WO2017066949A1 - Fuel cell electrode material and apparatuses - Google Patents

Fuel cell electrode material and apparatuses Download PDF

Info

Publication number
WO2017066949A1
WO2017066949A1 PCT/CN2015/092499 CN2015092499W WO2017066949A1 WO 2017066949 A1 WO2017066949 A1 WO 2017066949A1 CN 2015092499 W CN2015092499 W CN 2015092499W WO 2017066949 A1 WO2017066949 A1 WO 2017066949A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fine
electrode material
cell electrode
array porous
Prior art date
Application number
PCT/CN2015/092499
Other languages
French (fr)
Inventor
Kechuang Lin
Yi-Jui Huang
Original Assignee
Kechuang Lin
Yi-Jui Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kechuang Lin, Yi-Jui Huang filed Critical Kechuang Lin
Priority to JP2017554458A priority Critical patent/JP6726210B2/en
Priority to CN201580078974.4A priority patent/CN109618561B/en
Priority to KR1020177027257A priority patent/KR102039536B1/en
Priority to PCT/CN2015/092499 priority patent/WO2017066949A1/en
Priority to TW105131721A priority patent/TWI650897B/en
Publication of WO2017066949A1 publication Critical patent/WO2017066949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • H01M4/8832Ink jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Fuel cells are a type of electrochemical device that converts the chemical energy from a fuel, including hydrogen and a hydrocarbon, such as diesel and methanol, into electricity through a chemical reaction with an oxidizing agent such as oxygen or hydrogen peroxide. Due to its high energy efficiency and its capability to produce electricity continuously so long as the fuel is supplied, a fuel cell has a wide range of applications, including transportation, material handling, stationary, portable, and emergency backup power applications.
  • a fuel cell typically requires the presence of catalyst layers at its anode and cathode electrode assemblies to lower the activation energy required for the chemical reaction from which electricity is generated.
  • the catalyst layer is conventionally designed to have finely dispersed crystallites of a precious metal catalyst, such as platinum, on a conductive carrier that has a high surface area, such as carbon papers, carbon cloth, and carbon nanotubes, in order to increase both the active surface area and the electrocatalytic activity of the catalyst.
  • a precious metal catalyst such as platinum
  • the present disclosure relates to a fuel cell electrode material for use in fuel cell apparatuses, and specifically to a fine-array porous fuel cell electrode material, and additionally relates to the application of the fuel cell electrode material in fuel cell apparatuses.
  • the fuel cell electrode material typically comprises a fine-array porous material having a plurality of pores, wherein the plurality of pores have a size of about 500 nm-5 mm, and preferably of 1000-50000 nm; the size of the plurality of pores is substantially uniform with a variation of less than about 20%; and the fine-array porous material has a porosity of about 40-85%.
  • the fine-array porous material may be composed of a metal, such as Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, Pd, Ru, Mn, Co, and Cr.
  • the fine-array porous material may be composed of an alloy, such as stainless steel, Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga.
  • an alloy such as stainless steel, Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga.
  • the fine-array porous material may be composed of a metal oxide, selected from a group consisting of CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 , Pt-WO 3 , Pt-TiO 2 , Pt-Cu-MO x , MnO 2 , CrO 2 , Cu x Mn y O z , LaMnO 3 and La1-xSr x FeO 3 .
  • a metal oxide selected from a group consisting of CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 , Pt-WO 3 , Pt-TiO 2 , Pt-Cu-MO x , MnO 2 , CrO 2 , Cu x Mn y O z , LaMnO 3 and La1-xSr x FeO 3 .
  • a fuel cell electrode material may be used in the anode or cathode catalyst layer, and typically comprises a fine-array porous material having a porosity of about 74%.
  • the fine-array porous material is composed substantially wholly of a catalytic material: such as a metal (e.g. Ru, Pd, Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, Mn, Co, and Cr) , an alloy (e.g.
  • Pt-base alloy such as Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga) , or a metal oxide (e.g.
  • the fine-array porous material may comprise a catalyst carrier, made of a cost-effective metal (e.g. Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, Zn) , a conductive ceramic (e.g.
  • the catalyst component may be coated on the surface of the catalyst carrier.
  • particles of the catalyst component may be disposed within the plurality of pores of the fine-array porous catalyst carrier.
  • the particles of catalyst component may be attached on the surface of particles of a second catalyst carrier, such as carbon nanotubes or carbon nanospheres, and they together are disposed within the plurality of pores of the fine-array porous catalyst carrier.
  • a fuel cell electrode material may be used in the water disposal layer at the anode or cathode, and is typically surface-treated, for example, by oxidation of the metal composition, or by coating with a hydrophilic material, at a designated region of the fine-array porous fuel cell electrode material to become hydrophilic.
  • Hydrophilic surface treatment of the water disposal layer electrode material may be achieved by coating the electrode material with a hydrophilic plasma in some embodiments, by treating the electrode material with a surfactant (e.g.
  • a fuel cell electrode material may be used in the gas diffusion layer at the anode or cathode, and is typically surface-treated, for example, by coating with a hydrophobic material, at a designated region to become hydrophobic.
  • Hydrophobic surface treatment of the gas diffusion layer electrode material may be achieved by coating the electrode material with a hydrophobic plasma in some embodiments, by treating the electrode material with fluorosilicones, siloxanes, or fluorocarbons in some other embodiments.
  • the fuel cell apparatus includes a membrane electrolyte assembly (MEA) , which comprises a polymer electrolyte membrane (PEM) , an anode catalyst layer and a cathode catalyst layer, wherein the polymer electrolyte membrane (PEM) is sandwiched between the anode layer and the cathode layer; at least one of the anode catalyst layer and the cathode catalyst layer comprises a fine-array porous fuel cell electrode material having a porosity of about 74%, and a catalyst.
  • MEA membrane electrolyte assembly
  • the fuel cell electrode material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn; and the catalyst is at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO 2 , MnO x -CoTMPP or CoFe 2 O 4 .
  • the catalyst is coated evenly on surface of the fine-array porous material; in some other embodiments, particles of the catalyst are disposed within the plurality of pores of the fine-array porous material; yet in some other embodiments, at least one of the anode catalyst layer and the cathode catalyst layer further comprise a catalyst carrier, such as carbon nanotubes or carbon nanospheres, wherein particles of the catalyst carrier carrying particles of the catalyst particles on outer surface of the particles of the catalyst carrier are disposed within the plurality of pores of the fine-array porous material in the at least one of the anode catalyst layer and the cathode catalyst layer.
  • a catalyst carrier such as carbon nanotubes or carbon nanospheres
  • the fuel cell apparatus comprises a combined catalyst-gas diffusion layer design.
  • at least one of the anode catalyst layer and the cathode catalyst layer is further configured to allow the reactive gases to diffuse through.
  • the anode catalyst layer, the cathode catalyst layer, or both, is further surface-treated at a designated region to be hydrophobic to facilitate the reactive gases to diffuse through.
  • the fuel cell apparatus may comprise a separate catalyst-gas diffusion layer design.
  • the fuel cell apparatus further comprises an anode gas diffusion layer and a cathode gas diffusion layer, wherein the anode gas diffusion layer and the cathode gas diffusion layer are respectively arranged on a flanking side of the anode catalyst layer and the cathode catalyst layer opposing the polymer electrolyte membrane (PEM) ; and at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a second fine-array fuel cell electrode material as disclosed above.
  • PEM polymer electrolyte membrane
  • the pore size of the second fine-array porous fuel cell electrode material in the at least one of anode gas diffusion layer and the cathode gas diffusion layer is smaller than the pore size of the fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and the at least one of the anode gas diffusion layer and the cathode gas diffusion layer further comprises a second catalyst, selected from at least one of Ru or Pd.
  • the fuel cell apparatus further comprises a water disposal layer, arranged on bottom of the anode gas diffusion layer, the anode catalyst layer, the cathode catalyst layer and the cathode gas diffusion layer, wherein the water disposal layer comprises a third fine-array porous fuel cell electrode material as disclosed above, wherein the pore size of the third fine-array porous fuel cell electrode material in the water disposal layer is bigger than the pore size of the fine-array porous fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer, and is bigger than the pore size of the second fine-array porous fuel cell electrode material in the at least one of the anode gas diffusion layer and the cathode gas diffusion layer; and the third fine-array porous fuel cell electrode material in the water disposal layer is optionally surface-treated to become hydrophilic.
  • the fuel cell apparatus further comprises an anode water disposal layer and a cathode water disposal layer, wherein the anode water disposal layer and the cathode water disposal layer are arranged between the anode catalyst layer and the polymer electrolyte membrane, and between the cathode catalyst layer and the polymer electrolyte membrane, respectively; at least one of the anode water disposal layer and the cathode water disposal layer comprises a second fine-array porous fuel cell electrode material, and the pore size of the second fine-array porous fuel cell electrode material is bigger than the pore size of the fine-array porous fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and the anode catalyst layer and the cathode catalyst layer are configured to allow the reactive gases to diffuse through.
