JP2020167064A - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
JP2020167064A
JP2020167064A JP2019067713A JP2019067713A JP2020167064A JP 2020167064 A JP2020167064 A JP 2020167064A JP 2019067713 A JP2019067713 A JP 2019067713A JP 2019067713 A JP2019067713 A JP 2019067713A JP 2020167064 A JP2020167064 A JP 2020167064A
Authority
JP
Japan
Prior art keywords
electrode
permalloy
fuel
fuel cell
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019067713A
Other languages
Japanese (ja)
Inventor
正己 奥山
Masami Okuyama
正己 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Repton Co Ltd
Original Assignee
Repton Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Repton Co Ltd filed Critical Repton Co Ltd
Priority to JP2019067713A priority Critical patent/JP2020167064A/en
Publication of JP2020167064A publication Critical patent/JP2020167064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a solid polymer fuel cell having an excellent catalytic activity without using a platinum-group element.SOLUTION: A fuel electrode 13 and an air electrode 14 are each composed of a thin plate-like porous metal electrode of a micro porous structure, in which permalloy fine powder is molten and binds and many fine continuous pores are evenly formed. The electrodes are arranged by the steps of: uniformly mixing and dispersing a predetermined binder in permalloy fine powder prepared by finely pulverizing Fe-Ni permalloy and in parallel, uniformly mixing and dispersing a predetermined pore-forming material into a permalloy fine powder mixture; molding the permalloy fine powder mixture having the binder and pore-forming material mixed in the permalloy fine powder in a thin plate-like form having a given area; and then, degreasing and sintering the resultant permalloy fine powder mixture mold shaped in the thin plate-like form. The electrodes have substantially the same catalytic activity as that of a fuel electrode or air electrode containing a platinum-group element.SELECTED DRAWING: Figure 3

Description

本発明は、複数のセルを有するセルスタックを備えた固体高分子形燃料電池に関する。 The present invention relates to a polymer electrolyte fuel cell having a cell stack having a plurality of cells.

固体高分子電解質膜と、固体高分子電解質膜を両面から挟持するアノード電極及びカソード電極と、液体燃料を収容する燃料容器と、アノード電極とカソード電極との間に設けられる気液分離性多孔質体からなる燃料気化層と、燃料気化層を両面から挟持する有孔固定板とを有し、カソード電極側に配置した有孔固定板の開口率がアノード電極側に配置した有孔固定板の開口率よりも大きい個体高分子形燃料電池が開示されている(特許文献1参照)。 A gas-liquid separable porous material provided between the solid polymer electrolyte membrane, the anode electrode and the cathode electrode that sandwich the solid polymer electrolyte membrane from both sides, the fuel container that houses the liquid fuel, and the anode electrode and the cathode electrode. A perforated fixing plate having a fuel vaporization layer composed of a body and a perforated fixing plate sandwiching the fuel vaporization layer from both sides, and having a perforated fixing plate arranged on the cathode electrode side with an opening ratio of the perforated fixing plate arranged on the anode electrode side. A solid polymer fuel cell having an aperture ratio larger than that of the anode is disclosed (see Patent Document 1).

特開2011−222119号公報Japanese Unexamined Patent Publication No. 2011-222119

前記特許文献1に開示の個体高分子形燃料電池のカソード電極及びアノード電極の作成方法は、以下のとおりである。炭素粒子に粒子径が3〜5nmの範囲にある白金微粒子を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%のナフィオン溶液を適量加えて攪拌し、カソード電極用の触媒ペーストを作る。カソード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのカソード電極を作製する。次に、白金微粒子に替えて粒子径が3〜5nmの範囲にある白金(Pt)−ルテニウム(Ru)合金微粒子(Ruの割合は60at%)を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%のナフィオン溶液を適量加えて攪拌し、アノード電極用の触媒ペーストを作る。アノード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのアノード電極を作製する。 The method for producing the cathode electrode and the anode electrode of the polymer electrolyte fuel cell disclosed in Patent Document 1 is as follows. Catalyst-supported carbon fine particles were prepared by supporting 55% by weight of platinum fine particles having a particle size in the range of 3 to 5 nm on carbon particles, and an appropriate amount of 5% by weight of Nafion solution was added to 1 g of the catalyst-supported carbon fine particles and stirred. , Make a catalyst paste for the cathode electrode. The catalyst paste for the cathode electrode is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to prepare a 4 cm × 4 cm cathode electrode. Next, instead of the platinum fine particles, catalyst-supported carbon fine particles in which platinum (Pt) -lutenium (Ru) alloy fine particles (Ru ratio is 60 at%) having a particle diameter in the range of 3 to 5 nm are supported by 55% by weight. To 1 g of the catalyst-supported carbon fine particles, an appropriate amount of 5% by weight of Nafion solution is added and stirred to prepare a catalyst paste for an anode electrode. The catalyst paste for the anode electrode is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to prepare a 4 cm × 4 cm anode electrode.

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金族元素は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金以外の金属を利用した非白金触媒を有する廉価な電極の開発が求められている。 Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, since platinum group elements are precious metals and are rare resources whose production amount is limited, it is required to reduce the amount used. Further, for the spread of polymer electrolyte fuel cells in the future, it is required to develop an inexpensive electrode having a non-platinum catalyst using a metal other than platinum, which is expensive.

本発明の目的は、白金族元素を利用することなく優れた触媒活性(触媒作用)を有する燃料極及び空気極を備え、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、負荷に十分な電気エネルギーを供給することができる固体高分子形燃料電池を提供することにある。本発明の他の目的は、白金族元素を利用しない廉価な燃料極及び空気極を備え、それによって低コストで製造することができる固体高分子形燃料電池を提供することにある。 An object of the present invention is to provide a fuel electrode and an air electrode having excellent catalytic activity (catalytic action) without using a platinum group element, and to generate sufficient electricity by using a non-platinum fuel electrode and an air electrode. It is an object of the present invention to provide a polymer electrolyte fuel cell capable of supplying sufficient electric energy to a load. Another object of the present invention is to provide a polymer electrolyte fuel cell which is provided with an inexpensive fuel electrode and an air electrode which do not utilize a platinum group element and can be manufactured at low cost.

前記課題を解決するための本発明の特徴は、複数のセルを有するセルスタックを備え、セルが、燃料極及び空気極と、燃料極と空気極との間に位置する電極接合体膜と、燃料極の外側と空気極の外側とに位置するセパレータとから形成され、燃料極及び空気極は、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、白金族元素を含む燃料極及び空気極と略同様の触媒活性を有し、連続気泡は、パーマロイ微粉体が溶融結合したパーマロイ溶融物によって画成されていることにある。 A feature of the present invention for solving the above problems is that a cell stack having a plurality of cells is provided, and the cells are an electrode joint film located between a fuel electrode and an air electrode, and between a fuel electrode and an air electrode. It is formed of separators located on the outside of the fuel electrode and the outside of the air electrode, and the fuel electrode and the air electrode are predetermined while uniformly mixing and dispersing a predetermined binder in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy. Permalloy fine powder, which is a mixture of permalloy fine powder mixed with binder and pore-forming material, is formed into a thin plate with a predetermined area, and then formed into a thin plate with a predetermined area. A thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while permalloy fine powder is melt-bonded by degreasing and sintering the mixed molded product, and a fuel electrode containing a platinum group element. And having substantially the same catalytic activity as the air electrode, the open cells are defined by a permalloy melt in which permalloy fine powder is melt-bonded.

本発明の固体高分子形燃料電池の一例として、固体高分子形燃料電池では、燃料極及び空気極を形成するパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている。 As an example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, Fe-so that the work function of the permalloy fine powder forming the fuel electrode and the air electrode is close to the work function of the platinum group element. The Fe content in Ni permalloy and the Ni content in Fe-Ni permalloy have been determined.

本発明の固体高分子形燃料電池の他の一例としては、薄板状発泡金属電極に形成された連続気泡が、薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている。 As another example of the polymer electrolyte fuel cell of the present invention, open cells formed on the thin plate-shaped foamed metal electrode are irregularly bent in the thickness direction between the front surface and the rear surface of the thin plate-shaped foamed metal electrode. It extends while being irregularly bent in the radial direction between the outer peripheral edge and the inner peripheral edge of the thin plate-shaped foamed metal electrode.

本発明の固体高分子形燃料電池の他の一例としては、径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が、径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が、厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。 As another example of the polymer electrolyte fuel cell of the present invention, those open cells extending radially adjacent to each other and bending in the thickness direction are partially connected in the radial direction to form one open cell and the other continuous cell. The open cells that communicate with each other and extend radially adjacent to each other in the thickness direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other and are continuous. The average diameter of the bubbles is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and changes irregularly in the radial direction. ing.

本発明の固体高分子形燃料電池の他の一例としては、薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している。 As another example of the polymer electrolyte fuel cell of the present invention, the average diameter of the continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm, and ± 0.1 μm to ± 5 microμm. It is changing in the range of.

本発明の固体高分子形燃料電池の他の一例としては、薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm.

本発明の固体高分子形燃料電池の他の一例としては、Fe−NiパーマロイにおけるFeの含有率が、45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が、45%〜55%の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the Fe content in Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in Fe-Ni permalloy is 45%. It is in the range of ~ 55%.

本発明の固体高分子形燃料電池の他の一例としては、薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the porosity of open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%.

本発明の固体高分子形燃料電池の他の一例としては、薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the density of the thin foamed metal electrode is in the range of 6.0g / cm 2 ~8.0g / cm 2 .

本発明の固体高分子形燃料電池の他の一例としては、パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity, and the temperature of hydrogen is 45. It is in the range of ° C to 55 ° C.

本発明の固体高分子形燃料電池の他の一例として、固体高分子形燃料電池では、燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある。 As another example of the polymer electrolyte fuel cell of the present invention, in the polymer electrolyte fuel cell, the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa.

本発明に係る固体高分子形燃料電池によれば、それに使用される燃料極及び空気極がFe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、パーマロイ微粉体にバインダー及び気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物を脱脂・焼結することで、パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、燃料極及び空気極が白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を有するから、燃料極及び空気極が優れた触媒活性(触媒作用)を有し、燃料極及び空気極が優れた触媒活性(触媒作用)を発揮することで、白金族元素を含まない非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、燃料極及び空気極がFe−Niパーマロイを原料とし、高価な白金族元素が使用されておらず、燃料極及び空気極が白金族元素を含まない非白金の電極であるから、廉価な燃料極及び空気極を備えることで固体高分子形燃料電池を低コストで製造することができる。 According to the polymer electrolyte fuel cell according to the present invention, the fuel electrode and the air electrode used therein are pores while uniformly mixing and dispersing a predetermined binder in permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy. A permalloy fine powder mixture obtained by uniformly mixing and dispersing the forming material and mixing a binder and a pore forming material with the permalloy fine powder was formed into a thin plate having a predetermined area, and then formed into a thin plate having a predetermined area. It is a thin plate-shaped foam metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while the permalloy fine powder is melt-bonded by degreasing and sintering the material, and the fuel electrode and air electrode are platinum group elements. Since the fuel electrode and the air electrode have substantially the same catalytic activity (catalytic action) as the fuel electrode and the air electrode including, the fuel electrode and the air electrode have excellent catalytic activity (catalytic action), and the fuel electrode and the air electrode have excellent catalytic activity (catalytic action). By demonstrating (catalytic action), sufficient electricity can be generated using non-platinum group fuel-free fuel poles and air poles, and sufficient electrical energy is supplied to the load connected to the fuel cell. Can be supplied. The polymer electrolyte fuel cell is a non-platinum electrode whose fuel electrode and air electrode are made of Fe-Ni permalloy, which does not use expensive platinum group elements, and whose fuel electrode and air electrode do not contain platinum group elements. Therefore, the polymer electrolyte fuel cell can be manufactured at low cost by providing an inexpensive fuel electrode and air electrode.

燃料極及び空気極を形成するパーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とFe−NiパーマロイにおけるNiの含有率とが決定されている固体高分子形燃料電池は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが決定されているから、燃料極及び空気極が白金族元素を含む燃料極や空気極と略同一の仕事関数を備え、燃料極及び空気極が白金族元素を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を有し、燃料極及び空気極が白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を発揮することができ、非白金の燃料極及び空気極を使用して十分な電気を発電することができるとともに、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The Fe content in Fe-Ni permalloy and the Ni content in Fe-Ni permalloy are determined so that the working function of the permalloy fine powder forming the fuel electrode and the air electrode is close to the working function of the platinum group element. In the solid polymer fuel cell, the Fe content and Ni content in Fe-Ni permalloy are determined so that the work function of the permalloy fine powder is close to the work function of the platinum group element. , The fuel electrode and the air electrode have substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and the fuel electrode and the air electrode have almost the same excellent catalytic activity as the fuel electrode and the air electrode containing a platinum group element. It has (catalytic action), and the fuel electrode and air electrode can exhibit almost the same catalytic activity (catalytic action) as the fuel electrode and air electrode containing platinum group elements, and the non-platinum fuel electrode and air electrode can be used. It can be used to generate sufficient electricity and can supply sufficient electrical energy to the load connected to the fuel cell.

