display screen is observed through polarized sunglasses can be solved.
  • the optical layered body of the present invention is suitable as an optical film used on the outermost surface of a foldable display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

少なくとも2種のフィルムを含む光学積層体であって、前記光学積層体は少なくとも、所定の条件(1)を満たすフィルムAと、所定の条件(2)を満たすフィルムCとを含み、該光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)が4,000~30,000nmであり、該光学積層体面に対し垂直でかつ該フィルムAの面内において屈折率が最も大きい方向である遅相軸に沿った面内で、該光学積層体面の垂直軸から該遅相軸方向に40度傾斜した軸方向から観測されるリタデーション値Re(40)が4,000~25,000nmである光学積層体、及び該光学積層体を有する表示装置。

Description

光学積層体及び表示装置
 本発明は、光学積層体及び表示装置に関する。
 液晶表示装置に代表される表示装置は、輝度、解像度、色域等の性能が急速に進歩している。そして、これら性能の進歩に比例して、携帯用情報端末、カーナビゲーションシステム等の屋外での使用を前提とした表示装置が増加している。
 日差しの強い屋外等の環境では、眩しさを軽減するために偏光機能を備えたサングラス(以下、「偏光サングラス」と称する。)をかけた状態で表示装置を観察する場合がある。
 偏光板を含む表示装置を偏光サングラスを通して観察する場合、表示装置の偏光の吸収軸と、偏光サングラスの偏光の吸収軸とが直交すると画面が暗くなり見えなくなる(以下、「ブラックアウト」と称する。)という問題、及び表示装置内の配置された光学フィルムのリタデーションに起因するグラデーション調の色ムラ(以下、単に「色ムラ」ともいう)が生じるという問題がある。
 前記問題を解決するために、特許文献1の手段が提案されている。
特開2011-107198号公報
 特許文献1は、バックライト光源として白色発光ダイオード(白色LED)を用いた液晶表示装置において、偏光板の視認側に3000~30000nmのリタデーションを有する高分子フィルムを特定の角度で配置することを特徴とするものである。特許文献1の手段では、バックライト光源として白色発光ダイオード(白色LED)を用いた液晶表示装置において、ブラックアウト及び色ムラの問題を解消している。
 一方で、輝度、解像度、色域等を向上するために、表示装置の光源及び表示素子が多様化している。例えば、液晶表示装置のバックライトの光源としては、特許文献1で用いている白色LEDが多く用いられているが、近年、バックライトの光源として量子ドットを用いた液晶表示装置が提案され始めている。また、現在の表示素子の主流は液晶表示素子であるが、有機EL表示素子の実用化が広がりつつある。
 しかしながら、これらの表示装置を偏光サングラスを通して観察した場合、前記問題(ブラックアウト及び色ムラ)を生じなくても、色の再現性に問題を生じる場合があった。ここでいう色の再現性とは、表示装置を裸眼で観察した場合と、偏光サングラスを通して観察した場合とで色の見え方が異なるという現象である。
 また、近年急速に普及してきているタッチパネル搭載表示装置は、折り畳み可能であることが望まれてきており、該表示装置に用いる表示素子としては有機EL表示素子が好適である。
 折り畳み可能な表示装置に用いる光学フィルムには、優れた硬度を有すると共に、繰り返し折り畳んでもクラックの生じることのない優れた耐久折り畳み性能が求められる。
 光学フィルムに耐久折り畳み性能を付与するために、当該光学フィルムの基材フィルムとしてポリイミドフィルムを用いることが検討されている。しかしながら、表示素子、偏光子、及び、ポリイミドフィルムを順に有する表示装置を偏光サングラスを通して観察した場合、特に、斜め方向から観察した場合に前述した色再現性の問題が顕著に生じることが見出された。
 ここで、ポリイミドフィルムはいわゆる負のCプレート特性を有するフィルムである。「負のCプレート特性を有するフィルム」とは、フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n≧n>nの関係を満たすフィルムをいう。しかしながら、表示素子、偏光子、及び、光学フィルムとして負のCプレート特性を有するポリイミドフィルムのみを適用した表示装置では、前述したブラックアウトの問題も解消されない。
 本発明は、表示素子及び偏光子を順に有する表示装置の視認者側に適用する光学積層体において、ポリイミドフィルムのような負のCプレート特性を有するフィルムを用いた場合であっても、正面方向及び斜め方向のいずれから表示画面を観察した際にも前述した色再現性が良好であり、ブラックアウトの問題も解消し得る光学積層体、及び該光学積層体を有する表示装置を提供することを目的とする。
 本発明者らは、少なくとも2種の特定のフィルムを含む光学積層体とし、該光学積層体全体として所定の光学特性を満たすような設計とすることで前記課題を解決できることを見出した。
 本発明は、以下の光学積層体及び表示装置を提供する。
[1]少なくとも2種のフィルムを含む光学積層体であって、前記光学積層体は少なくとも、下記条件(1)を満たすフィルムAと、下記条件(2)を満たすフィルムCとを含み、該光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)が4,000~30,000nmであり、該光学積層体面に対し垂直でかつ該フィルムAの面内において屈折率が最も大きい方向である遅相軸に沿った面内で、該光学積層体面の垂直軸から該遅相軸方向に40度傾斜した軸方向から観測されるリタデーション値Re(40)が4,000~25,000nmである光学積層体。
 条件(1):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n>n≧nの関係である。
 条件(2):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n≧n>nの関係である。
[2]前記フィルムCがポリイミドフィルム及びポリアラミドフィルムからなる群から選ばれる、[1]に記載の光学積層体。
[3]前記フィルムAが延伸ポリエステル系フィルムである、[1]又は[2]に記載の光学積層体。
[4]少なくとも、表示素子、偏光子、及び、[1]~[3]のいずれか1項に記載の光学積層体を順に有する表示装置。
[5]前記表示素子が有機EL表示素子である、[4]に記載の表示装置。
[6]前記有機EL表示素子が三色独立方式の有機EL表示素子である、[5]に記載の表示装置。
[7]前記光学積層体に含まれる前記フィルムCが前記フィルムAよりも視認者側となるよう配置されたものである、[4]~[6]のいずれか1項に記載の表示装置。
[8]折り畳み可能な表示装置である、[4]~[7]のいずれか1項に記載の表示装置。
 本発明の光学積層体は、表示素子及び偏光子を順に有する表示装置の視認者側に適用し、偏光サングラスを通して正面方向及び斜め方向のいずれから表示画面を観察した際にも、偏光サングラスなしで観察した場合との色の見え方の違いが少なく、色再現性が良好である。また、偏光サングラスを通して表示画面を観察した場合のブラックアウトの問題も解消できる。本発明の光学積層体は、折り畳み可能な表示装置の最表面に用いる光学フィルムとして好適である。
条件(1)を満たし、フィルム面に対し垂直軸方向から観測されるリタデーション値が3,000nmであるフィルムAの、垂直軸方向からθ度傾斜した角度ごとのリタデーション値である。 本発明の光学積層体の実施形態の一例を示す断面模式図である。 本発明の表示装置の実施形態の一例を示す断面模式図である。
[光学積層体]
 本発明の光学積層体は、少なくとも、下記条件(1)を満たすフィルムAと、下記条件(2)を満たすフィルムCの2種のフィルムを含み、該光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)が4,000~30,000nmであり、該光学積層体面に対し垂直でかつ該フィルムAの面内において屈折率が最も大きい方向である遅相軸に沿った面内で、該光学積層体面の垂直軸から該遅相軸方向に40度傾斜した軸方向から観測されるリタデーション値Re(40)が4,000~25,000nmであることを特徴とする。
 条件(1):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n>n≧nの関係である。
 条件(2):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n≧n>nの関係である。
 本発明の光学積層体は上記構成とすることにより、表示素子及び偏光子を順に有する表示装置の視認者側に適用した場合に、上記条件(2)を満たす、負のCプレート特性を有するフィルムCに由来する性能(例えば、フィルムCがポリイミドフィルムの場合は耐久折り畳み性能など)を付与しつつ、表示画面を偏光サングラスを通して正面方向及び斜め方向のいずれから観察した際にも前述した色再現性を良好にすることができる。また、前述したブラックアウト問題を解消することができる。
 光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)は、光学積層体の面内において屈折率が最も大きい方向である遅相軸方向の屈折率nと、光学積層体の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率nと、光学積層体の厚みdとにより、下記式によって表されるものである。
  リタデーション値Re(0)=(n-n)×d
 上記リタデーション値は、例えば、王子計測機器(株)製の位相差測定装置「KOBRA-WR」、超高位相差測定装置「PAM-UHR100」、大塚電子(株)製の位相差測定装置「RETS-100」により測定できる。なお、本明細書におけるリタデーション値は、特に断りのない限り、波長550nmにおけるリタデーション値である。
 また、二以上の偏光子を用いて、光学積層体の配向軸方向(主軸の方向)を求めた後、二つの軸(配向軸の屈折率、及び配向軸に直交する軸)の屈折率(n、n)を、アッベ屈折率計(アタゴ社製 NAR-4T)によって求める。ここで、より大きい屈折率を示す軸を遅相軸と定義する。光学積層体の厚みdは、例えば、走査型透過電子顕微鏡(STEM)を用いて撮影した断面の画像から10箇所の厚みを測定し、10箇所の値の平均値から算出できる。STEMの加速電圧は10kV~30kV、倍率は100~700倍とすることが好ましい。複屈折率(n-n)と、光学積層体の厚みd(nm)との積より、リタデーション値を計算することもできる。
 また、リタデーション値Re(40)は、光学積層体面に対し垂直でかつフィルムAの遅相軸に沿った面内で、光学積層体面の垂直軸から光学積層体に含まれるフィルムAの遅相軸方向に40度傾斜した軸方向から観測されるリタデーション値である。Re(40)は、光学積層体面の垂直軸から40度傾斜した角度から光を入射させ、光学積層体の光出射面において、該光出射面の垂直軸からフィルムAの遅相軸方向に40度傾斜した角度でのリタデーション値を、位相差測定装置を用いて測定する。具体的には実施例に記載の方法で測定できる。
 さらに、光学積層体の厚み方向のリタデーション値をRthとすると、Rthは、光学積層体の面内において屈折率が最も大きい方向である遅相軸方向の屈折率nと、光学積層体の面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率nと、光学積層体の厚み方向の屈折率nと、光学積層体の厚みdとにより、下記式によって表されるものである。
  Rth=[{(n+n)/2}-n]×d
 なお光学積層体に含まれる各フィルムのリタデーション値及び厚みも、前記と同様の方法で測定又は算出できる。
 以下に、本発明について説明する。
 表示素子、偏光子、及び光学積層体を順に有する表示装置においては、表示画面を観察した際の色の見え方が偏光サングラスの有無によって異なることがある。この原因は、光学積層体が有するリタデーションと、複屈折の波長依存性によるものである。またこの原因は、光学積層体を観察する角度によって、観測されるリタデーション値が変化することにもある。
