JPH10167855A - Porous carbon material - Google Patents

Porous carbon material

Info

Publication number
JPH10167855A
JPH10167855A JP8340513A JP34051396A JPH10167855A JP H10167855 A JPH10167855 A JP H10167855A JP 8340513 A JP8340513 A JP 8340513A JP 34051396 A JP34051396 A JP 34051396A JP H10167855 A JPH10167855 A JP H10167855A
Authority
JP
Japan
Prior art keywords
resin
porous carbon
carbon material
carbon fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8340513A
Other languages
Japanese (ja)
Inventor
Masahiro Hayashi
正裕 林
Kenji Shimazaki
賢司 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP8340513A priority Critical patent/JPH10167855A/en
Publication of JPH10167855A publication Critical patent/JPH10167855A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells

Abstract

PROBLEM TO BE SOLVED: To obtain a porous carbon material having high mechanical strength and excellent electric characteristics which is suitable for an electrode material by impregnating carbon fibers with a thermosetting resin containing a foaming agent, molding and then calcining. SOLUTION: Carbon fibers having 3 to 20mm fiber length are formed into a sheet like a paper or felt. Then the carbon fiber sheets are impregnated with a thermosetting resin such as a phenol resin and furan resin containing a foaming agent so as to obtain 40 to 80wt.% resin content. The carbon fiber sheets impregnated with resin are cut into a required size, laminated to obtain a specified number of layers and heated to the setting temp. of the resin, if necessary, press formed, and hardened. The hardened body is calcined in an inert atmosphere at 1000 to 3000 deg.C to obtain a porous carbon material having the porosity (x) and average pore diameter (y) μm satisfying 0.6<=x<=0.8 and 10×x<-3> +50<=y<=10×x<-3> +60 and having the distribution of pores with a single peak.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多孔質炭素材に関する
ものであり、更に詳しくは、燃料電池等の電極材に使用
する多孔質炭素材に関するものである。
The present invention relates to a porous carbon material, and more particularly to a porous carbon material used for an electrode material of a fuel cell or the like.

【0002】[0002]

【従来の技術】燐酸型燃料電池などの電極材には、多孔
質炭素材が使用されている。効率の良い大型の電池の開
発の為には、更に薄くて大型の多孔質炭素材が必要とさ
れている。この為には、機械的強度の向上が不可欠であ
り、炭素繊維を基材とした多孔質板が、特開昭60−4
4963号公報等に記載されている。
2. Description of the Related Art A porous carbon material is used for an electrode material of a phosphoric acid type fuel cell or the like. In order to develop an efficient large battery, a thinner and larger porous carbon material is required. For this purpose, improvement in mechanical strength is indispensable, and a porous plate based on carbon fiber is disclosed in
No. 4963, and the like.

【0003】多孔質炭素材を燃料電池の電極材に用いる
場合には、全体としての空隙率を高くすると共に、個々
の細孔の径を必要とする大きさに制御した多孔質炭素板
を調製しなければならない。特開昭61−50912号
公報には、可溶性粒状物質を炭素繊維及び結合材と混
合、加熱成形後に、可溶性物質を溶出除去した後、炭素
化して必要な細孔径を得る方法が記載されている。
When a porous carbon material is used for an electrode material of a fuel cell, a porosity as a whole is increased, and a porous carbon plate is prepared in which the diameter of each pore is controlled to a required size. Must. JP-A-61-50912 describes a method in which a soluble particulate substance is mixed with carbon fiber and a binder, heated and molded, and the soluble substance is eluted and removed, followed by carbonization to obtain a required pore diameter. .

【0004】また、特開昭63−236771号公報に
は軽量炭素材を得る為ために炭素繊維に発泡性の結合材
を加えて、発泡、硬化、炭素化する方法が記載されてい
る。
Japanese Patent Application Laid-Open No. 63-236771 describes a method of foaming, hardening and carbonizing a carbon fiber by adding a foaming binder to obtain a lightweight carbon material.

【0005】特公平5−44779号公報には、炭素短
繊維を用いた燃料電池電極材が記載されている。特開昭
63−236771号公報には、発泡性の結合材の発泡
倍率を変えて、全体の嵩密度、熱伝導率、圧縮特性等の
物理的、機械的特性について制御すること等、多孔質炭
素材の諸特性を制御する方法が記載されている。
Japanese Patent Publication No. 5-44779 discloses a fuel cell electrode material using short carbon fibers. JP-A-63-236771 discloses a method of controlling the physical and mechanical properties such as the overall bulk density, thermal conductivity, and compression properties by changing the expansion ratio of a foamable binder. A method for controlling various properties of a carbon material is described.