薄板状発泡金属電極に形成された連続気泡が薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている固体高分子形燃料電池は、厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔が燃料極及び空気極に形成されているから、燃料極及び空気極の比表面積が大きく、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極のそれら連続気孔における接触面に広範囲に接触させることができ、燃料極及び空気極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の比表面積が大きいとともに白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を発揮するから、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and the outer and inner peripheral edges of the thin plate-shaped foamed metal electrode. In a solid polymer fuel cell that extends while bending irregularly in the radial direction, a plurality of continuous pores extending while bending irregularly in the thickness direction and the radial direction are formed in the fuel electrode and the air electrode. Therefore, the specific surface areas of the fuel electrode and the air electrode are large, and the gas (oxygen and hydrogen) can pass through the continuous pores and the gas can be brought into wide contact with the contact surfaces of the continuous pores of the fuel electrode and the air electrode. It is possible to effectively and maximize the catalytic activity (catalytic action) of the fuel electrode and the air electrode. The polymer electrolyte fuel cell has a large specific surface area of the fuel electrode and the air electrode used for it, and exhibits almost the same catalytic activity (catalytic action) as the fuel electrode and the air electrode containing platinum group elements. Sufficient electricity can be generated using the fuel electrode and the air electrode, and sufficient electrical energy can be supplied to the load connected to the fuel cell.

径方向へ隣接して厚み方向へ曲折して延びるそれら連続気泡が径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、厚み方向へ隣接して径方向へ曲折して延びるそれら連続気泡が厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している固体高分子形燃料電池は、一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が厚み方向及び径方向に向かって不規則に変化しているから、燃料極及び空気極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極のそれら連続気孔における接触面に広範囲に接触させることができるとともに、燃料極及び空気極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の比表面積が大きいとともに白金族元素を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を発揮するから、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 These open cells that are adjacent in the radial direction and extend by bending in the thickness direction are partially connected in the radial direction, and one open cell and the other open cell communicate with each other, and are adjacent in the thickness direction and bend in the radial direction. The open cells extending in the direction of thickness are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is not uniform in the thickness direction but in the thickness direction. A solid polymer fuel cell that changes irregularly toward and is not uniform in the radial direction and changes irregularly in the radial direction has one open cell and the other open cell. Since they communicate with each other and the average diameter of the open cells changes irregularly in the thickness direction and the radial direction, the specific surface areas of the fuel electrode and the air electrode can be increased, and the continuous pores are gasified. While (oxygen and hydrogen) can pass through, the gas can be brought into wide contact with the contact surfaces of the continuous pores of the fuel electrode and the air electrode, and the catalytic activity (catalytic action) of the fuel electrode and the air electrode can be effectively and maximized. Can be used for. The polymer electrolyte fuel cell has a large specific surface area of the fuel electrode and the air electrode used for it, and exhibits excellent catalytic activity (catalytic action) similar to that of the fuel electrode and the air electrode containing platinum group elements. Sufficient electricity can be generated using the platinum fuel and air electrodes, and sufficient electrical energy can be supplied to the load connected to the fuel cell.

薄板状発泡金属電極に形成された連続気孔の平均径が1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している固体高分子形燃料電池は、燃料極及び空気極に形成された連続気孔の平均径が前記範囲にあり、連続気孔の平均径が前記範囲で変化しているから、燃料極及び空気極の単位体積当たりに多数の連続気孔が形成され、燃料極及び空気極の比表面積が大きく、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極のそれら連続気孔における接触面に広範囲に接触させることができ、燃料極及び空気極の触媒活性(触媒作用)を有効かつ最大限に利用することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の比表面積が大きいとともに白金族元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を発揮するから、非白金の燃料極及び空気極を使用して十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A solid polymer fuel cell in which the average diameter of continuous pores formed in a thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and changes in the range of ± 0.1 μm to ± 5 microμm is a fuel electrode. And since the average diameter of the continuous pores formed in the air electrode is in the above range and the average diameter of the continuous pores changes in the above range, a large number of continuous pores are formed per unit volume of the fuel electrode and the air electrode. , The specific surface area of the fuel electrode and the air electrode is large, and the gas can be brought into contact with the contact surface of the continuous pores of the fuel electrode and the air electrode in a wide range while the gas (oxygen and hydrogen) flows through the continuous pores. The catalytic activity (catalytic action) of the pole and the air pole can be effectively and maximized. The polymer electrolyte fuel cell has a large specific surface area of the fuel electrode and the air electrode used for it, and exhibits almost the same catalytic activity (catalytic action) as the fuel electrode and the air electrode containing platinum group elements. Sufficient electricity can be generated using the fuel electrode and the air electrode, and sufficient electrical energy can be supplied to the load connected to the fuel cell.

薄板状発泡金属電極の厚み寸法が0.05mm〜0.5mmの範囲にある固体高分子形燃料電池は、それに使用する燃料極及び空気極の厚み寸法を前記範囲にすることで、燃料極及び空気極の電気抵抗を小さくすることができ、燃料極及び空気極に電流をスムースに流すことができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極が白金族元素を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を有するとともに、燃料極及び空気極に電流がスムースに流れる(プロトン導電性がある)から、燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The polymer electrolyte fuel cell in which the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm can be obtained by setting the thickness dimension of the fuel electrode and the air electrode used therein in the above range. The electrical resistance of the air electrode can be reduced, and the current can be smoothly passed through the fuel electrode and the air electrode. In a solid polymer fuel cell, the fuel electrode and the air electrode used therein have excellent catalytic activity (catalytic action) similar to those of the fuel electrode and the air electrode containing platinum group elements, and the current is applied to the fuel electrode and the air electrode. Is able to generate sufficient electricity in a solid polymer fuel cell using a fuel electrode and an air electrode because it flows smoothly (has proton conductivity), and sufficient electrical energy is sufficient for the load connected to the fuel cell. Can be supplied.

Fe−Niパーマロイにおける前記Feの含有率が45%〜55%の範囲にあり、Fe−NiパーマロイにおけるNiの含有率が45%〜55%の範囲にある固体高分子形燃料電池は、パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、Fe−NiパーマロイにおけるFeの含有率とNiの含有率とが前記範囲で決定されているから、燃料極及び空気極が白金属元素を含む燃料極や空気極と略同一の仕事関数を備え、燃料極及び空気極が白金属元素を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を発揮することができ、その燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The solid polymer fuel cell in which the Fe content in Fe-Ni permalloy is in the range of 45% to 55% and the Ni content in Fe-Ni permalloy is in the range of 45% to 55% is permalloy fine powder. Since the Fe content and the Ni content in Fe-Ni permalloy are determined in the above range so that the work function of the body is close to the work function of the platinum group element, the fuel electrode and the air electrode are white metals. It has almost the same work function as the fuel electrode and air electrode containing elements, and the fuel electrode and air electrode can exhibit almost the same excellent catalytic activity (catalytic action) as the fuel electrode and air electrode containing platinum group elements. It is possible to generate sufficient electricity in a solid polymer fuel cell using the fuel electrode and the air electrode, and to supply sufficient electric energy to the load connected to the fuel cell.

薄板状発泡金属電極に成形された連続気泡の気孔率が45%〜55%の範囲にある固体高分子形燃料電池は、それに使用する薄板状発泡金属電極(燃料極及び空気極)の気孔率を前記範囲にすることで、燃料極及び空気極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に形成され、燃料極及び空気極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極の接触面に広範囲に接触させることが可能となり、燃料極及び空気極が白金族金属を含む燃料極や空気極と略同様の触媒活性(触媒作用)を確実に発揮することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の触媒機能を十分かつ確実に利用することが可能であり、その燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A solid polymer fuel cell in which the porosity of open cells formed on the thin plate-shaped foam metal electrode is in the range of 45% to 55% is the porosity of the thin plate-shaped foam metal electrode (fuel electrode and air electrode) used for the solid polymer fuel cell. By setting the above range, the fuel electrode and the air electrode are formed into a porosity having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are uniformly and uniformly formed). , The specific surface area of the fuel electrode and the air electrode can be increased, and the gas can be brought into contact with the contact surface of the fuel electrode and the air electrode in a wide range while the gas (oxygen and hydrogen) flows through these continuous pores. The fuel electrode and the air electrode can surely exhibit the catalytic activity (catalytic action) substantially similar to that of the fuel electrode and the air electrode containing a platinum group metal. The polymer electrolyte fuel cell can sufficiently and surely utilize the catalytic functions of the fuel electrode and the air electrode used therein, and is sufficient for the polymer electrolyte fuel cell using the fuel electrode and the air electrode. It can generate electricity and can supply sufficient electrical energy to the load connected to the fuel cell.

薄板状発泡金属電極の密度が6.0g/cm〜8.0g/cmの範囲にある固体高分子形燃料電池は、それに使用する薄板状発泡金属電極(燃料極及び空気極)の密度を前記範囲にすることで、燃料極及び空気極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、燃料極及び空気極が白金属元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を確実に発揮することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の触媒機能を十分かつ確実に利用することが可能であり、その燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 The density of the thin film solid polymer electrolyte fuel cell having a density in the range of 6.0g / cm 2 ~8.0g / cm 2 of the foam metal electrode thin foamed metal electrode used to it (the fuel electrode and an air electrode) By setting the above range, the fuel electrode and the air electrode are formed into a porous structure having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are uniformly and uniformly formed). , The specific surface area of the fuel electrode and the air electrode can be increased, and the gas (oxygen and hydrogen) can pass through the continuous pores while the gas is brought into wide contact with the contact surfaces of the continuous pores of the fuel electrode and the air electrode. The fuel electrode and the air electrode can surely exhibit the catalytic activity (catalytic action) substantially similar to that of the fuel electrode and the air electrode containing a white metal element. The polymer electrolyte fuel cell can sufficiently and surely utilize the catalytic functions of the fuel electrode and the air electrode used therein, and is sufficient for the polymer electrolyte fuel cell using the fuel electrode and the air electrode. It can generate electricity and can supply sufficient electrical energy to the load connected to the fuel cell.

パーマロイ微粉体の粒径が1μm〜100μmの範囲にある固体高分子形燃料電池は、それに使用する燃料極及び空気極を形成するパーマロイ微粉体の粒径を前記範囲にすることで、燃料極及び空気極が多数の微細な連続気孔を有する多孔質(平均径が1μm〜100μmの微細な連続気孔が満遍なく均一に形成されたマイクロポーラス構造)に成形され、燃料極及び空気極の比表面積を大きくすることができ、それら連続気孔を気体(酸素及び水素)が通流しつつ気体を燃料極及び空気極のそれら連続気孔における接触面に広範囲に接触させることが可能となり、燃料極及び空気極が白金属元素を含む燃料極や空気極と略同様の触媒活性(触媒作用)を確実に発揮することができる。固体高分子形燃料電池は、それに使用する燃料極及び空気極の触媒機能を十分かつ確実に利用することが可能であり、その燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A solid polymer fuel cell in which the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm can be used by setting the particle size of the permalloy fine powder that forms the fuel electrode and the air electrode to be in the above range. The air electrode is formed into a porous material having a large number of fine continuous pores (a microporous structure in which fine continuous pores having an average diameter of 1 μm to 100 μm are formed evenly and uniformly), and the specific surface area of the fuel electrode and the air electrode is increased. It is possible to allow the gas (oxygen and hydrogen) to pass through these continuous pores while allowing the gas to come into wide contact with the contact surfaces of the continuous pores of the fuel electrode and the air electrode, and the fuel electrode and the air electrode are white. It is possible to reliably exhibit catalytic activity (catalytic action) substantially similar to that of a fuel electrode or an air electrode containing a metal element. The polymer electrolyte fuel cell can sufficiently and surely utilize the catalytic functions of the fuel electrode and the air electrode used therein, and is sufficient for the polymer electrolyte fuel cell using the fuel electrode and the air electrode. It can generate electricity and can supply sufficient electrical energy to the load connected to the fuel cell.

燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、水素の温度が45℃〜55℃の範囲にある固体高分子形燃料電池は、相対湿度95%〜100%の雰囲気で燃料極に水素を供給するとともに、45℃〜55℃の温度で燃料極に水素を供給することで、燃料極の触媒活性が増加し、固体高分子形燃料電池の起電力が向上し、燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A solid polymer fuel cell in which the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity and the temperature of hydrogen is in the range of 45 ° C to 55 ° C has a relative humidity of 95% to 100%. By supplying hydrogen to the fuel electrode in the atmosphere of the above and supplying hydrogen to the fuel electrode at a temperature of 45 ° C to 55 ° C, the catalytic activity of the fuel electrode is increased and the electromotive force of the solid polymer fuel cell is improved. However, a solid polymer fuel cell using a fuel electrode and an air electrode can generate sufficient electricity, and can supply sufficient electric energy to a load connected to the fuel cell.

燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある固体高分子形燃料電池は、+0.06MPa〜+0.08MPaの供給圧力で燃料極に水素を供給することで、燃料極の触媒活性が増加し、固体高分子形燃料電池の起電力が向上し、燃料極及び空気極を使用した固体高分子形燃料電池において十分な電気を発電することができ、燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。 A solid polymer fuel cell in which the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa is obtained by supplying hydrogen to the fuel electrode at a supply pressure of +0.06 MPa to +0.08 MPa. , The catalytic activity of the fuel electrode is increased, the electromotive force of the solid polymer fuel cell is improved, and sufficient electricity can be generated in the solid polymer fuel cell using the fuel electrode and the air electrode. Sufficient electrical energy can be supplied to the load connected to.

一例として示す固体高分子形燃料電池の斜視図。The perspective view of the polymer electrolyte fuel cell shown as an example. セルスタックを形成するセルの一例を示す分解斜視図。An exploded perspective view showing an example of cells forming a cell stack. セルの側面図。Side view of the cell. 一例として示す燃料極及び空気極の斜視図。The perspective view of the fuel electrode and the air electrode shown as an example. 燃料極及び空気極の一例として示す部分拡大図。The partially enlarged view which shows as an example of a fuel electrode and an air electrode. 固体高分子形燃料電池の発電を説明する図。The figure explaining the power generation of a polymer electrolyte fuel cell. 燃料極及び空気極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive voltage test of a fuel electrode and an air electrode. 燃料極及び空気極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of a fuel electrode and an air electrode. 固体高分子形燃料電池に使用する燃料極及び空気極の製造方法を説明する図。The figure explaining the manufacturing method of the fuel electrode and the air electrode used for the polymer electrolyte fuel cell.

一例として示す固体高分子形燃料電池10の斜視図である図1等の添付の図面を参照し、本発明に係る固体高分子形燃料電池の詳細を説明すると、以下のとおりである。なお、図2は、セルスタック12を形成するセル11の一例を示す分解斜視図であり、図3は、セル11の側面図である。図4は、一例として示す燃料極13及び空気極14の斜視図であり、図5は、燃料極13及び空気極14の一例として示す部分拡大図である。図4では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。 The details of the polymer electrolyte fuel cell according to the present invention will be described with reference to the accompanying drawings such as FIG. 1 which is a perspective view of the polymer electrolyte fuel cell 10 shown as an example. 2 is an exploded perspective view showing an example of the cell 11 forming the cell stack 12, and FIG. 3 is a side view of the cell 11. FIG. 4 is a perspective view of the fuel pole 13 and the air pole 14 shown as an example, and FIG. 5 is a partially enlarged view showing the fuel pole 13 and the air pole 14 as an example. In FIG. 4, the thickness direction is indicated by an arrow X, and the radial direction is indicated by an arrow Y.

固体高分子形燃料電池10は、複数のセル11を有するセルスタック12(燃料電池スタック)を備え、水素及び酸素を供給することで電気エネルギーを生成する。セルスタック12では、複数のセル11(単セル)が一方向へ重なり合って直列に接続されている。セル11の一例としては、図2に示すように、燃料極13(アノード)及び空気極14(カソード)と、燃料極13及び空気極14の間に位置(介在)する固体高分子電解質膜15(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極13の厚み方向外側に位置するセパレータ16(バイポーラプレート)と、空気極14の厚み方向外側に位置するセパレータ17(バイポーラプレート)とから形成されている。 The polymer electrolyte fuel cell 10 includes a cell stack 12 (fuel cell stack) having a plurality of cells 11, and generates electric energy by supplying hydrogen and oxygen. In the cell stack 12, a plurality of cells 11 (single cells) are overlapped in one direction and connected in series. As an example of the cell 11, as shown in FIG. 2, the solid polymer electrolyte membrane 15 located (intervened) between the fuel electrode 13 (anode) and the air electrode 14 (cathode) and the fuel electrode 13 and the air electrode 14 (Electrode conjugate membrane) (fluorine-based ion exchange membrane having a sulfonic acid group), a separator 16 (bipolar plate) located outside the thickness direction of the fuel electrode 13, and a separator 17 located outside the thickness direction of the air electrode 14. It is formed from (bipolar plate).

それらセパレータ16,17には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。セル11では、図3に示すように、燃料極13や空気極14、固体高分子電解質膜15が厚み方向へ重なり合って一体化し、膜/電極接合体18(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体18をそれらセパレータ16,17が挟み込んでいる。膜/電極接合体18では、ホットプレスによって固体高分子電解質膜15の一方の面に燃料極13の面が隙間なく密着し、固体高分子電解質膜15の他方の面に空気極14の面が隙間なく密着している。固体高分子電解質膜15は、プロトン導電性があり、電子導電性がない。 Supply channels for reaction gases (hydrogen, oxygen, etc.) are engraved (engraved) in the separators 16 and 17. In the cell 11, as shown in FIG. 3, the fuel electrode 13, the air electrode 14, and the solid polymer electrolyte membrane 15 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 18 (MEA). , The membrane / electrode assembly 18 is sandwiched between the separators 16 and 17. In the membrane / electrode assembly 18, the surface of the fuel electrode 13 is in close contact with one surface of the solid polymer electrolyte membrane 15 without a gap by hot pressing, and the surface of the air electrode 14 is attached to the other surface of the solid polymer electrolyte membrane 15. It is in close contact without any gaps. The solid polymer electrolyte membrane 15 has proton conductivity and no electron conductivity.

燃料極13とセパレータ16との間には、ガス拡散層19が形成され、空気極14とセパレータ17との間には、ガス拡散層20が形成されている。燃料極13とセパレータ16との間であってガス拡散層20の上部及び下部には、ガスシール21が設置されている。空気極14とセパレータ17との間であってガス拡散層20の上部及び下部には、ガスシール22が設置されている。 A gas diffusion layer 19 is formed between the fuel electrode 13 and the separator 16, and a gas diffusion layer 20 is formed between the air electrode 14 and the separator 17. Gas seals 21 are installed between the fuel electrode 13 and the separator 16 at the upper and lower parts of the gas diffusion layer 20. Gas seals 22 are installed between the air electrode 14 and the separator 17 at the upper and lower parts of the gas diffusion layer 20.

固体高分子形燃料電池10(セル11)に使用する燃料極13(触媒電極)及び空気極14(触媒電極)は、前面23及び後面24を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。燃料極13及び空気極14は、多数の微細な連続気孔25(連続通気孔)を有する多孔質(マイクロポーラス構造)の薄板状発泡金属電極26である。連続気孔25(連続通気孔)には、ガス(気体)(酸素及び水素)が通流する。なお、燃料極13や空気極14の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形等の他のあらゆる平面形状に成形することができる。 The fuel electrode 13 (catalyst electrode) and the air electrode 14 (catalyst electrode) used in the polymer electrolyte fuel cell 10 (cell 11) have a front surface 23 and a rear surface 24, and have a predetermined area and a predetermined thickness dimension L1. It has, and its planar shape is formed into a quadrangle. The fuel electrode 13 and the air electrode 14 are porous (microporous structure) thin plate-shaped foamed metal electrodes 26 having a large number of fine continuous pores 25 (continuous ventilation holes). Gas (gas) (oxygen and hydrogen) flows through the continuous pores 25 (continuous ventilation holes). The planar shape of the fuel electrode 13 and the air electrode 14 is not particularly limited, and can be formed into any other planar shape such as a circular shape or an elliptical shape according to the intended use, in addition to the quadrangle.

燃料極13及び空気極14(マイクロポーラス構造の薄板状発泡金属電極26)は、粉状に微粉砕(粉砕加工)されたFe−Niパーマロイ31から形成されている。Fe−Niパーマロイ31のパーマロイ微粉体32(微粉状に加工されたFe−Niパーマロイ31)に所定のバインダー33(紛状の樹脂系バインダー)を混合し、パーマロイ微粉体32とバインダー33とを均一に混合・分散したパーマロイ微粉体混合物35を作り、更に、パーマロイ微粉体混合物35に所定の気孔形成材34(発泡剤)を混合し、気孔形成材34を均一に混合・分散した微粉体混合物35を作る。作成したパーマロイ微粉体混合物35を押出成形又は射出成形によって所定面積の薄板状に成形(押出成形又は射出成形)して薄板状のパーマロイ微粉体混合成形物36を作り、作成した微粉体混合成形物36を脱脂及び所定温度で焼結(焼成)することから燃料極13及び空気極14が作られている(図9参照)。連続気泡25は、パーマロイ微粉体32が溶融結合したパーマロイ溶融物によって画成かつ囲繞されている。 The fuel electrode 13 and the air electrode 14 (thin plate-shaped foamed metal electrode 26 having a microporous structure) are formed of Fe—Ni permalloy 31 that has been finely pulverized (pulverized) into powder. A predetermined binder 33 (powdered resin-based binder) is mixed with the permalloy fine powder 32 (Fe-Ni permalloy 31 processed into fine powder) of Fe-Ni permalloy 31, and the permalloy fine powder 32 and the binder 33 are made uniform. To prepare a permalloy fine powder mixture 35 mixed and dispersed in, a predetermined pore-forming material 34 (foaming agent) was further mixed with the permalloy fine powder mixture 35, and the pore-forming material 34 was uniformly mixed and dispersed in the fine powder mixture 35. make. The prepared Permalloy fine powder mixture 35 is formed into a thin plate having a predetermined area by extrusion molding or injection molding (extrusion molding or injection molding) to prepare a thin plate-shaped Permalloy fine powder mixed molded product 36, and the prepared fine powder mixed molded product. A fuel electrode 13 and an air electrode 14 are formed by degreasing and sintering (firing) 36 at a predetermined temperature (see FIG. 9). The open cells 25 are defined and surrounded by a permalloy melt in which the permalloy fine powder 32 is melt-bonded.

燃料極13及び空気極14では、パーマロイ微粉体32の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ31における(Fe−Niパーマロイ31の全重量(100%)に対する)Fe(鉄)の含有率(重量比)とNi(ニッケル)の含有率(重量比)とが決定されている。具体的には、Fe−Niパーマロイ31におけるFeの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にあり、Fe−Niパーマロイ31におけるNiの含有率(重量比)が45%〜55%の範囲、好ましくは、49%〜51%の範囲にある。 At the fuel electrode 13 and the air electrode 14, the work function of the permalloy fine powder 32 is similar to the work function of the platinum group element in the Fe-Ni permalloy 31 (relative to the total weight (100%) of the Fe-Ni permalloy 31). The Fe (iron) content (weight ratio) and the Ni (nickel) content (weight ratio) are determined. Specifically, the Fe content (weight ratio) in Fe-Ni permalloy 31 is in the range of 45% to 55%, preferably 49% to 51%, and the content of Ni in Fe-Ni permalloy 31. The rate (weight ratio) is in the range of 45% to 55%, preferably in the range of 49% to 51%.

なお、Feの仕事関数は、4.67(eV)であり、Niの仕事関数は、5.22(eV)である。Fe−Niパーマロイ31の全重量に対するFeの含有率及びFe−Niパーマロイ31の全重量に対するNiの含有率が前記範囲外になると、パーマロイ微粉体32の仕事関数を白金族元素の仕事関数に近似させることができず、パーマロイ微粉体混合物35を成形したパーマロイ微粉体混合成形物36を脱脂・焼結(焼成)して作られた燃料極13及び空気極14が白金族元素を含む(担持した)燃料極や空気極と略同様の触媒活性(触媒作用)を発揮することができない。 The work function of Fe is 4.67 (eV), and the work function of Ni is 5.22 (eV). When the Fe content with respect to the total weight of Fe-Ni permalloy 31 and the Ni content with respect to the total weight of Fe-Ni permalloy 31 are out of the above range, the work function of the permalloy fine powder 32 is approximated to the work function of the platinum group element. The fuel electrode 13 and the air electrode 14 produced by degreasing and sintering (baking) the permalloy fine powder mixed molded product 36 obtained by molding the permalloy fine powder mixed mixture 35 contained (supported) platinum group elements. ) It is not possible to exert almost the same catalytic activity (catalytic action) as the fuel electrode and the air electrode.

固体高分子形燃料電池10は、パーマロイ微粉体32の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ31におけるFeの含有率とNiの含有率とが前記範囲にあるから、燃料極13及び空気極14が白金属元素を含む燃料極や空気極と略同一の仕事関数を備え、燃料極13及び空気極14が白金属元素を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を発揮することができる。 In the solid polymer fuel cell 10, the Fe content and the Ni content in Fe—Ni permalloy 31 are in the above range so that the work function of the permalloy fine powder 32 is close to the work function of the platinum group element. Therefore, the fuel electrode 13 and the air electrode 14 have substantially the same work function as the fuel electrode and the air electrode containing the platinum group, and the fuel electrode 13 and the air electrode 14 are substantially the same as the fuel electrode and the air electrode containing the platinum group. Can exhibit excellent catalytic activity (catalytic action).

