WO2016147541A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2016147541A1
WO2016147541A1 PCT/JP2016/000655 JP2016000655W WO2016147541A1 WO 2016147541 A1 WO2016147541 A1 WO 2016147541A1 JP 2016000655 W JP2016000655 W JP 2016000655W WO 2016147541 A1 WO2016147541 A1 WO 2016147541A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
opening
semiconductor device
semiconductor layer
Prior art date
Application number
PCT/JP2016/000655
Other languages
English (en)
French (fr)
Inventor
柴田 大輔
田中 健一郎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2017506045A priority Critical patent/JP6665157B2/ja
Publication of WO2016147541A1 publication Critical patent/WO2016147541A1/ja
Priority to US15/698,222 priority patent/US10193001B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/098Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being PN junction gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Definitions

  • the present disclosure relates to a nitride semiconductor device.
  • Patent Document 1 discloses a nitride semiconductor device including an SBD (Schottky Barrier Diode) protection unit for bypassing against a surge voltage or the like.
  • the nitride semiconductor device described in Patent Document 1 has a configuration in which a vertical FET (Field Effect Transistor) as a switching element and a vertical SBD are arranged in parallel on the same GaN substrate. is doing. According to this configuration, it is said that a semiconductor device for large current that achieves withstand voltage performance and low on-resistance and has a simple structure can be obtained.
  • SBD Schottky Barrier Diode
  • Patent Document 1 has a problem that the high breakdown voltage characteristic inherent in the nitride semiconductor vertical FET cannot be fully utilized due to the SBD protection unit.
  • an object of the present disclosure is to provide a vertical nitride semiconductor device having high breakdown voltage and low loss characteristics.
  • a nitride semiconductor device includes a substrate having a first main surface and a second main surface facing each other, and a first substrate disposed on the first main surface.
  • the nitride semiconductor device of the present disclosure it is possible to provide a nitride semiconductor device with high breakdown voltage and low loss.
  • FIG. 1 is a cross-sectional view of the nitride semiconductor device according to the embodiment.
  • FIG. 2A is a schematic cross-sectional view showing the operation of the diode during forward bias of the nitride semiconductor device according to the comparative example.
  • FIG. 2B is a schematic cross-sectional view illustrating the operation of the diode during forward bias of the nitride semiconductor device according to the embodiment.
  • FIG. 2C is a schematic cross-sectional view illustrating the operation of the diode during reverse bias of the nitride semiconductor device according to the comparative example.
  • FIG. 2D is a schematic cross-sectional view illustrating the operation of the diode during reverse bias of the nitride semiconductor device according to the embodiment.
  • FIG. 2A is a schematic cross-sectional view showing the operation of the diode during forward bias of the nitride semiconductor device according to the comparative example.
  • FIG. 2B is a schematic cross-sectional view illustrating the operation of
  • FIG. 3 is a graph showing current-voltage characteristics of a device in which SBDs are connected in parallel to a vertical nitride semiconductor transistor and a device in which MPS diodes are connected in parallel.
  • FIG. 4A is a plan view and a cross-sectional view of the nitride semiconductor device according to the embodiment.
  • FIG. 4B is a diagram illustrating an example of a planar layout of the second and third openings of the nitride semiconductor device according to the embodiment.
  • FIG. 5A is a plan view and a cross-sectional view of a nitride semiconductor device according to Modification 1 of the embodiment.
  • FIG. 5B is a diagram illustrating an example of a planar layout of the second and third openings of the nitride semiconductor device according to the first modification of the embodiment.
  • FIG. 6 is a cross-sectional view of a nitride semiconductor device according to Modification 2 of the embodiment.
  • FIG. 7 is a cross-sectional view of the nitride semiconductor device according to Modification 3 of the embodiment.
  • FIG. 8 is a graph showing the return current-voltage characteristics of the SBD and PN diode.
  • SBD has a merit that a rising voltage is lower than that of a PN diode, but has a demerit that a withstand voltage is low.
  • the semiconductor device according to Patent Document 1 when the withstand voltage of the SBDs connected in parallel is lower than the withstand voltage of the vertical FET, the withstand voltage of the entire device is limited by the withstand voltage of the SBD even if the withstand voltage of the vertical FET is sufficiently high. Will be. That is, the semiconductor device according to Patent Document 1 has a problem that the withstand voltage performance is not sufficient by using the SBD as a protection unit.
  • the breakdown voltage of the entire device can be sufficiently secured, but the rising voltage becomes high as described above.
  • energy is consumed by the PN diode. That is, when the rising voltage is high, the conduction loss increases accordingly.
  • FIG. 8 is a graph showing the reflux current-voltage characteristics of the SBD and PN diode. More specifically, the graph of the figure compares the loss when the SBD and the PN diode generate a return current. As shown in the graph of FIG. 8, it can be seen that the loss of the PN diode having a high operating voltage is larger than that of the SBD when the same amount of return current is generated. That is, there is a problem in that conduction loss increases by using a PN diode as a protection unit.
  • a nitride semiconductor device is arranged on a substrate having a first main surface and a second main surface facing each other, and on the first main surface.
  • the first conductivity type first nitride semiconductor layer, the second conductivity type second nitride semiconductor layer disposed on the first nitride semiconductor layer, and the second nitride A first opening formed in a semiconductor layer and reaching the first nitride semiconductor layer; and a third nitride semiconductor layer of the first conductivity type covering the first opening and having a channel region
  • a second opening and a source electrode to cover the third opening characterized in that it comprises a drain electrode disposed on the second major surface.
  • a nitride semiconductor device according to an embodiment of the present disclosure will be described with reference to the drawings.
  • the following embodiment shows a specific example of the present invention, and the numerical value, shape, material, component, arrangement position and connection form of the component are examples, and limit the present invention. is not.
  • Various modifications in which the present embodiment is modified within a range conceivable by those skilled in the art are also included in the present disclosure without departing from the gist of the present disclosure.
  • FIG. 1 is a cross-sectional view of the nitride semiconductor device according to the embodiment.
  • the nitride semiconductor device 1 according to the present embodiment includes a substrate 100, a drift layer 102, a base layer 104, a block layer 106, a base layer 108, a channel formation layer 112, and a gate.
  • An electrode 118, a source electrode 124, and a drain electrode 126 are provided.
  • a gate opening 110 first opening that penetrates the base layer 108, the block layer 106, and the base layer 104 and reaches the drift layer 102 is formed. Yes.
  • the opening is an area where a predetermined layer formed in the substrate surface direction is partially deleted, and at least a partial area of the area is the predetermined layer in the substrate surface direction. It is an enclosed area.
  • the opening has a space in the process of forming the nitride semiconductor device, but is filled with another layer when the formation is completed.
  • the gate opening 110 is formed in the foundation layer 104, and when the formation of the nitride semiconductor device 1 is completed, the gate opening 110 is filled with the channel formation layer 112 and the gate electrode 118.
  • the substrate 100 is, for example, an n-type GaN substrate containing n-type impurities, and has a film thickness of about 300 ⁇ m.
  • Si or Ge can be used as the n-type impurity
  • Mg can be used as the p-type impurity.
  • n-type and p-type include any of the above-described impurities.
  • the substrate 100 may be other than the GaN substrate, and may be any substrate that has conductivity and lattice-matches to an acceptable level in terms of the characteristics of the semiconductor layer formed on the substrate 100 and the element.
  • Ga 2 An O 3 substrate or a SiC substrate may be used.
  • it is possible to use a Si substrate in this case, it is preferable to form a buffer layer for lattice matching with the upper layer.
  • the drift layer 102 is an n-type (first conductivity type) first nitride semiconductor layer formed on the substrate 100.
  • the drift layer 102 is, for example, an n-type GaN layer containing an n-type impurity and has a thickness of about 8 ⁇ m.
  • the concentration of the n-type impurity is, for example, about 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the underlayer 104 is a p-type (second conductivity type) second nitride semiconductor layer containing a p-type impurity formed on the drift layer 102 and has a thickness of about 200 nm.