【0006】[0006]

【発明が解決しようとする課題】特公昭61−5091
2号公報には、細孔径を制御する為に、可溶性物質を添
加、成形硬化後に除去して炭素化する方法が記載されて
いる。しかし、発明者等の検討によると、この方法によ
る多孔質炭素材は、図3に示すように細孔径分布のピー
クが2つ生じる。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 61-5091
No. 2 describes a method of adding a soluble substance and removing it after molding and curing to carbonize it in order to control the pore diameter. However, according to studies by the inventors, the porous carbon material obtained by this method has two peaks in the pore diameter distribution as shown in FIG.

【0007】熱硬化性樹脂、例えば、フェノール樹脂に
よって成形硬化、炭素化した場合、加熱硬化時に溶剤或
は縮合水が揮発して、その跡がボイドとして残る。また
多孔質材を製作する為に、通常樹脂量を少なくして成形
する為に、樹脂の無い部分がボイドとして残存する。或
は、樹脂の炭化収縮によって、クラックが生じる場合も
ある。
[0007] When the composition is cured and carbonized with a thermosetting resin, for example, a phenol resin, the solvent or condensed water is volatilized at the time of heating and curing, and traces thereof remain as voids. Further, in order to manufacture a porous material and to reduce the amount of the resin, the resin-free portion usually remains as a void. Alternatively, cracks may occur due to carbonization shrinkage of the resin.

【0008】揮発又は除去可能な添加物により、一定の
細孔径を得ようとした場合は、除去によって生じた細孔
と、マトリックス即ち樹脂の欠落或は収縮などによって
生じた細孔が共存し、単一でシャープな細孔径分布が得
られない。このため、多孔質炭素の電気特性が低下する
という問題がある。本発明はこうした問題点に鑑みなさ
れたもので、機械的強度が高く、電気的特性に優れた電
極材に適した多孔質炭素材を提供する事を目的としてい
る。
When a certain pore diameter is to be obtained by the volatile or removable additive, the pores formed by the removal and the pores formed by the lack or shrinkage of the matrix, that is, the resin, coexist, A single sharp pore size distribution cannot be obtained. For this reason, there is a problem that the electrical characteristics of the porous carbon deteriorate. The present invention has been made in view of such problems, and has as its object to provide a porous carbon material suitable for an electrode material having high mechanical strength and excellent electrical characteristics.

【0009】[0009]

【課題を解決するための手段】こうした事から発明者等
の鋭意検討の結果本発明に至った。即ち、本発明の多孔
質炭素材は、 (1)炭素繊維と炭素質バインダーからなり、空隙率x
が、 0.6≦x≦0.8の範囲において、平均細孔径
y(μm)が、10×x-3+50≦y≦10×x-3+6
0 の範囲である、単一ピークの細孔分布を有する多孔
質炭素材。 (2)炭素繊維が繊維長3〜20mmの短繊維で平均細孔
径が5〜40μmであることを特徴とする請求項1記載
の多孔質炭素材。 (3)繊維長3〜20mmの炭素繊維に発泡剤が含まれた
熱硬化性樹脂を含浸させて成形後、1000〜3000
℃で焼成した請求項1乃至2記載の多孔質炭素材、で
あ。
SUMMARY OF THE INVENTION From the above, as a result of intensive studies by the inventors, the present invention has been achieved. That is, the porous carbon material of the present invention comprises: (1) a carbon fiber and a carbonaceous binder;
In the range of 0.6 ≦ x ≦ 0.8, the average pore diameter y (μm) is 10 × x −3 + 50 ≦ y ≦ 10 × x −3 +6.
A porous carbon material having a single peak pore distribution in the range of 0. (2) The porous carbon material according to claim 1, wherein the carbon fibers are short fibers having a fiber length of 3 to 20 mm and have an average pore diameter of 5 to 40 µm. (3) A carbon fiber having a fiber length of 3 to 20 mm is impregnated with a thermosetting resin containing a foaming agent, and then molded, and then subjected to 1000 to 3000.
3. The porous carbon material according to claim 1, which is calcined at a temperature of ° C.