燃料極13及び空気極14(薄板状発泡金属電極26)には、径が異なる多数の微細な連続気孔25(連続通気孔)が形成されている。燃料極13及び空気極14は、多数の微細な連続気孔25が形成されているから、その比表面積が大きい。燃料極13及び空気極14に形成されたそれら連続気孔25は、燃料極13及び空気極14の前面23に開口する複数の通流口27と、燃料極13及び空気極14の後面24に開口する複数の通流口27とを有し、燃料極13及び空気極14の前面23から後面24に向かって燃料極13及び空気極14をその厚み方向に貫通しているとともに、燃料極13及び空気極14の中心から外周縁28に向かってその径方向に貫通している。 A large number of fine continuous pores 25 (continuous ventilation holes) having different diameters are formed in the fuel electrode 13 and the air electrode 14 (thin plate-shaped foamed metal electrode 26). The fuel electrode 13 and the air electrode 14 have a large specific surface area because a large number of fine continuous pores 25 are formed. The continuous pores 25 formed in the fuel pole 13 and the air pole 14 are opened in a plurality of through ports 27 opened in the front surface 23 of the fuel pole 13 and the air pole 14 and in the rear surface 24 of the fuel pole 13 and the air pole 14. It has a plurality of through ports 27, and penetrates the fuel electrode 13 and the air electrode 14 from the front surface 23 to the rear surface 24 of the fuel electrode 13 and the air electrode 14 in the thickness direction thereof, and also has the fuel electrode 13 and the air electrode 14 It penetrates in the radial direction from the center of the air electrode 14 toward the outer peripheral edge 28.

それら連続気孔25は、燃料極13及び空気極14の前面23と後面24との間において燃料極13及び空気極14の厚み方向へ不規則に曲折しながら延びているとともに、燃料極13及び空気極14の外周縁28から中心に向かって燃料極13及び空気極14の径方向へ不規則に曲折しながら延びている。径方向へ隣接して厚み方向へ曲折して延びるそれら連続気孔25(連続通気孔)は、径方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。厚み方向へ隣接して径方向へ曲折して延びるそれら連続気孔25(連続通気孔)は、厚み方向において部分的につながり、一方の気孔25と他方の気孔25とが互いに連通している。 The continuous pores 25 extend between the front surface 23 and the rear surface 24 of the fuel electrode 13 and the air electrode 14 while being irregularly bent in the thickness direction of the fuel electrode 13 and the air electrode 14, and the fuel electrode 13 and the air. It extends from the outer peripheral edge 28 of the pole 14 toward the center while irregularly bending in the radial direction of the fuel pole 13 and the air pole 14. The continuous pores 25 (continuous vents) that are adjacent to each other in the radial direction and bend in the thickness direction are partially connected in the radial direction, and one pore 25 and the other pore 25 communicate with each other. The continuous pores 25 (continuous vents) that are adjacent to each other in the thickness direction and extend by bending in the radial direction are partially connected in the thickness direction, and one pore 25 and the other pore 25 communicate with each other.

それら連続気孔25の平均径(開口面積)は、厚み方向に向かって一様ではなく、厚み方向に向かって不規則に変化しているとともに、径方向に向かって一様ではなく、径方向に向かって不規則に変化している。それら連続気孔25は、その平均径(開口面積)が大きくなったり、小さくなったりしながら厚み方向と径方向とへ不規則に開口している。また、燃料極13及び空気極14の前面23に開口する通流口27と後面24に開口する通流口27とは、その平均径(開口面積)が一様ではなく、その平均径がすべて相違している。それら連続気孔25の平均径(開口面積)や前後面23,24の通流口27の平均径(開口面積)は、1μm〜100μmの範囲、好ましくは、45μm〜55μmの範囲にあり、±0.1μm〜±5μm(連続気孔25の平均径の変化幅)の範囲で変化している。 The average diameter (opening area) of these continuous pores 25 is not uniform in the thickness direction and changes irregularly in the thickness direction, and is not uniform in the radial direction and is in the radial direction. It is changing irregularly toward. The continuous pores 25 are irregularly opened in the thickness direction and the radial direction while the average diameter (opening area) is increasing or decreasing. Further, the average diameter (opening area) of the passage port 27 opened in the front surface 23 of the fuel electrode 13 and the air electrode 14 and the passage port 27 opened in the rear surface 24 is not uniform, and the average diameters are all the same. It's different. The average diameter (opening area) of the continuous pores 25 and the average diameter (opening area) of the passage ports 27 of the front and rear surfaces 23 and 24 are in the range of 1 μm to 100 μm, preferably in the range of 45 μm to 55 μm, ± 0. It changes in the range of 1 μm to ± 5 μm (change width of the average diameter of the continuous pores 25).

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14に厚み方向や径方向へ不規則に曲折しながら延びる複数の連続気孔25(連続通気孔)が形成され、その気孔25の平均径が1〜100μmの範囲(好ましくは、45μm〜55μmの範囲)にあり、連続気孔25の平均径の変化幅が±0.1μm〜±5μmの範囲にあるから、燃料極13や空気極14の単位体積当たりに多数の連続気孔25が形成され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25をガス(気体)(酸素及び水素)が通流しつつガス(気体)を燃料極13や空気極14のそれら気孔25における接触面に広範囲に接触させることができ、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。 In the solid polymer fuel cell 10, a plurality of continuous pores 25 (continuous ventilation holes) extending while irregularly bending in the thickness direction and the radial direction are formed in the fuel pole 13 and the air pole 14 used therein, and the pores 25 are formed. Since the average diameter of the continuous pores 25 is in the range of 1 to 100 μm (preferably in the range of 45 μm to 55 μm) and the range of change in the average diameter of the continuous pores 25 is in the range of ± 0.1 μm to ± 5 μm, the fuel electrode 13 and the air A large number of continuous pores 25 are formed per unit volume of the pole 14, and the specific surface area of the fuel pole 13 and the air pole 14 can be increased, while gas (gas) (oxygen and hydrogen) is flowing through the pores 25. The gas can be brought into contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in those pores 25 in a wide range, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 can be effectively and maximized. be able to.

燃料極13及び空気極14(マイクロポーラス構造の薄板状発泡金属電極26)は、その厚み寸法L1が0.05mm〜0.5mmの範囲にある。燃料極13及び空気極14の厚み寸法L1が0.05mm未満では、燃料極13及び空気極14の強度が低下し、衝撃が加えられたときに燃料極13及び空気極14が容易に破損又は損壊し、その形状を維持することができない場合がある。燃料極13及び空気極14の厚み寸法L1が0.5mmを超過すると、燃料極13及び空気極14の電気抵抗が大きくなり、燃料極13及び空気極14に電流がスムースに流れず(プロトン導電性が低く)、燃料極13及び空気極14が固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができず、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができない。 The fuel electrode 13 and the air electrode 14 (thin plate-shaped foamed metal electrode 26 having a microporous structure) have a thickness dimension L1 in the range of 0.05 mm to 0.5 mm. If the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 is less than 0.05 mm, the strength of the fuel electrode 13 and the air electrode 14 decreases, and the fuel electrode 13 and the air electrode 14 are easily damaged or damaged when an impact is applied. It may be damaged and its shape cannot be maintained. When the thickness dimension L1 of the fuel pole 13 and the air pole 14 exceeds 0.5 mm, the electrical resistance of the fuel pole 13 and the air pole 14 increases, and the current does not flow smoothly through the fuel pole 13 and the air pole 14 (proton conductivity). When the fuel electrode 13 and the air electrode 14 are used in the solid polymer fuel cell 10, the fuel cell 10 cannot generate enough electricity, and the load 30 connected to the fuel cell 10 cannot be generated. Cannot supply enough electrical energy.

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14の厚み寸法L1が0.05mm〜0.5mmの範囲にあるから、燃料極13及び空気極14が高い強度を有してその形状を維持することができ、燃料極13及び空気極14に衝撃が加えられたときの燃料極13及び空気極14の破損や損壊を防ぐことができる。更に、燃料極13及び空気極14の電気抵抗を小さくすることができ、燃料極13及び空気極14に電流がスムースに流れ(プロトン導電性が高く)、燃料極13及び空気極14が固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In the polymer electrolyte fuel cell 10, since the thickness dimension L1 of the fuel electrode 13 and the air electrode 14 used therein is in the range of 0.05 mm to 0.5 mm, the fuel electrode 13 and the air electrode 14 have high strength. The shape of the fuel electrode 13 and the air electrode 14 can be maintained, and the fuel electrode 13 and the air electrode 14 can be prevented from being damaged or damaged when an impact is applied to the fuel electrode 13 and the air electrode 14. Further, the electrical resistance of the fuel electrode 13 and the air electrode 14 can be reduced, the current flows smoothly through the fuel electrode 13 and the air electrode 14 (high proton conductivity), and the fuel electrode 13 and the air electrode 14 have a solid height. When used in the molecular fuel cell 10, the fuel cell 10 can generate sufficient electricity and can supply sufficient electrical energy to the load 30 connected to the fuel cell 10.

燃料極13及び空気極14(マイクロポーラス構造の薄板状発泡金属電極26)は、その気孔率が45%〜55%の範囲にある。燃料極13及び空気極14の気孔率が45%未満では、燃料極13及び空気極14に多数の微細な連続気孔25(連続通気孔)が形成されず、燃料極13及び空気極14の比表面積を大きくすることができない。燃料極13及び空気極14の気孔率が55%を超過すると、連続気孔25(連続通気孔)の平均径(開口面積)や前後面23,24の通流口27の平均径(開口面積)が必要以上に大きくなり、燃料極13及び空気極14の強度が低下し、衝撃が加えられたときに燃料極13及び空気極14が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13及び空気極14が十分な触媒活性を発揮することができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 The fuel electrode 13 and the air electrode 14 (thin plate-shaped foamed metal electrode 26 having a microporous structure) have a porosity in the range of 45% to 55%. When the porosity of the fuel electrode 13 and the air electrode 14 is less than 45%, a large number of fine continuous pores 25 (continuous ventilation holes) are not formed in the fuel electrode 13 and the air electrode 14, and the ratio of the fuel electrode 13 and the air electrode 14 The surface area cannot be increased. When the pore ratios of the fuel pole 13 and the air pole 14 exceed 55%, the average diameter (opening area) of the continuous pores 25 (continuous ventilation holes) and the average diameter (opening area) of the passage ports 27 of the front and rear surfaces 23 and 24 Becomes larger than necessary, the strength of the fuel electrode 13 and the air electrode 14 decreases, and when an impact is applied, the fuel electrode 13 and the air electrode 14 are easily damaged or damaged, and their shapes cannot be maintained. In some cases, the catalytic activity of the fuel electrode 13 and the air electrode 14 is reduced, the fuel electrode 13 and the air electrode 14 cannot exhibit sufficient catalytic activity, and the catalytic activity of the fuel electrode 13 and the air electrode 14 ( Catalytic action) cannot be used effectively.

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14の気孔率が前記範囲にあるから、燃料極13及び空気極14が平均径(開口面積)の異なる多数の微細な連続気孔25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔25)や平均径(開口面積)の異なる多数の微細な前後面23,24の通流口27(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13及び空気極14の比表面積を大きくすることができ、それら気孔25を気体(酸素及び水素)が通流しつつ気体を燃料極13及び空気極14のそれら気孔25における接触面に広く接触させることができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 Since the porosity of the fuel electrode 13 and the air electrode 14 used in the solid polymer fuel cell 10 is within the above range, a large number of fine continuous fuel electrodes 13 and the air electrode 14 have different average diameters (opening areas). Porosity 25 (continuous pores 25 having an average diameter in the range of 1 to 100 μm, preferably 45 μm to 55 μm) and through ports 27 (average) of a large number of fine front and rear surfaces 23 and 24 having different average diameters (opening areas). It is formed into a porous material (microporous structure) having a passage port 27) having a diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm, and the specific surface area of the fuel electrode 13 and the air electrode 14 can be increased. The gas (oxygen and hydrogen) can pass through the pores 25, and the gas can be widely brought into contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the pores 25. Further, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity, and the fuel electrode 13 and the air electrode 14 are solid polymer fuel cells 10. The fuel cell 10 can generate sufficient electricity when used in the fuel cell 10, and can supply sufficient electric energy to the load 30 connected to the fuel cell 10.