  • the underlayer 104 may be formed by crystal growth, or may be formed by, for example, injecting Mg into an undoped GaN layer.
  • the block layer 106 is formed on the base layer 104, and any material may be used as long as it is an insulating layer or a semi-insulating layer, and the film thickness is about 200 nm. Since the block layer 106 can suppress the occurrence of a parasitic npn structure, the influence of malfunction due to the parasitic npn structure can be reduced.
  • a material of the block layer 106 for example, a GaN layer doped with C at 3 ⁇ 10 17 cm ⁇ 3 or more, more preferably 1 ⁇ 10 18 cm ⁇ 3 or more may be used.
  • the impurity concentration of Si or O serving as an n-type impurity is preferably lower than the impurity concentration of C, for example, 5 ⁇ 10 16 cm ⁇ 3 or less, more preferably 2 ⁇ 10 16 cm ⁇ 3 or less. Is preferred.
  • the block layer 106 may be formed using ion implantation of Mg, Fe, B, or the like. As long as the ion species can be increased in resistance, the same effect can be obtained with other ion species.
  • the underlayer 108 is formed on the block layer 106 and is, for example, an n-type AlGaN layer containing undoped or n-type impurities, and has a thickness of about 20 nm.
  • the underlayer 108 functions to stop the diffusion of p-type impurities (such as Mg) from the underlayer 104.
  • the channel formation layer 112 covers the gate opening 110, and the n-type (first conductivity type) third nitride semiconductor layer disposed in the upper surface of the base layer 108, the upper surface of the drift layer 102, and the gate opening 110.
  • the electron transit layer 114 and the electron supply layer 116 having a larger band gap than the electron transit layer 114 are provided.
  • the electron transit layer 114 may be disposed on the electron supply layer 116, but it is preferable that the electron supply layer 116 be disposed on the electron transit layer 114.
  • a two-dimensional electron gas (2DEG) which will be described later, is arranged farther from the p-type base layer 104, and the two-dimensional electron gas (2DEG) is less susceptible to the constriction effect by the base layer 104, and the on-resistance Can be reduced.
  • the electron transit layer 114 is, for example, a GaN layer that is regrown to a thickness of about 100 nm and includes an n-type impurity such as undoped or at least Si.
  • the electron supply layer 116 is, for example, an AlGaN layer regrown to a film thickness of about 50 nm.
  • a two-dimensional electron gas (2DEG) serving as a channel region is formed in the vicinity of the interface between the electron transit layer 114 and the electron supply layer 116 in the electron transit layer 114.
  • 2DEG two-dimensional electron gas
  • an AlN layer may be formed by regrowth between the electron transit layer 114 and the electron supply layer 116. The regrown AlN layer can suppress alloy scattering and improve channel mobility.
  • the gate electrode 118 is disposed on the channel formation layer 112 and is made of, for example, Pd.
  • the gate electrode material does not have to be Pd, and any material can be used as long as it is a Schottky contact with the n-type nitride semiconductor.
  • a Ni-based material or WSi is used. Can do.
  • an insulating layer such as SiN or SiO 2 may be formed between the gate electrode 118 and the channel formation layer 112. With this configuration, a normally-off operation can be realized by suppressing the gate current and shifting the threshold voltage in the positive direction.
  • an opening 120 (second opening) reaching the base layer 104 is formed in a region separated from the gate electrode 118.
  • An opening 122 (third opening) reaching the drift layer 102 is formed on the bottom surface of the opening 120.
  • one opening 122 may be provided, it is desirable that two or more openings be formed. Note that the opening 120 is partially filled with the source electrode 124 when the formation is completed. The opening 122 is filled with the source electrode 124 when the formation is completed.
  • a source electrode 124 made of Ti / Al is disposed so as to cover the side wall 121 of the opening 120 and the side wall 123 of the opening 122.
  • the source electrode 124 is in contact with the two-dimensional electron gas (2DEG) formed in the channel formation layer 112, and is in contact with the base layer 104 and the drift layer 102 through the opening 122.
  • 2DEG two-dimensional electron gas
  • the material of the source electrode 124 may not be Ti / Al, and may be any material as long as it is in ohmic contact with the n-type.
  • the drain electrode 126 is disposed on the back surface of the substrate 100.
  • the drain electrode material may be any material as long as it is in ohmic contact with the n-type.
  • the nitride semiconductor device 1 according to this embodiment is characterized in that an MPS (Merged PiN Schottky) diode is formed in parallel with the vertical GaN transistor.
  • the MPS diode has the merits of both the high withstand voltage characteristics of the PiN diode (strictly speaking, in the present embodiment, the PN diode) and the low operating voltage of the SBD.
  • the MPS diode included in the nitride semiconductor device 1 includes a PN diode formed by the base layer 104 and the drift layer 102, and an SBD formed by the source electrode 124 and the drift layer 102 at the bottom of the opening 122. It consists of Further, the PN diode and the SBD are alternately arranged by the plurality of openings 122. As a result, it is possible to operate at a higher withstand voltage than in the prior art, and to perform energy consumption such as surge voltage and return current with low loss.
  • FIG. 2A is a schematic cross-sectional view showing the operation of the diode during forward bias of the nitride semiconductor device according to the comparative example.
  • FIG. 2B is a schematic cross-sectional view illustrating the operation of the diode during forward bias of the nitride semiconductor device according to the embodiment.
  • the opening 122 is not formed, and the opening 120 reaches the drift layer 102 directly.
  • a plurality of openings 122 are discretely formed between the openings 120 and the drift layer 102, and the plurality A base layer 104 is formed between the openings 122.
  • both the comparative example and the embodiment realize a low operating voltage because the forward current flows through the Schottky junction between the source electrode 124 and the drift layer 102. it can.
  • the nitride semiconductor device 1 according to the embodiment has the SBD between the source electrode 124 and the drift layer 102, a low operating voltage can be realized when the diode is forward biased, and thus the return current flows through the SBD. A reduction in loss when flowing can be realized.
  • FIG. 2C is a schematic cross-sectional view showing the operation of the diode during reverse bias of the nitride semiconductor device according to the comparative example.
  • FIG. 2D is a schematic cross-sectional view illustrating the operation of the diode during reverse bias of the nitride semiconductor device according to the embodiment.
  • the underlayer 104 is also formed below the center of the opening 120 and is formed by the underlayer 104 and the drift layer 102. Since the depletion layer thus formed extends, the depletion layer can be extended over the entire bottom surface of the opening 122, that is, over the entire Schottky junction. As a result, the leakage current can be reduced, so that a high breakdown voltage can be ensured.
  • a plurality of openings 122 are formed as in the present embodiment. Thereby, when the reverse bias is applied, the depletion layer can be more efficiently extended from the base layer 104 to the bottom surface of the opening 122, so that a higher breakdown voltage can be achieved.
  • the width of the opening 122 is preferably about 0.5 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the width of the underlayer 104 formed discretely by the plurality of openings 122 is preferably about 0.5 to 10 ⁇ m, and more preferably about 1 to 5 ⁇ m. However, this is not limited as long as there is an effect that a high breakdown voltage and a low loss can be realized by parallel connection of the PN diode and the SBD.
  • FIG. 3 is a graph showing current-voltage characteristics of a device in which an SBD is connected in parallel to a vertical nitride semiconductor transistor and a device in which an MPS diode is connected in parallel. More specifically, the graph in the figure compares the breakdown voltage characteristics of the two devices. It can be seen that the device with the MPS diode connected in parallel has a higher withstand voltage than the device with the SBD connected in parallel.
  • the nitride semiconductor device 1 according to the present embodiment includes the MPS diode in parallel with the vertical GaN transistor, the forward breakdown voltage is maintained while maintaining a high breakdown voltage by the function of the PN diode at the time of reverse bias. Since the rising voltage is low due to the function of the SBD at the time, it is possible to reduce the loss when the return current flows through the MPS diode.
  • FIG. 4A is a plan view and a cross-sectional view of the nitride semiconductor device according to the embodiment.
  • FIG. 4B is a diagram illustrating an example of a planar layout of the second and third openings of the nitride semiconductor device according to the embodiment.