【0010】以下に本発明の多孔質炭素材について、製
造方法とともにさらに詳細に説明する。本発明に使用さ
れる炭素繊維は、レーヨン、ポリアクリロニトリル、ピ
ッチ等の繊維をそれぞれ既知の方法で炭素化した繊維、
或は更に高温で熱処理した黒鉛繊維が用いられる。
Hereinafter, the porous carbon material of the present invention will be described in more detail together with the production method. Carbon fibers used in the present invention, rayon, polyacrylonitrile, fibers obtained by carbonizing fibers such as pitch by a known method,
Alternatively, graphite fibers heat-treated at a higher temperature are used.

【0011】該炭素繊維は、大型の多孔質材を成形する
為に、ペーパ状、フェルト状などのシート状に加工され
る。そのまま連続繊維即ち長繊維で使用される場合もあ
るが、大型の均一なシート材を安価に製造する為に、好
ましくは、3〜20mmにカットされる。繊維長が3m
mより短いと、得られたシート材の強度が低く、更に該
シートより製造された多孔質炭素材の強度も低くなる。
繊維長が20mmより長くなると、シート成形時に繊維
が均一に分散せず、不均一なシートが成形される。
The carbon fiber is processed into a sheet shape such as a paper shape or a felt shape in order to form a large-sized porous material. Although it may be used as it is as a continuous fiber, that is, a long fiber, it is preferably cut to 3 to 20 mm in order to produce a large and uniform sheet material at low cost. Fiber length is 3m
When the length is shorter than m, the strength of the obtained sheet material is low, and the strength of the porous carbon material manufactured from the sheet is also low.
When the fiber length is longer than 20 mm, the fibers are not uniformly dispersed at the time of sheet formation, and a non-uniform sheet is formed.

【0012】次に該炭素繊維をシート状に加工する。シ
ート状への加工は、湿式で抄紙したCFペーパ、乾式で
ニードルパンチしたCFフェルト等の不織布等が利用さ
れる。
Next, the carbon fiber is processed into a sheet. For processing into a sheet, a non-woven fabric such as CF paper made by wet papermaking and CF felt made by dry needle-punching is used.

【0013】該炭素繊維シートに、発泡剤を含有した熱
硬化性樹脂を含浸させる。熱硬化性樹脂としては、フェ
ノール樹脂、フラン樹脂、エポキシ樹脂、ビスマレイミ
ド樹脂等が用いられる。炭素化収率の高いフェノール樹
脂或はフラン樹脂などが特に好ましい。炭素化収率が、
30%以上であれば実用的に問題が無いが、特に炭化収
率40〜70%のフェノール樹脂が本発明に適してい
る。これらが炭素質バインダーとして炭素質多孔体に残
存する。
The carbon fiber sheet is impregnated with a thermosetting resin containing a foaming agent. As the thermosetting resin, a phenol resin, a furan resin, an epoxy resin, a bismaleimide resin, or the like is used. A phenol resin or a furan resin having a high carbonization yield is particularly preferred. Carbonization yield is
If it is 30% or more, there is no practical problem. In particular, a phenol resin having a carbonization yield of 40 to 70% is suitable for the present invention. These remain in the carbonaceous porous body as a carbonaceous binder.

【0014】熱硬化性樹脂に添加する発泡剤としては、
樹脂成形に一般的に使用されるハロゲン化炭化水素類、
フッ素含有ハロゲン化炭化水素類、脂肪族炭化水素類、
重曹等の化学的反応発泡剤の単独または混合物等が使用
される。
As a foaming agent to be added to the thermosetting resin,
Halogenated hydrocarbons commonly used for resin molding,
Fluorine-containing halogenated hydrocarbons, aliphatic hydrocarbons,
A chemical reaction foaming agent such as baking soda alone or a mixture is used.

【0015】発砲剤を添加した熱硬化性樹脂を前記炭素
繊維乃至好ましくはシート状炭素繊維に含浸する。樹脂
の含浸量は、次の式から計算される。 樹脂含有率=(不揮発分樹脂量)×100/(繊維重量
+不揮発分樹脂量) ここで、不揮発分樹脂量は該樹脂を樹脂の硬化温度、フ
ェノール樹脂の場合は、140℃で、30分加熱後の残
存樹脂重量である。
A thermosetting resin to which a foaming agent is added is impregnated into the carbon fibers or preferably sheet carbon fibers. The resin impregnation amount is calculated from the following equation. Resin content = (amount of non-volatile resin) × 100 / (weight of fiber + amount of non-volatile resin) Here, the amount of the non-volatile resin is the curing temperature of the resin. It is the weight of the residual resin after heating.