 人間が表示装置を視認する場合、多くの場合、視線が表示画面に垂直になるように視認する。表示画面をこのように視認した場合、表示画面の中心付近と視線との関係は垂直であるが、表示画面の周辺領域と視線とは一定の角度を有している。つまり、人間が表示装置を視認する場合、視野の中のリタデーション値が異なる領域が存在している(より正確に言うと、視野の中のリタデーション値は連続的に変化している)。また、複数人が同時に表示画面を観察する場合、各人がリタデーション値の異なる領域を観察することになる。
 まず、本発明の光学積層体は、例えば耐久折り畳み性能などを付与する観点から、前記条件(2)を満たすフィルムCを含む。
 前記条件(2)を満たすフィルムCは、フィルム面に対し垂直軸方向から観測されるリタデーション(以下「フィルムの面内方向のリタデーション」又は「面内リタデーション」ともいう)が存在しないか又は極めて小さいが、フィルムの厚み方向のリタデーションが存在する。
 ここで、表示素子、偏光子、及びフィルムCを順に積層した表示装置Xを作製し、表示装置Xの視認者側、すなわちフィルムC側から表示装置Xの表示画面を観察したとする。偏光サングラスなしで表示装置Xを観察した場合、フィルムCを通過した光が人間の目で視認されることになる。一方、偏光サングラスをかけて表示装置Xを観察した場合、フィルムCを通過し、さらに偏光サングラスを通過した光が人間の目で視認される。偏光サングラスは受光側の偏光子(検光子)としての作用を有する。
 表示装置Xを正面(垂直軸方向)から観察した際には、この方向から観測されるフィルムCのリタデーション値は極めて小さいため、偏光サングラスの有無によらず、表示画面の色の見え方はほぼ同じになる。
 これに対し、上記表示装置Xを斜め方向から観察した場合には、偏光サングラスの有無によって色の見え方が大きく異なることがある。この理由は、フィルムCを斜め方向(フィルムC面の垂直軸から傾斜した軸方向)から観察した場合には、フィルムCの厚み方向のリタデーションに起因して一定以上のリタデーション値が観測されるので、このリタデーション値の影響により、表示装置Xを偏光サングラスなしで観察した場合と、偏光サングラスを通して観察した場合とで、人間の目で視認される光の分光スペクトルの形状が異なるためである。
 フィルムCを斜め方向から観察した場合に観測されるリタデーション値が極めて大きい場合には、偏光サングラスを通して観察した場合でも、表示画面の色の見え方の違いは視認されない。しかしながら上記以外の場合は、フィルムCを斜め方向から観察した場合に観測されるリタデーション値の影響で、偏光サングラスの有無により表示画面の色の見え方が変わることになる。
 また、フィルムCのみを視認者側に設けた表示装置Xを正面方向から観察した際には、表示装置Xの偏光の吸収軸と、偏光サングラスの偏光の吸収軸とが直交する角度においてはブラックアウトが生じる。
 例えば光学積層体に耐久折り畳み性能などを付与するために、ポリイミドフィルムのような条件(2)を満たすフィルムCを用いる必要がある場合には、以上のような問題を解決する必要があった。
 本発明の光学積層体は、上記フィルムCに加えて、さらに前記条件(1)を満たすフィルムAを含むことを特徴とする。フィルムAはいわゆる正のAプレート特性を有するフィルムであり、フィルム面に対し垂直軸方向から観測されるリタデーション(フィルムの面内方向のリタデーション)が存在するが、フィルムの厚み方向のリタデーションは存在しないかまたは極めて小さい。面内方向にリタデーションを有するフィルムAを含むことで、本発明の光学積層体は上述したブラックアウトの問題を解消することができる。これは、表示素子からの出射光が偏光子を通過して直線偏光になるが、この直線偏光がフィルムAを通過すると偏光が乱されるためである。
 但し、フィルムAの面内方向のリタデーションが十分に大きくないと、人間の目に視認される光の分光スペクトルの形状が偏光サングラスの有無によって変わるため、前述した色再現性が低下する。
 ここで、フィルムAは、垂直軸方向からn(遅相軸)方向側に傾いて観察した場合、傾斜角が大きくなるにつれてリタデーション値が小さくなる。図1は、前記条件(1)を満たし、フィルム面に対し垂直軸方向から観測されるリタデーション値が3,000nmであるフィルムAの、垂直軸方向からn方向(遅相軸方向)にθ度傾いた角度ごとのリタデーション(図1の実線)、及び、垂直方向からn方向(進相軸方向)にθ度傾いた角度ごとのリタデーション(図1の破線)の一例である。図1から、n>n≧nの関係を有するフィルムAは、垂直方向からn方向側に傾いて観察した場合、傾斜角が大きくなるにつれてリタデーション値が小さくなることが確認できる。
 すなわち、フィルムAは、垂直軸方向からn方向側に傾斜した軸方向から観測されるリタデーション値が傾斜角が大きくなるにつれて小さくなるので、該フィルムAを含む光学積層体を表示装置に適用した際には、垂直軸方向からn方向側に傾斜した軸方向から表示画面を見た場合、前述した色再現性の点で最も不利に働くことになる。
 本発明の光学積層体は上記事情を鑑みて設計されたものであり、以上のような条件(1)を満たすフィルムA及び条件(2)を満たすフィルムCの両方を含む場合であっても、光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)が4,000~30,000nmであり、該光学積層体面の垂直軸から該フィルムAのn方向に40度傾斜した軸方向から観測される前記リタデーション値Re(40)が4,000~25,000nmであるという要件を満たす構成とすれば、前述した本発明の課題を解決できることを見出したものである。光学積層体のRe(0)が4,000nm未満であると、表示装置に適用した際に、表示画面を正面から見た際の色再現性が不十分である。また光学積層体のRe(40)が4,000nm未満であると、表示装置に適用した際に、表示画面を斜め方向から見た際の色再現性が不十分である。
 Re(40)は、前記のとおり、光学積層体面に対し垂直でかつフィルムAの遅相軸に沿った面内で、垂直軸からフィルムAのn方向に40度傾斜した方向から光学積層体を見た場合に観測されるリタデーション値に相当する。垂直軸からの傾斜角度を「フィルムAの遅相軸方向に40度傾斜した軸方向」に設定した理由は、40度を超える角度で表示装置の表示画面を観察することがほとんどないことを考慮したものである。また、フィルムAは垂直軸から遅相軸方向に傾斜した軸方向から観測されるリタデーション値が最も小さくなるため、光学積層体においてこの方向から観測されるリタデーション値が所定の値以上であれば、幅広い角度から表示画面を観察した際の色再現性を良好にすることができる。
 前述した色再現性を得る観点から、Re(0)は、好ましくは4,000nm以上、より好ましくは5,000nm以上、さらに好ましくは7,000nm以上であり、光学積層体を過度に厚くすることを回避する観点から、好ましくは20,000nm以下、より好ましくは15,000nm以下である。また、表示素子、偏光子及び光学積層体を順に有する表示装置を斜め方向から観察した際の色再現性の観点から、Re(40)は、好ましくは4,000nm以上、より好ましくは5,000nm以上、さらに好ましくは7,000nm以上であり、光学積層体を過度に厚くすることを回避する観点から、好ましくは20,000nm以下、より好ましくは15,000nm以下である。
<フィルムA>
 本発明の光学積層体が有するフィルムAは、下記条件(1)を満たすものである。
 条件(1):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n>n≧nの関係である。
 フィルムAの厚み方向のリタデーション値は、条件(1)を満たす限り特に制限はないが、0nm以上であることが好ましい。
 光学積層体のRe(0)及びRe(40)を大きくする観点から、フィルムAの面内リタデーション値R(0)は、好ましくは4,000nm以上、より好ましくは5,000nm以上、さらに好ましくは7,000nm以上である。また、光学積層体を過度に厚くすることを回避する観点から、R(0)は、好ましくは25,000nm以下、より好ましくは20,000nm以下である。
 フィルムAの厚みは特に制限されないが、光学積層体のRe(0)及びRe(40)を大きくする観点から、好ましくは5μm以上、より好ましくは10μm以上であり、光学積層体を過度に厚くすることを回避する観点から、好ましくは300μm以下、より好ましくは200μm以下である。
 フィルムAとしては、条件(1)を満たし、光透過性を有するフィルムであれば特に制限されないが、例えば、ポリエステル系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム、アクリルフィルム等を延伸したフィルムが挙げられる。中でも、機械的強度を高めるとともに、得られる光学積層体のRe(0)及びRe(40)を大きくする観点から、延伸ポリエステル系フィルムであることが好ましい。延伸は、縦一軸延伸、横一軸(テンター)延伸、逐次二軸延伸及び同時二軸延伸等が挙げられる。これらの中でも、遅相軸の方位が定まり易いことから、縦一軸延伸又は横一軸延伸であることが好ましい。
 ポリエステル系フィルムとしては、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリエチレンナフタレートフィルム(PENフィルム)及びポリブチレンテレフタレートフィルム(PBTフィルム)等が挙げられる。
 また、ポリエステル系フィルムの中でも、PETフィルム又はPENフィルムが好ましく、PETフィルムがより好ましい。これらのフィルムは、厚みが薄くても高い面内リタデーションを得ることができるので、光学積層体のRe(0)及びRe(40)を大きくすることができ、表示装置全体の厚みを薄くしながら色再現性を向上できる点で優れている。
<フィルムC>
 本発明の光学積層体が有するフィルムCは、下記条件(2)を満たすものである。
 条件(2):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n≧n>nの関係である。
 フィルムCの面内方向のリタデーション値は、200nm以下であることが好ましい。すなわち、フィルムCはn>nであってもよいが、その場合でも面内方向のリタデーション値が200nm以下であることが好ましい。フィルムA及びフィルムCを含む光学積層体を有する表示装置において、表示画面を斜め方向から視認した場合の色再現性を良好にするために、前述したRe(40)においてフィルムAの遅相軸方向に傾斜した軸方向から観測されるリタデーション値のみを実質的に考慮すればよいためである。また、フィルムAとフィルムCとを積層する際に遅相軸方向を合わせる必要も生じない。
 光学積層体のRe(40)を大きくする観点から、フィルムCの厚み方向のリタデーション値Rthは、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは200nm以上、よりさらに好ましくは1,000nm以上、よりさらに好ましくは2,000nm以上である。また、光学積層体を過度に厚くすることを回避する観点から、Rthは、好ましくは10,000nm以下、より好ましくは7,000nm以下である。
 フィルムCの厚みは特に制限されないが、光学積層体のRe(40)を大きくする観点から、好ましくは10μm以上、より好ましくは15μm以上であり、光学積層体を過度に厚くすることを回避する観点から、好ましくは150μm以下、より好ましくは100μm以下である。
 また、光学積層体に耐久折り畳み性能を付与する観点からは、フィルムCの厚みは、好ましくは10~80μm、より好ましくは15~60μmである。
 条件(2)を満たすフィルムCとしては、例えば、ポリイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルム及びポリエーテルエーテルケトンフィルムからなる群から選ばれるフィルムが挙げられる。これらの中でも、光学積層体に耐久折り畳み性能を付与する観点からはポリイミドフィルム及びポリアラミドフィルムからなる群から選ばれるフィルムが好ましく、ポリイミドフィルムがより好ましい。
 一般に、ポリイミドフィルム及びポリアラミドフィルムは分子中に芳香環を有することから、着色(黄色)されているものが一般的であるが、本発明のように光学積層体用途である場合、分子中の骨格を変更して透明性を高めた「透明ポリイミド」や「透明ポリアラミド」と呼ばれるフィルムである。一方、着色された従来のポリイミドフィルム等は、耐熱性と屈曲性との面から、プリンターや電子回路等の電子材料用に使用されることが好ましいものである。
 ポリイミドフィルムを構成するポリイミドとしては、下記一般式(I)で表される繰り返し構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000001

