JP2023112212A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2023112212A
JP2023112212A JP2023104570A JP2023104570A JP2023112212A JP 2023112212 A JP2023112212 A JP 2023112212A JP 2023104570 A JP2023104570 A JP 2023104570A JP 2023104570 A JP2023104570 A JP 2023104570A JP 2023112212 A JP2023112212 A JP 2023112212A
Authority
JP
Japan
Prior art keywords
film
region
type
semiconductor device
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023104570A
Other languages
English (en)
Inventor
保幸 星
Yasuyuki Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2023104570A priority Critical patent/JP2023112212A/ja
Publication of JP2023112212A publication Critical patent/JP2023112212A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】破壊しにくい半導体装置を提供すること。【解決手段】半導体チップ70のおもて面上に、メイン半導体素子11および電流センス部12の表面電極を構成する複数の金属膜が積層されている。これらの金属膜のうち、いずれか1つ以上の金属膜と同時に形成されてメイン半導体素子11と電流センス部12とを短絡する短絡電極111が性能試験直前にレーザーで切断されたことによって、メイン半導体素子11の表面電極を構成する金属膜と、電流センス部12の表面電極を構成する金属膜と、の間に短絡電極111の切断箇所110を含む所定間隔の間隙部が形成されている。メイン半導体素子11および電流センス部12の表面電極を構成する金属膜の上に、当該金属膜と同電位であるめっき膜47a,47bを介して端子ピン48a,48bが接合されている。めっき膜47a,47b同士は、間隙部により間隔をあけて配置されている。【選択図】図3

Description

この発明は、半導体装置に関する。
従来、高電圧や大電流を制御するパワー半導体装置の構成材料として、シリコン(Si)が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属-酸化膜-半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。
例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。
また、MOSFETは、IGBTと異なり、p型ベース領域とn-型ドリフト領域とのpn接合で形成される寄生ダイオードを、当該MOSFETを保護するための還流ダイオードとして使用可能である。このため、MOSFETをインバータ用デバイスとして用いた場合に、MOSFETに外付けの還流ダイオードを追加して接続することなく、経済性の面でも注目されている。
市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。このため、パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている。
また、炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができる。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待される。このような炭化珪素の特長は、他のシリコンよりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)も有する。
また、大電流化に伴い、半導体基板のおもて面に沿ってチャネルが形成されるプレーナゲート構造と比べて、トレンチの側壁に沿って半導体基板のおもて面と直交する方向にチャネル(反転層)が形成されるトレンチゲート構造はコスト面で有利である。その理由は、トレンチゲート構造が単位面積当たりの単位セル(素子の構成単位)密度を増やすことができるため、単位面積当たりの電流密度を増やすことができるからである。
デバイスの電流密度を増加させた分、単位セルの占有体積に応じた温度上昇率が高くなるため、放電効率の向上と信頼性の安定化とを図るために両面冷却構造が必要になる。さらに信頼性を考慮して、メイン半導体素子である縦型MOSFETと同一の半導体基板に、メイン半導体素子を保護・制御するための回路部として電流センス部、温度センス部および過電圧保護部等の高機能部を配置した高機能構造を有することが必要になる。
電流センス部を備えた従来の半導体装置として、ゲート絶縁膜の、電流センス部のベース領域を覆う部分の厚さを、メイン半導体素子のベース領域を覆う部分の厚さよりも厚くした炭化珪素装置が提案されている(例えば、下記特許文献1参照。)。下記特許文献1では、シリコンを半導体材料として用いる場合よりもゲート絶縁膜の厚さを薄くして低オン抵抗化を図った場合に低減されてしまう静電破壊耐量を、電流センス部のゲート絶縁膜を厚くすることで向上させている。
国際公開第2017/002255号