【0016】樹脂有率としては40〜80%、好ましく
は60〜70%である。樹脂含有率が小さいと、製品の
多孔質炭素材の強度が小さくなる。樹脂含有率が大きい
と製品の空隙率が小さくなり、電極材として不適であ
る。
The resin content is 40 to 80%, preferably 60 to 70%. If the resin content is low, the strength of the porous carbon material of the product will be low. If the resin content is high, the porosity of the product will be small, making it unsuitable as an electrode material.

【0017】本発明に使用される炭素繊維の量は、製品
の多孔質炭素材に対する体積含有率で5〜30%、更に
好ましくは10〜20%である。炭素繊維の量が少なす
ぎると、得られた多孔質炭素材の強度が低くなり、炭素
繊維の量が多すぎると、空隙率が減り、製品の価格も高
くなり好ましくない。
The amount of the carbon fiber used in the present invention is 5 to 30% by volume, more preferably 10 to 20% by volume based on the porous carbon material of the product. If the amount of the carbon fiber is too small, the strength of the obtained porous carbon material will be low, and if the amount of the carbon fiber is too large, the porosity will decrease and the price of the product will increase, which is not preferable.

【0018】樹脂を含浸した炭素繊維シートは、必要な
サイズにカット後、所定の枚数積層される。積層された
炭素繊維シートは、樹脂の硬化温度に加熱、必要により
加圧され成形硬化される。
A predetermined number of carbon fiber sheets impregnated with resin are laminated after being cut to a required size. The laminated carbon fiber sheet is heated to the curing temperature of the resin, pressurized if necessary, and molded and cured.

【0019】成形前の樹脂の含有量、樹脂の種類、発泡
剤の種類および含有量、更に成形時において、スペーサ
を使用、或は成形圧を制御する事により、所定の発泡倍
率になる様に制御する。本発明者等は、成形時の発泡倍
率を制御する事により、製品の空隙率と平均細孔径に相
関関係がある事を見いだした。空隙率xが0.6より小
さい場合、ガス透過性が悪くなり、0.8以上の場合、
電解液のリークなどが生ずる。この為、空隙率としては
0.6≦x≦0.8の範囲になる必要がある。即ち、空
隙率xが0.6≦x≦0.8の範囲においては、得られ
た多孔質炭素材の平均細孔径y(μm)は、空隙率が大
きくなると平均細孔径も大きくなり 10×x-3+50≦y≦10×x-3+60 の相関を見つけ、空隙率を制御する事により、必要な平
均細孔径の多孔質炭素材が得られる事を見いだした。
The resin content before molding, the type of resin, the type and content of the foaming agent, and the use of spacers during molding, or by controlling the molding pressure, can achieve a predetermined foaming ratio. Control. The present inventors have found that there is a correlation between the porosity of the product and the average pore diameter by controlling the expansion ratio at the time of molding. When the porosity x is smaller than 0.6, the gas permeability becomes worse, and when the porosity x is 0.8 or larger,
Electrolyte leaks occur. For this reason, the porosity needs to be in the range of 0.6 ≦ x ≦ 0.8. That is, when the porosity x is in the range of 0.6 ≦ x ≦ 0.8, the average pore diameter y (μm) of the obtained porous carbon material increases as the porosity increases. A correlation of x −3 + 50 ≦ y ≦ 10 × x −3 +60 was found, and it was found that a porous carbon material having a necessary average pore diameter could be obtained by controlling the porosity.

【0020】次に、マトリックス樹脂を炭素化する為に
窒素、アルゴン等の不活性雰囲気中で、800〜120
0℃程度に加熱する。昇温速度は、成形物の形状、サイ
ズによって異なるが、一般的に温度斑が生じないように
或は分解ガスが急速に発生しないように、大型成形物の
場合には、昇温速度を小さくすることが好ましい。平均
細孔径は、一般的に使用される水銀ポロシメータによっ
て求めた値である。
Next, in order to carbonize the matrix resin, 800 to 120 in an inert atmosphere such as nitrogen or argon.
Heat to about 0 ° C. The heating rate varies depending on the shape and size of the molded product.In general, in the case of a large molded product, the heating rate should be reduced so as not to cause temperature unevenness or to generate decomposition gas rapidly. Is preferred. The average pore diameter is a value determined by a generally used mercury porosimeter.