燃料極13及び空気極14(マイクロポーラス構造の薄板状発泡金属電極26)は、その密度が6.0g/cm〜8.0g/cmの範囲、好ましくは、6.5g/cm〜7.5g/cmの範囲にある。燃料極13及び空気極14の密度が6.0g/cm(6.5g/cm)未満では、燃料極13及び空気極14の強度が低下し、衝撃が加えられたときに燃料極13及び空気極14が容易に破損又は損壊し、その形状を維持することができない場合があるとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13及び空気極14が十分な触媒活性を発揮することができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。燃料極13及び空気極14の密度が8.0g/cm(7.5g/cm)を超過すると、燃料極13及び空気極14に多数の微細な連続気孔25や多数の微細な通流口27が形成されず、燃料極13及び空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13及び空気極14が十分な触媒活性を発揮することができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 Anode 13 and cathode 14 (thin foamed metal electrode 26 of the micro-porous structure) in the range that the density of 6.0g / cm 2 ~8.0g / cm 2 , preferably, 6.5 g / cm 2 ~ It is in the range of 7.5 g / cm 2 . If the density of the fuel pole 13 and the air pole 14 is less than 6.0 g / cm 2 (6.5 g / cm 2 ), the strength of the fuel pole 13 and the air pole 14 decreases, and the fuel pole 13 when an impact is applied. In some cases, the air electrode 14 is easily damaged or damaged and its shape cannot be maintained, and the catalytic action of the fuel electrode 13 and the air electrode 14 is reduced, so that the fuel electrode 13 and the air electrode 14 are sufficient catalysts. The activity cannot be exhibited, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively utilized. When the density of the fuel pole 13 and the air pole 14 exceeds 8.0 g / cm 2 (7.5 g / cm 2 ), a large number of fine continuous pores 25 and a large number of fine passages are made to the fuel pole 13 and the air pole 14. The port 27 is not formed, the specific surface area of the fuel electrode 13 and the air electrode 14 cannot be increased, the catalytic action of the fuel electrode 13 and the air electrode 14 is reduced, and the fuel electrode 13 and the air electrode 14 are sufficient catalysts. The activity cannot be exhibited, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively utilized.

固体高分子形燃料電池10は、それに使用する燃料極13及び空気極14の密度が前記範囲にあるから、燃料極13及び空気極14が平均径(開口面積)の異なる多数の微細な連続気孔25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔25)や平均径(開口面積)の異なる多数の微細な前後面23,24の通流口27(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13及び空気極14の比表面積を大きくすることができ、それら気孔25を気体(酸素及び水素)が通流しつつ気体を燃料極13及び空気極14のそれら気孔25における接触面に広く接触させることができ、燃料極13及び空気極14の触媒作用を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 Since the density of the fuel electrode 13 and the air electrode 14 used in the solid polymer fuel cell 10 is within the above range, the fuel electrode 13 and the air electrode 14 have a large number of fine continuous pores having different average diameters (opening areas). 25 (continuous pores 25 having an average diameter in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm) and a large number of fine front and rear surfaces 23 and 24 having different average diameters (opening areas) 27 (average diameter) Is formed into a porous material (microporous structure) having a passage port 27) in the range of 1 to 100 μm, preferably in the range of 45 μm to 55 μm, and the specific surface area of the fuel electrode 13 and the air electrode 14 can be increased. While the gas (oxygen and hydrogen) is flowing through the pores 25, the gas can be widely brought into contact with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the pores 25, and the catalytic action of the fuel electrode 13 and the air electrode 14 can be exerted. It can be used effectively and to the maximum extent. Further, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity, and the fuel electrode 13 and the air electrode 14 are solid polymer fuel cells 10. The fuel cell 10 can generate sufficient electricity when used in the fuel cell 10, and can supply sufficient electric energy to the load 30 connected to the fuel cell 10.

パーマロイ微粉体32(粉状に加工されたFe−Niパーマロイ31)の粒径は、1μm〜100μmの範囲、好ましくは、30μm〜60μmの範囲にある。パーマロイ微粉体32の粒径が1μm未満では、パーマロイ微粉体32によって連続気孔25(連続通気孔)が塞がれ、燃料極13及び空気極14に多数の微細な連続気孔25を形成することができず、燃料極13及び空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13及び空気極14が十分な触媒活性を発揮することができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 The particle size of the permalloy fine powder 32 (Fe-Ni permalloy 31 processed into powder) is in the range of 1 μm to 100 μm, preferably in the range of 30 μm to 60 μm. If the particle size of the permalloy fine powder 32 is less than 1 μm, the continuous pores 25 (continuous ventilation holes) may be blocked by the permalloy fine powder 32, and a large number of fine continuous pores 25 may be formed in the fuel electrode 13 and the air electrode 14. Therefore, the specific surface areas of the fuel electrode 13 and the air electrode 14 cannot be increased, the catalytic action of the fuel electrode 13 and the air electrode 14 is reduced, and the fuel electrode 13 and the air electrode 14 exhibit sufficient catalytic activity. It is not possible to effectively utilize the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14.

パーマロイ微粉体32の粒径が100μmを超過すると、連続気孔25の平均径(開口面積)や前後面23,24の通流口27の平均径(開口面積)が必要以上に大きくなり、燃料極13及び空気極14に多数の微細な連続気孔25を形成することができず、燃料極13及び空気極14の比表面積を大きくすることができないとともに、燃料極13及び空気極14の触媒作用が低下し、燃料極13及び空気極14が十分な触媒活性を発揮することができず、燃料極13や空気極14の触媒活性(触媒作用)を有効に利用することができない。 When the particle size of the permalloy fine powder 32 exceeds 100 μm, the average diameter (opening area) of the continuous pores 25 and the average diameter (opening area) of the passage ports 27 of the front and rear surfaces 23 and 24 become larger than necessary, and the fuel electrode A large number of fine continuous pores 25 cannot be formed in the 13 and the air electrode 14, the specific surface areas of the fuel electrode 13 and the air electrode 14 cannot be increased, and the catalytic action of the fuel electrode 13 and the air electrode 14 The fuel electrode 13 and the air electrode 14 cannot exhibit sufficient catalytic activity, and the catalytic activity (catalytic action) of the fuel electrode 13 and the air electrode 14 cannot be effectively used.

固体高分子形燃料電池10は、燃料極13及び空気極14を形成するパーマロイ微粉体32の粒径が前記範囲にあるから、燃料極13や空気極14が平均径(開口面積)の異なる多数の微細な連続気孔25(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の連続気孔25)や平均径(開口面積)の異なる多数の微細な前後面23,24の通流口27(平均径が1〜100μmの範囲、好ましくは、45μm〜55μmの範囲の通流口27)を有する多孔質(マイクロポーラス構造)に成形され、燃料極13や空気極14の比表面積を大きくすることができ、それら気孔25を気体(酸素及び水素)が通流しつつ気体(ガス)を燃料極13や空気極14のそれら気孔25における接触面に広く接触させることができるとともに、燃料極13や空気極14の触媒活性(触媒作用)を有効かつ最大限に利用することができる。更に、燃料極13及び空気極14の触媒作用が向上し、燃料極13及び空気極14に優れた触媒活性を発揮させることができ、燃料極13及び空気極14が固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In the solid polymer fuel cell 10, since the particle size of the permalloy fine powder 32 forming the fuel electrode 13 and the air electrode 14 is within the above range, the fuel electrode 13 and the air electrode 14 have a large number of different average diameters (opening areas). (Continuous pores 25 having an average diameter in the range of 1 to 100 μm, preferably 45 μm to 55 μm) and a large number of fine front and rear surfaces 23 and 24 having different average diameters (opening areas). It is formed into a porous material (microporous structure) having a port 27 (a flow port 27 having an average diameter in the range of 1 to 100 μm, preferably 45 μm to 55 μm), and has a specific surface area of the fuel electrode 13 and the air electrode 14. The size can be increased so that the gas (gas) can be widely contacted with the contact surfaces of the fuel electrode 13 and the air electrode 14 in the pores 25 while the gas (oxygen and hydrogen) flows through the pores 25, and the fuel electrode can be enlarged. The catalytic activity (catalytic action) of 13 and the air electrode 14 can be effectively and maximized. Further, the catalytic action of the fuel electrode 13 and the air electrode 14 is improved, the fuel electrode 13 and the air electrode 14 can exhibit excellent catalytic activity, and the fuel electrode 13 and the air electrode 14 are solid polymer fuel cells 10. The fuel cell 10 can generate sufficient electricity when used in the fuel cell 10, and can supply sufficient electric energy to the load 30 connected to the fuel cell 10.

図6は、固体高分子形燃料電池10の発電を説明する図であり、図7は、燃料極13及び空気極14の起電圧試験の結果を示す図である。図8は、燃料極13及び空気極14のI−V特性試験の結果を示す図である。固体高分子形燃料電池10では、図6に示すように、燃料極13(電極)に水素(燃料)が供給され、空気極14(電極)に空気(酸素)が供給される。 FIG. 6 is a diagram for explaining the power generation of the polymer electrolyte fuel cell 10, and FIG. 7 is a diagram showing the results of an electromotive voltage test of the fuel electrode 13 and the air electrode 14. FIG. 8 is a diagram showing the results of an IV characteristic test of the fuel electrode 13 and the air electrode 14. In the polymer electrolyte fuel cell 10, as shown in FIG. 6, hydrogen (fuel) is supplied to the fuel electrode 13 (electrode), and air (oxygen) is supplied to the air electrode 14 (electrode).

燃料極13に供給される水素(燃料)の雰囲気(燃料の相対湿度)は、相対湿度95%〜100%の範囲、好ましくは、100%であり、水素の温度は、45℃〜55℃の範囲、好ましくは、49℃〜51℃の範囲にある。燃料極13に供給される水素には、燃料極13に供給される前に蒸気発生器(図示せず)から蒸気が供給され、その雰囲(燃料の相対湿度)が95%〜100%(好ましくは、100%)に上昇するとともに、その温度が45℃〜55℃(好ましくは、49℃〜51℃)に上昇する。 The atmosphere of hydrogen (fuel) supplied to the fuel electrode 13 (relative humidity of fuel) is in the range of 95% to 100% relative humidity, preferably 100%, and the temperature of hydrogen is 45 ° C to 55 ° C. The range is preferably in the range of 49 ° C to 51 ° C. The hydrogen supplied to the fuel electrode 13 is supplied with steam from a steam generator (not shown) before being supplied to the fuel electrode 13, and its atmosphere (relative humidity of fuel) is 95% to 100% (relative humidity of fuel). Preferably, it rises to 100%) and its temperature rises to 45 ° C. to 55 ° C. (preferably 49 ° C. to 51 ° C.).

燃料極13に供給される水素の供給圧力及び空気極14に供給される空気の供給圧力は、+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaである。固体高分子形燃料電池10では、燃料極13に供給する水素及び空気極14に供給する空気を(給気)圧送する給気ポンプ(図示せず)が設置され、給気ポンプによって燃料極13に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧されるとともに、給気ポンプによって空気極14に供給する空気の供給圧力が+0.06MPa〜+0.08MPaの範囲、好ましくは、+0.07MPaに昇圧される。 The supply pressure of hydrogen supplied to the fuel electrode 13 and the supply pressure of air supplied to the air electrode 14 are in the range of +0.06 MPa to +0.08 MPa, preferably +0.07 MPa. In the solid polymer fuel cell 10, an air supply pump (not shown) that pumps hydrogen supplied to the fuel electrode 13 and air supplied to the air electrode 14 (not shown) is installed, and the fuel electrode 13 is provided by the air supply pump. The supply pressure of hydrogen supplied to the air electrode 14 is increased to the range of +0.06 MPa to +0.08 MPa, preferably +0.07 MPa, and the supply pressure of the air supplied to the air electrode 14 by the air supply pump is +0.06 MPa to The pressure is increased in the range of +0.08 MPa, preferably +0.07 MPa.

燃料極13(電極)では、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜15内を通って空気極14へ移動し、電子が導線29内を通って空気極14へ移動する。固体高分子電解質膜15には、燃料極13で生成されたプロトンが通流する。空気極14(電極)では、固体高分子電解質膜15から移動したプロトンと導線29を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 At the fuel electrode 13 (electrode), hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by the reaction (catalysis) of H 2 → 2H + + 2e . After that, protons move through the solid polymer electrolyte membrane 15 to the air electrode 14, and electrons move through the lead wire 29 to the air electrode 14. Protons generated at the fuel electrode 13 pass through the solid polymer electrolyte membrane 15. At the air electrode 14 (electrode), the protons moved from the solid polymer electrolyte membrane 15 and the electrons moved through the lead wire 29 react with oxygen in the air, and water is generated by the reaction of 4H + + O 2 + 4e → 2H 2 O. Will be done.

固体高分子形燃料電池10では、燃料極13及び空気極14を形成するFe−Niパーマロイ31を微粉砕したパーマロイ微粉体32の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ31におけるFeの含有率(重量比)とNiの含有率(重量比)とが決定されているから、燃料極13及び空気極14が白金族元素(白金)を含む(担持した)燃料極や空気極と略同一の仕事関数を備え、白金族元素(白金)を含む燃料極や空気極と略同様の優れた触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。 In the polymer electrolyte fuel cell 10, the work function of the permalloy fine powder 32 obtained by finely pulverizing the Fe-Ni permalloy 31 forming the fuel electrode 13 and the air electrode 14 is similar to the work function of the platinum group element. Since the Fe content (weight ratio) and Ni content (weight ratio) in the Ni permalloy 31 have been determined, the fuel electrode 13 and the air electrode 14 contain (support) a platinum group element (platinum). It has almost the same work function as poles and air poles, and exhibits excellent catalytic activity (catalytic action) similar to that of fuel poles and air poles containing platinum group elements (platinum), and hydrogen efficiently converts protons and electrons. It is disassembled.