  • the fuel cell apparatus comprises a membrane electrolyte assembly (MEA) , wherein the membrane electrolyte assembly comprises, in an order from anode to cathode, an anode gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane (PEM) and a cathode catalyst layer, wherein at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a fine-array porous fuel cell electrode material.
  • at least one of the anode catalyst layer and the cathode catalyst layer comprises a catalyst carrier, selected from carbon nanotubes or carbon nanospheres.
  • Disclosed herein also provides methods of manufacturing a fine-array porous fuel cell electrode material as disclosed above, comprising the step of (i) manufacturing the fine-array porous material by 3D printing or by a template fabrication approach.
  • the fine-array porous material may be manufactured by 3D printing.
  • the fine-array porous material may be manufactured by a template fabrication approach, comprising the sub-steps of: a) electrophoretically fabricating a colloidal particle template; b) infiltrating the colloidal particle template with an electrode material; and c) removing the colloidal particle template.
  • sub-step (b) is achieved by at least one of electrodeposition, PVD (Physical Vapor Deposition) , CVD (Chemical Vapor Deposition) , or Sol-Gel (sol-gel process) .
  • the methods further comprise the step of: (ii) manufacturing, on top of the fine-array porous material, a second fine-array porous material by 3D printing or by a template fabrication approach.
  • the second fine-array porous material in step (ii) is configured to have a pore size bigger than the pore size of the fine-array porous material, and the second fine-array porous material is configured to have hydrophilic surface.
  • the second fine-array porous material may be composed of a hydrophilic conductive polymer in some embodiments, or may be surface-treated to become hydrophilic in some other embodiments.
  • the second fine-array porous material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn, and surface of the second fine-array porous material is treated by oxidation.
  • the second fine-array porous material may be coated with a hydrophilic material.
  • the method may further comprise the step of (ii) distributing particles of a catalyst carrier that carry particles of a catalyst on surface of, or into the plurality of pores in the fine-array porous material.
  • the catalyst carrier may be carbon nanotubes or carbon nanospheres.
  • the method may further comprise, immediately following step (ii) , the step of (iii) binding the particles of the catalyst with the fine-array porous material in the fuel cell electrode material, which may be achieved by heating in some of the embodiments.
  • the method may further comprise the step of (ii) applying an anti-erosion treatment to the fine-array porous material.
  • an anti-erosion treatment for example, if the fine-array porous material is composed of a metal, such as Zn, Ti and Ni, the anti-erosion treatment in step (ii) may be oxidation treatment in some embodiments, and may be surface-coating with an anti-erosive material in in some other embodiments.
  • the fine-array porous fuel cell electrode material as disclosed herein may also be applied in other types of fuel cell apparatuses such as SOFC (solid oxide fuel cell) , DMFC (direct methanol fuel cell) , PAFC (phosphoric acid fuel cell) , FC, MCFC (molten carbonate fuel cell) , or PFC.
  • SOFC solid oxide fuel cell
  • DMFC direct methanol fuel cell
  • PAFC phosphoric acid fuel cell
  • FC MCFC
  • molten carbonate fuel cell molten carbonate fuel cell
  • PFC molten carbonate fuel cell
  • Disclosed herein also provide a fuel cell apparatus, comprising a fine-array porous fuel cell electrode material, wherein the fuel cell apparatus is at least one of SOFC (solid oxide fuel cell) , DMFC (direct methanol fuel cell) , PAFC (phosphoric acid fuel cell) , FC, MCFC (molten carbonate fuel cell) , or PFC.
  • a fine-array porous fuel cell electrode material disclosed herein has the following advantages. First, it has a much higher effective electrocatalytical area due to the significantly higher surface-area-to-volume ratio of the fine-array porous structure. Second, its membrane structure eliminates the issue of gradual loss of reliability due to the falling off of the catalyst particles from the conductive carrier of a conventional fuel cell. Third, it eliminates the use of binders to tightly attach the catalyst particles to the conductive carrier in a conventional fuel cell, dramatically reducing the amount of catalyst used and the cost incurred in the manufacturing of fuel cells, and greatly elevating the reliability.
  • designs having a less expensive metal or compound of metal oxide e.g. Cu, Fe, Al, CoPc, CoTMPP-TiO 2 , MnO x -CoTMPP, CoFe 2 O 4 etc.
  • a fine-array porous conductive carrier which is coated with expensive noble metal catalysts (e.g. Pt) may further reduce the manufacturing cost of fuel cells, and can achieve a higher conductivity than the conventionally used carbon paper/cloth/nanotubes/nanospheres.
  • the presence of periodic structure of a fine-array porous fuel cell electrode material eliminates the issue of heat buildup at some spots due to the local defects or the uneven distribution of catalyst particles on carbon-based conductive carriers.
  • the presence of periodic structure of a fine-array porous fuel cell electrode material further allows efficient distribution and transfer of the reactive gases or reactive solvent (e.g. H 2 , O 2 , ethanol, methanol) , liquid waste product (e.g. H 2 O) , and electrons across/through the material.
  • the reactive gases or reactive solvent e.g. H 2 , O 2 , ethanol, methanol
  • liquid waste product e.g. H 2 O
  • electrons across/through the material.
  • some designs can achieve a combination of catalyst layers and gas diffusion layers in the fuel cell, which could simplify the design, reduce the cost, and increase the reliability.
  • FIG. 1 illustrates a conventional proton exchange membrane fuel cell (PEMFC) apparatus having catalytic layers made of carbon nanotubes coated with finely dispersed catalyst particles.
  • PEMFC proton exchange membrane fuel cell
  • FIG. 2 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • FIG. 3 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • FIG. 4 illustrates fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • FIG. 5 illustrates fuel cell membrane electrode assemblies comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • FIG. 6 illustrates another membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • FIG. 1 illustrates a conventional proton exchange membrane fuel cell (PEMFC) apparatus having catalytic layers made of carbon nanotubes coated with finely dispersed catalyst particles.
  • the PEMFC apparatus 100 comprises, in the order from anode to cathode, an anode endplate 101, an anode bipolar plate 102, an anode gasket 103, an anode gas diffusion layer 104, a membrane electrode assembly (MEA) 105, a cathode gas diffusion layer 106, a cathode gasket 107, a cathode bipolar plate 108, and a cathode endplate 109.
  • MEA membrane electrode assembly
  • Gas channels are typically arranged in both the anode bipolar plate 102 and the cathode bipolar plate 108, serving as pathways to feed H 2 and O 2 into the anode and cathode of the fuel cell, respectively. Due to limited view, Figure 1 only illustrates the O 2 gas channel 110 in the cathode bipolar plate 108.
  • the MEA 105 typically comprises a polymer electrolyte membrane (PEM) 111, sandwiched between an anode catalyst layer 112 and a cathode catalyst layer 113.
  • both the anode catalyst layer and the cathode catalyst layer comprise a catalyst carrier, coated with very fine powders of an anode catalyst and a cathode catalyst, respectively.
  • the catalyst carrier typically is composed of a carbon paper, a carbon cloth, or a film of carbon nanotubes;
  • the anode catalyst may be composed of a metal, such as Pt, an alloy, such as Pt-Ru, a metal oxide, such as Cerium (IV) oxide, a metal sulfide, such as Mo x Ru y S z and Mo x Rh y S z , or a chalcogenide such as (Ru 1-x Mo x ) SeO z ; and the cathode catalyst may be composed of Pt or Ni.
  • Figure 1 also shows a picture of a typical anode catalyst layer, which comprises a film of carbon nanotubes 114, coated with nanoparticles of Pt 115.
  • a conventional fuel cell as illustrated in Figure 1 has the following weaknesses.
  • FIG. 2 illustrates a fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • the membrane electrode assembly (MEA) 200 comprises a polymer electrolyte membrane (PEM) 201, which is sandwiched between an anode catalyst layer 202 and a cathode catalyst layer 203.
  • the anode catalyst layer 202 and the cathode catalyst layer 203 may both comprise a fuel cell electrode material having a fine-array porous structure 204.
  • This fuel cell electrode material 204 typically comprises a fine-array porous material having a plurality of pores, wherein the plurality of pores have a pore size of about 500 nm–5 mm; the size of the plurality of pores is substantially uniform with a variation of less than about 20%; and the fine-array porous material has a porosity of about 40-85%.
  • a fuel cell electrode material may comprise a highly compact fine-array porous material, having a porosity of about 74%, which is theoretically the highest surface-area-to-volume ratio for a porous material.
  • a fine-array porous material may be wholly composed of Pt or some other fuel cell catalyst materials, and thus can be directly used as a catalytic layer material in a MEA in a fuel cell.
  • a fine-array porous carrier composed of a metal/alloy, such as Cu, Al, Fe, Ni, and stainless steel, or of a conductive metal-oxide, such as Zn x O 1-x , may be evenly coated on its surface with a fuel cell catalyst material, such as Pt, also illustrated in 205.
  • a fine-array porous material may serve as a high surface-area conductive carrier to carry particles of catalysts in the catalyst layers of a fuel cell.
  • a fine-array porous carrier composed of a metal/alloy such as Cu, Al, Fe, stainless steel, and Ni, or of a conductive metal-oxide, such as Zn x O 1-x may be coated within its pores with nanoparticles of a fuel cell catalyst such as Pt.
  • a second conductive carrier such as carbon nanotubes, grapheme, and carbon nanospheres, along with the catalyst particles which the second conductive carrier carries on its surface, are disposed within the pores of a first fine-array porous conductive carrier, composed of Cu, Al, Fe, stainless steel, or Ni, or of a conductive metal-oxide, such as Zn x O 1-x .