 一般式(I)中、Xは4価の有機基であり、Rは2価の有機基である。
 一般式(I)におけるXとしては、非環式脂肪族基、環式脂肪族基、及び、芳香族基からなる群から選ばれる少なくとも1種の、4価の有機基が挙げられる。環式脂肪族基としては、単環式脂肪族基、縮合多環式脂肪族基、及び、2以上の脂肪族環が直接又は結合基により連結された非縮合多環式脂肪族基が挙げられる。芳香族基としては、単環式芳香族基、縮合多環式芳香族基、及び、2以上の芳香環が直接又は結合基により連結された非縮合多環式芳香族基等が挙げられる。
 上記結合基としては、炭素数1~10のアルキレン基、炭素数2~10のアルキリデン基、-O-、-SO-、-CO-、-CO-NR-(Rは炭素数1~3のアルキル基、又は水素原子を表す)が挙げられる。炭素数1~10のアルキレン基、及び炭素数2~10のアルキリデン基の水素原子のうち少なくとも1つは、フッ素含有基で置換されていてもよい。フッ素含有基としては、フルオロ基、トリフルオロメチル基等が挙げられる。
 Xが環式脂肪族基又は芳香族基である場合、炭素原子の一部がヘテロ原子で置き換えられていてもよい。ヘテロ原子の例としては、O、N、Sが挙げられる。
 Xの炭素数は、好ましくは2~32、より好ましくは4~24、さらに好ましくは4~18である。
 Xは、前記フッ素含有基や、水酸基、スルホン基、炭素数1~10のアルキル基等の置換基を有していてもよい。得られるポリイミドフィルムの透明性の観点からは、上記置換基の中でもフッ素含有基が好ましい。
 得られるポリイミドフィルムの耐久折り畳み性能の観点からは、Xで表される4価の有機基は、環式脂肪族基及び芳香族基からなる群から選ばれる少なくとも1種を含む基であることが好ましく、環式脂肪族基及び芳香族基からなる群から選ばれる基であることがより好ましい。また、得られるポリイミドフィルムの透明性及び耐久折り畳み性能の観点からは、Xで表される4価の有機基は、環式脂肪族基及びフッ素含有基を有する芳香族基からなる群から選ばれる少なくとも1種を含む基であることがより好ましく、環式脂肪族基及びフッ素含有基を有する芳香族基からなる群から選ばれる基であることがさらに好ましく、フッ素含有基を有する芳香族基がよりさらに好ましい。
 より具体的には、Xとしては、例えば下記式(i)~(xi)のいずれかで表される4価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000002

 上記式中、Y~Yはそれぞれ独立に、単結合、-O-、-CO-、-CH-、-CH(CH)-、-C(CH-、-CF-、-CH(CF)-、-C(CF-、又は-SO-を表す。式中の*は結合手を示す。
 上記式中、脂肪族環及び芳香環の水素原子のうち少なくとも1つは、前記フッ素含有基、水酸基、スルホン基、炭素数1~10のアルキル基等の置換基で置換されていてもよい。
 一般式(I)におけるRとしては、非環式脂肪族基、環式脂肪族基及び芳香族基からなる群から選ばれる少なくとも1種の、2価の有機基が挙げられる。環式脂肪族基としては、単環式脂肪族基、縮合多環式脂肪族基、及び、2以上の脂肪族環が直接又は結合基により連結された非縮合多環式脂肪族基が挙げられる。芳香族基としては、単環式芳香族基、縮合多環式芳香族基、及び、2以上の芳香環が直接又は結合基により連結された非縮合多環式芳香族基等が挙げられる。
 上記結合基としては、炭素数1~10のアルキレン基、炭素数2~10のアルキリデン基、-O-、-SO-、-CO-、-CO-NR-(Rは炭素数1~3のアルキル基、又は水素原子を表す)が挙げられる。炭素数1~10のアルキレン基、及び炭素数2~10のアルキリデン基の水素原子のうち少なくとも1つは、フッ素含有基で置換されていてもよい。フッ素含有基としては、フルオロ基、トリフルオロメチル基等が挙げられる。
 Rが環式脂肪族基又は芳香族基である場合、炭素原子の一部がヘテロ原子で置き換えられていてもよい。ヘテロ原子の例としては、O、N、Sが挙げられる。
 Rの炭素数は、好ましくは2~40、より好ましくは4~32、さらに好ましくは5~24、よりさらに好ましくは5~18である。
 Rは、前記フッ素含有基や、水酸基、スルホン基、炭素数1~10のアルキル基等の置換基を有していてもよい。得られるポリイミドフィルムの透明性の観点からは、上記置換基の中でもフッ素含有基が好ましい。
 得られるポリイミドフィルムの耐久折り畳み性能の観点からは、Rで表される2価の有機基は、環式脂肪族基及び芳香族基からなる群から選ばれる少なくとも1種を含む基であることが好ましく、環式脂肪族基及び芳香族基からなる群から選ばれる基であることがより好ましい。また、得られるポリイミドフィルムの透明性及び耐久折り畳み性能の観点からは、Rで表される2価の有機基は、環式脂肪族基及びフッ素含有基を有する芳香族基からなる群から選ばれる少なくとも1種を含むことがより好ましく、環式脂肪族基及びフッ素含有基を有する芳香族基からなる群から選ばれる基であることがさらに好ましく、フッ素含有基を有する芳香族基がよりさらに好ましい。
 より具体的には、Rとしては、例えば下記式(xii)~(xviii)のいずれかで表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000003