しかしながら、炭化珪素からなる半導体基板の表面に形成されたゲート絶縁膜の膜質は電荷に弱く、メイン半導体素子に比べて半導体基板に占める活性領域の表面積(以下、活性面積とする)が小さい電流センス部では、製造工程(ウエハプロセス)中の化学気相成長(CVD:Chemical Vapor Deposition)やスパッタリング時に発生するプラズマや静電気により、ゲート絶縁膜のリーク電流が高くなる。このため、メイン半導体素子に比べて電流センス部でESD(Electro-Static Discharge:静電気放電)耐量が低下して、絶縁破壊しやすい。
この発明は、破壊しにくい半導体装置を提供する。
この発明にかかる半導体装置は、表面を有する半導体チップと、前記表面の上に配置された第1金属膜と、前記第1金属膜の上に配置された、前記第1金属膜と同電位である第1めっき膜と、を備え、前記第1めっき膜は、断面視において、第1間隙部により間隔をあけて配置された部分を含むことを特徴とする。
この発明にかかる他の半導体装置は、表面を有する半導体チップと、前記表面の上に配置された第1金属膜と、前記表面の上に配置された第2金属膜と、前記第1金属膜の上に配置された、前記第1金属膜と同電位である第1めっき膜と、前記第2金属膜の上に配置された、前記第2金属膜と同電位である第2めっき膜と、を備え、前記第1めっき膜は、断面視において、第1間隙部により間隔をあけて配置された部分を含むことを特徴とする。
本発明にかかる半導体装置によれば、破壊しにくい半導体装置を提供することができるという効果を奏する。
実施の形態1にかかる半導体装置が作製(製造)された半導体ウエハをおもて面側から見たレイアウトの一例を示す平面図である。 実施の形態1にかかる半導体装置を半導体チップのおもて面側から見たレイアウトの一例を示す平面図である。 図2の切断線X1-X2、切断線X2-X3および切断線Y1-Y2における断面構造を示す断面図である。 実施の形態1にかかる半導体装置20の等価回路を示す回路図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す平面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態1にかかる半導体装置の製造途中の状態の別の一例を示す断面図である。 実施の形態2にかかる半導体装置の製造途中の状態を示す平面図である。 実施の形態3にかかる半導体装置の製造途中の状態を示す平面図である。 実施の形態4にかかる半導体装置の製造途中の状態を示す平面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。なお、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数を表している。
(実施の形態1)
実施の形態1にかかる半導体装置は、シリコン(Si)よりもバンドギャップが広い半導体(ワイドバンドギャップ半導体)を半導体材料として用いて構成される。この実施の形態1にかかる半導体装置の構造について、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いた場合を例に説明する。図1は、実施の形態1にかかる半導体装置が作製(製造)された半導体ウエハをおもて面側から見たレイアウトの一例を示す平面図である。図2は、実施の形態1にかかる半導体装置を半導体チップのおもて面側から見たレイアウトの一例を示す平面図である。
図2には、炭化珪素を半導体材料として用いた半導体ウエハ10のダイシング(切断)後に半導体チップ70となる領域(以下、チップ領域とする)10’に配置された各素子の電極パッドのレイアウトの一例を示す。チップ領域10’は、例えば略矩形状の平面形状を有し、半導体ウエハ10にマトリクス状に複数配置されている。チップ領域10’の周囲は、スクライブライン3(図1)に囲まれている。スクライブライン3は、半導体ウエハ10に格子状に配置されている。図2に示す実施の形態1にかかる半導体装置20は、半導体ウエハ10のすべてのチップ領域10’にそれぞれ形成されている。
図2に示す実施の形態1にかかる半導体装置20は、同一のチップ領域10’の活性領域1に、メイン半導体素子11と、当該メイン半導体素子11を保護・制御するための1つ以上の回路部を有する。メイン半導体素子11は、オン状態で縦方向(半導体チップ70の深さ方向Z)にドリフト電流が流れる縦型MOSFETであり、隣接して配置された複数の単位セル(素子の機能単位)で構成され、主動作を行う。メイン半導体素子11を保護・制御するための回路部として、例えば、電流センス部12、温度センス部13、過電圧保護部(不図示)および演算回路部(不図示)等の高機能部が挙げられる。
メイン半導体素子11は、活性領域1の有効領域1aに配置されている。活性領域1の有効領域1aは、メイン半導体素子11のオン時にメイン半導体素子11の主電流が流れる領域である。活性領域1の有効領域1aは、例えば略矩形状の平面形状を有する。メイン半導体素子11を保護・制御するための回路部は、活性領域1の無効領域1bに配置されている。活性領域1の無効領域1bは、メイン半導体素子11のオン時に、メイン半導体素子11として動作しない領域である。活性領域1の無効領域1bは、例えば、略矩形状の平面形状を有し、活性領域1の有効領域1aの1辺に隣接する。
活性領域1の無効領域1bは、例えば、活性領域1の有効領域1aと、活性領域1の周囲を囲むエッジ終端領域2と、の間に配置される。エッジ終端領域2は、活性領域1とチップ領域10’の外周との間の領域であり、半導体チップ70のおもて面側の電界を緩和して耐圧を保持する。エッジ終端領域2には、例えばフィールドリミッティングリング(FLR:Field Limiting Ring)や接合終端(JTE:Junction Termination Extension)構造等の耐圧構造(不図示)が配置される。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。