  • the fuel cell electrode material as disclosed above may also be used as a gas diffusion layer material, allowing the reactive gases, such as H 2 and O 2 , to be evenly and efficiently diffused through the pores of the fine-array porous structure, while at the same time the presence of catalyst on the surface of, or within the pores of, the fine-array porous conductive carrier allows effective catalytic reactions to occur in the fuel cell.
  • These features allow the design of a single combined catalyst-gas diffusion layer in a fuel cell apparatus, which functions both as a catalyst layer and as a gas diffusion layer in the fuel cell.
  • This combined catalyst-gas diffusion layer with fine-array porous structure can greatly simplify the modular designing and manufacturing of fuel cells.
  • FIG. 3 illustrates a fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • the fuel cell membrane electrode assembly 300 comprises a polymer electrolyte membrane (PEM) 301, a combined anode catalyst-gas diffusion layer 302, a combined cathode catalyst-gas diffusion layer 303 and a water disposal layer 304, wherein the PEM 301 is sandwiched between the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303, the water disposal layer 304 is arranged at bottom of the PEM 301, the combined anode catalyst-gas diffusion layer 302, and the combined cathode catalyst-gas diffusion layer 303.
  • PEM polymer electrolyte membrane
  • the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 both comprise a fine-array porous fuel cell electrode material, composed wholly of an anode catalyst or a cathode catalyst, or alternatively comprising a fine-array porous metallic carrier coated with, or infiltrated with, particles of an anode or cathode catalyst with or without a second catalyst carrier, as illustrated in 205, 206 and 207 in FIG. 2.
  • the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 also serve a role of gas diffusion layers in the fuel cell membrane electrode assembly (MEA) .
  • MEA fuel cell membrane electrode assembly
  • the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 may be surface-treated to increase the hydrophobicity of certain regions located within both layers in order to further increase the gas diffusion efficiency of the layers in the fuel cell.
  • the water disposal layer 304 also comprises a fine-array porous material and is designed for disposal of the final reaction product, such as water, from inside the fuel cell, and is optionally surface-treated to increase the hydrophilicity in order to further increase the water disposal efficiency.
  • FIG. 4 illustrates fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • the fuel cell membrane electrode assembly (MEA) 400 comprises the components of an anode gas diffusion layer 401, an anode catalyst layer 402, a polymer electrolyte membrane (PEM) 403, a cathode catalyst layer 404, and a cathode gas diffusion layer 405, arranged in the order from anode to cathode.
  • the anode catalyst layer 402 and the cathode catalyst layer 404 may both comprise fine-array porous fuel cell electrode materials as disclosed in FIG.
  • anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may comprise a gas diffusion material that does not have a fine-array porous structure.
  • the anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may both comprise fine-array porous electrode materials, whereas the anode catalyst layer 402 and the cathode catalyst layer 404 may comprise a conventional catalyst layer material that does not have a fine-array porous structure, such as a carbon paper, carbon cloth, or carbon nanotubes coated with anode and cathode catalysts, respectively.
  • the anode catalyst layer 402, the cathode catalyst layer 404, the anode gas diffusion layer 401, and the cathode gas diffusion layer 405 may all comprise fine-array porous fuel cell electrode materials, yet with different pore sizes or compositions.
  • the anode catalyst layer 402 and the anode gas diffusion layer 401, or the cathode catalyst layer 404 and the cathode gas diffusion layer 405 may comprise a whole chunk of fine-array porous fuel cell electrode material with a uniform pore size, which is coated with, or infiltrated with, particles of an anode/cathode catalyst with or without a second catalyst carrier, at the part immediately next to the polymer electrolyte membrane (PEM) 403, to form the anode/cathode catalyst layer 402/404; whereas the part without catalyst components form the anode/cathode gas diffusion layer 401/405.
  • PEM polymer electrolyte membrane
  • the fuel cell membrane electrode assembly may further comprise an extra anode/cathode catalyst layer between the polymer electrolyte membrane (PEM) 403 and the anode/cathode catalyst layer 402/404.
  • a conventional carbon-derived catalyst layer 423 comprising a carbon paper/cloth/nanotubes coated with an anode/cathode catalyst, is arranged on one side of the fine-array porous catalyst layer 422, which comprises particles of carbon carriers carrying anode/cathode catalyst particles within the pores, whereas the fine-array porous gas diffusion layer 421 is arranged on the other side of the fine-array porous catalyst layer 422.
  • the fuel cell membrane electrode assembly (MEA) 410 comprises, in the order from anode to cathode, an anode gas diffusion layer 411, an anode catalyst layer 412, a polymer electrolyte membrane (PEM) 413, a cathode catalyst layer 414, and a cathode gas diffusion layer 415, wherein the anode catalyst layer 412 and the cathode catalyst layer 414 both comprise fine-array porous fuel cell electrode material comprising the Pt catalyst; the anode gas diffusion layer 411 and the cathode gas diffusion layer 415 both comprise a fine-array porous fuel cell electrode material, which has a smaller pore size than that of the fine-array porous fuel cell electrode material used in the anode and cathode catalyst layers 412 and 414 and is coated with the Ru/Pd catalyst.
  • PEM polymer electrolyte membrane
  • the anode and cathode gas diffusion layers 411 and 415 not only provide diffusion pathways allowing the reactive gases such as H 2 and O 2 to react on the surface of the anode and cathode catalyst layers 412 and 414 of the fuel cell, but also serve as an filtering layer removing the carbon monoxide from the reactive gases by the presence of Ru/Pd, preventing carbon monoxide existed in the reactive gases from poisoning the Pt catalyst in the anode and cathode catalyst layers 412 and 414.
  • FIG. 5 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
  • the fuel cell membrane electrode assembly (MEA) 500 comprises the components of an anode gas diffusion layer 501, an anode catalyst layer 502, a polymer electrolyte membrane (PEM) 503, a cathode catalyst layer 504, and a cathode gas diffusion layer 505, arranged in the order from anode to cathode, and also comprises a water disposal layer 506, arranged at the bottom of the above mentioned MEA components 501-505.
  • the compositions and structures of the MEA components 501-505 are similar to the MEA components 401-405 in the fuel cell MEA as illustrated in FIG. 4A.
  • the water disposal layer 506 comprises a fine-array porous material with a pore size about 0.5-100 times the pore size of the anode gas diffusion layer 501 and the cathode gas diffusion layer 505, and is designed for disposal of the final liquid reaction product, such as water, from inside the fuel cell, and is optionally surface-treated to have increased hydrophilicity on the surface in order to further increase the disposal efficiency.
  • the fuel cell membrane electrode assembly (MEA) 510 comprises the components of an anode combined catalyst-gas diffusion layer 511, an anode water disposal layer 512, a polymer electrolyte membrane (PEM) 513, a cathode water disposal layer 514, and a cathode combined catalyst-gas diffusion layer 515, arranged in the order from anode to cathode.
  • the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515 both comprise fine-array porous fuel cell electrode materials as illustrated in FIG. 3, which have smaller pore sizes and are coated with anode and cathode catalysts respectively. They serve both as catalyst layers and gas diffusion layers in the fuel cell.
  • the anode water disposal layer 512 and the cathode water disposal layer 514 both comprise fine-array porous materials , and are designed for disposal of the final liquid reaction product, such as water, from inside the fuel cell.
  • the fine-array porous materials in the anode water disposal layer 512 and the cathode water disposal layer 514 may optionally have a larger, or alternatively and preferably smaller, pore size than the fine-array porous fuel cell electrode materials in the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515.
  • the anode and cathode water disposal layer 512 and 514 may be optionally surface-treated to have increased hydrophilicity on the surface to increase the efficiency of water disposal; alternatively and preferably they may be surface-treated to have increased hydrophobicity on the surface to keep water off the anode/cathode combined catalyst-gas diffusion layer 511 and 515, allowing efficient flow of reactive gases to effectively contact with catalysts in the anode/cathode combined catalyst-gas diffusion layer 511 and 515.
  • FIG. 6 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode material according to some embodiments of this disclosure.
  • the fuel cell membrane electrode assembly (MEA) 600 comprises the components of an anode gas diffusion layer 601, an anode catalyst layer 602, a polymer electrolyte membrane (PEM) 603, a cathode catalyst layer 604, and a cathode gas diffusion layer 605, arranged in the order from anode to cathode.
  • the anode catalyst layer 602 and the cathode catalyst layer 604 both comprise a catalyst carrier, such as a carbon paper, a carbon cloth, a film of carbon nanotubes, or a film of carbon nanospheres, coated with anode catalysts and cathode catalysts respectively.
  • the anode gas diffusion layer 601 and the cathode gas diffusion layer 605 both comprise a fine-array porous material, which is optionally surface-treated to increase the hydrophobicity of the surfaces of the layers in order to increase the gas diffusion efficiency of the layers in the fuel cell.
  • the fine-array porous fuel cell electrode material may be surface-treated by oxidation on part or whole of the electrode material to prevent the erosion of acid and alkaline existing in, or produced from the electrochemical reactions occurring in, the fuel cell apparatus.