 上記式中、Y~Yはそれぞれ独立に、単結合、-O-、-CO-、-CH-、-CH(CH)-、-C(CH-、-CF-、-CH(CF)-、-C(CF-、又は-SO-を表す。式中の*は結合手を示す。
 上記式中、脂肪族環及び芳香環の水素原子のうち少なくとも1つは、前記フッ素含有基、水酸基、スルホン基、炭素数1~10のアルキル基等の置換基で置換されていてもよい。
 得られるポリイミドフィルムの透明性の観点からは、一般式(I)におけるX及びRのうち少なくとも一方がフッ素含有基を有することが好ましい。
 上記ポリイミドフィルムとしては、より具体的には、例えば、下記式(1)~(17)で表される構造を有するものが挙げられる。なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 ポリイミドフィルムを構成するポリイミドは、本発明の効果が損なわれない限り、その一部にポリアミド構造を含んでいてもよい。当該ポリアミド構造としては、例えば、トリメリット酸無水物等のトリカルボン酸由来の繰り返し単位を含むポリアミドイミド構造や、イソフタル酸、テレフタル酸等のジカルボン酸由来の繰り返し単位を含むポリアミド構造等が挙げられる。
 また、ポリアラミドフィルムを構成するポリアラミドとは、一般的に、下記式(18)又は(19)で表される構造を有するものである。フィルムCとして用いることができるポリアラミドフィルムを構成するポリアラミドとしては、例えば、下記式(20)で表される構造を有するものが挙げられる。なお、下記式中、nは、繰り返し単位であり、2以上の整数を表す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 前記式(1)~(17)で表される構造を有するポリイミドフィルム、及び前記式(20)で表される構造を有するポリアラミドフィルムとして、市販のものを用いてもよい。ポリイミドフィルムの市販品としては、例えば、三菱瓦斯化学(株)製「ネオプリム」等が挙げられ、ポリアラミドフィルムの市販品としては、例えば、東レ(株)製「ミクトロン」等が挙げられる。
 また、ポリイミドフィルム及びポリアラミドフィルムは、公知の方法により合成した樹脂を用いて作製されたものでもよい。
 ポリイミドフィルムを構成する前記ポリイミドは、通常、テトラカルボン酸無水物等のテトラカルボン酸化合物とジアミン化合物とを公知の方法により重縮合反応させて得ることができる。例えば、前記式(1)で表される構造を有するポリイミド樹脂の合成方法は、特開2009-132091に記載されており、具体的には、下記式(21);
Figure JPOXMLDOC01-appb-C000024
で表される4,4’-ヘキサフルオロプロピリデンビスフタル酸二無水物(FPA)と2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル(TFDB)とを反応させることにより得ることができる。
 ポリイミドフィルム又はポリアラミドフィルムを構成する樹脂の重量平均分子量は、3,000~50万の範囲であることが好ましく、5,000~30万の範囲であることがより好ましく、1万~20万の範囲であることがさらに好ましい。重量平均分子量が3,000以上であれば十分な強度が得られ、50万以下であれば表面が平滑で膜厚が均一なフィルムを容易に得ることができる。
 なお、本明細書において、重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である。
 ポリイミドフィルム及びポリアラミドフィルムの中でも、優れた透明性を有することから、分子内又は分子間の電荷移動が起こりにくい構造を有するポリイミドフィルム又はポリアラミドフィルムが好ましい。具体的には、前記式(1)~(8)からなる群から選ばれる1種以上の構造を有するフッ素化ポリイミドフィルム、前記式(9)~(12)からなる群から選ばれる1種以上の構造を有する、環状脂肪族基を含むポリイミドフィルム、又は、前記式(20)の構造を有する、ハロゲン基を有するポリアラミドフィルムが好ましく、前記式(1)~(8)からなる群から選ばれる1種以上の構造を有するフッ素化ポリイミドフィルム、又は、前記式(20)の構造を有する、ハロゲン基を有するアラミドフィルムがより好ましい。中でも、上記フッ素化ポリイミドフィルムは、フッ素化された構造を有するため高い耐熱性を有しており、ポリイミドフィルム製造時の熱によって着色されることもないので、優れた透明性を有する。
 なかでも、優れた透明性、及び極めて優れた硬度を付与できることから、前記式(1)で表される構造を有するポリイミドフィルムを用いることがより好ましい。
 本発明の光学積層体は、少なくとも前記フィルムAとフィルムCの2種のフィルムを含んでいればよく、フィルムA、フィルムCがそれぞれ複数枚積層された態様も含む。また、フィルムAとフィルムCとは互いに接していてもよいし、接着層などの他の層を介して積層されていてもよい。
 なお、光学積層体が面内リタデーションを有する複数のフィルムを含む場合には、これらのフィルムは、面内での遅相軸の方向が略同一になるように積層されることが好ましい。「遅相軸の方向が略同一」であるとは、面内リタデーションが最も大きいフィルムの遅相軸を基準として、該フィルムの遅相軸と、それ以外のフィルムの遅相軸とがなす角度が±10°未満の範囲であることをいう。
<機能層>
 本発明の光学積層体は、前述したフィルムA及びフィルムC以外に、さらに機能層を含むこともできる。当該機能層としては、ハードコート層、防汚層、導電層、反射防止層、防眩層、紫外線吸収層、帯電防止層等が挙げられる。これらの中でも、折り畳み可能な表示装置に用いる光学積層体は、硬度及び耐久折り畳み性能を付与する観点から、ハードコート層を含むことが好ましい。
 ハードコート層は、機械的強度の観点から、硬化性樹脂組成物の硬化物であることが好ましい。硬化性樹脂組成物は、熱硬化性樹脂組成物又は電離放射線硬化性樹脂組成物が挙げられ、機械的強度をより良好にする観点から、電離放射線硬化性樹脂組成物が好適である。本明細書において電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましく、エチレン性不飽和結合基を2つ以上有する化合物がより好ましく、中でも、エチレン性不飽和結合基として(メタ)アクリロイル基を2つ以上有する、多官能性(メタ)アクリレートがさらに好ましい。多官能性(メタ)アクリレートとしては、モノマー、オリゴマー、及びポリマーのいずれも用いることができる。
 なお、本明細書において「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。
 多官能性(メタ)アクリレートモノマーの中でも、ハードコート層に高硬度を付与する観点からは3~6官能のものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等が好ましい。これらの多官能性(メタ)アクリレートモノマーは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 多官能性(メタ)アクリレートオリゴマーとしては、例えば、エポキシ(メタ)アクリレートオリゴマー、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、ポリエーテル(メタ)アクリレートオリゴマー、シリコーン(メタ)アクリレートオリゴマー等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、硬化性及び硬化物性能の観点から、ウレタン(メタ)アクリレートオリゴマーが好ましい。多官能性(メタ)アクリレートオリゴマーは、ハードコート層に高硬度を付与する観点から、好ましくは3官能以上であり、より好ましくは3~12官能である。
 多官能性(メタ)アクリレートポリマーとしては、例えば、側鎖に(メタ)アクリロイル基を導入したポリマーが挙げられる。多官能性(メタ)アクリレートポリマーの主鎖はアクリル系ポリマー又はウレタン系ポリマーが好ましく、アクリル系ポリマーであることがより好ましい。多官能性(メタ)アクリレートポリマーの市販品としては、例えば、大成ファインケミカル(株)製の8BRシリーズ、8KXシリーズ、8UHシリーズ等が挙げられる。
 なお硬化物の機械的強度を損なわない範囲であれば、粘度を低下させるなどの目的で単官能性(メタ)アクリレートモノマーを併用することもできる。
 ハードコート層は、さらにシリカ微粒子を含有してもよい。ハードコート層形成用の硬化性樹脂組成物に配合するシリカ微粒子としては、反応性シリカ微粒子であることが好ましい。反応性シリカ微粒子は、上記多官能性(メタ)アクリレート等の硬化性化合物との間で架橋構造を構成することが可能なシリカ微粒子である。ハードコート層形成用の硬化性樹脂組成物が該反応性シリカ微粒子を含有することで、ハードコート層の硬度を充分に高めることができる。
 上記反応性シリカ微粒子は、その表面に反応性官能基を有することが好ましく、該反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基であり、特に好ましくは電離放射線硬化性不飽和基である。上記反応性官能基の具体例としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基等が挙げられる。
 上記シリカ微粒子は、平均一次粒子径が5~200nmであることが好ましい。また、ハードコート層中のシリカ微粒子の含有量は、該ハードコート層を構成する硬化性樹脂組成物中の樹脂成分100質量部に対して、5~60質量部であることが好ましい。
 なおシリカ微粒子の平均一次粒子径は、以下の(1)~(3)の作業により算出できる。
(1)本発明の光学積層体の断面をTEM又はSTEMで撮像する。TEM又はSTEMの加速電圧は10kV~30kV、倍率は5万~30万倍とすることが好ましい。
(2)観察画像から任意の10個の粒子を抽出し、個々の粒子の粒子径を算出する。粒子径は、粒子の断面を任意の平行な2本の直線で挟んだとき、該2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。
(3)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の粒子径の数平均から得られる値を粒子の平均一次粒子径とする。
 ハードコート層、又はハードコート層形成用の硬化性樹脂組成物には、必要に応じて、光重合開始剤、光重合促進剤、滑剤、可塑剤、充填剤、帯電防止剤、アンチブロッキング剤、架橋剤、光安定剤、紫外線吸収剤、酸化防止剤、導電剤、屈折率調整剤、溶剤、及び、染料、顔料等の着色剤等の、その他の成分が含有されていてもよい。
 ハードコート層の厚みは、2.5~10μmであることが好ましく、3.5~8.0μmであることがより好ましい。ハードコート層の厚みが2.5μm以上であれば硬度が良好であり、10μm以下であると加工性に優れる。
 ハードコート層の厚みは、例えば、走査型透過電子顕微鏡(STEM)を用いて撮影した断面の画像から10箇所の厚みを測定し、10箇所の値の平均値から算出できる。STEMの加速電圧は10kV~30kVとすることが好ましい。STEMの倍率は、測定膜厚がミクロンオーダーの場合は1000~7000倍とすることが好ましく、測定膜厚がナノオーダーの場合は5万~30万倍とすることが好ましい。
 ハードコート層の形成方法には特に制限はなく、公知の方法を用いることができる。例えばハードコート層が電離放射線硬化性樹脂組成物の硬化物である場合には、前述した電離放射線硬化性化合物、必要に応じシリカ微粒子、光重合開始剤、溶剤、並びにその他の成分を含むハードコート層形成用組成物を塗布して塗布層を形成し、該塗布層を乾燥後、前述した電離放射線を照射して硬化させる方法が挙げられる。
 上記塗布層を形成する方法としては、例えば、グラビアコート法、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ビードコーター法等の公知の各種方法を挙げることができる。塗布層の乾燥方法としては特に限定されないが、一般的に30~120℃で10~120秒間乾燥を行うことが好ましい。
 光学積層体がハードコート層を含む場合には、光学積層体の最表面に設けることが好ましい。ハードコート層は光学積層体の少なくとも一方の面に設けられ、硬度及び耐久折り畳み性能を付与する観点からは、フィルムC上に設けることがより好ましい。
 図2は、本発明の光学積層体の実施形態の一例を示す断面模式図である。図2において、10は本発明の光学積層体であり、1はフィルムA、2はフィルムC、3はハードコート層である。図示は省略するが、本発明の光学積層体はハードコート層を2層以上含んでもよく、例えば図2のハードコート層3が2層構造であってもよい。
[表示装置]
 本発明の表示装置は、少なくとも、表示素子、偏光子、及び、前述した光学積層体を順に有することを特徴とする。本発明の表示装置は折り畳み可能な表示装置であることが好ましい。表示装置の表面保護材としてガラス板等を使用せずとも、前述の光学積層体が表面保護材としての役割を果たすことができ、さらに耐久折り畳み性能も付与されるためである。折り畳み可能な表示装置とする観点からは、本発明の表示装置はガラス板を有さないことが好ましい。
 また本発明の表示装置は、後述するタッチパネルを搭載した表示装置であることが好ましい。
 図3は本発明の表示装置の実施形態の一例を示す断面模式図である。図3において、100は本発明の表示装置であり、表示素子4、偏光子5、及び光学積層体10を順に有している。例えば本発明の表示装置100が折り畳み可能な表示装置である場合には、耐久折り畳み性能を付与する観点から、光学積層体10に含まれるフィルムCがフィルムAよりも視認者側となるよう配置されたものであることが好ましい。
 図3において、光学積層体10は表示素子4側から順に、フィルムA(1)、フィルムC(2)、及びハードコート層3を有している。前述したように、ハードコート層3は光学積層体10に含まれるフィルムC上に設けられることが好ましい。また、ハードコート層3が表示装置の最表面となるよう配置されることが好ましい。
 以下、本発明の表示装置を構成する各部材について説明する。
<表示素子>
 表示素子としては、液晶表示素子、有機EL表示素子、無機EL表示素子、プラズマ表示素子等が挙げられる。なお、液晶表示素子は、タッチパネル機能を素子内に備えたインセルタッチパネル搭載型液晶表示素子であってもよい。
 これらの中でも、表示装置が折り畳み可能なものである場合は、表示素子が有機EL表示素子であることが好ましい。
(有機EL表示素子)
 有機EL表示素子としては、主として、色変換方式、カラーフィルター方式、三色独立方式の3つのタイプに分類される。
 色変換方式は、金属電極、青発光層、蛍光層(赤蛍光層、緑蛍光層)、カラーフィルター(青カラーフィルター)、透明電極及び透明基板という基本構成からなる。色変換方式では、青発光層からの光を、赤蛍光層及び緑蛍光層で赤、緑に変換し、青はカラーフィルターを通して高彩度化している。
 カラーフィルター方式は、金属電極、白色発光層、カラーフィルター(赤、緑、青の三色のカラーフィルター)、透明電極及び透明基板という基本構成からなる。カラーフィルター方式では、白色発光層からの光をカラーフィルターで赤、緑、青に変換している。
 三色独立方式は、金属電極、発光層(赤発光層、緑発光層、青発光層がそれぞれ独立して存在)、透明電極及び透明基板という基本構成からなる。三色独立方式では、カラーフィルターを用いることなく、赤、緑、青の3原色を作り出している。なお、上記透明基板としてはプラスチック基板が好ましい。
 これらの有機EL表示素子の中でも、本発明の表示装置における有機EL表示素子としては、三色独立方式の有機EL表示素子が好ましい。三色独立方式の有機EL表示素子は、該表示素子から出射して光学積層体に入射する光の分光スペクトルがシャープとなりやすく、本発明の効果が有効に発揮されやすい。該分光スペクトルがシャープであるほど、前述した色再現性の問題が生じ易いためである。また、有機EL表示素子は光取り出し効率が課題となっており、光取り出し効率を向上させるために、三色独立方式の有機EL表示素子にマイクロキャビティ構造が備えられている。このマイクロキャビティ構造を備えた三色独立方式の有機EL表示素子は、光取り出し効率を向上させればさせるほど該表示素子から出射して光学積層体に入射する光の分光スペクトルがシャープとなりやすいため、本発明の効果が有効に発揮されやすい。