  • rectangular source electrodes 124 are regularly arranged in plan view, and devices are integrated in a finger shape.
  • the gate electrode 118 surrounds the source electrode 124 in plan view.
  • one opening 122 may be provided continuously in the longitudinal direction of the source electrode 124 (pattern 1), or a plurality (for example, non-continuous in the longitudinal direction (for example, 4 in FIG. 4B) may be formed (pattern 2).
  • FIG. 5A is a plan view and a cross-sectional view of a nitride semiconductor device according to Modification 1 of the embodiment.
  • FIG. 5B is a diagram illustrating an example of a planar layout of the second and third openings of the nitride semiconductor device according to the first modification of the embodiment.
  • hexagonal source electrodes 124 are regularly arranged in a plan view, and the devices are integrated in a hexagonal shape.
  • the gate electrode 118 surrounds the source electrode 124 in plan view.
  • the opening 122 may be a hexagonal continuous ring shape along the outer shape of the source electrode 124 (pattern 1), or along the outer shape of the source electrode 124.
  • a plurality (for example, six in FIG. 5B) may be formed discontinuously (pattern 2).
  • FIG. 6 is a cross-sectional view of a nitride semiconductor device according to Modification 2 of the embodiment.
  • the nitride semiconductor device 2 according to this modification is different from the nitride semiconductor device 1 in that the nitride semiconductor device 2 further includes a nitride semiconductor layer 600.
  • the description of the same configuration as that of the nitride semiconductor device 1 will be omitted, and a description will be given focusing on the configuration different from the nitride semiconductor device 1.
  • the nitride semiconductor device 2 includes a substrate 100, a drift layer 102, a base layer 104, a block layer 106, a base layer 108, a channel formation layer 612, and a gate.
  • An electrode 118, a source electrode 124, and a drain electrode 126 are provided.
  • a gate opening 110 first opening that penetrates the base layer 108, the block layer 106, and the base layer 104 and reaches the drift layer 102 is formed. Yes.
  • an opening 120 (second opening) reaching the base layer 104 is formed in a region separated from the gate electrode 118.
  • An opening 122 (third opening) reaching the drift layer 102 is formed on the bottom surface of the opening 120.
  • the channel formation layer 612 includes a nitride semiconductor layer 600, an electron transit layer 114, and an electron supply layer 116.
  • the nitride semiconductor layer 600 is a p-type nitride semiconductor layer (fourth nitride semiconductor layer), and is disposed between the channel formation layer 112 and the gate electrode 118.
  • the p-type nitride semiconductor layer 600 is, for example, a p-type GaN layer or an AlGaN layer containing a p-type impurity.
  • an insulating film such as SiN or SiO 2 may be inserted.
  • any material can be used as long as it has an effect of increasing the channel potential.
  • FIG. 7 is a cross-sectional view of a nitride semiconductor device according to Modification 3 of the present embodiment.
  • the nitride semiconductor device 3 according to this modification is different from the nitride semiconductor device 1 in the configuration of the source electrode.
  • the description of the same configuration as that of the nitride semiconductor device 1 will be omitted, and a description will be given focusing on the configuration different from the nitride semiconductor device 1.
  • the nitride semiconductor device 3 includes a substrate 100, a drift layer 102, a base layer 104, a block layer 106, a base layer 108, a channel formation layer 112, and a gate.
  • An electrode 118, a source electrode 700, and a drain electrode 126 are provided.
  • the nitride semiconductor device 3 is formed with a gate opening 110 (first opening) that penetrates the base layer 108, the block layer 106, and the base layer 104 and reaches the drift layer 102. Yes.
  • an opening 120 (second opening) reaching the base layer 104 is formed in a region separated from the gate electrode 118.
  • An opening 122 (third opening) reaching the drift layer 102 is formed on the bottom surface of the opening 120.
  • the source electrode 700 has a metal layer 702 and a metal layer 704 made of a metal different from the metal layer 702.
  • the metal layer 704 is a second metal layer in contact with the base layer 104 and the drift layer 102 in the opening 122.
  • the metal layer 702 is a first metal layer that is in contact with the two-dimensional electron gas (2DEG) at the side wall 121 of the opening 120, and is electrically connected to the metal layer 704.
  • the metal layer 704 functions as an anode electrode.
  • the metal layer 704 includes at least one of Pd, Ni, Au, Pt, and the like, and a material that is in ohmic contact with the base layer 104 that is a p-type nitride semiconductor is applied. Thereby, more stable electrical connection with the base layer 104 becomes possible. Therefore, when a reverse bias is applied (when a positive bias is applied to the drain electrode 126), the depletion layer can be more stably extended from the base layer 104, so that the reverse leakage can be further reduced and further increased. Withstand voltage can be increased.
  • the gate end is an end portion of the gate electrode 118 in the direction in which the gate electrode 118 and the source electrode 124 are arranged.
  • the gate end is the end of the nitride semiconductor layer 600 in the direction in which the gate electrode 118 and the source electrode 124 are arranged.
  • the threshold voltage of the transistor is determined only by the side wall 111 (side wall 2DEG 130) of the gate opening 110.
  • the carrier concentration of the flat portion (flat portion 2DEG132) of the channel formation layer 112 parallel to the main surface of the substrate 100 can be increased, the on-resistance can be reduced.
  • the threshold voltage of the transistor is the threshold voltage of the side wall 111 (side wall 2DEG130) of the gate opening 110 or the outside of the gate opening 110.
  • This is the larger of the threshold voltages of the flat part (flat part 2DEG132).
  • the film thickness of the electron transit layer 114 parallel to the main surface of the substrate 100 may be made smaller than the film thickness of the electron transit layer 114 parallel to the side wall 111 of the gate opening 110.
  • the distance between the two-dimensional electron gas (2DEG) on the side wall 111 of the gate opening 110 and the base layer 104 is such that the two-dimensional electron gas (2DEG) on the flat portion of the channel formation layer 112 and the base layer 104 Longer than the distance.
  • the two-dimensional electron gas on the sidewall 111 of the gate opening 110 can reduce the influence of the depletion layer extending from the base layer 104 as compared with the flat portion. It becomes possible to selectively reduce the threshold voltage of the region. Therefore, the threshold voltage of the transistor can be determined by the flat portion of the channel formation layer 112.
  • the carrier concentration of the side wall 2DEG 130 which is a two-dimensional electron gas formed on the side wall 111 of the gate opening 110 is lower than the carrier concentration of the flat portion 2DEG 132 which is the two-dimensional electron gas of the flat portion. That is, since the side wall 2DEG 130 is more susceptible to the constriction effect of the depletion layer extending from the base layer 104 than the flat part 2DEG 132, the on-resistance can be further reduced when it is away from the base layer 104.
  • the thinner the electron transit layer 114 outside the gate opening 110 the shallower the opening 120 can be made.
  • the process time can be shortened, and when the source electrode 124 is formed by vapor deposition, the occurrence of the step breakage of the vapor deposition film, that is, the phenomenon that the vapor deposition film becomes discontinuous is prevented. It becomes easy.
  • the film thickness of the electron transit layer 114 disposed outside the gate opening 110 is preferably smaller than the film thickness of the electron transit layer 114 disposed on the side wall 111 of the gate opening 110.
  • the nitride semiconductor device according to the present invention is not limited to the above embodiment and the first to third modifications thereof.
  • Various modifications including the obtained modification and the nitride semiconductor device according to the embodiment and the modification are also included in the present invention.
  • the nitride semiconductor device according to the present disclosure is useful as a power device used in, for example, a power supply circuit for consumer equipment.
  • Nitride semiconductor device 100 Substrate 102 Drift layer 104, 108 Underlayer 106 Block layer 110 Gate opening 111, 121, 123 Side wall 112, 612 Channel forming layer 118 Gate electrode 120, 122 Opening 124, 700 Source electrode 126 Drain electrode 130 Side wall 2DEG 132 Flat part 2DEG 600 Nitride semiconductor layer 702, 704 Metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 窒化物半導体装置(1)は、基板(100)と、基板(100)の表面に配置されたn型のドリフト層(102)と、ドリフト層(102)上に配置されたp型の下地層(104)と、下地層(104)に形成され、ドリフト層(102)に達するゲート開口部(110)と、ゲート開口部(110)を覆い、チャネル領域を有するn型のチャネル形成層(112)とゲート開口部(110)内のチャネル形成層(112)上に配置されたゲート電極(118)と、ゲート電極(118)と離間し、下地層(104)に達する開口部(120)と、開口部(120)の底面に形成され、ドリフト層(102)に達する開口部(122)と、開口部(120)および開口部(122)を覆うソース電極(124)と、基板(100)の裏面上に配置されたドレイン電極(126)とを備える。