Abstract

A fuel cell electrode material is disclosed herein, which comprises a plurality of pores having a substantially uniform size of about 500 nm–5 mm, with a variation of < 20%, having a porosity of about 40-85%. This fuel cell electrode material may be used in a catalyst layer, a gas fusion layer, or a water disposal layer in a fuel cell apparatus. Fuel cell apparatuses comprising such fine-array porous fuel cell electrode materials with different designs, and methods of manufacturing such fine-array porous fuel cell electrode material are also disclosed herein.

Description

FUEL CELL ELECTRODE MATERIAL AND APPARATUSES BACKGROUND
Fuel cells are a type of electrochemical device that converts the chemical energy from a fuel, including hydrogen and a hydrocarbon, such as diesel and methanol, into electricity through a chemical reaction with an oxidizing agent such as oxygen or hydrogen peroxide. Due to its high energy efficiency and its capability to produce electricity continuously so long as the fuel is supplied, a fuel cell has a wide range of applications, including transportation, material handling, stationary, portable, and emergency backup power applications.
A fuel cell typically requires the presence of catalyst layers at its anode and cathode electrode assemblies to lower the activation energy required for the chemical reaction from which electricity is generated. The catalyst layer is conventionally designed to have finely dispersed crystallites of a precious metal catalyst, such as platinum, on a conductive carrier that has a high surface area, such as carbon papers, carbon cloth, and carbon nanotubes, in order to increase both the active surface area and the electrocatalytic activity of the catalyst. Such a configuration, however, usually has issues such as high cost and lack of reliability, which has greatly limited the practical application of fuel cells.
SUMMARY
The present disclosure relates to a fuel cell electrode material for use in fuel cell apparatuses, and specifically to a fine-array porous fuel cell electrode material, and additionally relates to the application of the fuel cell electrode material in fuel cell apparatuses.
Disclosed herein provides a fuel cell electrode material for use in a fuel cell apparatus. The fuel cell electrode material typically comprises a fine-array porous material having a plurality of pores, wherein the plurality of pores have a size of about 500 nm-5 mm, and preferably of 1000-50000 nm; the size of the plurality of pores is substantially uniform with a variation of less than about 20%; and the fine-array porous material has a porosity of about 40-85%. In some embodiments, the fine-array porous material may be composed of a metal, such as Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, Pd, Ru, Mn, Co, and Cr. In some embodiments, the fine-array porous material may be composed of an alloy, such as stainless steel, Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga. In some  embodiments, the fine-array porous material may be composed of a metal oxide, selected from a group consisting of CoTMPP-TiO2, MnOx-CoTMPP, CoFe2O4, Pt-WO3, Pt-TiO2, Pt-Cu-MOx, MnO2, CrO2, CuxMnyOz, LaMnO3 and La1-xSrxFeO3.
In some embodiments, a fuel cell electrode material may be used in the anode or cathode catalyst layer, and typically comprises a fine-array porous material having a porosity of about 74%. In some embodiments, the fine-array porous material is composed substantially wholly of a catalytic material: such as a metal (e.g. Ru, Pd, Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, Mn, Co, and Cr) , an alloy (e.g. Pt-base alloy such as Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga) , or a metal oxide (e.g. CoTMPP-TiO2, MnOx-CoTMPP, CoFe2O4, Pt-WO3, Pt-TiO2, Pt-Cu-MOxMnO2, CrO2, CuxMnyOz, LaMnO3 and La1-xSrxFeO3) . In some other embodiments, the fine-array porous material may comprise a catalyst carrier, made of a cost-effective metal (e.g. Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, Zn) , a conductive ceramic (e.g. ZnO, Cu2O, ITO, AZO, IZO, IGZO) or a conductive polymer (e.g. polypyrrole, polyphenylene sulfide, phthalocyanine, polyaniline, and polythiophene) , and a catalyst component, comprising at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP or CoFe2O4. In some embodiments, the catalyst component may be coated on the surface of the catalyst carrier. Yet in some other embodiments, particles of the catalyst component may be disposed within the plurality of pores of the fine-array porous catalyst carrier. Yet in some other embodiments, the particles of catalyst component may be attached on the surface of particles of a second catalyst carrier, such as carbon nanotubes or carbon nanospheres, and they together are disposed within the plurality of pores of the fine-array porous catalyst carrier.
In some embodiments, a fuel cell electrode material may be used in the water disposal layer at the anode or cathode, and is typically surface-treated, for example, by oxidation of the metal composition, or by coating with a hydrophilic material, at a designated region of the fine-array porous fuel cell electrode material to become hydrophilic. Hydrophilic surface treatment of the water disposal layer electrode material may be achieved by coating the electrode material with a hydrophilic plasma in some embodiments, by treating the electrode material with a surfactant (e.g. ammonium lauryl sulfate, sodium lauryl sulfate (SDS) , dioctyl sodium sulfosuccinate, perfluorooctanesulfonate (PFOS) , perfluorobutanesulfonate, sodium lauroyl sarcosinate, perfluorononanoate or perfluorooctanoate) in some other embodiments, or by chemically modifying the electrode material with a chemical having hydrophilic functional groups such as hydroxyl (-OH) group or carboxyl (-COOH) group in yet some other embodiments.
In some embodiments, a fuel cell electrode material may be used in the gas diffusion layer at the anode or cathode, and is typically surface-treated, for example, by coating with a hydrophobic material, at a designated region to become hydrophobic. Hydrophobic surface treatment of the gas diffusion layer electrode material may be achieved by coating the electrode material with a hydrophobic plasma in some embodiments, by treating the electrode material with fluorosilicones, siloxanes, or fluorocarbons in some other embodiments.
Disclosed herein also provides a fuel cell apparatus that applies the fine-array porous fuel cell electrode material as disclosed above. The fuel cell apparatus includes a membrane electrolyte assembly (MEA) , which comprises a polymer electrolyte membrane (PEM) , an anode catalyst layer and a cathode catalyst layer, wherein the polymer electrolyte membrane (PEM) is sandwiched between the anode layer and the cathode layer; at least one of the anode catalyst layer and the cathode catalyst layer comprises a fine-array porous fuel cell electrode material having a porosity of about 74%, and a catalyst.
In some embodiments of the fuel cell apparatus, the fuel cell electrode material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn; and the catalyst is at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP or CoFe2O4. In some embodiments, the catalyst is coated evenly on surface of the fine-array porous material; in some other embodiments, particles of the catalyst are disposed within the plurality of pores of the fine-array porous material; yet in some other embodiments, at least one of the anode catalyst layer and the cathode catalyst layer further comprise a catalyst carrier, such as carbon nanotubes or carbon nanospheres, wherein particles of the catalyst carrier carrying particles of the catalyst particles on outer surface of the particles of the catalyst carrier are disposed within the plurality of pores of the fine-array porous material in the at least one of the anode catalyst layer and the cathode catalyst layer.
In some embodiments, the fuel cell apparatus comprises a combined catalyst-gas diffusion layer design. In these embodiments, at least one of the anode catalyst layer and the cathode catalyst layer is further configured to allow the reactive gases to diffuse through. In some embodiments, the anode catalyst layer, the cathode catalyst layer, or both, is further surface-treated at a designated region to be hydrophobic to facilitate the reactive gases to diffuse through. In some embodiments, the fuel cell apparatus may comprise a separate catalyst-gas diffusion layer design. In these embodiments, the fuel cell apparatus further comprises an anode gas diffusion layer and a cathode gas diffusion layer, wherein the anode gas diffusion layer and the cathode gas diffusion layer are respectively arranged on a flanking side of the anode catalyst layer and the cathode  catalyst layer opposing the polymer electrolyte membrane (PEM) ; and at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a second fine-array fuel cell electrode material as disclosed above. In some embodiments, the pore size of the second fine-array porous fuel cell electrode material in the at least one of anode gas diffusion layer and the cathode gas diffusion layer is smaller than the pore size of the fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and the at least one of the anode gas diffusion layer and the cathode gas diffusion layer further comprises a second catalyst, selected from at least one of Ru or Pd.
In some embodiments, the fuel cell apparatus further comprises a water disposal layer, arranged on bottom of the anode gas diffusion layer, the anode catalyst layer, the cathode catalyst layer and the cathode gas diffusion layer, wherein the water disposal layer comprises a third fine-array porous fuel cell electrode material as disclosed above, wherein the pore size of the third fine-array porous fuel cell electrode material in the water disposal layer is bigger than the pore size of the fine-array porous fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer, and is bigger than the pore size of the second fine-array porous fuel cell electrode material in the at least one of the anode gas diffusion layer and the cathode gas diffusion layer; and the third fine-array porous fuel cell electrode material in the water disposal layer is optionally surface-treated to become hydrophilic. In some embodiments, the fuel cell apparatus further comprises an anode water disposal layer and a cathode water disposal layer, wherein the anode water disposal layer and the cathode water disposal layer are arranged between the anode catalyst layer and the polymer electrolyte membrane, and between the cathode catalyst layer and the polymer electrolyte membrane, respectively; at least one of the anode water disposal layer and the cathode water disposal layer comprises a second fine-array porous fuel cell electrode material, and the pore size of the second fine-array porous fuel cell electrode material is bigger than the pore size of the fine-array porous fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and the anode catalyst layer and the cathode catalyst layer are configured to allow the reactive gases to diffuse through.
In some embodiments, the fuel cell apparatus comprises a membrane electrolyte assembly (MEA) , wherein the membrane electrolyte assembly comprises, in an order from anode to cathode, an anode gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane (PEM) and a cathode catalyst layer, wherein at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a fine-array porous fuel cell electrode material. In some embodiments of  the fuel cell apparatus, at least one of the anode catalyst layer and the cathode catalyst layer comprises a catalyst carrier, selected from carbon nanotubes or carbon nanospheres.