 ここで、色域を表す規格として、「ITU-R勧告 BT.2020(以下、「BT.2020」と称する。)」等が挙げられる。ITU-Rは、「International Telecommunication Union - Radiocommunication Sector(国際電気通信連合 無線通信部門)」の略称であり、ITU-R勧告 BT.2020は、スーパーハイビジョンの色域の国際規格である。表示素子は、下記式で表されるCIE-xy色度図に基づくBT.2020のカバー率が60%以上のものが好ましく、65%以上のものがより好ましく、70%以上のものがさらに好ましい。
〔BT.2020のカバー率を表す式〕
 [表示素子のCIE-xy色度図の面積のうち、BT.2020のCIE-xy色度図の面積と重複する面積/BT.2020のCIE-xy色度図の面積]×100(%)
 BT.2020のカバー率を算出する際に必要となる「表示素子のCIE-xy色度図の面積」は、赤表示、緑表示、及び青表示の際のCIE-Yxy表色系のx値及びy値をそれぞれ測定し、該測定結果から得られた「赤の頂点座標」、「緑の頂点座標」及び「青の頂点座標」から算出できる。CIE-Yxy表色系のx値及びy値は、例えば、コニカミノルタ社製の分光放射輝度計CS-2000で測定できる。
<偏光子>
 本発明の表示装置において、偏光子は、表示素子の出射面上であって、光学積層体よりも表示素子側に設置される。
 当該偏光子としては、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等のシート型偏光子、平行に並べられた多数の金属ワイヤからなるワイヤーグリッド型偏光子、リオトロピック液晶や二色性ゲスト-ホスト材料を塗布した塗布型偏光子、多層薄膜型偏光子等が挙げられる。なお、これらの偏光子は、透過しない偏光成分を反射する機能を備えた反射型偏光子であってもよい。
 偏光子の両面は、プラスチックフィルム、ガラス等の透明保護板で覆うことが好ましい。透明保護板として、本発明の光学積層体を用いることも可能である。
 表示素子が有機EL表示素子である場合、偏光子は、例えば、1/4λ板との組み合わせにより反射防止性を付与するために使用される。1/4λ板及び位相差フィルムは、汎用のものを用いることができる。1/4λ板は偏光子よりも有機EL表示素子側に配置することが好ましい。位相差フィルムは偏光子の有機EL表示素子側に配置することが好ましい。
 また、表示素子が液晶表示素子の場合、液晶表示素子の光入射面側には背面偏光子が設置され、液晶表示素子の上に位置する偏光子の吸収軸と、液晶表示素子の下に位置する背面偏光子の吸収軸とを直交して配置することにより、液晶シャッターの機能を付与するために使用される。
 偏光サングラスは原則としてS偏光を吸収するため、偏光サングラスの偏光子の吸収軸の方向も原則として水平方向である。このため、表示装置の水平方向に対して、偏光子の吸収軸の方向の角度が、±10°未満の範囲内となるように設置することが好ましい。該角度は±5°未満の範囲とすることがより好ましい。
 表示素子と光学積層体との間には2以上の偏光子を有していてもよい。この場合、偏光子の吸収軸と光学積層体に含まれるフィルムAの遅相軸とのなす角度のうち最も小さい角度が、45±10°未満の範囲内となるように偏光子及び光学積層体を設置することが好ましい。
<タッチパネル>
 本発明の表示装置は、表示素子の出射面上にタッチパネルを備えたタッチパネル搭載型表示装置であってもよい。
 タッチパネルと光学積層体との位置関係は特に限定されない。例えば、表示素子と光学積層体との間にタッチパネルを有してもよいし、光学積層体上にタッチパネルを有してもよい。また、タッチパネルの構成部材として光学積層体を用いてもよい。
 折り畳み可能な表示装置において本発明の光学積層体により耐久折り畳み性能を付与する観点からは、表示素子と光学積層体との間にタッチパネルを有する構成であるか、タッチパネルの構成部材として光学積層体を用いることが好ましい。
 タッチパネルとしては、抵抗膜式タッチパネル、静電容量式タッチパネル、電磁誘導式タッチパネル、光学式タッチパネル及び超音波式タッチパネル等が挙げられる。
 静電容量式タッチパネルは、表面型及び投影型等が挙げられ、投影型が多く用いられている。投影型の静電容量式タッチパネルは、X軸電極と、該X軸電極と直交するY軸電極とを絶縁体を介して配置した基本構成に、回路が接続されてなるものである。該基本構成をより具体的に説明すると、(1)1枚の透明基板上の別々の面にX軸電極及びY軸電極を形成する態様、(2)透明基板上にX軸電極、絶縁体層、Y軸電極をこの順で形成する態様、(3)透明基板上にX軸電極を形成し、別の透明基板上にY軸電極を形成し、接着剤層等を介して積層する態様等が挙げられる。また、これら基本態様に、さらに別の透明基板を積層する態様が挙げられる。
 抵抗膜式タッチパネルは、導電膜を有する上下一対の透明基板の導電膜同士が対向するようにスペーサーを介して配置されてなる構成を基本構成として、該基本構成に回路が接続されてなるものである。
 タッチパネルの構成部材として本発明の光学積層体を用いる具体例としては、上記静電容量式タッチパネルの透明基板として光学積層体を用いる構成、上記抵抗膜式タッチパネルの透明基板として光学積層体を用いる構成が挙げられる。
<バックライト>
 表示装置が液晶表示装置の場合、表示素子の背面にはバックライトが配置される。
 バックライトとしては、エッジライト型バックライト、直下型バックライトのいずれも用いることができる。
 バックライトの光源としては、LED、CCFL等が挙げられるが、光源として量子ドットを用いたバックライトは、表示素子から出射して光学積層体に入射する光の分光スペクトルがシャープとなりやすく、本発明の効果が有効に発揮されやすい。
 光源として量子ドットを用いたバックライトは、少なくとも、一次光を放出する一次光源と、一次光を吸収して二次光を放出する量子ドットからなる二次光源から構成される。
 一次光源が青に相当する波長の一次光を放出する場合、二次光源である量子ドットは、一次光を吸収して赤に相当する波長の二次光を放出する第1量子ドット、及び一次光を吸収して緑に相当する波長の二次光を放出する第2量子ドットの少なくとも一種を含むことが好ましく、前記第1量子ドット及び前記第2量子ドットの両方を含むことがより好ましい。
 量子ドット(Quantum dot)は、半導体のナノメートルサイズの微粒子で、電子や励起子がナノメートルサイズの小さな結晶内に閉じ込められる量子閉じ込め効果(量子サイズ効果)により、特異的な光学的、電気的性質を示し、半導体ナノ粒子とか、半導体ナノ結晶とも呼ばれるものである。
 量子ドットは、半導体のナノメートルサイズの微粒子であり、量子閉じ込め効果(量子サイズ効果)を生じる材料であれば特に限定されない。
 量子ドットは、バックライトを構成する光学フィルム中に含有させればよい。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
<実施例1~7及び比較例1,2>
1.フィルムAの準備
 ポリエチレンテレフタレート(PET)を290℃で溶融して、フィルム形成ダイを通して、シート状に押出し、水冷冷却した回転急冷ドラム上に密着させて冷却し、未延伸フィルムを作製した。この未延伸フィルムを二軸延伸試験装置(東洋精機社)にて、120℃にて1分間予熱した後、120℃で4.0倍固定端一軸延伸して、フィルムA0を作製した。このフィルムA0の波長550nmにおける屈折率n=1.7005、n=1.6005、n=1.5501であった。屈折率は、アッベ屈折率計(アタゴ社製 NAR-4T)によって10回測定の平均値から求めた。
 このフィルムA0の厚みを調整し、該フィルム面に対し垂直軸方向から観測される面内リタデーション値(R(0))が以下の値を有するフィルムA1~A4を得た。なお、フィルムA1~A4は、いずれも条件(1);n>n≧nの関係を満たす。
 フィルムA1:R(0)=4,000nm
 フィルムA2:R(0)=8,500nm
 フィルムA3:R(0)=12,000nm
 フィルムA4:R(0)=3,000nm
2.フィルムCの準備
 前記式(1)で表される構造を有するポリイミドフィルム(厚み30μm)を準備し、フィルムC1として使用した。
 また、前記式(5)で表される構造を有するポリイミドフィルム(厚み30μm)を準備し、フィルムC2として使用した。
 フィルムC1、C2は、フィルム面に対し垂直軸方向から観測される面内リタデーション値(R(0))及び厚み方向のリタデーション値(Rcth)が以下の値である。なお、フィルムC1、C2は、いずれも条件(2);n≧n>nの関係を満たす。
 フィルムC1:R(0)=140nm、Rcth=6,530nm
 フィルムC2:R(0)=157nm、Rcth=3,400nm
 本実施例に記載したフィルムAの面内リタデーション値R(0)、並びに光学積層体のリタデーション値Re(0)及びRe(40)は、王子計測機器(株)製の超高位相差測定装置「PAM-UHR100」により測定した、波長550nmにおけるリタデーション値である。また、フィルムCの面内リタデーション値R(0)は、大塚電子(株)製の位相差測定装置「RETS-100」により測定した、波長550nmにおけるリタデーション値である。リタデーション値R(0)、R(0)、及びRe(0)は、入射角0度にて測定した値であり、リタデーション値Re(40)は、入射角40度にて測定した値である。
 また本実施例に記載したフィルム及び光学積層体の厚みは、走査型透過電子顕微鏡(STEM)を用いて撮影した断面の画像から10箇所の厚みを測定し、10箇所の値の平均値から算出した。
 フィルムCの厚み方向のリタデーション値(Rcth)は、前記方法で測定した各フィルムの屈折率と厚みから、下記式により算出した。
  Rcth=[{(n+n)/2}-n]×d
 n:フィルム面内において屈折率が最も大きい方向である遅相軸方向の屈折率
 n:フィルム面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率
 n:フィルムの厚み方向の屈折率n
 d:フィルムの厚み
3.ハードコート層の形成
 フィルムC1の一方の面上に、下記組成のハードコート層形成用電離放射線硬化性樹脂組成物をグラビアコート法により硬化後の厚みが8μmになるよう塗布し、塗布層を形成した。形成した塗布層を70℃で1分間加熱して塗布層中の溶剤を蒸発させた後、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が200ppm以下の条件下にて積算光量が200mJ/cmになるように照射して塗布層を完全硬化させ、ハードコート層1を形成した。ハードコート層の厚みは、走査型透過電子顕微鏡(STEM)を用いて撮影した断面の画像から10箇所の厚みを測定し、10箇所の値の平均値から算出した。
(ハードコート層形成用電離放射線硬化性樹脂組成物)
ウレタンアクリレート(UX5000、日本化薬(株)製)  25質量部
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(M403、東亜合成(株)製)         50質量部
多官能アクリレートポリマー(アクリット8KX-012C、大成ファインケミカル(株)製)                          25質量部(固形換算)
防汚剤(BYKUV3500、ビックケミー社製)     1.5質量部(固形換算)
光重合開始剤(Irg184、BASF社製)         4重量部
溶剤(MIBK)                    150質量部
4.光学積層体の作製
 表1に示す各フィルムを、各フィルムの遅相軸の方向が同一になるように配置し、接着層を介して積層して、表1の実施例及び比較例に示す構成の光学積層体を作製した。実施例4の光学積層体に関しては、上記3.でフィルムC1の一方の面上にハードコート層1を形成して得られたフィルムを使用し、該フィルムのハードコート層1の反対面と、フィルムA1とを接着層を介して積層して光学積層体を作製した。それぞれの光学積層体について、前述の方法でRe(0)及びRe(40)の値を測定した。結果を表1に示す。
5.表示装置の準備
 下記の構成の表示装置A,B,Cを準備した。光学積層体を除き、いずれの表示装置も市販品である。
<表示装置A>
 マイクロキャビティ構造を備えた三色独立方式の有機EL表示素子上に、偏光子及び光学積層体を有する表示装置。CIE-xy色度図に基づくBT.2020のカバー率:77%。
<表示装置B>
 表示素子がカラーフィルター付きの液晶表示素子であり、バックライトの光源が白色LEDであり、表示素子上に偏光子及び光学積層体を有する表示装置。CIE-xy色度図に基づくBT.2020のカバー率:49%。
<表示装置C>
 表示素子がカラーフィルター付きの液晶表示素子であり、バックライトの一次光源が青色LEDであり、二次光源が量子ドットであり、表示素子上に偏光子及び光学積層体を有する表示装置。CIE-xy色度図に基づくBT.2020のカバー率:68%。
6.評価
 上記5.で作製した光学積層体を、表1に示す各表示装置の最表面に配置して以下の評価を行った。実施例及び比較例においては、いずれも光学積層体に含まれるフィルムCがフィルムAよりも視認者側となるよう配置した。また、光学積層体は、各表示装置の偏光子の吸収軸と、光学積層体に含まれるフィルムAの遅相軸とのなす角度が45°となるよう配置した。
6-1.ブラックアウト
 表示装置の画面を白表示もしくは略白表示にした。偏光サングラスを介して様々な角度から画面を観察し、画面が暗くなる箇所があるかどうかを目視で評価した。
A:画面が暗くなる箇所がない。
C:画面が暗くなる箇所がある。
6-2.色再現性
 表示装置の画面をカラー表示にした。偏光サングラスをかけた状態(状態1)、及び偏光サングラスを外して画面上に偏光サングラスと同色に染色したガラス板を設置した状態(状態2)で、それぞれ正面方向及び斜め方向から画面を観察し、偏光サングラスをかけた状態の色の再現性を目視で評価した。
 状態1と状態2との色の差が気にならないものを2点、状態1と状態2との色の差が若干気になるものを1点、状態1と状態2との色の差がひどく気になるものを0点として、20人が評価を行い、平均点を算出した。
AA:平均点が1.7点以上
A:平均点が1.5点以上1.7点未満
B:平均点が1.0点以上1.5点未満
C:平均点が1.0点未満
Figure JPOXMLDOC01-appb-T000025
 表1の結果から、本発明の要件を満たす光学積層体は、表示装置に適用した際に、表示画面を正面方向及び斜め方向のいずれから観察した場合でも、偏光サングラスの有無による色の見え方の違いが少なく、色再現性が良好である。また、ブラックアウトの問題も解消することができる。
 これに対し、表示装置の視認者側にフィルムCのみを配置した比較例1においては、ブラックアウト問題を解消できず、また、表示画面を斜め方向から観察した場合の色再現性が低下した。なお、比較例1では表示画面を正面方向から観察した場合にブラックアウトが生じるため、正面方向の色再現性は評価できなかった。比較例2の光学積層体はフィルムAとフィルムCを含むものであるが、所定の要件を満たさないため色再現性に劣るものであった。
 なお、実施例1~5の評価で使用した表示装置A、及び実施例7の評価で使用した表示装置Cは、実施例6で使用した表示装置Bと比較して、表示素子から出射して光学積層体に入射する光の分光スペクトルがシャープとなりやすく、色再現性の問題が生じ易い。しかしながら表示装置A、Cにおいても、本発明の効果が有効に発揮されていることがわかる。これら表示装置のうち、CIE-xy色度図に基づくBT.2020のカバー率が高いほど(A,C,Bの順に)画像の臨場感に優れるものであった。
 本発明の光学積層体は、表示素子及び偏光子を順に有する表示装置の視認者側に適用し、偏光サングラスを通して正面方向及び斜め方向のいずれから表示画面を観察した際にも、偏光サングラスなしで観察した場合との色の見え方の違いが少なく、色再現性が良好である。また、偏光サングラスを通して表示画面を観察した場合のブラックアウトの問題も解消できる。本発明の光学積層体は、折り畳み可能な表示装置の最表面に用いる光学フィルムとして好適である。
 1   フィルムA
 2   フィルムC
 3   ハードコート層
 4   表示素子
 5   偏光子
 10  光学積層体
 100 表示装置