Description

窒化物半導体装置
 本開示は、窒化物半導体装置に関する。
 特許文献1では、サージ電圧等に対するバイパス用のSBD(Schottky Barrier Diode)保護部を備える窒化物半導体装置が開示されている。具体的には、特許文献1に記載された窒化物半導体装置は、同一のGaN基板上に、スイッチング素子の縦型FET(Field Effect Transistor)と縦型SBDとが並列に配置された構成を有している。この構成により、耐圧性能および低オン抵抗を実現し、構造が簡単な、大電流用の半導体装置が得られるとしている。
特開2011-135094号公報
 しかしながら、特許文献1に係る半導体装置では、SBD保護部が原因で、窒化物半導体系の縦型FETが本来有する高耐圧特性を活かしきれていないという課題がある。
 本開示は、上記課題に鑑み、高耐圧かつ低損失な特性を有する縦型の窒化物半導体装置を提供することを目的とする。
 上記課題を解決するため、本開示の一態様に係る窒化物半導体装置は、互いに背向する第1主面および第2主面を有する基板と、前記第1主面の上に配置された第1導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層の上に配置された第2導電型の第2の窒化物半導体層と、前記第2の窒化物半導体層に形成され、前記第1の窒化物半導体層に達する第1の開口部と、前記第1の開口部を覆い、チャネル領域を有する、前記第1導電型の第3の窒化物半導体層と、前記第1の開口部内の前記第3の窒化物半導体層上に配置されたゲート電極と、前記ゲート電極と離間し、前記第2の窒化物半導体層に達する第2の開口部と、前記第2の開口部の底面に形成され、前記第1の窒化物半導体層に達する第3の開口部と、前記第2の開口部および前記第3の開口部を覆うソース電極と、前記第2主面に配置されたドレイン電極と、を備える。
 本開示の窒化物半導体装置によれば、高耐圧かつ低損失な窒化物半導体デバイスを提供することが可能となる。
図1は、実施形態に係る窒化物半導体装置の断面図である。 図2Aは、比較例に係る窒化物半導体装置の順バイアス時のダイオードの動作を表す断面外略図である。 図2Bは、実施形態に係る窒化物半導体装置の順バイアス時のダイオードの動作を表す断面外略図である。 図2Cは、比較例に係る窒化物半導体装置の逆バイアス時のダイオードの動作を表す断面外略図である。 図2Dは、実施形態に係る窒化物半導体装置の逆バイアス時のダイオードの動作を表す断面外略図である。 図3は、縦型の窒化物半導体トランジスタにSBDを並列に接続したデバイス、および、MPSダイオードを並列に接続したデバイスの電流-電圧特性を表すグラフである。 図4Aは、実施形態に係る窒化物半導体装置の平面図および断面図である。 図4Bは、実施形態に係る窒化物半導体装置の第2および第3の開口部の平面レイアウトの例を示す図である。 図5Aは、実施形態の変形例1に係る窒化物半導体装置の平面図および断面図である。 図5Bは、実施形態の変形例1に係る窒化物半導体装置の第2および第3の開口部の平面レイアウトの例を示す図である。 図6は、実施形態の変形例2に係る窒化物半導体装置の断面図である。 図7は、実施形態の変形例3に係る窒化物半導体装置の断面図である。 図8は、SBDおよびPNダイオードの還流電流-電圧特性を示すグラフである。
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した従来の半導体装置に関し、以下の問題が生じることを見出した。
 一般的に、SBDはPNダイオードに比べて、立ち上がり電圧が低いというメリットがある一方で、耐圧が低いというデメリットがある。特許文献1に係る半導体装置では、並列接続されたSBDの耐圧が、縦型FETの耐圧よりも低い場合、たとえ縦型FETの耐圧が十分に高くとも、装置全体の耐圧はSBDの耐圧に律速されてしまう。つまり、特許文献1に係る半導体装置では、SBDを保護部とすることにより、耐圧性能が十分でないという課題を有する。
 これに対して、SBDをPNダイオードに置き換えた場合、装置全体の耐圧は十分に確保できるようになるものの、上述したように立ち上がり電圧が高くなる。インバーター応用を考えた場合、L負荷から還流電流が発生するため、PNダイオードでエネルギーを消費することになる。つまり、立ち上がり電圧が高いと、その分、導通損失が大きくなってしまう。
 図8は、SBDおよびPNダイオードの還流電流-電圧特性を示すグラフである。より具体的には、同図のグラフは、SBDおよびPNダイオードの還流電流発生時における損失を比較したものである。図8のグラフに示すように、同じ大きさの還流電流が発生している場合、動作電圧の高いPNダイオードの損失が、SBDに比べて大きいことが分かる。つまり、PNダイオードを保護部とすることにより、導通損失が大きくなってしまうという課題を有する。
 このような問題を解決するために、本発明の一態様に係る窒化物半導体装置は、互いに背向する第1主面および第2主面を有する基板と、前記第1主面の上に配置された第1導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層の上に配置された第2導電型の第2の窒化物半導体層と、前記第2の窒化物半導体層に形成され、前記第1の窒化物半導体層に達する第1の開口部と、前記第1の開口部を覆い、チャネル領域を有する、前記第1導電型の第3の窒化物半導体層と、前記第1の開口部内の前記第3の窒化物半導体層上に配置されたゲート電極と、前記ゲート電極と離間し、前記第2の窒化物半導体層に達する第2の開口部と、前記第2の開口部の底面に形成され、前記第1の窒化物半導体層に達する第3の開口部と、前記第2の開口部および前記第3の開口部を覆うソース電極と、前記第2主面に配置されたドレイン電極と、を備えることを特徴とする。
 本態様によれば、高耐圧かつ低損失な窒化物半導体装置を提供することが可能となる。
 以下、本開示の実施の形態に係る窒化物半導体装置について、図面を参照しながら説明する。なお、以下の実施形態は、本発明の一具体例を示すものであり、数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本発明を限定するものではない。本開示の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本開示に含まれる。また、本開示の主旨を逸脱しない範囲において、実施形態および変形例の少なくとも一部を組み合わせることも可能である。
 (実施形態)
 [1.窒化物半導体装置の断面構成]
 図1は、実施形態に係る窒化物半導体装置の断面図である。図1に示すように、本実施形態に係る窒化物半導体装置1は、基板100と、ドリフト層102と、下地層104と、ブロック層106と、下地層108と、チャネル形成層112と、ゲート電極118と、ソース電極124と、ドレイン電極126とを備える。また、窒化物半導体装置1には、下地層108と、ブロック層106と、下地層104とを貫通して、ドリフト層102に到達するゲート開口部110(第1の開口部)が形成されている。なお、本実施形態において、開口部とは、基板面方向に層形成された所定層が一部削除された領域であって、当該領域の少なくとも一部領域が当該基板面方向に当該所定層で囲まれた領域である。また、開口部は、窒化物半導体装置の形成過程では空間を有しているが、形成完了時には他層で充填されている。例えば、ゲート開口部110は下地層104に形成され、窒化物半導体装置1の形成完了時には、ゲート開口部110、はチャネル形成層112およびゲート電極118で充填されている。
 基板100は、例えば、n型不純物を含むn型のGaN基板であり、膜厚は300μm程度である。なお、n型不純物としては、SiやGeを用いることができ、p型不純物としては、Mgを用いることができる。以下、特に断りの無い限り、n型、p型という場合は、上述した不純物のいずれかが含まれているものとする。基板100は、GaN基板以外であってもよく、導電性を有し、基板100上に形成された半導体層と素子の特性上許容できる程度で格子整合する基板であれば良く、例えば、Ga基板やSiC基板でも構わない。また、Si基板を使うことも可能ではあるが、この場合は、上層と格子整合させるためにバッファ層を形成する方が好ましい。
 ドリフト層102は、基板100の上に形成されたn型(第1導電型)の第1の窒化物半導体層である。ドリフト層102は、例えば、n型不純物を含むn型のGaN層であり、膜厚は8μm程度である。n型不純物の濃度は、例えば、約1×1015cm-3~1×1017cm-3である。
 下地層104は、ドリフト層102の上に形成されたp型不純物を含むp型(第2導電型)の第2の窒化物半導体層であり、膜厚は200nm程度である。下地層104は、結晶成長で形成しても良いし、例えばアンドープのGaN層へMgを注入して形成してもよい。