Disclosed herein also provides methods of manufacturing a fine-array porous fuel cell electrode material as disclosed above, comprising the step of (i) manufacturing the fine-array porous material by 3D printing or by a template fabrication approach. In some embodiments of the methods, the fine-array porous material may be manufactured by 3D printing. In some other embodiments, the fine-array porous material may be manufactured by a template fabrication approach, comprising the sub-steps of: a) electrophoretically fabricating a colloidal particle template; b) infiltrating the colloidal particle template with an electrode material; and c) removing the colloidal particle template. In some of the embodiments, sub-step (b) is achieved by at least one of electrodeposition, PVD (Physical Vapor Deposition) , CVD (Chemical Vapor Deposition) , or Sol-Gel (sol-gel process) .
In some embodiments, the methods further comprise the step of: (ii) manufacturing, on top of the fine-array porous material, a second fine-array porous material by 3D printing or by a template fabrication approach. In some of the embodiments, the second fine-array porous material in step (ii) is configured to have a pore size bigger than the pore size of the fine-array porous material, and the second fine-array porous material is configured to have hydrophilic surface. The second fine-array porous material may be composed of a hydrophilic conductive polymer in some embodiments, or may be surface-treated to become hydrophilic in some other embodiments. In one example, the second fine-array porous material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn, and surface of the second fine-array porous material is treated by oxidation. In another example, the second fine-array porous material may be coated with a hydrophilic material.
In some embodiments, the method may further comprise the step of (ii) distributing particles of a catalyst carrier that carry particles of a catalyst on surface of, or into the plurality of pores in the fine-array porous material. The catalyst carrier may be carbon nanotubes or carbon nanospheres. In some embodiments, the method may further comprise, immediately following step (ii) , the step of (iii) binding the particles of the catalyst with the fine-array porous material in the fuel cell electrode material, which may be achieved by heating in some of the embodiments.
In some embodiments, the method may further comprise the step of (ii) applying an anti-erosion treatment to the fine-array porous material. For example, if the fine-array porous material is composed of a metal, such as Zn, Ti and Ni, the anti-erosion treatment in step (ii) may be  oxidation treatment in some embodiments, and may be surface-coating with an anti-erosive material in in some other embodiments.
The fine-array porous fuel cell electrode material as disclosed herein may also be applied in other types of fuel cell apparatuses such as SOFC (solid oxide fuel cell) , DMFC (direct methanol fuel cell) , PAFC (phosphoric acid fuel cell) , FC, MCFC (molten carbonate fuel cell) , or PFC. Disclosed herein also provide a fuel cell apparatus, comprising a fine-array porous fuel cell electrode material, wherein the fuel cell apparatus is at least one of SOFC (solid oxide fuel cell) , DMFC (direct methanol fuel cell) , PAFC (phosphoric acid fuel cell) , FC, MCFC (molten carbonate fuel cell) , or PFC.
Compared with conventional fuel cell electrode materials, such as carbon paper/cloth/nanotubes coated with catalyst particles, a fine-array porous fuel cell electrode material disclosed herein has the following advantages. First, it has a much higher effective electrocatalytical area due to the significantly higher surface-area-to-volume ratio of the fine-array porous structure. Second, its membrane structure eliminates the issue of gradual loss of reliability due to the falling off of the catalyst particles from the conductive carrier of a conventional fuel cell. Third, it eliminates the use of binders to tightly attach the catalyst particles to the conductive carrier in a conventional fuel cell, dramatically reducing the amount of catalyst used and the cost incurred in the manufacturing of fuel cells, and greatly elevating the reliability. Fourth, designs having a less expensive metal or compound of metal oxide (e.g. Cu, Fe, Al, CoPc, CoTMPP-TiO2, MnOx-CoTMPP, CoFe2O4 etc. ) forming a fine-array porous conductive carrier which is coated with expensive noble metal catalysts (e.g. Pt) may further reduce the manufacturing cost of fuel cells, and can achieve a higher conductivity than the conventionally used carbon paper/cloth/nanotubes/nanospheres. Fifth, the presence of periodic structure of a fine-array porous fuel cell electrode material eliminates the issue of heat buildup at some spots due to the local defects or the uneven distribution of catalyst particles on carbon-based conductive carriers. Sixth, the presence of periodic structure of a fine-array porous fuel cell electrode material further allows efficient distribution and transfer of the reactive gases or reactive solvent (e.g. H2, O2, ethanol, methanol) , liquid waste product (e.g. H2O) , and electrons across/through the material. Lastly, some designs can achieve a combination of catalyst layers and gas diffusion layers in the fuel cell, which could simplify the design, reduce the cost, and increase the reliability.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a conventional proton exchange membrane fuel cell (PEMFC) apparatus having catalytic layers made of carbon nanotubes coated with finely dispersed catalyst particles.
FIG. 2 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
FIG. 3 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
FIG. 4 illustrates fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
FIG. 5 illustrates fuel cell membrane electrode assemblies comprising fine-array porous electrode materials according to some embodiments of this disclosure.
FIG. 6 illustrates another membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure.
DETAILED DESCRIPTION THE DRAWINGS
FIG. 1 illustrates a conventional proton exchange membrane fuel cell (PEMFC) apparatus having catalytic layers made of carbon nanotubes coated with finely dispersed catalyst particles. The PEMFC apparatus 100 comprises, in the order from anode to cathode, an anode endplate 101, an anode bipolar plate 102, an anode gasket 103, an anode gas diffusion layer 104, a membrane electrode assembly (MEA) 105, a cathode gas diffusion layer 106, a cathode gasket 107, a cathode bipolar plate 108, and a cathode endplate 109. Gas channels are typically arranged in both the anode bipolar plate 102 and the cathode bipolar plate 108, serving as pathways to feed H2 and O2 into the anode and cathode of the fuel cell, respectively. Due to limited view, Figure 1 only illustrates the O2 gas channel 110 in the cathode bipolar plate 108. The MEA 105 typically comprises a polymer electrolyte membrane (PEM) 111, sandwiched between an anode catalyst layer 112 and a cathode catalyst layer 113. Typically both the anode catalyst layer and the cathode catalyst layer comprise a catalyst carrier, coated with very fine powders of an anode catalyst and a cathode catalyst, respectively. The catalyst carrier typically is composed of a carbon paper, a carbon cloth, or a film of carbon nanotubes; the anode catalyst may be composed of a metal, such as Pt, an alloy, such as Pt-Ru, a metal oxide, such as Cerium (IV) oxide, a metal sulfide, such as Mox Ruy Sz and Mox Rhy Sz, or a chalcogenide such as (Ru1-x Mox ) SeOz; and the cathode catalyst may be composed of Pt or Ni. Figure 1 also shows a picture of a typical anode catalyst layer, which comprises a film of carbon nanotubes 114, coated with nanoparticles of Pt 115.
A conventional fuel cell as illustrated in Figure 1 has the following weaknesses. First, a binder is usually required for the stable attachment and effective dispersing of the catalyst particles on the surface of the conductive carrier. Yet the presence of a binder decreases the effective electrocatalytical area of the catalyst in the fuel cell, and thus to compensate for this reduction, a greater amount of catalyst is needed for a given level of power output. Second, catalyst particles coated on the surface of the conductive carrier may easily get loose and fall off from the carrier in a vibrating/shocking environment, or even during feeding of gases into, or disposal of water/other reaction products from, the fuel cell. This creates a reliability issue on the fuel cells.
FIG. 2 illustrates a fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure. As shown in FIG. 2, the membrane electrode assembly (MEA) 200 comprises a polymer electrolyte membrane (PEM) 201, which is sandwiched between an anode catalyst layer 202 and a cathode catalyst layer 203. The anode catalyst layer 202 and the cathode catalyst layer 203 may both comprise a fuel cell electrode material having a fine-array porous structure 204. This fuel cell electrode material 204 typically comprises a fine-array porous material having a plurality of pores, wherein the plurality of pores have a pore size of about 500 nm–5 mm; the size of the plurality of pores is substantially uniform with a variation of less than about 20%; and the fine-array porous material has a porosity of about 40-85%. In some preferred embodiments, a fuel cell electrode material may comprise a highly compact fine-array porous material, having a porosity of about 74%, which is theoretically the highest surface-area-to-volume ratio for a porous material.
In some embodiments, as illustrated in 205, a fine-array porous material may be wholly composed of Pt or some other fuel cell catalyst materials, and thus can be directly used as a catalytic layer material in a MEA in a fuel cell. In some other embodiments, a fine-array porous carrier, composed of a metal/alloy, such as Cu, Al, Fe, Ni, and stainless steel, or of a conductive metal-oxide, such as ZnxO1-x, may be evenly coated on its surface with a fuel cell catalyst material, such as Pt, also illustrated in 205. In some other embodiments, a fine-array porous material may serve as a high surface-area conductive carrier to carry particles of catalysts in the catalyst layers of a fuel cell. In some other embodiments, as illustrated in 206, a fine-array porous carrier, composed of a metal/alloy such as Cu, Al, Fe, stainless steel, and Ni, or of a conductive metal-oxide, such as ZnxO1-x may be coated within its pores with nanoparticles of a fuel cell catalyst such as Pt. In yet some other embodiments, as illustrated in 207, a second conductive carrier, such as carbon nanotubes, grapheme, and carbon nanospheres, along with the catalyst particles which the second conductive carrier carries on its surface, are disposed within the pores of a first fine-array  porous conductive carrier, composed of Cu, Al, Fe, stainless steel, or Ni, or of a conductive metal-oxide, such as ZnxO1-x.