Claims (8)

  1.  少なくとも2種のフィルムを含む光学積層体であって、
     前記光学積層体は少なくとも、下記条件(1)を満たすフィルムAと、下記条件(2)を満たすフィルムCとを含み、該光学積層体面に対し垂直軸方向から観測されるリタデーション値Re(0)が4,000~30,000nmであり、該光学積層体面に対し垂直でかつ該フィルムAの面内において屈折率が最も大きい方向である遅相軸に沿った面内で、該光学積層体面の垂直軸から該遅相軸方向に40度傾斜した軸方向から観測されるリタデーション値Re(40)が4,000~25,000nmである光学積層体。
     条件(1):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n>n≧nの関係である。
     条件(2):フィルムの面内において屈折率が最も大きい方向である遅相軸方向の屈折率をn、該フィルムの面内において前記遅相軸方向と直交する方向である進相軸方向の屈折率をn、該フィルムの厚み方向の屈折率をnとした際に、n≧n>nの関係である。
  2.  前記フィルムCがポリイミドフィルム及びポリアラミドフィルムからなる群から選ばれる、請求項1に記載の光学積層体。
  3.  前記フィルムAが延伸ポリエステル系フィルムである、請求項1又は2に記載の光学積層体。
  4.  少なくとも、表示素子、偏光子、及び、請求項1~3のいずれか1項に記載の光学積層体を順に有する表示装置。
  5.  前記表示素子が有機EL表示素子である、請求項4に記載の表示装置。
  6.  前記有機EL表示素子が三色独立方式の有機EL表示素子である、請求項5に記載の表示装置。
  7.  前記光学積層体に含まれる前記フィルムCが前記フィルムAよりも視認者側となるよう配置されたものである、請求項4~6のいずれか1項に記載の表示装置。
  8.  折り畳み可能な表示装置である、請求項4~7のいずれか1項に記載の表示装置。
PCT/JP2017/024090 2016-07-01 2017-06-30 光学積層体及び表示装置 WO2018003963A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197002715A KR102091438B1 (ko) 2016-07-01 2017-06-30 광학 적층체 및 표시 장치
US16/312,777 US10668690B2 (en) 2016-07-01 2017-06-30 Optical layered body and display device
KR1020197038601A KR102102679B1 (ko) 2016-07-01 2017-06-30 광학 적층체 및 표시 장치
CN201780046669.6A CN109477931B (zh) 2016-07-01 2017-06-30 光学层叠体和显示装置
JP2018525287A JP6696669B2 (ja) 2016-07-01 2017-06-30 光学積層体及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016132077 2016-07-01
JP2016-132077 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003963A1 true WO2018003963A1 (ja) 2018-01-04