 ブロック層106は、下地層104の上に形成され、絶縁層または半絶縁層であればどのような材料を用いてもよく、膜厚は200nm程度である。ブロック層106は、寄生npn構造の発生を抑制することができるため、当該寄生npn構造による誤動作の影響を低減することができる。ブロック層106の材料としては、例えばCを3×1017cm-3以上、さらに好ましくは1×1018cm-3以上にドープしたGaN層を用いればよい。このとき、n型不純物となるSiやOの不純物濃度は、Cの不純物濃度に比べて低くする方が良く、例えば5×1016cm-3以下、さらに好ましくは2×1016cm-3以下が好ましい。ブロック層106は、Mg、Fe、Bなどのイオン注入を用いて形成されてもよい。高抵抗化できるイオン種であれば、上記以外のイオン種でも同様の効果が得られる。
 下地層108は、ブロック層106の上に形成され、例えば、アンドープ又はn型不純物を含むn型のAlGaN層であり、膜厚は20nm程度である。下地層108は、下地層104からのp型不純物(Mg等)の拡散をストップする機能を果たす。
 チャネル形成層112は、ゲート開口部110を覆い、下地層108の上面、ドリフト層102の上面、およびゲート開口部110に配置されたn型(第1導電型)の第3の窒化物半導体層であり、電子走行層114と、電子走行層114よりバンドギャップの大きい電子供給層116とを備える。なお、電子供給層116の上に電子走行層114が配置されていても良いが、電子走行層114の上に電子供給層116が配置されている方が好ましい。これにより、後述する2次元電子ガス(2DEG)が、p型の下地層104からより離れて配置されるため、2次元電子ガス(2DEG)が下地層104による狭窄効果を受けにくくなり、オン抵抗を低減することができる。
 電子走行層114は、例えば、膜厚100nm程度に再成長され、アンドープ又は少なくともSi等のn型不純物を含むGaN層である。電子供給層116は、例えば、膜厚50nm程度に再成長されたAlGaN層である。電子走行層114の、電子走行層114と電子供給層116との界面近傍において、チャネル領域となる2次元電子ガス(2DEG)が形成される。なお、図示していないが、電子走行層114と電子供給層116との間に、AlN層を再成長により形成してもよい。再成長AlN層によって、合金散乱を抑制し、チャネル移動度を向上させることができる。
 ゲート電極118は、チャネル形成層112の上に配置され、例えば、Pdから構成される。なお、ゲート電極材料には、Pdでなくてもよく、n型の窒化物半導体に対してショットキー接触となるような材料であればどんな材料でもよく、例えばNi系材料、WSiなどを使うことができる。さらに、SiNやSiOのような絶縁層を、ゲート電極118とチャネル形成層112との間に形成してもよい。この構成によって、ゲート電流を抑制し、かつ、閾値電圧を正方向にシフトさせてノーマリオフ動作を実現することが可能になる。
 また、窒化物半導体装置1には、ゲート電極118と離間した領域に、下地層104に達する開口部120(第2の開口部)が形成されている。開口部120の底面には、ドリフト層102に達する開口部122(第3の開口部)が形成されている。開口部122は1つでもよいが、2つ以上形成されていることが望ましい。なお、開口部120には、形成完了時には、ソース電極124が一部充填されている。また、開口部122には、形成完了時には、ソース電極124が充填されている。
 開口部120の側壁部121および開口部122の側壁部123を覆うように、Ti/Alで構成されるソース電極124が配置されている。ソース電極124は、チャネル形成層112に形成されている二次元電子ガス(2DEG)に接しており、開口部122を介して、下地層104およびドリフト層102と接している。なお、ソース電極124の材料としては、Ti/Alでなくてもよく、n型に対してオーミック接触となる材料であればどんな材料でもよい。
 ドレイン電極126は、基板100の裏面上に配置されている。ドレイン電極材料は、n型に対してオーミック接触となる材料であれば何でもよい。
 本実施形態に係る窒化物半導体装置1は、縦型GaNトランジスタと並列にMPS(Merged PiN Schottky)ダイオードが形成されていることを特徴としている。MPSダイオードは、PiNダイオード(厳密に言えば、本実施形態では、PNダイオード)の高耐圧特性とSBDの持つ低動作電圧の両方のメリットを有している。
 具体的には、窒化物半導体装置1が有するMPSダイオードは、下地層104およびドリフト層102により形成されたPNダイオードと、開口部122底部において、ソース電極124およびドリフト層102により形成されたSBDとで構成されている。また、PNダイオードとSBDとは、複数の開口部122により、それぞれ交互に配置されている。これにより、従来に比べて、より高耐圧動作が可能であり、かつ、サージ電圧および還流電流などのエネルギー消費を低損失に行うことが可能になる。
 以下では、図2A~図2Dを用いて、窒化物半導体装置が有するダイオードの動作メカニズムを説明する。
 図2Aは、比較例に係る窒化物半導体装置の順バイアス時のダイオードの動作を表す断面外略図である。また、図2Bは、実施形態に係る窒化物半導体装置の順バイアス時のダイオードの動作を表す断面外略図である。図2Aに示すように、比較例に係る窒化物半導体装置には、開口部122が形成されておらず、開口部120が直接、ドリフト層102に達している。これに対して、図2Bに示すように、本実施形態に係る窒化物半導体装置1には、開口部120とドリフト層102との間に複数の開口部122が離散的に形成され、当該複数の開口部122の間に下地層104が形成されている。
 図2A及び図2Bに示すように、ダイオードの順バイアス時において、比較例および実施形態ともに、ソース電極124とドリフト層102とのショットキー接合部を順方向電流が流れるため、低動作電圧を実現できる。つまり、実施形態に係る窒化物半導体装置1は、ソース電極124とドリフト層102との間にSBDを有するので、ダイオードの順バイアス時において低動作電圧を実現できるため、還流電流がSBDを介して流れる際の低損失化を実現することができる。
 図2Cは、比較例に係る窒化物半導体装置の逆バイアス時のダイオードの動作を表す断面外略図である。また、図2Dは、実施形態に係る窒化物半導体装置の逆バイアス時のダイオードの動作を表す断面外略図である。
 図2Cに示すように、ダイオードの逆バイアス時において、比較例では、開口部122が無いため、下地層104から伸びる空乏層が、開口部120中央部のショットキー接合部にまで届かなくなる。その結果、逆バイアス時においても、ショットキー接合部を大きなリーク電流が流れてしまうため、耐圧が低下する。
 一方、図2Dに示すように、複数の開口部122が形成された本実施形態では、開口部120の中央部下方にも下地層104が形成され、当該下地層104とドリフト層102とにより形成された空乏層が伸びるため、開口部122の底面全体、つまり、全ショットキー接合部にわたって空乏層を延在させることができる。その結果、リーク電流を低減することができるため、高い耐圧を確保することができる。
 なお、上記観点から、開口部122は、本実施形態のように複数形成されていることが好ましい。これにより、逆バイアス印加時において、より効率的に下地層104から開口部122の底面に空乏層を伸ばすことができるため、更なる高耐圧化が可能になる。
 また、開口部122の幅は、約0.5~10μmが好ましく、約1~5μmがより好ましい。また、複数の開口部122によって離散的に形成される下地層104の幅は、約0.5~10μmが好ましく、約1~5μmがより好ましい。但し、PNダイオードとSBDとの並列接続によって高耐圧および低損失化が実現できる効果があればこの限りではない。
 図3は、縦型の窒化物半導体トランジスタにSBDを並列に接続したデバイス、および、MPSダイオードを並列に接続したデバイスの電流-電圧特性を表すグラフである。より具体的には、同図のグラフは、上記2つのデバイスについての耐圧特性を比較している。SBDを並列に接続したデバイスに比べて、MPSダイオードを並列に接続したデバイスの方が、耐圧が高いことが分かる。
 つまり、本実施形態に係る窒化物半導体装置1は、縦型GaNトランジスタと並列にMPSダイオードを有しているため、逆バイアス時におけるPNダイオードの機能により高耐圧を維持しつつ、且つ、順バイアス時におけるSBDの機能により立ち上がり電圧が低いため、還流電流がMPSダイオードを介して流れる際の低損失化を実現することができる。
 [2.窒化物半導体装置の平面構成]
 図4Aは、実施形態に係る窒化物半導体装置の平面図および断面図である。また、図4Bは、実施形態に係る窒化物半導体装置の第2および第3の開口部の平面レイアウトの例を示す図である。
 図4Aに示すように、平面視において、長方形状のソース電極124が規則的に並び、フィンガー型にデバイスが集積化されている。ゲート電極118は、平面視において、ソース電極124を囲んでいる。
 図4Bに示すように、平面視において、開口部122は、ソース電極124の長手方向に連続して1つ設けられていてもよいし(パターン1)、当該長手方向に非連続に複数(例えば、図4Bでは8つ)形成されていても良い(パターン2)。
 図5Aは、実施形態の変形例1に係る窒化物半導体装置の平面図および断面図である。また、図5Bは、実施形態の変形例1に係る窒化物半導体装置の第2および第3の開口部の平面レイアウトの例を示す図である。