Because of the presence of periodic pores in the fine-array porous structure, the fuel cell electrode material as disclosed above may also be used as a gas diffusion layer material, allowing the reactive gases, such as H2 and O2, to be evenly and efficiently diffused through the pores of the fine-array porous structure, while at the same time the presence of catalyst on the surface of, or within the pores of, the fine-array porous conductive carrier allows effective catalytic reactions to occur in the fuel cell. These features allow the design of a single combined catalyst-gas diffusion layer in a fuel cell apparatus, which functions both as a catalyst layer and as a gas diffusion layer in the fuel cell. This combined catalyst-gas diffusion layer with fine-array porous structure can greatly simplify the modular designing and manufacturing of fuel cells. It addition, with designs to treat specific regions of the fine-array porous fuel cell electrode material to become hydrophobic/hydrophilic, it is also possible to facilitate the disposal of final reaction product, such as water, from these designated regions of the fine-array porous fuel cell electrode material of the fuel cell. FIG. 3 illustrates a fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure. The fuel cell membrane electrode assembly 300 comprises a polymer electrolyte membrane (PEM) 301, a combined anode catalyst-gas diffusion layer 302, a combined cathode catalyst-gas diffusion layer 303 and a water disposal layer 304, wherein the PEM 301 is sandwiched between the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303, the water disposal layer 304 is arranged at bottom of the PEM 301, the combined anode catalyst-gas diffusion layer 302, and the combined cathode catalyst-gas diffusion layer 303. The combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 both comprise a fine-array porous fuel cell electrode material, composed wholly of an anode catalyst or a cathode catalyst, or alternatively comprising a fine-array porous metallic carrier coated with, or infiltrated with, particles of an anode or cathode catalyst with or without a second catalyst carrier, as illustrated in 205, 206 and 207 in FIG. 2. Besides the function as catalyst layers, the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 also serve a role of gas diffusion layers in the fuel cell membrane electrode assembly (MEA) . Optionally, the combined anode catalyst-gas diffusion layer 302 and the combined cathode catalyst-gas diffusion layer 303 may be surface-treated to increase the hydrophobicity of certain regions located within both layers in order to further increase the gas diffusion efficiency of the layers in the fuel cell. The water disposal layer 304 also comprises a  fine-array porous material and is designed for disposal of the final reaction product, such as water, from inside the fuel cell, and is optionally surface-treated to increase the hydrophilicity in order to further increase the water disposal efficiency.
FIG. 4 illustrates fuel cell membrane electrode assembly (MEA) comprising fine-array porous electrode materials according to some embodiments of this disclosure. As illustrated in FIG. 4A, the fuel cell membrane electrode assembly (MEA) 400 comprises the components of an anode gas diffusion layer 401, an anode catalyst layer 402, a polymer electrolyte membrane (PEM) 403, a cathode catalyst layer 404, and a cathode gas diffusion layer 405, arranged in the order from anode to cathode. In some embodiments, the anode catalyst layer 402 and the cathode catalyst layer 404 may both comprise fine-array porous fuel cell electrode materials as disclosed in FIG. 2 (205, 206 and 207) , comprising anode catalyst and cathode catalyst respectively, whereas the anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may comprise a gas diffusion material that does not have a fine-array porous structure. Yet in some other embodiments, the anode gas diffusion layer 401 and the cathode gas diffusion layer 405 may both comprise fine-array porous electrode materials, whereas the anode catalyst layer 402 and the cathode catalyst layer 404 may comprise a conventional catalyst layer material that does not have a fine-array porous structure, such as a carbon paper, carbon cloth, or carbon nanotubes coated with anode and cathode catalysts, respectively. Yet in some other embodiments, the anode catalyst layer 402, the cathode catalyst layer 404, the anode gas diffusion layer 401, and the cathode gas diffusion layer 405 may all comprise fine-array porous fuel cell electrode materials, yet with different pore sizes or compositions. Yet in some embodiments, the anode catalyst layer 402 and the anode gas diffusion layer 401, or the cathode catalyst layer 404 and the cathode gas diffusion layer 405 may comprise a whole chunk of fine-array porous fuel cell electrode material with a uniform pore size, which is coated with, or infiltrated with, particles of an anode/cathode catalyst with or without a second catalyst carrier, at the part immediately next to the polymer electrolyte membrane (PEM) 403, to form the anode/cathode catalyst layer 402/404; whereas the part without catalyst components form the anode/cathode gas diffusion layer 401/405. In some embodiments, the fuel cell membrane electrode assembly (MEA) may further comprise an extra anode/cathode catalyst layer between the polymer electrolyte membrane (PEM) 403 and the anode/cathode catalyst layer 402/404. In one example, as illustrated in FIG. 4C, a conventional carbon-derived catalyst layer 423, comprising a carbon paper/cloth/nanotubes coated with an anode/cathode catalyst, is arranged on one side of the fine-array porous catalyst layer 422, which comprises particles of carbon carriers carrying anode/cathode catalyst particles within the pores, whereas the  fine-array porous gas diffusion layer 421 is arranged on the other side of the fine-array porous catalyst layer 422.
In one embodiment as illustrated in FIG. 4B, the fuel cell membrane electrode assembly (MEA) 410 comprises, in the order from anode to cathode, an anode gas diffusion layer 411, an anode catalyst layer 412, a polymer electrolyte membrane (PEM) 413, a cathode catalyst layer 414, and a cathode gas diffusion layer 415, wherein the anode catalyst layer 412 and the cathode catalyst layer 414 both comprise fine-array porous fuel cell electrode material comprising the Pt catalyst; the anode gas diffusion layer 411 and the cathode gas diffusion layer 415 both comprise a fine-array porous fuel cell electrode material, which has a smaller pore size than that of the fine-array porous fuel cell electrode material used in the anode and cathode catalyst layers 412 and 414 and is coated with the Ru/Pd catalyst. With this configuration, the anode and cathode gas diffusion layers 411 and 415 not only provide diffusion pathways allowing the reactive gases such as H2 and O2 to react on the surface of the anode and cathode catalyst layers 412 and 414 of the fuel cell, but also serve as an filtering layer removing the carbon monoxide from the reactive gases by the presence of Ru/Pd, preventing carbon monoxide existed in the reactive gases from poisoning the Pt catalyst in the anode and cathode catalyst layers 412 and 414.
FIG. 5 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode materials according to some embodiments of this disclosure. As illustrated in FIG. 5A, the fuel cell membrane electrode assembly (MEA) 500 comprises the components of an anode gas diffusion layer 501, an anode catalyst layer 502, a polymer electrolyte membrane (PEM) 503, a cathode catalyst layer 504, and a cathode gas diffusion layer 505, arranged in the order from anode to cathode, and also comprises a water disposal layer 506, arranged at the bottom of the above mentioned MEA components 501-505. The compositions and structures of the MEA components 501-505 are similar to the MEA components 401-405 in the fuel cell MEA as illustrated in FIG. 4A. The water disposal layer 506 comprises a fine-array porous material with a pore size about 0.5-100 times the pore size of the anode gas diffusion layer 501 and the cathode gas diffusion layer 505, and is designed for disposal of the final liquid reaction product, such as water, from inside the fuel cell, and is optionally surface-treated to have increased hydrophilicity on the surface in order to further increase the disposal efficiency.
In another embodiment, as illustrated in FIG. 5B, the fuel cell membrane electrode assembly (MEA) 510 comprises the components of an anode combined catalyst-gas diffusion layer 511, an anode water disposal layer 512, a polymer electrolyte membrane (PEM) 513, a cathode water disposal layer 514, and a cathode combined catalyst-gas diffusion layer 515, arranged in the  order from anode to cathode. The anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515 both comprise fine-array porous fuel cell electrode materials as illustrated in FIG. 3, which have smaller pore sizes and are coated with anode and cathode catalysts respectively. They serve both as catalyst layers and gas diffusion layers in the fuel cell. The anode water disposal layer 512 and the cathode water disposal layer 514 both comprise fine-array porous materials , and are designed for disposal of the final liquid reaction product, such as water, from inside the fuel cell. The fine-array porous materials in the anode water disposal layer 512 and the cathode water disposal layer 514 may optionally have a larger, or alternatively and preferably smaller, pore size than the fine-array porous fuel cell electrode materials in the anode combined catalyst-gas diffusion layer 511 and the cathode combined catalyst-gas diffusion layer 515. The anode and cathode  water disposal layer  512 and 514 may be optionally surface-treated to have increased hydrophilicity on the surface to increase the efficiency of water disposal; alternatively and preferably they may be surface-treated to have increased hydrophobicity on the surface to keep water off the anode/cathode combined catalyst- gas diffusion layer  511 and 515, allowing efficient flow of reactive gases to effectively contact with catalysts in the anode/cathode combined catalyst- gas diffusion layer  511 and 515.
FIG. 6 illustrates a fuel cell membrane electrode assembly comprising fine-array porous electrode material according to some embodiments of this disclosure. The fuel cell membrane electrode assembly (MEA) 600 comprises the components of an anode gas diffusion layer 601, an anode catalyst layer 602, a polymer electrolyte membrane (PEM) 603, a cathode catalyst layer 604, and a cathode gas diffusion layer 605, arranged in the order from anode to cathode. The anode catalyst layer 602 and the cathode catalyst layer 604 both comprise a catalyst carrier, such as a carbon paper, a carbon cloth, a film of carbon nanotubes, or a film of carbon nanospheres, coated with anode catalysts and cathode catalysts respectively. The anode gas diffusion layer 601 and the cathode gas diffusion layer 605 both comprise a fine-array porous material, which is optionally surface-treated to increase the hydrophobicity of the surfaces of the layers in order to increase the gas diffusion efficiency of the layers in the fuel cell.
In some embodiments of a fuel cell apparatus comprising a fine-array porous fuel cell electrode material, regardless of it being employed in a catalyst layer, a gas diffusion layer or a water disposal layer, the fine-array porous fuel cell electrode material may be surface-treated by oxidation on part or whole of the electrode material to prevent the erosion of acid and alkaline existing in, or produced from the electrochemical reactions occurring in, the fuel cell apparatus.
Although specific embodiments have been described above in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects described above are not intended as required or essential elements unless explicitly stated otherwise. Various modifications of, and equivalent acts corresponding to, the disclosed aspects of the exemplary embodiments, in addition to those described above, can be made by a person of ordinary skill in the art, having the benefit of the present disclosure, without departing from the spirit and scope of the disclosure defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.