Family

ID=60787326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024090 WO2018003963A1 (ja) 2016-07-01 2017-06-30 光学積層体及び表示装置

Country Status (6)

Country Link
US (1) US10668690B2 (ja)
JP (2) JP6696669B2 (ja)
KR (2) KR102102679B1 (ja)
CN (1) CN109477931B (ja)
TW (1) TWI730138B (ja)
WO (1) WO2018003963A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119144A (ja) * 2017-01-25 2018-08-02 住友化学株式会社 ポリイミド系フィルム及び積層体
WO2020162120A1 (ja) * 2019-02-08 2020-08-13 東洋紡株式会社 折りたたみ型ディスプレイ及び携帯端末機器
EP3951452A4 (en) * 2019-03-28 2022-12-28 Toyobo Co., Ltd. ANTI-REFLECTIVE CIRCULAR POLARIZER AND IMAGE DISPLAY DEVICE THEREOF
US11899167B2 (en) 2019-05-28 2024-02-13 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
US11939499B2 (en) 2019-05-28 2024-03-26 Toyobo Co., Ltd. Multilayer film and use of same
US11997916B2 (en) 2019-02-08 2024-05-28 Toyobo Co., Ltd. Polyester film and use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278643A (zh) 2017-10-27 2020-06-12 应用材料公司 柔性盖板透镜膜
CN112601835A (zh) 2018-08-14 2021-04-02 应用材料公司 用于柔性覆盖透镜的多层湿法-干法硬涂层
TWI834032B (zh) * 2020-03-31 2024-03-01 日商大日本印刷股份有限公司 光學用之塑膠膜、以及使用其之光學積層體、偏光板及影像顯示裝置
CN111912791B (zh) * 2020-07-28 2023-12-22 歌尔光学科技有限公司 膜材检测装置及检测方法
CN112297565B (zh) * 2020-09-15 2022-08-05 东风延锋汽车饰件***有限公司 采用无缝化设计的智能显示包覆件、智能显示***及汽车
US11971567B2 (en) * 2020-10-21 2024-04-30 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, image display device, and optical film selection method
TWI806308B (zh) * 2021-07-14 2023-06-21 南韓商可隆股份有限公司 具有改良可見度之光學膜以及包括其之顯示元件
KR20230096176A (ko) * 2021-12-22 2023-06-30 삼성디스플레이 주식회사 표시 장치
CN115240609B (zh) * 2022-07-21 2023-08-22 深圳市华星光电半导体显示技术有限公司 一种显示装置的白画面的色度值的计算方法
JP2024058220A (ja) * 2022-10-14 2024-04-25 大日本印刷株式会社 表示装置用部材、および表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503315A (ja) * 2002-10-18 2006-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ベンドモードの補償液晶ディスプレイ
JP2008275812A (ja) * 2007-04-27 2008-11-13 Mitsui Chemicals Inc 厚さ方向の屈折率がコントロールされた位相差フィルム、およびその製造方法。
JP2015132691A (ja) * 2014-01-10 2015-07-23 大日本印刷株式会社 樹脂積層板及びタッチパネル
WO2017099125A1 (ja) * 2015-12-10 2017-06-15 日東電工株式会社 透明導電性フィルム積層体、及びそれを含むタッチパネル