 図5Aに示すように、平面視において、六角形状のソース電極124が規則的に並び、六角形状にデバイスが集積化されている。ゲート電極118は、平面視において、ソース電極124を囲んでいる。
 図5Bに示すように、平面視において、開口部122は、ソース電極124の外形に沿うように、六角形状の連続する環形状でも良いし(パターン1)、ソース電極124の外形に沿うように、非連続に複数(例えば、図5Bでは6つ)形成されていても良い(パターン2)。
 図4A、図4B、図5Aおよび図5Bに示されたデバイスレイアウトを適用することにより、面積効率を向上させることが可能になる。
 [3.ゲート構造の変形例]
 図6は、実施形態の変形例2に係る窒化物半導体装置の断面図である。本変形例に係る窒化物半導体装置2は、窒化物半導体装置1と比較して、さらに窒化物半導体層600を備える点が構成として異なる。以下、窒化物半導体装置1と同じ構成は説明を省略し、窒化物半導体装置1と異なる構成を中心に説明する。
 図6に示すように、本変形例に係る窒化物半導体装置2は、基板100と、ドリフト層102と、下地層104と、ブロック層106と、下地層108と、チャネル形成層612と、ゲート電極118と、ソース電極124と、ドレイン電極126とを備える。また、窒化物半導体装置2には、下地層108と、ブロック層106と、下地層104とを貫通して、ドリフト層102に到達するゲート開口部110(第1の開口部)が形成されている。また、窒化物半導体装置2には、ゲート電極118と離間した領域に、下地層104に達する開口部120(第2の開口部)が形成されている。開口部120の底面には、ドリフト層102に達する開口部122(第3の開口部)が形成されている。
 チャネル形成層612は、窒化物半導体層600と、電子走行層114と、電子供給層116とを備える。
 窒化物半導体層600は、p型の窒化物半導体層(第4の窒化物半導体層)であり、チャネル形成層112とゲート電極118との間に配置されている。p型の窒化物半導体層600は、例えば、p型不純物を含むp型のGaN層又はAlGaN層である。窒化物半導体層600を有する上記構成により、チャネル部分のポテンシャルが持ち上がるため、閾値電圧を増大させることができ、ノーマリオフ化が実現できる。
 なお、p型の窒化物半導体層600の代わりに、SiNやSiOのような絶縁膜を挿入してもよい。つまり、チャネルのポテンシャルを持ち上げる効果がある材料であればよい。
 [4.ソース構造の変形例]
 図7は、本実施形態の変形例3に係る窒化物半導体装置の断面図である。本変形例に係る窒化物半導体装置3は、窒化物半導体装置1と比較して、ソース電極の構成が異なる。以下、窒化物半導体装置1と同じ構成は説明を省略し、窒化物半導体装置1と異なる構成を中心に説明する。
 図7に示すように、本変形例に係る窒化物半導体装置3は、基板100と、ドリフト層102と、下地層104と、ブロック層106と、下地層108と、チャネル形成層112と、ゲート電極118と、ソース電極700と、ドレイン電極126とを備える。また、窒化物半導体装置3には、下地層108と、ブロック層106と、下地層104とを貫通して、ドリフト層102に到達するゲート開口部110(第1の開口部)が形成されている。また、窒化物半導体装置3には、ゲート電極118と離間した領域に、下地層104に達する開口部120(第2の開口部)が形成されている。開口部120の底面には、ドリフト層102に達する開口部122(第3の開口部)が形成されている。
 本変形例において、ソース電極700は、金属層702と、金属層702と異なる金属から構成される金属層704とを有している。金属層704は、開口部122において、下地層104およびドリフト層102と接する第2の金属層である。金属層702は、開口部120の側壁部121において二次元電子ガス(2DEG)と接触する第1の金属層であり、金属層704と電気的に接続されている。金属層704は、アノード電極として機能する。
 金属層704は、Pd、Ni、Au、Ptなどの少なくとも1つを含んでおり、p型の窒化物半導体である下地層104とオーミック接触するような材料が適用される。これにより、下地層104との、より安定した電気的接続が可能になる。よって、逆バイアス印加時(ドレイン電極126に正バイアス印加時)において、下地層104から、より安定して空乏層を伸ばすことができるため、逆方向リークをより低減することができ、更なる高耐圧化が可能になる。
 なお、図7に示された上記変形例3と、図6に示された変形例2とを組み合わせることも可能である。
 [5.ゲート端位置と閾値電圧との関係]
 ここで、ゲート端の位置とトランジスタの閾値電圧との関係について説明する。なお、ゲート端とは、窒化物半導体装置1および3では、ゲート電極118とソース電極124との並び方向におけるゲート電極118の端部である。また、窒化物半導体装置2では、ゲート端とは、ゲート電極118とソース電極124との並び方向における窒化物半導体層600の端部である。
 ゲート端の位置をゲート開口部110の内側に配置する場合、トランジスタの閾値電圧は、ゲート開口部110の側壁部111(側壁部2DEG130)のみで決定される。この配置構成では、基板100の主面に平行なチャネル形成層112の平坦部(平坦部2DEG132)のキャリア濃度を大きくすることができるため、オン抵抗を低減できる。
 一方、ゲート端の位置をゲート開口部110の外側に配置する場合、トランジスタの閾値電圧は、ゲート開口部110の側壁部111(側壁部2DEG130)の閾値電圧、または、ゲート開口部110の外側の平坦部(平坦部2DEG132)の閾値電圧のうち大きい方となる。例えば、トランジスタの閾値電圧を平坦部で決まるようにする場合は、ゲート開口部110の側壁部111の閾値電圧だけを小さくする必要がある。この場合、基板100の主面に平行方向の電子走行層114の膜厚を、ゲート開口部110の側壁部111に平行方向の電子走行層114の膜厚よりも小さくすればよい。これにより、ゲート開口部110の側壁部111上の2次元電子ガス(2DEG)と下地層104との距離が、チャネル形成層112の平坦部の2次元電子ガス(2DEG)と下地層104との距離よりも長くなる。
 この構成により、ゲート開口部110の側壁部111上の2次元電子ガスが、下地層104から延びる空乏層の影響を、平坦部に比べて低減できすることができるため、側壁部111上のチャネル領域の閾値電圧を選択的に小さくすることが可能になる。よって、トランジスタの閾値電圧を、チャネル形成層112の平坦部で決まるようにすることができる。
 [6.電子走行層の膜厚]
 一般的に、縦型デバイスにおけるGaNの結晶成長は、GaN結晶のc面が基板主面(上面)と平行になるように行われる。この場合、基板主面と平行な2次元電子ガスに比べて、基板主面から傾いた2次元電子ガスの分極は小さくなるため、その分キャリア濃度が低下する。
 この観点から、ゲート開口部110の側壁部111上に形成された2次元電子ガスである側壁部2DEG130のキャリア濃度は、平坦部の2次元電子ガスである平坦部2DEG132のキャリア濃度より低い。つまり、側壁部2DEG130は、平坦部2DEG132に比べて、下地層104から伸びる空乏層の狭窄効果を受けやすいため、下地層104から遠ざけた方が、よりオン抵抗を低減できる。
 また、ゲート開口部110の外側における電子走行層114が薄いほど、開口部120の深さを浅くすることができる。開口部120の深さが浅いほど、プロセス時間を短縮でき、かつ、ソース電極124を蒸着で形成する場合には、蒸着膜の段切れの発生、つまり、蒸着膜が不連続になる現象を防ぎやすくなる。
 以上より、ゲート開口部110の外側に配置された電子走行層114の膜厚が、ゲート開口部110の側壁部111上に配置された電子走行層114の膜厚よりも小さい方が好ましい。この構成により、プロセスを容易にしつつ、かつ、オン抵抗を低減することが可能になる。
 (その他の実施形態)
 なお、本発明に係る窒化物半導体装置は、上記実施形態およびその変形例1~3に限定されるものではない。上記実施形態および変形例における任意の構成要素を組み合わせて実現される別の実施形態や、上記実施形態および変形例に対して本発明の趣旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記実施形態および変形例に係る窒化物半導体装置を内蔵した各種機器も本発明に含まれる。
 本開示に係る窒化物半導体装置は、例えば、民生機器の電源回路等で用いられるパワーデバイスとして有用である。
 1、2、3  窒化物半導体装置
 100  基板
 102  ドリフト層
 104、108  下地層
 106  ブロック層
 110  ゲート開口部
 111、121、123  側壁部
 112、612  チャネル形成層
 118  ゲート電極
 120、122  開口部
 124、700  ソース電極
 126  ドレイン電極
 130  側壁部2DEG
 132  平坦部2DEG
 600  窒化物半導体層
 702、704  金属層