起電圧試験では、水素ガスを注入してから15分の間、燃料極13と空気極14との間(電極間)の電圧(V)を測定した。図7の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に電極間の電圧(V)を表す。白金族元素を利用した(担持させた)燃料極や空気極(白金電極)を使用した固体高分子形燃料電池では、起電圧試験の結果を示す図7から分かるように、燃料極と空気極との間(電極間)の電圧が1.079(V)前後であった。それに対し、燃料極13(非白金電極)及び空気極14(非白金電極)を使用した固体高分子形燃料電池10では、燃料極13と空気極14との間(電極間)の電圧(起電力)が0.98(V)〜1.02(V)であった。 In the electromotive voltage test, the voltage (V) between the fuel electrode 13 and the air electrode 14 (between the electrodes) was measured for 15 minutes after the hydrogen gas was injected. In the figure showing the result of the electromotive force test of FIG. 7, the horizontal axis represents the measurement time (min), and the vertical axis represents the voltage (V) between the electrodes. In a polymer electrolyte fuel cell using (supported) a fuel electrode using a platinum group element or an air electrode (platinum electrode), the fuel electrode and the air electrode can be seen from FIG. 7 showing the results of the electromotive voltage test. The voltage between and (between electrodes) was around 1.079 (V). On the other hand, in the polymer electrolyte fuel cell 10 using the fuel electrode 13 (non-platinum electrode) and the air electrode 14 (non-platinum electrode), the voltage between the fuel electrode 13 and the air electrode 14 (between the electrodes) (electromotive force). The electric power) was 0.98 (V) to 1.02 (V).

I−V特性試験では、燃料極13と空気極14との間(電極間)に負荷30を接続し、電圧と電流との関係を測定した。図8のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極13(非白金電極)及び空気極14(非白金電極)を使用した固体高分子形燃料電池10では、I−V特性試験の結果を示す図8から分かるように、白金族元素を利用した(担持させた)燃料極や空気極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図7の起電圧試験の結果や図8のI−V特性試験の結果に示すように、白金族元素を利用していない非白金の燃料極13及び空気極14が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した燃料極や空気極(白金電極)と略同様の酸素還元機能(触媒作用)を有することが確認された。 In the IV characteristic test, a load 30 was connected between the fuel electrode 13 and the air electrode 14 (between the electrodes), and the relationship between the voltage and the current was measured. In the figure showing the result of the IV characteristic test of FIG. 8, the horizontal axis represents the current (A) and the vertical axis represents the voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 13 (non-platinum electrode) and the air electrode 14 (non-platinum electrode), as can be seen from FIG. 8 showing the results of the IV characteristic test, a platinum group element is used. The results were not much different from the voltage drop rate of the polymer electrolyte fuel cell using the fuel electrode (supported) and the air electrode (platinum electrode). As shown in the results of the electromotive force test in FIG. 7 and the results of the IV characteristic test in FIG. 8, the non-platinum fuel electrode 13 and the air electrode 14 that do not use platinum group elements emit electrons to generate hydrogen ions. It was confirmed that it has an excellent catalytic action to promote the reaction, and also has an oxygen reduction function (catalytic action) substantially similar to that of a fuel electrode or an air electrode (platinum electrode) using platinum.

固体高分子形燃料電池10は、それに使用される燃料極13及び空気極14がFe−Niパーマロイ31から形成され、Fe−Niパーマロイ31を微粉砕したパーマロイ微粉体32に所定のバインダー33を均一に混合・分散しつつ所定の気孔形成材34を均一に混合・分散し、パーマロイ微粉体32にバインダー33及び気孔形成材34を混合したパーマロイ微粉体混合物35を所定面積の薄板状に成形した後、所定面積の薄板状に成形したパーマロイ微粉体混合成形物36を脱脂・焼結することで、パーマロイ微粉体32が溶融結合しつつ多数の微細な連続気孔25が満遍なく均一に形成されたマイクロポーラス構造の薄板状発泡金属電極26であり、燃料極13及び空気極14が白金族元素を含む(担持した)燃料極や空気極と略同様の触媒活性(触媒作用)を有するから、燃料極13及び空気極14が優れた触媒活性(触媒作用)を発揮することで、白金族元素を含まない非白金の燃料極13及び空気極14を使用して十分な電気を発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを供給することができる。 In the solid polymer fuel cell 10, the fuel electrode 13 and the air electrode 14 used therein are formed from Fe-Ni permalloy 31, and a predetermined binder 33 is uniformly applied to permalloy fine powder 32 obtained by finely pulverizing Fe-Ni permalloy 31. After uniformly mixing and dispersing a predetermined pore-forming material 34 while mixing and dispersing the permalloy fine powder 32, and forming a permalloy fine powder mixture 35 in which a binder 33 and a pore-forming material 34 are mixed with the permalloy fine powder 32 into a thin plate having a predetermined area. By degreasing and sintering the permalloy fine powder mixed molded product 36 formed into a thin plate having a predetermined area, the permalloy fine powder 32 is melt-bonded and a large number of fine continuous pores 25 are evenly and uniformly formed. It is a thin plate-shaped foamed metal electrode 26 having a structure, and since the fuel electrode 13 and the air electrode 14 have substantially the same catalytic activity (catalytic action) as the fuel electrode and the air electrode containing (supporting) platinum group elements, the fuel electrode 13 And the air electrode 14 exerts excellent catalytic activity (catalytic action), so that sufficient electricity can be generated by using the non-platinum fuel electrode 13 and the air electrode 14 containing no platinum group element, and the fuel can be generated. Sufficient electrical energy can be supplied to the load 30 connected to the battery 10.

固体高分子形燃料電池10は、燃料極13及び空気極14がFe−Niパーマロイ31を原料とし、高価な白金族元素が使用されておらず、燃料極13及び空気極14が白金族元素を含まない非白金の電極であるから、廉価な燃料極13及び空気極14を備えることで固体高分子形燃料電池10を低コストで製造することができるとともに、固体高分子形燃料電池10の運転コストを下げることができる。 In the polymer electrolyte fuel cell 10, the fuel electrode 13 and the air electrode 14 are made of Fe-Ni permalloy 31 as a raw material, no expensive platinum group element is used, and the fuel electrode 13 and the air electrode 14 are platinum group elements. Since it is a non-platinum electrode that does not contain it, the polymer electrolyte fuel cell 10 can be manufactured at low cost by providing an inexpensive fuel electrode 13 and an air electrode 14, and the solid polymer fuel cell 10 can be operated. The cost can be reduced.

固体高分子形燃料電池10は、相対湿度95%〜100%の雰囲気の水素(燃料)を燃料極13に供給し、45℃〜55℃の温度の水素を燃料極13に供給し、+0.06MPa〜+0.08MPaの供給圧力で燃料極13に水素を供給するとともに+0.06MPa〜+0.08MPaの供給圧力で空気極14に空気(酸素)を供給することで、燃料極13や空気極14の触媒活性が増加し、燃料電池10の起電力が向上し、非白金の燃料極13や空気極14を使用して十分な電気を確実に発電することができ、燃料電池10に接続された負荷30に十分な電気エネルギーを確実に供給することができる。 The solid polymer fuel cell 10 supplies hydrogen (fuel) having an atmosphere of 95% to 100% relative humidity to the fuel electrode 13, and supplies hydrogen having a temperature of 45 ° C. to 55 ° C. to the fuel electrode 13 to obtain +0. By supplying hydrogen to the fuel electrode 13 at a supply pressure of 06 MPa to +0.08 MPa and supplying air (oxygen) to the air electrode 14 at a supply pressure of +0.06 MPa to +0.08 MPa, the fuel electrode 13 and the air electrode 14 The catalytic activity of the fuel cell 10 is increased, the electromotive force of the fuel cell 10 is improved, and sufficient electricity can be reliably generated by using the non-platinum fuel electrode 13 and the air electrode 14 and connected to the fuel cell 10. Sufficient electrical energy can be reliably supplied to the load 30.

図9は、固体高分子形燃料電池10に使用する燃料極13及び空気極14の製造方法を説明する図である。燃料極13及び空気極14は、図9に示すように、含有率決定工程S1、パーマロイ微粉体作成工程S2、パーマロイ微粉体混合物作成工程S3、パーマロイ微粉体混合成形物作成工程S4、薄板状発泡金属電極作成工程S5を有する電極製造方法によって製造される。電極製造方法では、Fe−Niパーマロイ31原料として燃料極13及び空気極14を製造する。 FIG. 9 is a diagram illustrating a method of manufacturing the fuel electrode 13 and the air electrode 14 used in the polymer electrolyte fuel cell 10. As shown in FIG. 9, the fuel electrode 13 and the air electrode 14 have a content rate determination step S1, a permalloy fine powder preparation step S2, a permalloy fine powder mixture preparation step S3, a permalloy fine powder mixed molded product preparation step S4, and thin plate foaming. It is manufactured by an electrode manufacturing method having a metal electrode manufacturing step S5. In the electrode manufacturing method, a fuel electrode 13 and an air electrode 14 are manufactured as raw materials for Fe—Ni permalloy 31.

含有率決定工程S1では、Fe−Niパーマロイ31を微粉砕したパーマロイ微粉体32の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ31の全重量に対するFe(鉄)の含有率とNi(ニッケル)の含有率とを決定する。Fe−Niパーマロイ31におけるFeの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定され、Fe−Niパーマロイ31におけるNiの含有率は、45%〜55%の範囲、好ましくは、49%〜51%の範囲で決定される。 In the content rate determination step S1, Fe (iron) with respect to the total weight of Fe-Ni permalloy 31 so that the work function of the permalloy fine powder 32 obtained by finely pulverizing Fe-Ni permalloy 31 is close to the work function of the platinum group element. The content rate and the Ni (nickel) content rate are determined. The Fe content in Fe-Ni permalloy 31 is determined in the range of 45% to 55%, preferably 49% to 51%, and the Ni content in Fe-Ni permalloy 31 is 45% to 55. It is determined in the range of%, preferably in the range of 49% to 51%.

パーマロイ微粉体作成工程S2では、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ31を微粉砕してパーマロイ微粉体32を作る。微粉砕機によってFe−Niパーマロイ31を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕し、粒径が1μm〜100μm、好ましくは、粒径が30μm〜60μmのパーマロイ微粉体32を作る。 In the permalloy fine powder preparation step S2, Fe—Ni permalloy 31 formed from Fe and Ni having a content determined by the content rate determination step is finely pulverized to produce permalloy fine powder 32. Fe-Ni permalloy 31 is finely pulverized to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm by a fine pulverizer, and permalloy fine powder having a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. Make the body 32.

電極製造方法は、Fe−Niパーマロイ31を1μm〜100μmの粒径、好ましくは、30μm〜60μmの粒径に微粉砕することで、多数の微細な連続気孔25(連続通気孔)を有する多孔質に成形されて比表面積が大きいマイクロポーラス構造の燃料極13及び空気極14(薄板状発泡金属電極26)を作ることができ、それら連続気孔25を気体(酸素及び水素)が通流しつつ気体を燃料極13及び空気極14のそれら気孔25における接触面に広範囲に接触させることが可能な燃料極13及び空気極14を作ることができる。 The electrode manufacturing method is a porosity having a large number of fine continuous pores 25 (continuous ventilation holes) by finely pulverizing Fe-Ni permalloy 31 to a particle size of 1 μm to 100 μm, preferably 30 μm to 60 μm. A fuel electrode 13 and an air electrode 14 (thin plate-shaped foamed metal electrode 26) having a microporous structure having a large specific surface area can be formed, and gas (oxygen and hydrogen) can pass through these continuous pores 25 to pass gas. It is possible to make the fuel pole 13 and the air pole 14 capable of extensively contacting the contact surfaces of the fuel pole 13 and the air pole 14 in their pores 25.

パーマロイ微粉体混合物作成工程S3では、パーマロイ微粉体作成工程S2によって作成したパーマロイ微粉体32に所定のバインダー33及び所定の気孔形成材34(発泡剤)を加え、パーマロイ微粉体32にバインダー33と気孔形成材34とを均一に混合・分散してパーマロイ微粉体混合物35を作る。電極製造方法は、高価な白金族金属(白金(Pt))が使用されていないから、燃料極13及び空気極14を廉価に作ることができる。 In the permalloy fine powder mixture preparation step S3, a predetermined binder 33 and a predetermined pore forming material 34 (foaming agent) are added to the permalloy fine powder 32 prepared in the permalloy fine powder preparation step S2, and the binder 33 and pores are added to the permalloy fine powder 32. The permalloy fine powder mixture 35 is made by uniformly mixing and dispersing the forming material 34. Since the electrode manufacturing method does not use an expensive platinum group metal (platinum (Pt)), the fuel electrode 13 and the air electrode 14 can be produced at low cost.