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509723A (ja) * 1999-09-16 2003-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 光学的補償板および液晶ディスプレイiii
JP2001147323A (ja) * 1999-11-22 2001-05-29 Nitto Denko Corp 積層位相差板及び楕円偏光板並びに液晶表示装置
JP2002182036A (ja) * 2000-04-06 2002-06-26 Fujitsu Ltd 視角補償フィルム及び液晶表示装置
US6912029B2 (en) * 2000-12-18 2005-06-28 Nippon Kayaku Kabushiki Kaisha Optical film and polarizing film using the same, and method for improving view angle of the polarizing film
JP2004047128A (ja) 2002-07-08 2004-02-12 Sony Corp 有機エレクトロルミネッセンス表示装置の製造方法
US7324180B2 (en) * 2002-09-06 2008-01-29 Dai Nippon Printing Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
US6961106B2 (en) * 2002-09-13 2005-11-01 Dai Nippon Printing Co., Ltd. Retardation optical element having the function of reflecting ultraviolet light, and liquid crystal display comprising the same
JP2004250569A (ja) 2003-02-20 2004-09-09 Toray Ind Inc 光学用芳香族ポリアミドフィルム
CN100470334C (zh) * 2003-03-28 2009-03-18 富士胶片株式会社 液晶显示装置
JP4284221B2 (ja) * 2003-03-31 2009-06-24 富士フイルム株式会社 液晶表示装置
DE602004015756D1 (de) * 2003-04-08 2008-09-25 Merck Patent Gmbh Optischer film in einer flüssigkristallanzeige
JP2006284969A (ja) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd 電圧保持率の高い位相差制御機能付ディスプレー用基材
JP4116577B2 (ja) 2004-02-05 2008-07-09 日東電工株式会社 複屈折フィルム、光学フィルム、偏光板、および、液晶表示装置
WO2005093476A1 (en) * 2004-03-25 2005-10-06 Fuji Photo Film Co., Ltd. Transparent film and optical compensatory film, polarizing plate and liquid-crystal display device employing it
JP2005317507A (ja) 2004-03-30 2005-11-10 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス装置
JP4548036B2 (ja) * 2004-08-06 2010-09-22 日本ゼオン株式会社 光学積層体、偏光板、および液晶表示装置
JP4641162B2 (ja) * 2004-09-08 2011-03-02 大日本印刷株式会社 位相差層付カラーフィルタおよび液晶表示素子
JP3985969B2 (ja) * 2004-09-29 2007-10-03 日東電工株式会社 液晶パネル及び液晶表示装置
JP3851918B2 (ja) * 2004-10-22 2006-11-29 日東電工株式会社 液晶パネルおよび液晶表示装置
US20060105115A1 (en) * 2004-11-16 2006-05-18 Keiji Kashima Retardation film and method for producing the same, optical functional film, polarizing film, and display device
TWI370272B (en) 2007-11-27 2012-08-11 Ind Tech Res Inst Polarizing plates and liquid crystal displays comprising the same
JP5311605B2 (ja) * 2005-06-30 2013-10-09 日東電工株式会社 液晶パネルおよび液晶表示装置
JP5081947B2 (ja) 2006-01-13 2012-11-28 東洋インキScホールディングス株式会社 カラーフィルタおよび液晶表示装置
US8094271B2 (en) * 2006-02-03 2012-01-10 Fujifilm Corporation Liquid crystal display device and color film plate, and processes for producing the same
JP4450011B2 (ja) 2006-05-29 2010-04-14 日東電工株式会社 液晶パネル及び液晶表示装置
TW200811492A (en) * 2006-07-12 2008-03-01 Nitto Denko Corp Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same
KR101377911B1 (ko) * 2006-07-18 2014-03-25 다이니폰 인사츠 가부시키가이샤 위상차 필름, 휘도 향상 필름, 편광판, 위상차 필름의 제조 방법 및 액정 표시 장치
JP4993581B2 (ja) 2006-10-02 2012-08-08 日東電工株式会社 光学フィルム及び画像表示装置
KR20080034405A (ko) * 2006-10-16 2008-04-21 다이니폰 인사츠 가부시키가이샤 위상차 필름 및 편광판
JP4911297B2 (ja) * 2006-10-16 2012-04-04 大日本印刷株式会社 光学素子および液晶表示装置、ならびに光学素子の製造方法
US20090096962A1 (en) * 2007-05-14 2009-04-16 Eastman Chemical Company Cellulose Esters with High Hyrdoxyl Content and Their Use in Liquid Crystal Displays
JP2008297360A (ja) * 2007-05-29 2008-12-11 New Japan Chem Co Ltd 溶剤可溶性ポリイミド樹脂
JP2009025780A (ja) 2007-06-18 2009-02-05 Nitto Denko Corp 液晶パネルおよび液晶表示装置
JP5393048B2 (ja) 2007-06-29 2014-01-22 日東電工株式会社 液晶表示装置および積層偏光板ならびに偏光光源装置
JP5073427B2 (ja) * 2007-09-11 2012-11-14 日東電工株式会社 液晶パネル、及び液晶表示装置
JP4726148B2 (ja) * 2007-11-20 2011-07-20 日東電工株式会社 液晶パネル、及び液晶表示装置
JP2009157339A (ja) * 2007-12-05 2009-07-16 Nitto Denko Corp 偏光板、液晶パネルおよび液晶表示装置
JP4228029B2 (ja) 2008-05-16 2009-02-25 シャープ株式会社 折畳み式携帯機器
JP2010266777A (ja) 2009-05-18 2010-11-25 Victor Co Of Japan Ltd 折り畳み式ディスプレイ
JP4918944B2 (ja) * 2009-10-09 2012-04-18 東洋紡績株式会社 二軸配向ポリエチレンテレフタレートフィルムを用いた偏光板
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
US8953121B2 (en) 2010-04-26 2015-02-10 Sharp Kabushiki Kaisha Liquid crystal display device
US9798189B2 (en) 2010-06-22 2017-10-24 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
CN202886791U (zh) * 2012-08-31 2013-04-17 京东方科技集团股份有限公司 视角补偿装置、垂直取向液晶显示面板和液晶显示装置
TWI518410B (zh) * 2012-11-29 2016-01-21 Lg化學股份有限公司 光學膜
JP6459160B2 (ja) 2013-02-08 2019-01-30 東洋紡株式会社 画像表示装置
JP5370601B1 (ja) 2013-02-08 2013-12-18 東洋紡株式会社 画像表示装置
JP6102310B2 (ja) * 2013-02-15 2017-03-29 東洋紡株式会社 画像表示装置
JP6303266B2 (ja) * 2013-02-15 2018-04-04 東洋紡株式会社 画像表示装置
JP2015068847A (ja) 2013-09-26 2015-04-13 大日本印刷株式会社 偏光板、画像表示装置、および画像表示装置における明所コントラストの改善方法
JP2015138162A (ja) * 2014-01-23 2015-07-30 住友化学株式会社 光学異方性フィルム
JP2015170502A (ja) * 2014-03-07 2015-09-28 新日鉄住金化学株式会社 表示装置の製造方法
JP6870907B2 (ja) * 2014-03-31 2021-05-12 日東電工株式会社 光学部材、偏光板のセットおよび液晶表示装置
JP6378525B2 (ja) * 2014-04-17 2018-08-22 日東電工株式会社 有機エレクトロルミネセンス表示装置
JP6169530B2 (ja) 2014-05-13 2017-07-26 富士フイルム株式会社 液晶表示装置
JP6376849B2 (ja) * 2014-06-05 2018-08-22 日東電工株式会社 位相差フィルムの製造方法および積層偏光板の製造方法
JP6425114B2 (ja) 2014-07-02 2018-11-21 Tianma Japan株式会社 折り畳み式表示装置及び電気機器
JP5871094B2 (ja) * 2014-07-03 2016-03-01 ダイキン工業株式会社 フィルム
KR102021386B1 (ko) * 2014-10-01 2019-09-16 디아이씨 가부시끼가이샤 적층체, 및 그것을 사용한 광학 필름 또는 액정 배향막
JP2016075852A (ja) * 2014-10-08 2016-05-12 ソニー株式会社 表示装置および電子機器
JP2015180968A (ja) * 2015-07-07 2015-10-15 住友化学株式会社 偏光板および液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503315A (ja) * 2002-10-18 2006-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ベンドモードの補償液晶ディスプレイ
JP2008275812A (ja) * 2007-04-27 2008-11-13 Mitsui Chemicals Inc 厚さ方向の屈折率がコントロールされた位相差フィルム、およびその製造方法。
JP2015132691A (ja) * 2014-01-10 2015-07-23 大日本印刷株式会社 樹脂積層板及びタッチパネル
WO2017099125A1 (ja) * 2015-12-10 2017-06-15 日東電工株式会社 透明導電性フィルム積層体、及びそれを含むタッチパネル

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119144A (ja) * 2017-01-25 2018-08-02 住友化学株式会社 ポリイミド系フィルム及び積層体
JP7164304B2 (ja) 2017-01-25 2022-11-01 住友化学株式会社 ポリイミド系フィルム及び積層体
WO2020162120A1 (ja) * 2019-02-08 2020-08-13 東洋紡株式会社 折りたたみ型ディスプレイ及び携帯端末機器
CN113614815A (zh) * 2019-02-08 2021-11-05 东洋纺株式会社 折叠型显示器和移动终端设备
US11934226B2 (en) 2019-02-08 2024-03-19 Toyobo Co., Ltd. Foldable display and portable terminal device
CN113614815B (zh) * 2019-02-08 2024-05-14 东洋纺株式会社 折叠型显示器和移动终端设备
US11997916B2 (en) 2019-02-08 2024-05-28 Toyobo Co., Ltd. Polyester film and use thereof
JP7502722B2 (ja) 2019-02-08 2024-06-19 東洋紡株式会社 折りたたみ型ディスプレイ及び携帯端末機器
EP3951452A4 (en) * 2019-03-28 2022-12-28 Toyobo Co., Ltd. ANTI-REFLECTIVE CIRCULAR POLARIZER AND IMAGE DISPLAY DEVICE THEREOF
US11899167B2 (en) 2019-05-28 2024-02-13 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
US11939499B2 (en) 2019-05-28 2024-03-26 Toyobo Co., Ltd. Multilayer film and use of same

Also Published As

Publication number Publication date
KR102102679B1 (ko) 2020-04-22
TW201821259A (zh) 2018-06-16
KR102091438B1 (ko) 2020-03-23
TWI730138B (zh) 2021-06-11
CN109477931B (zh) 2019-11-05
JP2020057025A (ja) 2020-04-09
JP7062021B2 (ja) 2022-05-02
KR20190026793A (ko) 2019-03-13
KR20200003266A (ko) 2020-01-08
JPWO2018003963A1 (ja) 2019-04-18
CN109477931A (zh) 2019-03-15
US10668690B2 (en) 2020-06-02
JP6696669B2 (ja) 2020-05-20
US20190255807A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7062021B2 (ja) 光学積層体及び表示装置
JP6338155B2 (ja) 偏光板、画像表示装置、および画像表示装置における明所コントラストの改善方法
WO2015022882A1 (ja) 光学フィルム、バリアフィルム、光変換部材、バックライトユニットおよび液晶表示装置
CN112041707B (zh) 光学膜、光学层叠体及柔性图像显示装置
JP7107311B2 (ja) 積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2014006447A (ja) 偏光板一体型光学積層体
CN112041708A (zh) 光学膜、光学层叠体及柔性图像显示装置
JP6256385B2 (ja) 液晶表示装置
TW201918764A (zh) 光學膜、偏光板以及液晶顯示設備
WO2017154977A1 (ja) 有機el表示装置
CN111417879A (zh) 光学各向异性膜
WO2020203316A1 (ja) 位相差フィルム、偏光板および画像表示装置
JP6448182B2 (ja) 画像表示装置、偏光板複合体の製造方法、偏光板セットの製造方法、画像表示装置の製造方法及び画像表示装置の視認性改善方法
WO2021145231A1 (ja) フレキシブル光学積層体および画像表示装置
JP2018055125A (ja) 液晶表示装置
KR20200033749A (ko) 조성물
JP2018165837A (ja) 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法
JP6640407B1 (ja) 光学積層体、フレキシブル表示装置及び光学積層体の製造方法
JP6645491B2 (ja) 画像表示装置、画像表示装置の製造方法及び画像表示装置の視認性改善方法
WO2021261276A1 (ja) 偏光板、位相差層付偏光板および画像表示装置
WO2020100468A1 (ja) 光学積層体及びそれを備えた画像表示装置
JP2015219508A (ja) 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法
JP2020008883A (ja) 偏光板複合体、偏光板セット、画像表示装置、偏光板複合体の製造方法、偏光板セットの製造方法、画像表示装置の製造方法及び画像表示装置の視認性改善方法
JP2020166015A (ja) 反射スクリーン及びそれを用いた投射システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002715

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17820317

Country of ref document: EP

Kind code of ref document: A1