Claims (9)

  1.  互いに背向する第1主面および第2主面を有する基板と、
     前記第1主面の上に配置された第1導電型の第1の窒化物半導体層と、
     前記第1の窒化物半導体層の上に配置された第2導電型の第2の窒化物半導体層と、
     前記第2の窒化物半導体層に形成され、前記第1の窒化物半導体層に達する第1の開口部と、
     前記第1の開口部を覆い、チャネル領域を有する、前記第1導電型の第3の窒化物半導体層と、
     前記第1の開口部内の前記第3の窒化物半導体層上に配置されたゲート電極と、
     前記ゲート電極と離間し、前記第2の窒化物半導体層に達する第2の開口部と、
     前記第2の開口部の底面に形成され、前記第1の窒化物半導体層に達する第3の開口部と、
     前記第2の開口部および前記第3の開口部を覆うソース電極と、
     前記第2主面に配置されたドレイン電極と、を備える
     窒化物半導体装置。
  2.  前記窒化物半導体装置は、離散的に配置された複数の前記第3の開口部を備える
     請求項1に記載の窒化物半導体装置。
  3.  前記ドレイン電極と前記ソース電極との間に逆バイアスが印加されているとき、前記第2の開口部の下方において、前記第1の窒化物半導体層と前記第2の窒化物半導体層とによって形成された空乏層が、前記第3の開口部の底面全体に広がる
     請求項1又は2に記載の窒化物半導体装置。
  4.  前記第3の窒化物半導体層は、
     窒化物半導体からなる電子走行層と、
     前記電子走行層よりバンドギャップが大きい、窒化物半導体からなる電子供給層と、を有する
     請求項1から3のいずれか1項に記載の窒化物半導体装置。
  5.  前記電子供給層は、前記電子走行層の上に配置されている
     請求項4に記載の窒化物半導体装置。
  6.  前記基板は、窒化物半導体から構成され、
     前記第1主面は、c面であり、
     前記第1の開口部の側壁部上に配置された前記電子走行層の膜厚は、前記第1の開口部の外側に配置された前記電子走行層の膜厚よりも大きい
     請求項5に記載の窒化物半導体装置。
  7.  前記ソース電極は、
     前記電子走行層と前記電子供給層との界面に発生する2次元電子ガスに接触する第1の金属層と、
     前記第3の開口部において、前記第1の窒化物半導体層及び第2の窒化物半導体層と接触する第2の金属層と、を有する
     請求項4から6のいずれか1項に記載の窒化物半導体装置。
  8.  前記第2の金属層は、前記第2の窒化物半導体層とオーミック接触する
     請求項7に記載の窒化物半導体装置。
  9.  さらに、
     前記ゲート電極と前記第3の窒化物半導体層との間に配置された前記第2導電型の第4の窒化物半導体層を備える
     請求項1から8のいずれか1項に記載の窒化物半導体装置。
PCT/JP2016/000655 2015-03-17 2016-02-09 窒化物半導体装置 WO2016147541A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506045A JP6665157B2 (ja) 2015-03-17 2016-02-09 窒化物半導体装置
US15/698,222 US10193001B2 (en) 2015-03-17 2017-09-07 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015054067 2015-03-17
JP2015-054067 2015-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/698,222 Continuation US10193001B2 (en) 2015-03-17 2017-09-07 Nitride semiconductor device