Claims (46)

  1. A fuel cell electrode material for use in a fuel cell apparatus, comprising a fine-array porous material, wherein:
    the fine-array porous material comprises a plurality of pores, wherein the plurality of pores have a pore size of about 500 nm –5 mm;
    the size of the plurality of pores is substantially uniform with a variation of less than about 20%; and
    the fine-array porous material has a porosity of about 40-85%.
  2. The fuel cell electrode material according to Claim 1, wherein the fine-array porous material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, Pd, Ru, Mn, Co and Cr, an alloy, selected from a group consisting of stainless steel, Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu and Pt-Co-Ga, or a metal oxide, selected from a group consisting of CoTMPP-TiO2, MnOx-CoTMPP, CoFe2O4, Pt-WO3, Pt-TiO2, Pt-Cu-MOx, MnO2, CrO2, CuxMnyOz, LaMnO3 and La1-xSrxFeO3.
  3. The fuel cell electrode material according to Claim 1, wherein the pore size of the plurality of pores of the fine-array porous material is about 1000-50000 nm.
  4. The fuel cell electrode material according to Claim 3, wherein the fine-array porous material has a porosity of about 74%.
  5. The fuel cell electrode material according to Claim 4, wherein the fine-array porous material is composed substantially of Ru, Pd, Ni, Al, Cu, Au, Ag, Ti, Fe, Pt, stainless steel, Mn, Co, and Cr, or Pt-base alloy, Pt-Co, Pt-Fe, Pt-Cr, Pt-Ni, Pt-Ti, Pt-Mn, Pt-Cu, Pt-V, Pt-Cr-Co, Pt-Fe-Cr, Pt-Fe-Mn, Pt-Fe-Co, Pt-Fe-Ni, Pt-Fe-Cu, Pt-Cr-Cu, Pt-Co-Ga, or a metal oxide, selected from a group consisting of CoTMPP-TiO2, MnOx-CoTMPP, CoFe2O4, Pt-WO3, Pt-TiO2, Pt-Cu-MOxMnO2, CrO2, CuxMnyOz, LaMnO3 and La1-xSrxFeO3.
  6. The fuel cell electrode material according to Claim 4, wherein the fine-array porous material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co and Zn, a conductive ceramic, selected from a group consisting of ZnO, Cu2O, ITO, AZO, IZO and IGZO, or a  conductive polymer, selected from a group consisting of polypyrrole, polyphenylene sulfide, phthalocyanine, polyaniline and polythiophene.
  7. The fuel cell electrode material according to Claim 6, wherein the fine-array porous material is coated with at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP or CoFe2O4.
  8. The fuel cell electrode material according to Claim 6, further comprising catalyst particles composed of at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP and CoFe2O4, wherein the catalyst particles are disposed within the plurality of pores of the fine-array porous material.
  9. The fuel cell electrode material according to Claim 6, further comprising catalyst carrier particles and catalyst particles, wherein the catalyst particles are disposed on surface of the catalyst carrier particles; and the catalyst carrier particles carrying the catalyst particles are disposed within the plurality of pores of the fine-array porous material.
  10. The fuel cell electrode material according to Claim 9, wherein the catalyst carrier comprises at least one of carbon nanotubes, grapheme or carbon nanospheres.
  11. The fuel cell electrode material according to Claim 10, wherein the catalyst particles are composed of at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP or CoFe2O4.
  12. The fuel cell electrode material according to Claim 1, wherein the fine-array porous material is surface-treated at a designated region to become hydrophilic.
  13. The fuel cell electrode material according to Claim 12, wherein the fine-array porous material is surface-treated by oxidation, coated with a hydrophilic plasma, treated with a surfactant, or modified with a chemical having at least one hydrophilic functional group, on surface of the fuel cell electrode material.
  14. The fuel cell electrode material according to Claim 1, wherein the fine-array porous material is surface-treated at a designated region to become hydrophobic.
  15. A fuel cell apparatus, comprising a membrane electrolyte assembly (MEA) , wherein the membrane electrolyte assembly comprises a polymer electrolyte membrane (PEM) , an anode catalyst layer and a cathode catalyst layer, wherein:
    the polymer electrolyte membrane (PEM) is sandwiched between the anode layer and the cathode layer;
    at least one of the anode catalyst layer and the cathode catalyst layer comprises a fuel cell electrode material according to Claim 4 and a catalyst.
  16. The fuel cell apparatus according to Claim 15, wherein the fine-array porous material in the fuel cell electrode material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn; and the catalyst is at least one of Pt, Ru, Pd, CoPc, CoTMPP-TiO2, MnOx-CoTMPP or CoFe2O4.
  17. The fuel cell apparatus according to Claim 16, wherein the catalyst is coated evenly on surface of the fine-array porous material.
  18. The fuel cell apparatus according to Claim 16, wherein particles of the catalyst are disposed within the plurality of pores of the fine-array porous material.
  19. The fuel cell apparatus according to Claim 16, wherein at least one of the anode catalyst layer and the cathode catalyst layer further comprise a catalyst carrier, selected from at least one of carbon nanotubes, graphene or carbon nanospheres, wherein particles of the catalyst carrier carrying particles of the catalyst particles on outer surface of the particles of the catalyst carrier are disposed within the plurality of pores of the fine-array porous material in the at least one of the anode catalyst layer and the cathode catalyst layer.
  20. The fuel cell apparatus according to Claim 15, wherein at least one of the anode catalyst layer and the cathode catalyst layer is further configured to allow the reactive gases to diffuse therethrough.
  21. The fuel cell apparatus according to Claim 20, wherein the at least one of the anode catalyst layer and the cathode catalyst layer is surface-treated at a designated region to be hydrophobic to facilitate the reactive gases to diffuse therethrough.
  22. The fuel cell apparatus according to Claim 15, further comprising an anode gas diffusion layer and a cathode gas diffusion layer, wherein:
    the anode gas diffusion layer and the cathode gas diffusion layer are respectively arranged on a flanking side of the anode catalyst layer and the cathode catalyst layer opposing the polymer electrolyte membrane (PEM) ; and
    at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a second fuel cell electrode material according to Claim 1.
  23. The fuel cell apparatus according to Claim 22, wherein
    the pore size of the second fuel cell electrode material in the at least one of anode gas diffusion layer and the cathode gas diffusion layer is smaller than the pore size of the fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and
    the at least one of the anode gas diffusion layer and the cathode gas diffusion layer further comprises a second catalyst, selected from at least one of Ru or Pd.
  24. The fuel cell apparatus according to Claim 22, further comprising a water disposal layer, arranged on bottom of the anode gas diffusion layer, the anode catalyst layer, the cathode catalyst layer and the cathode gas diffusion layer, wherein:
    the water disposal layer comprises a third fuel cell electrode material according to Claim 1, wherein:
    the pore size of the third fuel cell electrode material in the water disposal layer is bigger than the pore size of the fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer, and is bigger than the pore size of the second fuel cell electrode material in the at least one of the anode gas diffusion layer and the cathode gas diffusion layer; and
    the third fuel cell electrode material in the water disposal layer is optionally surface-treated to become hydrophilic.
  25. The fuel cell apparatus according to Claim 15, further comprising an anode water disposal layer and a cathode water disposal layer, wherein:
    the anode water disposal layer and the cathode water disposal layer are arranged between the anode catalyst layer and the polymer electrolyte membrane, and between the cathode catalyst layer and the polymer electrolyte membrane, respectively;
    at least one of the anode water disposal layer and the cathode water disposal layer comprises a second fuel cell electrode material according to Claim 1, and the pore size of the second fuel cell electrode material is bigger than the pore size of the fuel cell electrode material in the at least one of the anode catalyst layer and the cathode catalyst layer; and
    the anode catalyst layer and the cathode catalyst layer are configured to allow the reactive gases to diffuse therethrough.
  26. A fuel cell apparatus according to Claim 15, comprising a membrane electrolyte assembly (MEA) , wherein the membrane electrolyte assembly comprises, in an order from anode to cathode, an anode gas diffusion layer, an anode catalyst layer, a polymer electrolyte membrane (PEM) and a cathode catalyst layer, wherein:
    at least one of the anode gas diffusion layer and the cathode gas diffusion layer comprises a fuel cell electrode material according to Claim 1.
  27. The fuel cell apparatus according to Claim 26, wherein at least one of the anode catalyst layer and the cathode catalyst layer comprises a catalyst carrier, selected from carbon nanotubes or carbon nanospheres.
  28. A method of manufacturing a fuel cell electrode material as of Claim 1, comprising the step of:
    (i) manufacturing the fine-array porous material by 3D printing, or by a template fabrication approach, wherein the template fabrication approach comprises the sub-steps of:
    a) electrophoretically fabricating a colloidal particle template;
    b) infiltrating the colloidal particle template with an electrode material ; and
    c) removing the colloidal particle template.
  29. The method according to claim 28, wherein in the template fabrication approach, sub-step (b) is achieved by at least one of electrodeposition, PVD (Physical Vapor Deposition) , CVD (Chemical Vapor Deposition) , or Sol-Gel (sol-gel process) .
  30. The method of manufacturing a fuel cell electrode material according to Claim 28, further comprising, immediately following step (i) , the step of:
    (ii) manufacturing, on top of the fine-array porous material, a second fine-array porous material by 3D printing or by a template fabrication approach.
  31. The method according to Claim 30, wherein in step (ii) the second fine-array porous material is configured to have a pore size bigger than the pore size of the fine-array porous material, and the second fine-array porous material is configured to have hydrophilic surface.
  32. The method according to Claim 31, wherein in step (ii) the second fine-array porous material is composed of a hydrophilic conductive polymer.
  33. The method according to Claim 31, wherein in step (ii) the second fine-array porous material is surface-treated to become hydrophilic.
  34. The method according to Claim 33, wherein in step (ii) the second fine-array porous material is composed of a metal, selected from a group consisting of Ni, Al, Cu, Fe, Ti, Cr, Mn, Co, and Zn, and surface of the second fine-array porous material is treated by oxidation.
  35. The method according to Claim 33, wherein in step (ii) the second fine-array porous material is coated with a hydrophilic material.
  36. The method of manufacturing a fuel cell electrode material according to Claim 28, further comprising, immediately following step (i) , the step of:
    (ii) distributing particles of a catalyst carrier that carry particles of a catalyst on surface of, or into the plurality of pores in the fine-array porous material.
  37. The method of manufacturing a fuel cell electrode material according to Claim 36, wherein the catalyst carrier is selected from at least one of carbon nanotubes or carbon nanospheres.
  38. The method according to Claim 37, further comprising, immediately following step (ii) , the step of,
    (iii) binding the particles of the catalyst with the fine-array porous material in the fuel cell electrode material.
  39. The method according to Claim 38, wherein the step (iii) is achieved by heating.
  40. The method according to Claim 28, further comprising, immediately following step (i) , the step of:
    (ii) applying an anti-erosion treatment to the fine-array porous material.
  41. The method according to Claim 40, wherein in step (i) the fine-array porous material is composed of a metal, selected from a group consisting of Zn, Ti and Ni; and in step (ii) the anti-erosion treatment is oxidation treatment.
  42. The method according to Claim 40, wherein in step (i) the fine-array porous material is composed of a metal, selected from a group consisting of Zn, Ti and Ni; and in step (ii) the anti-erosion treatment is surface-coating with an anti-erosive material.
  43. A fuel cell apparatus, comprising a fuel cell electrode material according to Claim 1, wherein the fuel cell apparatus is at least one of SOFC (solid oxide fuel cell) , DMFC (direct methanol fuel cell) , PAFC (phosphoric acid fuel cell) , FC, MCFC (molten carbonate fuel cell) , or PFC.
  44. The fuel cell electrode material according to Claim 13, wherein the fine-array porous material is surface-treated by treating with a surfactant on the surface of the fuel cell electrode material, wherein the surfactant is at least one of ammonium lauryl sulfate, sodium lauryl sulfate (SDS) , dioctyl sodium sulfosuccinate, perfluorooctanesulfonate (PFOS) , perfluorobutanesulfonate, sodium lauroyl sarcosinate, perfluorononanoate or perfluorooctanoate.
  45. The fuel cell electrode material according to Claim 13, wherein the fine-array porous material is surface-treated by modifying with a chemical having at least one hydrophilic functional group on the surface of the fuel cell electrode material, wherein the hydrophilic functional group is hydroxyl (-OH) group or carboxyl (-COOH) group.
  46. The fuel cell electrode material according to Claim 14, wherein the fine-array porous material is surface-treated by coating with a hydrophobic plasma or by treating with at least one of a fluorosilicone, a siloxane, or a fluorocarbon, on the surface of the fuel cell electrode material.
PCT/CN2015/092499 2015-10-22 2015-10-22 Fuel cell electrode material and apparatuses WO2017066949A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017554458A JP6726210B2 (en) 2015-10-22 2015-10-22 Fuel cell electrode material and device
CN201580078974.4A CN109618561B (en) 2015-10-22 2015-10-22 Fuel cell device and method for manufacturing electrode material for fuel cell
KR1020177027257A KR102039536B1 (en) 2015-10-22 2015-10-22 Fuel cell electrode materials and devices
PCT/CN2015/092499 WO2017066949A1 (en) 2015-10-22 2015-10-22 Fuel cell electrode material and apparatuses
TW105131721A TWI650897B (en) 2015-10-22 2016-09-30 Fuel cell electrode material, method for manufacturing fuel cell electrode material, and fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092499 WO2017066949A1 (en) 2015-10-22 2015-10-22 Fuel cell electrode material and apparatuses

Publications (1)

Publication Number Publication Date
WO2017066949A1 true WO2017066949A1 (en) 2017-04-27