【0021】[0021]

【実施例】基材としてCFペーパ(東邦レーヨン(株)製
ベスファイトBP1060A-ES)に発泡性フェノール樹脂PGA4
404(群栄化学工業(株)製)を表1に示す樹脂含有率にな
るように含浸し、該ペーパを6〜8枚積層し、ホットプ
レスにて1.7mmのスペーサを用いて、成形温度14
0℃にて30分加熱して成形した。得られた成形板を窒
素雰囲気中2000℃にて焼成し、表1に示す多孔質炭
素板が得られた。空隙率と平均細孔径の関係は、図1に
黒丸で示される。図2に代表的な細孔分布を示す。
[Example] CF paper (Vesfight BP1060A-ES manufactured by Toho Rayon Co., Ltd.) was used as a base material and foamable phenol resin PGA4
404 (manufactured by Gunei Chemical Industry Co., Ltd.) is impregnated so as to have a resin content shown in Table 1, and 6 to 8 of the papers are laminated and molded by hot pressing using a 1.7 mm spacer. Temperature 14
It was molded by heating at 0 ° C. for 30 minutes. The obtained molded plate was fired at 2000 ° C. in a nitrogen atmosphere to obtain a porous carbon plate shown in Table 1. The relationship between the porosity and the average pore diameter is shown by a black circle in FIG. FIG. 2 shows a typical pore distribution.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【比較例1】実施例と同じ基材を用いて、発泡剤を含有
しないフェノール樹脂BLS3135(昭和高分子(株)製)を
表2に示す量含浸し、該ペーパ6枚を実施例1と同様に
積層、成形及び焼成した。得られた多孔質炭素材の物性
を表2に示す。
Comparative Example 1 Using the same base material as in the example, a phenol resin BLS3135 (manufactured by Showa Polymer Co., Ltd.) containing no foaming agent was impregnated in the amount shown in Table 2, and six sheets of the paper were used as in Example 1. Similarly, lamination, molding and firing were performed. Table 2 shows the physical properties of the obtained porous carbon material.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【比較例2】 基材としてCFヘ゜ーハ゜ー(東邦レーヨン
(株)製ベスファイトBP1060A−ES)を用い
て、発泡剤を含有しないフェノール樹脂BLS3135
(昭和高分子(株)製)、炭素化収率が30%以下の熱
可塑性樹脂(TP)粉末としてオルガソール1002D
(ATO CHEM社製)を表3に示す量含浸し、該ペーパー6
枚を実施例1と同様に積層、成形及び焼成した。得られ
た多孔質炭素材の物性を表3に示す。細孔径分布は図3
に示すように2つのピークを持つようになった。
Comparative Example 2 A phenolic resin BLS3135 containing no foaming agent was used as a substrate, using CF paper (Vesfight BP1060A-ES manufactured by Toho Rayon Co., Ltd.).
Orgasol 1002D as a thermoplastic resin (TP) powder having a carbonization yield of 30% or less.
(Manufactured by ATO CHEM) in the amount shown in Table 3.
The sheets were laminated, formed and fired in the same manner as in Example 1. Table 3 shows the physical properties of the obtained porous carbon material. Figure 3 shows the pore size distribution.
Has two peaks as shown in FIG.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】すなわち、本発明は、機械的強度が高
く、特定の空隙率及び平均細孔径を備えた多孔質炭素材
であるため、機械的強度、電気特性に優れた燐酸電池電
極材を提供することができるものである。
That is, since the present invention is a porous carbon material having a high mechanical strength and a specific porosity and an average pore size, a phosphoric acid battery electrode material having excellent mechanical strength and electrical properties is provided. That can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空隙率と平均細孔径(μm)の関係を示したグ
ラフである。
FIG. 1 is a graph showing the relationship between porosity and average pore size (μm).

【図2】発砲樹脂使用材の細孔径分布を示したグラフで
ある。
FIG. 2 is a graph showing a pore size distribution of a foamed resin-using material.