パーマロイ微粉体混合物作成工程S3では、Fe−Niパーマロイ31のパーマロイ微粉体32とバインダー33(粉状の樹脂系バインダー)とを混合機又は攪拌機に投入し、混合機又は攪拌機によってFe−Niパーマロイ31のパーマロイ微粉体32とバインダー33とを攪拌・混合し、パーマロイ微粉体32及びバインダー33が均一に混合・分散したパーマロイ微粉体混合物35(発泡金属成形材)を作る。次に、パーマロイ微粉体混合物35に所定量の気孔形成材34(粉体の発泡剤)を混入(添加)する。所定量の気孔形成材34を混合機又は攪拌機に投入し、混合機又は攪拌機によってパーマロイ微粉体混合物35に気孔形成材34を均一に混合・分散させたパーマロイ微粉体混合物35(発泡金属成形材料)を作る。気孔形成材34(粉体の発泡剤)の混入量(添加量)によって燃料極13及び空気極14に形成される連続気孔25の平均径や気孔率が決まる。 In the permalloy fine powder mixture preparation step S3, the permalloy fine powder 32 of Fe-Ni permalloy 31 and the binder 33 (powder-based resin binder) are put into a mixer or agitator, and the Fe-Ni permalloy 31 is added by the mixer or agitator. Permalloy fine powder 32 and the binder 33 are stirred and mixed to prepare a permalloy fine powder mixture 35 (foam metal molding material) in which the permalloy fine powder 32 and the binder 33 are uniformly mixed and dispersed. Next, a predetermined amount of the pore-forming material 34 (powder foaming agent) is mixed (added) into the permalloy fine powder mixture 35. A predetermined amount of the pore-forming material 34 is put into a mixer or a stirrer, and the permalloy fine powder mixture 35 (foam metal molding material) in which the pore-forming material 34 is uniformly mixed and dispersed in the permalloy fine powder mixture 35 by the mixer or the stirrer. make. The average diameter and porosity of the continuous pores 25 formed in the fuel electrode 13 and the air electrode 14 are determined by the mixing amount (addition amount) of the pore forming material 34 (powder foaming agent).

パーマロイ微粉体混合成形物作成工程S4では、パーマロイ微粉体混合物作成工程S3によって作られたパーマロイ微粉体混合物35(発泡金属成形材料)を射出成形機(図示せず)又は押出成形機(図示せず)に投入し、パーマロイ微粉体混合物35を射出成形機によって射出成形し、又は、パーマロイ微粉体混合物35を押出成形機によって押し出し成形し、パーマロイ微粉体混合物35を所定面積の薄板状(厚み寸法L1が0.05mm〜0.5mmの範囲)に成形したパーマロイ微粉体混合成形物36(発泡金属成形物)を作る。 In the Permalloy fine powder mixture preparation step S4, the Permalloy fine powder mixture 35 (foam metal molding material) prepared in the Permalloy fine powder mixture preparation step S3 is injected into an injection molding machine (not shown) or an extrusion molding machine (not shown). ), The permalloy fine powder mixture 35 is injection molded by an injection molding machine, or the permalloy fine powder mixture 35 is extruded by an extrusion molding machine, and the permalloy fine powder mixture 35 is formed into a thin plate having a predetermined area (thickness dimension L1). Is formed in the range of 0.05 mm to 0.5 mm) to prepare a permalloy fine powder mixed molded product 36 (foamed metal molded product).

薄板状発泡金属電極作成工程S5では、パーマロイ微粉体混合成形物作成工程S4の射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物36(発泡金属成形物)を脱脂し、脱脂したパーマロイ微粉体混合成形物36を焼成炉(燃焼炉、電気炉等)に投入し、パーマロイ微粉体混合成形物36を焼成炉において所定温度で所定時間焼結(焼成)し、多数の微細な連続気孔25(連続通気孔)が満遍なく均一に形成され、それら連続気泡25が溶融結合したパーマロイ微粉体32のパーマロイ溶融物によって画成かつ囲繞されたマイクロポーラス構造の燃料極13及び空気極14(厚み寸法L1が0.05mm〜0.5mmの燃料極13及び空気極14)を作る。 In the thin plate-shaped foamed metal electrode producing step S5, the permalloy fine powder mixed molded product 36 (foamed metal molded product) produced by the injection molding or extrusion molding of the permalloy fine powder mixed molded product preparation step S4 is degreased and degreased. The body-mixed molded product 36 is put into a firing furnace (combustion furnace, electric furnace, etc.), and the permalloy fine powder mixed molded product 36 is sintered (baked) at a predetermined temperature in a firing furnace for a predetermined time to obtain a large number of fine continuous pores 25. (Continuous vent holes) are evenly and uniformly formed, and the fuel pole 13 and the air pole 14 (thickness dimension L1) of the microporous structure defined and surrounded by the permalloy melt of the permalloy fine powder 32 in which the open cells 25 are melt-bonded. Makes a fuel pole 13 and an air pole 14) of 0.05 mm to 0.5 mm.

焼結(焼成)温度は、900℃〜1400℃である。焼結(焼成)時間は、2時間〜6時間である。薄板状発泡金属電極作成工程S5では、所定面積の薄板状に成形したパーマロイ微粉体混合成形物36(発泡金属成形物)の焼結時において、パーマロイ微粉体混合成形物36の内部において気孔形成材34(粉体の発泡剤)が発泡した後、気孔形成材34がパーマロイ微粉体混合成形物36の内部から消失し、多数の微細な連続気孔25(連続通気孔)が形成されたマイクロポーラス構造の燃料極13及び空気極14(厚み寸法L1が0.05mm〜0.5mmの燃料極13及び空気極14)が製造される。 The sintering (baking) temperature is 900 ° C to 1400 ° C. The sintering (baking) time is 2 hours to 6 hours. In the thin plate-shaped foamed metal electrode producing step S5, when the permalloy fine powder mixed molded product 36 (foamed metal molded product) molded into a thin plate shape having a predetermined area is sintered, the pore-forming material is inside the permalloy fine powder mixed molded product 36. After the foaming agent 34 (powder foaming agent) foams, the pore forming material 34 disappears from the inside of the permalloy fine powder mixed molded product 36, and a large number of fine continuous pores 25 (continuous ventilation holes) are formed in the microporous structure. Fuel pole 13 and air pole 14 (fuel pole 13 and air pole 14 having a thickness dimension L1 of 0.05 mm to 0.5 mm) are manufactured.

電極製造方法は、射出成形又は押出成形によってFe−Niパーマロイ31のパーマロイ微粉体32がバインダー33を介して連結され、射出成形又は押出成形によって作られたパーマロイ微粉体混合成形物36(発泡金属成形物)を脱脂した後、所定温度で焼結(焼成)することで、多数の微細な連続気孔25(連続通気孔)を有するマイクロポーラス構造の燃料極13及び空気極14を作ることができるとともに、高い強度を有して形状を維持することができ、衝撃が加えられたときの破損や損壊を防ぐことが可能な燃料極13及び空気極14を作ることができる。電極製造方法は、厚み寸法L1が0.05mm〜0.5mmの範囲の燃料極13及び空気極14を作ることができるから、電気抵抗が小さく電流をスムースに流すことが可能な(プロトン導電性に優れた)燃料極13及び空気極14を作ることができる。 In the electrode manufacturing method, the permalloy fine powder 32 of Fe-Ni permalloy 31 is connected via a binder 33 by injection molding or extrusion molding, and the permalloy fine powder mixed molded product 36 (foam metal molding) produced by injection molding or extrusion molding. By degreasing the material) and then sintering (firing) it at a predetermined temperature, a fuel electrode 13 and an air electrode 14 having a microporous structure having a large number of fine continuous pores 25 (continuous ventilation holes) can be produced. It is possible to make a fuel electrode 13 and an air electrode 14 which have high strength, can maintain the shape, and can prevent breakage or damage when an impact is applied. In the electrode manufacturing method, since the fuel electrode 13 and the air electrode 14 having a thickness dimension L1 in the range of 0.05 mm to 0.5 mm can be produced, the electric resistance is small and the current can flow smoothly (proton conductivity). It is possible to make a fuel electrode 13 and an air electrode 14 (excellent in).

電極製造方法は、Fe−Niパーマロイ31を微粉砕したパーマロイ微粉体32の仕事関数が白金族元素の仕事関数に近似するように、Fe−Niパーマロイ31におけるFeの含有率とNiの含有率とを決定する含有率決定工程と、含有率決定工程によって決定した含有率のFe及びNiから形成されたFe−Niパーマロイ31を微粉砕してパーマロイ微粉体32を作るパーマロイ微粉体作成工程と、パーマロイ微粉体作成工程によって作成したパーマロイ微粉体32に所定のバインダー33及び所定の気孔形成材34を加え、パーマロイ微粉体32にバインダー33と気孔形成材34とを均一に混合・分散してパーマロイ微粉体混合物35を作るパーマロイ微粉体混合物作成工程と、パーマロイ微粉体混合物作成工程によって作成したパーマロイ微粉体混合物35を射出成形又は押出成形によって薄板状に成形してパーマロイ微粉体混合成形物36を作るパーマロイ微粉体混合成形物作成工程と、パーマロイ微粉体混合成形物作成工程によって作成したパーマロイ微粉体混合成形物36を脱脂するとともにパーマロイ微粉体混合成形物36を所定温度で焼結し、パーマロイ微粉体32が溶融結合しつつ多数の微細な連続気孔25が満遍なく均一に形成されているとともに、パーマロイ微粉体32が溶融結合したパーマロイ溶融物によって連続気泡25が画成かつ囲繞されたマイクロポーラス構造の薄板状発泡金属電極26を作る薄板状発泡金属電極作成工程との各工程によって燃料極13及び空気極14を製造するから、それら工程S1〜S5によって厚み寸法L1が0.05mm〜0.5mmの範囲であって多数の微細な連続気孔25(連続通気孔)を形成した燃料極13及び空気極14(マイクロポーラス構造の薄板状発泡金属電極26)を製造することができ、燃料極13及び空気極14を廉価に作ることができる。 In the electrode manufacturing method, the Fe-Ni permalloy 31 has a Fe content and a Ni content so that the work function of the permalloy fine powder 32 obtained by finely pulverizing the Fe-Ni permalloy 31 is close to the work function of the platinum group element. Permalloy fine powder preparation step and permalloy fine powder preparation step to make permalloy fine powder 32 by finely pulverizing Fe-Ni permalloy 31 formed from Fe and Ni of the content rate determined by the content rate determination step, and permalloy. A predetermined binder 33 and a predetermined pore-forming material 34 are added to the permalloy fine powder 32 prepared in the fine powder preparation step, and the binder 33 and the pore-forming material 34 are uniformly mixed and dispersed in the permalloy fine powder 32 to make the permalloy fine powder. The permalloy fine powder mixture preparation step for making the mixture 35 and the permalloy fine powder mixture 35 prepared by the permalloy fine powder mixture preparation step are molded into a thin plate by injection molding or extrusion molding to make the permalloy fine powder mixed molded product 36. The permalloy fine powder mixed molded product 36 prepared by the body mixed molded product preparation step and the permalloy fine powder mixed molded product preparation step is degreased, and the permalloy fine powder mixed molded product 36 is sintered at a predetermined temperature to obtain the permalloy fine powder 32. A large number of fine continuous pores 25 are uniformly and uniformly formed while being melt-bonded, and a thin plate-like foam having a microporous structure in which open cells 25 are defined and surrounded by a permalloy melt in which permalloy fine powder 32 is melt-bonded. Since the fuel electrode 13 and the air electrode 14 are manufactured by each step of the thin plate foam metal electrode manufacturing step of manufacturing the metal electrode 26, the thickness dimension L1 is in the range of 0.05 mm to 0.5 mm by these steps S1 to S5. The fuel pole 13 and the air pole 14 (thin plate-shaped foamed metal electrode 26 having a microporous structure) having a large number of fine continuous pores 25 (continuous ventilation holes) can be manufactured, and the fuel pole 13 and the air pole 14 can be formed. It can be made at a low price.