Family

ID=58556483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092499 WO2017066949A1 (en) 2015-10-22 2015-10-22 Fuel cell electrode material and apparatuses

Country Status (5)

Country Link
JP (1) JP6726210B2 (en)
KR (1) KR102039536B1 (en)
CN (1) CN109618561B (en)
TW (1) TWI650897B (en)
WO (1) WO2017066949A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745308A (en) * 2018-05-07 2018-11-06 江苏大学 A kind of conductive traces Ag@PANI/CoFe2O4The preparation method and applications of/C
WO2018221788A1 (en) * 2017-06-01 2018-12-06 전남대학교산학협력단 Three-dimensional membrane electrode assembly, fuel cell having same, and manufacturing method therefor
CN108956730A (en) * 2018-08-08 2018-12-07 甘肃省食品检验研究院 A kind of electrochemical sensor and its preparation method and application for direct alcohol fuel cell
CN108993470A (en) * 2018-08-02 2018-12-14 福州大学 A kind of preparation and application of the double array structure catalysis materials of titanium dioxide/graphene/zinc oxide
JP2019003937A (en) * 2017-06-09 2019-01-10 ツィンファ ユニバーシティ Fuel cell electrode and fuel cell

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064784A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Electrode and electrode manufacturing method
JP7235284B2 (en) * 2018-11-29 2023-03-08 グローバル・リンク株式会社 polymer electrolyte fuel cell
JP7262739B2 (en) * 2018-11-29 2023-04-24 グローバル・リンク株式会社 Manufacturing method for anode and cathode of electrolyzer
WO2020138800A1 (en) * 2018-12-26 2020-07-02 코오롱인더스트리 주식회사 Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
JP2020167041A (en) * 2019-03-29 2020-10-08 正己 奥山 Electrode and manufacturing method thereof
JP2020167064A (en) * 2019-03-29 2020-10-08 正己 奥山 Solid polymer fuel cell
JP7127603B2 (en) * 2019-04-15 2022-08-30 トヨタ自動車株式会社 METHOD FOR MANUFACTURING ELECTRODE CATALYST LAYER FOR FUEL CELL
CN112206799A (en) * 2019-07-12 2021-01-12 丰田自动车株式会社 Silicon-nitrogen co-doped graphene material, and preparation method and application thereof
CN110846690B (en) * 2019-10-14 2021-01-01 中南大学 Manganese oxide-FeSiMnTi intermetallic compound based composite porous electrode material and preparation method thereof
CN116435560A (en) * 2023-06-14 2023-07-14 清氢(北京)科技有限公司 Batch preparation process of polymer electrolyte ordered large-area membrane electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359738A (en) * 2007-08-02 2009-02-04 丰田自动车株式会社 Catalyst-loaded support used for forming electrode for fuel cell, and method of producing the same
CN102059114A (en) * 2010-12-02 2011-05-18 华南师范大学 Anode porous array catalyst Pt-HxMoO3 for direct methanol fuel cell and preparation method thereof
US20120251926A1 (en) * 2010-04-29 2012-10-04 Ford Global Technologies, Llc Thin Film Catalyst With Heat-Extendable Wires
WO2014021385A1 (en) * 2012-08-01 2014-02-06 国立大学法人九州大学 Paper-like catalyst, paper-like catalyst array body, and solid oxide fuel cell provided with paper-like catalyst or paper-light catalyst array body
CN103606687A (en) * 2013-11-26 2014-02-26 华南师范大学 Anode catalyst porous array Pt-p-HxMoO3 for direct methanol fuel cell and preparation method of anode catalyst porous array Pt-p-HxMoO3
CN103887518A (en) * 2014-03-26 2014-06-25 清华大学 Self-humidifying ordered polymer membrane electrode
CN104393318A (en) * 2014-09-30 2015-03-04 成都新柯力化工科技有限公司 Fuel-cell ceramic proton exchange membrane and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437525A (en) * 1964-01-20 1969-04-08 Engelhard Ind Inc Fuel cell with titanium-containing electrode and process of use thereof
JPH05283094A (en) * 1992-03-31 1993-10-29 Toshiba Corp Fuel cell
JPH10167855A (en) * 1996-12-05 1998-06-23 Toho Rayon Co Ltd Porous carbon material
US6284114B1 (en) * 1997-09-29 2001-09-04 Rodel Holdings Inc. Method of fabricating a porous polymeric material by electrophoretic deposition
JP2004186046A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell
DE10345261A1 (en) * 2003-09-29 2005-04-21 Ballard Power Systems Polymer electrolyte membrane fuel cell comprises membrane-electrode arrangement having gas diffusion electrode with hydrophilic nano-porous catalytic layer and first hydrophobic nano-porous gas diffusion layer
JP2005183263A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Porous structure
JP2007184204A (en) * 2006-01-10 2007-07-19 Canon Inc Fuel cell membrane electrode assembly and method for fabrication thereof
JP2008041467A (en) * 2006-08-08 2008-02-21 Toshiba Corp Device and method of manufacturing electrode for fuel cell
JP2008147031A (en) * 2006-12-11 2008-06-26 Sharp Corp Manufacturing method of membrane-electrode assembly
KR100982326B1 (en) * 2008-05-13 2010-09-15 삼성에스디아이 주식회사 Membrane electrode assembly for fuel cell, and fuel cell system comprising the same
KR20140065283A (en) * 2012-11-21 2014-05-29 삼성전자주식회사 Electrode for fuel cell, method for preparing the same, membrane electrode assembly for fuel cell the electrode and fuel cell including the membrane electrode assembly
JP6300315B2 (en) * 2014-03-31 2018-03-28 住友電気工業株式会社 Fuel cell current collector and fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359738A (en) * 2007-08-02 2009-02-04 丰田自动车株式会社 Catalyst-loaded support used for forming electrode for fuel cell, and method of producing the same
US20120251926A1 (en) * 2010-04-29 2012-10-04 Ford Global Technologies, Llc Thin Film Catalyst With Heat-Extendable Wires
CN102059114A (en) * 2010-12-02 2011-05-18 华南师范大学 Anode porous array catalyst Pt-HxMoO3 for direct methanol fuel cell and preparation method thereof
WO2014021385A1 (en) * 2012-08-01 2014-02-06 国立大学法人九州大学 Paper-like catalyst, paper-like catalyst array body, and solid oxide fuel cell provided with paper-like catalyst or paper-light catalyst array body
CN103606687A (en) * 2013-11-26 2014-02-26 华南师范大学 Anode catalyst porous array Pt-p-HxMoO3 for direct methanol fuel cell and preparation method of anode catalyst porous array Pt-p-HxMoO3
CN103887518A (en) * 2014-03-26 2014-06-25 清华大学 Self-humidifying ordered polymer membrane electrode
CN104393318A (en) * 2014-09-30 2015-03-04 成都新柯力化工科技有限公司 Fuel-cell ceramic proton exchange membrane and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221788A1 (en) * 2017-06-01 2018-12-06 전남대학교산학협력단 Three-dimensional membrane electrode assembly, fuel cell having same, and manufacturing method therefor
KR20180131920A (en) * 2017-06-01 2018-12-11 전남대학교산학협력단 Three-dimensional membrane electrode assembly, fuel cell provided with the same and fabrication method thereof
KR101988567B1 (en) 2017-06-01 2019-06-12 전남대학교산학협력단 Three-dimensional membrane electrode assembly, fuel cell provided with the same and fabrication method thereof
JP2019003937A (en) * 2017-06-09 2019-01-10 ツィンファ ユニバーシティ Fuel cell electrode and fuel cell
CN108745308A (en) * 2018-05-07 2018-11-06 江苏大学 A kind of conductive traces Ag@PANI/CoFe2O4The preparation method and applications of/C
CN108993470A (en) * 2018-08-02 2018-12-14 福州大学 A kind of preparation and application of the double array structure catalysis materials of titanium dioxide/graphene/zinc oxide
CN108956730A (en) * 2018-08-08 2018-12-07 甘肃省食品检验研究院 A kind of electrochemical sensor and its preparation method and application for direct alcohol fuel cell

Also Published As

Publication number Publication date
KR102039536B1 (en) 2019-11-01
KR20180003536A (en) 2018-01-09
CN109618561A (en) 2019-04-12
JP2018522365A (en) 2018-08-09
TW201715778A (en) 2017-05-01
JP6726210B2 (en) 2020-07-22
TWI650897B (en) 2019-02-11
CN109618561B (en) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2017066949A1 (en) Fuel cell electrode material and apparatuses
US8394555B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR100722093B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system comprising the same
KR101640731B1 (en) Fuel cell system
EP1253655B1 (en) Fuel cell
EP2019445A2 (en) Electrode for fuel cell, electrolyte-dispersed solution for forming electrode, method of producing the solution, and polymer electrolyte fuel cell
JP2023126365A (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JPWO2003079470A1 (en) Fuel cell
WO2011036834A1 (en) Direct oxidation fuel cell
JP2009037902A (en) Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell
US11145873B2 (en) Membrane electrode assembly and fuel cell comprising core-shell catalyst
JP5354982B2 (en) Direct oxidation fuel cell
JP2020068148A (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2006040767A (en) Solid polymer fuel electrode
JP2005197195A (en) Solid polymer fuel cell
JP2006012449A (en) Membrane electrode junction body and solid polymer fuel cell using above
KR102544711B1 (en) Electrode for fuel cell using Two types of carbon with different shapes and membrane electrode assembly including same
JP2009129667A (en) Fuel cell
JP2005174836A (en) Solid polymer fuel cell
JP2007213947A (en) Manufacturing method of catalyst support powder for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having catalyst support powder provided by same
JP2006040703A (en) Catalyst carrying method of solid polymer fuel cell and membrane-electrode junction
JP2008034157A (en) Fuel cell
KR20230100452A (en) Membrane-electrode assembly and fuel cell comprising same
WO2013080421A1 (en) Direct oxidation fuel cell and method for producing membrane catalyst layer assembly used in same
JP2023102404A (en) Water electrolysis cell and method for manufacturing water electrolysis cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177027257

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017554458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906467

Country of ref document: EP

Kind code of ref document: A1