【図3】熱可塑性樹脂粉末使用材の細孔径分布を示した
グラフである。
FIG. 3 is a graph showing a pore size distribution of a material using a thermoplastic resin powder.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維と炭素質バインダーからなり、空
隙率xが、 0.6≦x≦0.8の範囲において 平均細孔径y(μm)が 10×x-3+50≦y≦10×x-3+60 の範囲である、単一なピークの細孔分布を有する多孔質
炭素材。
1. A carbon fiber and carbonaceous binder having a porosity x of 0.6 ≦ x ≦ 0.8 and an average pore diameter y (μm) of 10 × x −3 + 50 ≦ y ≦ 10 × A porous carbon material having a single peak pore distribution in the range of x -3 +60.
【請求項2】炭素繊維が繊維長3〜20mmの短繊維で平
均細孔径が5〜40μmであることを特徴とする請求項
1記載の多孔質炭素材。
2. The carbon fiber according to claim 1, wherein the carbon fiber is a short fiber having a fiber length of 3 to 20 mm and an average pore diameter of 5 to 40 μm.
The porous carbon material according to 1.
【請求項3】繊維長3〜20mmの炭素繊維に発泡剤が含
まれた熱硬化性樹脂を含浸させて成形後、1000〜3
000℃で焼成した請求項1乃至2記載の多孔質炭素
材。
3. A carbon fiber having a fiber length of 3 to 20 mm is impregnated with a thermosetting resin containing a foaming agent, and is molded.
3. The porous carbon material according to claim 1, which is fired at 000 ° C.
JP8340513A 1996-12-05 1996-12-05 Porous carbon material Pending JPH10167855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340513A JPH10167855A (en) 1996-12-05 1996-12-05 Porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8340513A JPH10167855A (en) 1996-12-05 1996-12-05 Porous carbon material

Publications (1)

Publication Number Publication Date
JPH10167855A true JPH10167855A (en) 1998-06-23

Family

ID=18337702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340513A Pending JPH10167855A (en) 1996-12-05 1996-12-05 Porous carbon material

Country Status (1)

Country Link
JP (1) JPH10167855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095395A (en) * 2008-10-14 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
WO2016072414A1 (en) * 2014-11-04 2016-05-12 三菱レイヨン株式会社 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095395A (en) * 2008-10-14 2010-04-30 Mitsubishi Rayon Co Ltd Porous electrode substrate, method for manufacturing the same, membrane-electrode assembly, and solid polymer fuel cell
WO2016072414A1 (en) * 2014-11-04 2016-05-12 三菱レイヨン株式会社 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
JP6086164B2 (en) * 2014-11-04 2017-03-01 三菱レイヨン株式会社 Porous electrode substrate, membrane-electrode assembly using the same, and polymer electrolyte fuel cell using the same
KR20170057428A (en) 2014-11-04 2017-05-24 미쯔비시 케미컬 주식회사 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
KR20190104434A (en) 2014-11-04 2019-09-09 미쯔비시 케미컬 주식회사 Porous electrode substrate, membrane/electrode assembly using same, and solid polymer fuel cell using same
US10727497B2 (en) 2014-11-04 2020-07-28 Mitsubishi Chemical Corporation Porous electrode substrate, membrane-electrode assembly using same, and polymer electrolyte fuel cell using same
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Similar Documents

Publication Publication Date Title
US4506028A (en) Process for preparing a fuel cell electrode substrate comprising carbon fibers
JPH0544779B2 (en)
US4234650A (en) Laminar carbon member and a method of manufacturing it
JPH082979A (en) Porous carbon material and its production
JPH10167855A (en) Porous carbon material
JPH0365505A (en) Low density swollen graphite molded product and preparation thereof
JPH0360478A (en) Production of porous carbon sheet
JPH044242B2 (en)
JPH052625B2 (en)
JPH0131445B2 (en)
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH01266223A (en) Production of anisotropic porous carbon formed product
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH06206780A (en) Production of active porous carbonaceous structure
JPH034508B2 (en)
JPH04284363A (en) Manufacture of carbon plate
JP2008044822A (en) Method of manufacturing porous glassy carbon material and porous glassy carbon material
JP3131911B2 (en) Method for producing thick porous carbon material
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPH09157065A (en) Production of carbonaceous porous body and porous laminated sheet
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH01264967A (en) Production of graphite molding
JPH0497948A (en) Porous carbon plate and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703