Publications (1)

Publication Number Publication Date
WO2016147541A1 true WO2016147541A1 (ja) 2016-09-22

Family

ID=56920006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000655 WO2016147541A1 (ja) 2015-03-17 2016-02-09 窒化物半導体装置

Country Status (3)

Country Link
US (1) US10193001B2 (ja)
JP (1) JP6665157B2 (ja)
WO (1) WO2016147541A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409901A (zh) * 2016-10-27 2017-02-15 苏州捷芯威半导体有限公司 一种半导体器件及其制备方法
WO2020017437A1 (ja) * 2018-07-17 2020-01-23 パナソニック株式会社 窒化物半導体装置
JPWO2019097813A1 (ja) * 2017-11-16 2020-11-19 パナソニック株式会社 窒化物半導体装置
WO2021079686A1 (ja) * 2019-10-24 2021-04-29 パナソニック株式会社 窒化物半導体装置
JP2021513228A (ja) * 2018-02-12 2021-05-20 クロミス,インコーポレイテッド 窒化ガリウム材料中の拡散によりドープ領域を形成するための方法およびシステム
JP2022515428A (ja) * 2018-12-24 2022-02-18 ▲東▼南大学 低いオン抵抗を有するヘテロ接合半導体デバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181391A1 (ja) * 2018-03-22 2019-09-26 パナソニック株式会社 窒化物半導体装置
CN110752185B (zh) * 2018-07-23 2022-02-18 西安电子科技大学 一种基于氮化镓的宽摆幅双向限幅电路及其制备方法
DE102019212641A1 (de) * 2019-08-23 2021-02-25 Robert Bosch Gmbh Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068760A (ja) * 2001-08-29 2003-03-07 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2007266475A (ja) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The 半導体装置及び電力変換装置
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200433A (ja) * 2002-12-19 2004-07-15 Toshiba Corp 半導体装置
US20070164326A1 (en) * 2004-02-20 2007-07-19 Yasuhiro Okamoto Field effect transistor
US9525052B2 (en) * 2007-01-10 2016-12-20 Infineon Technologies Americas Corp. Active area shaping of III-nitride devices utilizing a field plate defined by a dielectric body
JP4691060B2 (ja) * 2007-03-23 2011-06-01 古河電気工業株式会社 GaN系半導体素子
JP5487615B2 (ja) * 2008-12-24 2014-05-07 サンケン電気株式会社 電界効果半導体装置及びその製造方法
US8816395B2 (en) * 2010-05-02 2014-08-26 Visic Technologies Ltd. Field effect power transistors
JP5576731B2 (ja) * 2010-07-14 2014-08-20 パナソニック株式会社 電界効果トランジスタ
JP2011135094A (ja) 2011-02-25 2011-07-07 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US8716141B2 (en) * 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
JP6133191B2 (ja) * 2013-10-18 2017-05-24 古河電気工業株式会社 窒化物半導体装置、ダイオード、および電界効果トランジスタ
WO2016181441A1 (ja) * 2015-05-08 2016-11-17 富士通株式会社 半導体装置及び半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068760A (ja) * 2001-08-29 2003-03-07 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2007266475A (ja) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The 半導体装置及び電力変換装置
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409901A (zh) * 2016-10-27 2017-02-15 苏州捷芯威半导体有限公司 一种半导体器件及其制备方法
CN106409901B (zh) * 2016-10-27 2019-10-11 苏州捷芯威半导体有限公司 一种半导体器件及其制备方法
JPWO2019097813A1 (ja) * 2017-11-16 2020-11-19 パナソニック株式会社 窒化物半導体装置
JP7017579B2 (ja) 2017-11-16 2022-02-08 パナソニック株式会社 窒化物半導体装置
JP2021513228A (ja) * 2018-02-12 2021-05-20 クロミス,インコーポレイテッド 窒化ガリウム材料中の拡散によりドープ領域を形成するための方法およびシステム
JP7328234B2 (ja) 2018-02-12 2023-08-16 クロミス,インコーポレイテッド 窒化ガリウム材料中の拡散によりドープ領域を形成するための方法およびシステム
WO2020017437A1 (ja) * 2018-07-17 2020-01-23 パナソニック株式会社 窒化物半導体装置
JPWO2020017437A1 (ja) * 2018-07-17 2021-08-02 パナソニック株式会社 窒化物半導体装置
JP7303807B2 (ja) 2018-07-17 2023-07-05 パナソニックホールディングス株式会社 窒化物半導体装置
JP2022515428A (ja) * 2018-12-24 2022-02-18 ▲東▼南大学 低いオン抵抗を有するヘテロ接合半導体デバイス
JP7273971B2 (ja) 2018-12-24 2023-05-15 ▲東▼南大学 低いオン抵抗を有するヘテロ接合半導体デバイス
WO2021079686A1 (ja) * 2019-10-24 2021-04-29 パナソニック株式会社 窒化物半導体装置

Also Published As

Publication number Publication date
JP6665157B2 (ja) 2020-03-13
US20170373200A1 (en) 2017-12-28
US10193001B2 (en) 2019-01-29
JPWO2016147541A1 (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
US10529843B2 (en) Semiconductor device
WO2016147541A1 (ja) 窒化物半導体装置
JP5526136B2 (ja) 窒化物半導体装置
JP5611653B2 (ja) 窒化物半導体素子
JP5530682B2 (ja) 窒化物半導体装置
JP4542912B2 (ja) 窒素化合物半導体素子
US7737467B2 (en) Nitride semiconductor device with a hole extraction electrode
JP5591776B2 (ja) 窒化物半導体装置およびそれを用いた回路
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US8421123B2 (en) Semiconductor device having transistor and rectifier
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
JP2009200096A (ja) 窒化物半導体装置とそれを含む電力変換装置
US8975640B2 (en) Heterojunction semiconductor device and manufacturing method
JP2009054685A (ja) 窒化物半導体装置とそれを含む電力変換装置
JP2012064900A (ja) 半導体装置
JP2008016588A (ja) GaN系半導体素子
JPWO2019187789A1 (ja) 窒化物半導体装置
JP2011142358A (ja) 窒化物半導体装置
US20160013286A1 (en) Schottky barrier diode formed with nitride semiconductor substrate
JP5721782B2 (ja) 半導体装置
JP5545653B2 (ja) 窒化物系半導体装置
JP7361723B2 (ja) 窒化物半導体装置
WO2021079686A1 (ja) 窒化物半導体装置
JP2013183033A (ja) 窒化ガリウム系電力用半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764375

Country of ref document: EP

Kind code of ref document: A1