電極製造方法は、白金族元素を含む(担持した)燃料極や空気極と略同様の優れた触媒活性(触媒作用)を発揮することができるとともに、優れた触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能な白金族金属非含有の燃料極13及び空気極14を作ることができる。電極製造方法は、それによって作られた燃料極13及び空気極14が白金族元素を含む(担持した)燃料極や空気極と略同様の優れた触媒活性(触媒作用)を発揮するから、固体高分子形燃料電池10において十分な電気を発電することが可能であって固体高分子形燃料電池10に接続された負荷30に十分な電気エネルギーを供給することが可能な白金族金属少含有の燃料極13及び空気極14を作ることができる。 The electrode manufacturing method can exhibit excellent catalytic activity (catalytic action) substantially similar to that of a fuel electrode or an air electrode containing (supporting) a platinum group element, and also has excellent catalytic activity (catalytic action). It is possible to prepare a platinum group metal-free fuel electrode 13 and an air electrode 14 that can sufficiently and reliably utilize the catalytic function. In the electrode manufacturing method, since the fuel electrode 13 and the air electrode 14 produced thereby exhibit excellent catalytic activity (catalytic action) substantially similar to those of the fuel electrode and the air electrode containing (supporting) platinum group elements, they are solid. A small amount of platinum group metal capable of generating sufficient electricity in the polymer electrolyte fuel cell 10 and supplying sufficient electric energy to the load 30 connected to the polymer electrolyte fuel cell 10 Fuel poles 13 and air poles 14 can be made.

10 固体高分子形燃料電池
11 セル
12 セルスタック
13 燃料極
14 空気極
15 固体高分子電解質膜(電極接合体膜)
16 セパレータ
17 セパレータ
18 膜/電極接合体
19 ガス拡散層
20 ガス拡散層
21 ガスシール
22 ガスシール
23 前面
24 後面
25 連続気孔(連続通気孔)
26 薄板状発泡金属電極
27 通流口
28 外周縁
29 導線
30 負荷
31 Fe−Niパーマロイ
32 パーマロイ微粉体
33 バインダー
34 気孔形成材(発泡剤)
35 パーマロイ微粉体混合物
36 パーマロイ微粉体混合成形物(発泡金属成形物)
L1 厚み寸法
S1 含有率決定工程
S2 パーマロイ微粉体作成工程
S3 パーマロイ微粉体混合物作成工程
S4 パーマロイ微粉体混合成形物作成工程
S5 薄板状発泡金属電極作成工程
10 Polymer electrolyte fuel cell 11 cell 12 cell stack 13 fuel electrode 14 air electrode 15 solid polymer electrolyte membrane (electrode assembly membrane)
16 Separator 17 Separator 18 Membrane / Electrode Assembly 19 Gas Diffusion Layer 20 Gas Diffusion Layer 21 Gas Seal 22 Gas Seal 23 Front 24 Rear 25 Continuous Pore (Continuous Vent)
26 Thin plate-shaped foamed metal electrode 27 Passage port 28 Outer peripheral edge 29 Lead wire 30 Load 31 Fe-Ni Permalloy 32 Permalloy fine powder 33 Binder 34 Pore forming material (foaming agent)
35 Permalloy fine powder mixture 36 Permalloy fine powder mixed molded product (foamed metal molded product)
L1 Thickness dimension S1 Content rate determination process S2 Permalloy fine powder preparation process S3 Permalloy fine powder mixture production process S4 Permalloy fine powder mixed molding production process S5 Thin plate foam metal electrode production process

Claims (12)

複数のセルを有するセルスタックを備え、前記セルが、燃料極及び空気極と、前記燃料極と前記空気極との間に位置する電極接合体膜と、前記燃料極の外側と前記空気極の外側とに位置するセパレータとから形成され、
前記燃料極及び前記空気極は、Fe−Niパーマロイを微粉砕したパーマロイ微粉体に所定のバインダーを均一に混合・分散しつつ所定の気孔形成材を均一に混合・分散し、前記パーマロイ微粉体に前記バインダー及び前記気孔形成材を混合したパーマロイ微粉体混合物を所定面積の薄板状に成形した後、前記所定面積の薄板状に成形した前記パーマロイ微粉体混合成形物を脱脂・焼結することで、前記パーマロイ微粉体が溶融結合しつつ多数の微細な連続気孔が満遍なく形成されたマイクロポーラス構造の薄板状発泡金属電極であり、白金族元素を含む燃料極及び空気極と略同様の触媒活性を有し、前記連続気泡は、前記パーマロイ微粉体が溶融結合したパーマロイ溶融物によって画成されていることを特徴とする固体高分子形燃料電池。
A cell stack having a plurality of cells is provided, in which the cells are a fuel electrode and an air electrode, an electrode joint membrane located between the fuel electrode and the air electrode, and an outside of the fuel electrode and the air electrode. Formed from a separator located on the outside
The fuel electrode and the air electrode uniformly mix and disperse a predetermined binder in a permalloy fine powder obtained by finely pulverizing Fe-Ni permalloy, and uniformly mix and disperse a predetermined pore-forming material into the permalloy fine powder. A permalloy fine powder mixture in which the binder and the pore-forming material are mixed is formed into a thin plate having a predetermined area, and then the permalloy fine powder mixed mixture formed into a thin plate having a predetermined area is degreased and sintered. It is a thin plate-shaped foamed metal electrode with a microporous structure in which a large number of fine continuous pores are evenly formed while the permalloy fine powder is melt-bonded, and has substantially the same catalytic activity as a fuel electrode and an air electrode containing a platinum group element. A solid polymer fuel cell, wherein the open cells are defined by a permalloy melt in which the permalloy fine powder is melt-bonded.
前記固体高分子形燃料電池では、前記燃料極及び前記空気極を形成する前記パーマロイ微粉体の仕事関数が白金族元素の仕事関数に近似するように、前記Fe−Niパーマロイにおける前記Feの含有率と該Fe−Niパーマロイにおける前記Niの含有率とが決定されている請求項1に記載の固体高分子形燃料電池。 In the solid polymer fuel cell, the content of Fe in the Fe—Ni permalloy so that the work function of the permalloy fine powder forming the fuel electrode and the air electrode is close to the work function of the platinum group element. The solid polymer fuel cell according to claim 1, wherein the content of Ni in the Fe-Ni permalloy is determined. 前記薄板状発泡金属電極に形成された連続気泡が、該薄板状発泡金属電極の前面と後面との間で厚み方向へ不規則に曲折しながら延びているとともに、該薄板状発泡金属電極の外周縁と内周縁との間で径方向へ不規則に曲折しながら延びている請求項1又は請求項2に記載の固体高分子形燃料電池。 The open cells formed on the thin plate-shaped foamed metal electrode extend between the front surface and the rear surface of the thin plate-shaped foamed metal electrode while being irregularly bent in the thickness direction, and are outside the thin plate-shaped foamed metal electrode. The solid polymer fuel cell according to claim 1 or 2, wherein the solid polymer fuel cell extends between the peripheral edge and the inner peripheral edge while irregularly bending in the radial direction. 前記径方向へ隣接して前記厚み方向へ曲折して延びるそれら連続気泡が、前記径方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、前記厚み方向へ隣接して前記径方向へ曲折して延びるそれら連続気泡が、前記厚み方向において部分的に繋がって一方の連続気泡と他方の連続気泡とが互いに連通し、それら連続気泡の平均径が、前記厚み方向に向かって一様ではなく、該厚み方向に向かって不規則に変化しているとともに、前記径方向に向かって一様ではなく、該径方向に向かって不規則に変化している請求項3に記載の固体高分子形燃料電池。 These open cells that are adjacent to the radial direction and bend and extend in the thickness direction are partially connected in the radial direction so that one open cell and the other open cell communicate with each other and are adjacent to each other in the thickness direction. The open cells that bend and extend in the radial direction are partially connected in the thickness direction, and one open cell and the other open cell communicate with each other, and the average diameter of the open cells is in the thickness direction. The third aspect of claim 3, which is not uniform toward the thickness and changes irregularly in the thickness direction, and is not uniform toward the radial direction and changes irregularly toward the radial direction. The polymer electrolyte fuel cell described. 前記薄板状発泡金属電極に形成された連続気孔の平均径が、1μm〜100μmの範囲にあるとともに、±0.1μm〜±5マイクロμmの範囲で変化している請求項4に記載の固体高分子形燃料電池。 The solid height according to claim 4, wherein the average diameter of the continuous pores formed in the thin plate-shaped foamed metal electrode is in the range of 1 μm to 100 μm and varies in the range of ± 0.1 μm to ± 5 microμm. Molecular fuel cell. 前記薄板状発泡金属電極の厚み寸法が、0.05mm〜0.5mmの範囲にある請求項1ないし請求項5いずれかに記載の固体高分子形燃料電池。 The solid polymer fuel cell according to any one of claims 1 to 5, wherein the thickness dimension of the thin plate-shaped foamed metal electrode is in the range of 0.05 mm to 0.5 mm. 前記Fe−Niパーマロイにおける前記Feの含有率が、45%〜55%の範囲にあり、前記Fe−Niパーマロイにおける前記Niの含有率が、45%〜55%の範囲にある請求項1ないし請求項6いずれかに記載の固体高分子形燃料電池。 Claims 1 to 55, wherein the Fe content in the Fe-Ni permalloy is in the range of 45% to 55%, and the Ni content in the Fe-Ni permalloy is in the range of 45% to 55%. Item 6. The polymer electrolyte fuel cell according to any one of Items 6. 前記薄板状発泡金属電極に成形された連続気泡の気孔率が、45%〜55%の範囲にある請求項1ないし請求項7いずれかに記載の固体高分子形燃料電池。 The solid polymer fuel cell according to any one of claims 1 to 7, wherein the porosity of the open cells formed on the thin plate-shaped foamed metal electrode is in the range of 45% to 55%. 前記薄板状発泡金属電極の密度が、6.0g/cm〜8.0g/cmの範囲にある請求項1ないし請求項8いずれかに記載の固体高分子形燃料電池。 The density of the sheet-like foam metal electrodes, polymer electrolyte fuel cell according to any one claims 1 to 8 is in the range of 6.0g / cm 2 ~8.0g / cm 2 . 前記パーマロイ微粉体の粒径が、1μm〜100μmの範囲にある請求項1ないし請求項9いずれかに記載の固体高分子形燃料電池。 The polymer electrolyte fuel cell according to any one of claims 1 to 9, wherein the particle size of the permalloy fine powder is in the range of 1 μm to 100 μm. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の雰囲気が相対湿度95%〜100%の範囲にあり、前記水素の温度が45℃〜55℃の範囲にある請求項1ないし請求項10いずれかに記載の固体高分子形燃料電池。 In the polymer electrolyte fuel cell, the atmosphere of hydrogen supplied to the fuel electrode is in the range of 95% to 100% relative humidity, and the temperature of the hydrogen is in the range of 45 ° C to 55 ° C. The polymer electrolyte fuel cell according to any one of claims 10. 前記固体高分子形燃料電池では、前記燃料極に供給される水素の供給圧力が+0.06MPa〜+0.08MPaの範囲にある請求項1ないし請求項11いずれかに記載の固体高分子形燃料電池。
The polymer electrolyte fuel cell according to any one of claims 1 to 11, wherein the supply pressure of hydrogen supplied to the fuel electrode is in the range of +0.06 MPa to +0.08 MPa in the polymer electrolyte fuel cell. ..
JP2019067713A 2019-03-29 2019-03-29 Solid polymer fuel cell Pending JP2020167064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067713A JP2020167064A (en) 2019-03-29 2019-03-29 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067713A JP2020167064A (en) 2019-03-29 2019-03-29 Solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2020167064A true JP2020167064A (en) 2020-10-08

Family

ID=72717571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067713A Pending JP2020167064A (en) 2019-03-29 2019-03-29 Solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2020167064A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346411A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Porous board, and its production method
JP2010201387A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Gas decomposing element and power generating apparatus
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346411A (en) * 2003-05-26 2004-12-09 Mitsubishi Materials Corp Porous board, and its production method
JP2010201387A (en) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd Gas decomposing element and power generating apparatus
JP2018522365A (en) * 2015-10-22 2018-08-09 コーチョアン リン Fuel cell electrode material and apparatus

Similar Documents

Publication Publication Date Title
US5702839A (en) Manufacture of electrodes
US7014944B2 (en) Electrodes for alkaline fuel cells with circulating electrolyte
CN103370821A (en) Shape controlled palladium and palladium alloy nanoparticle catalyst
WO2020080530A1 (en) Electrode and electrode manufacturing method
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP2007005126A (en) Polymer electrolyte fuel cell stack and polymer electrolyte fuel cell using this
EP2273589B1 (en) Membrane electrode assembly and fuel cell
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2020167064A (en) Solid polymer fuel cell
JP2003115299A (en) Solid polymer fuel cell
JP7235284B2 (en) polymer electrolyte fuel cell
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
JP2020140844A (en) Solid polymer type fuel battery
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020064786A (en) Polymer electrolyte fuel cell
JP2020167041A (en) Electrode and manufacturing method thereof
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
JP2020140843A (en) Electrode and method for manufacturing the same
JP7193109B2 (en) Electrode and electrode manufacturing method
JP7411920B2 (en) Method for manufacturing anode and cathode of electrolyzer
JP7262739B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020087812A (en) Electrode and electrode manufacturing method
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
JP2020012166A (en) Electrolysis apparatus, and method for manufacturing electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704