活性領域1の有効領域1aにおいて、半導体チップ70のおもて面上には、メイン半導体素子11のソースパッド(電極パッド:第1金属膜、第1パッド部)21aが配置される。活性領域1の無効領域1bにおいて、半導体チップ70のおもて面上には、メイン半導体素子11を保護・制御するための回路部の各電極パッドが互いに離れて配置される。メイン半導体素子11は、他の回路部に比べて電流能力が大きい。このため、メイン半導体素子11のソースパッド21aは、活性領域1の有効領域1aのほぼ全面を覆う例えば略矩形状の平面形状を有する。ソースパッド21aの平面形状は、例えばメイン半導体素子11の電流容量など要求される仕様に応じて決定される。
ソースパッド21a以外の電極パッドは、活性領域1の無効領域1bに配置されている。ソースパッド21a以外の電極パッドとは、メイン半導体素子11のゲートパッド(第2金属膜)21b、電流センス部12の電極パッド(以下、OCパッドとする:第1金属膜、第2パッド部)22、温度センス部13の電極パッド(以下、アノードパッドおよびカソードパッドとする)23a,23b、過電圧保護部の電極パッド(以下、OVパッドとする:不図示)、および演算回路部の電極パッド(以下、演算部パッドとする:不図示)等である。ソースパッド21a以外の電極パッドは、例えば略矩形状の平面形状を有する。
すべての電極パッドは、互いに離れて配置されている。ソースパッド21a以外の電極パッドのうちの少なくともOCパッド22は、ソースパッド21aに対向する。ソースパッド21aとOCパッド22とは、実施の形態1にかかる半導体装置20の製造途中にソースパッド21aとOCパッド22との間に配置され、ソースパッド21aとOCパッド22を連結する後述する短絡電極111の長さw1(図11,12参照)の分だけ間隔をあけて離れている。以下、ソースパッド21aとOCパッド22との間の、短絡電極111が配置される部分を短絡領域4(第1間隙部の一部)とする。
短絡領域4は、活性領域1の有効領域1aおよび無効領域1bのいずれの領域に配置されていてもよいが、メイン半導体素子11のオン時にメイン半導体素子11として動作しない領域である。この短絡領域4において、半導体チップ70のおもて面は、フィールド絶縁膜80および層間絶縁膜40が順に積層されてなる絶縁層で覆われている。製品としての実施の形態1にかかる半導体装置20において、短絡領域4における半導体チップ70のおもて面の当該層間層上に、切断された短絡電極111の一部が残っていてもよい。符号110は、短絡電極111の切断箇所(第2間隙部)である。
また、図2には、ソースパッド21a、ゲートパッド21b、OCパッド22、アノードパッド23aおよびカソードパッド23bを、それぞれS、G、OC、AおよびKと付した矩形状の平面形状に図示する。また、図2には、ゲートパッド21b、アノードパッド23a、カソードパッド23bおよびOCパッド22のすべてがソースパッド21aと対向する場合を示す。活性領域1の無効領域1bに配置された電極パッドは、例えば、活性領域1の無効領域1bとエッジ終端領域2との境界に沿って一列に配置されてもよい。
電流センス部12は、メイン半導体素子11に流れる過電流(OC:Over Current)を検出する機能を有する。電流センス部12は、メイン半導体素子11と同一構成の単位セルを、メイン半導体素子11の単位セルの個数(例えば1万個程度)よりも少ない個数(例えば10個~20個程度)で備えた縦型MOSFETである。電流センス部12は、メイン半導体素子11と離れて配置されている。電流センス部12は、メイン半導体素子11と同じ条件で動作する。電流センス部12は、メイン半導体素子11の一部の単位セルを用いて構成されてもよい。
温度センス部13は、ダイオードの温度特性を利用してメイン半導体素子11の温度を検出する機能を有する。温度センス部13は、例えば、半導体チップ70のおもて面のフィールド絶縁膜80(図3参照)上に設けられたポリシリコン(poly-Si)層で構成されたポリシリコンダイオードである。過電圧保護部(不図示)は、例えばサージ等の過電圧(OV:Over Voltage)からメイン半導体素子11を保護するダイオードである。電流センス部12、温度センス部13および過電圧保護部は演算回路部により制御され、これらの出力信号に基づいてメイン半導体素子11が制御される。
演算回路部は、CMOS(Complementary MOS:相補型MOS)回路など複数の半導体素子で構成される。このため、演算回路部は、演算回路部を構成する複数の半導体素子のおもて面電極(ソース電極等:不図示)の他に演算部パッドを備える。メイン半導体素子11と同一の半導体チップ70に演算回路部を配置する場合、演算回路部を構成する複数の半導体素子の素子構造(おもて面電極も含む)が活性領域1の有効領域1aに配置されていればよい。演算部パッドは、活性領域1の有効領域1aおよび無効領域1bのいずれに配置してもよいし、エッジ終端領域2に配置してもよい。
次に、上述したメイン半導体素子11、電流センス部12および温度センス部13の断面構造について説明する。図3は、図2の切断線X1-X2、切断線X2-X3および切断線Y1-Y2における断面構造を示す断面図である。図3は、図1の活性領域1の有効領域1aのソースパッド21aから、無効領域1bのOCパッド22およびカソードパッド23bを通ってアノードパッド23aに至る切断線X1-Y2における断面構造である。図3には、半導体ウエハ10から切断された半導体チップ70の状態の実施の形態1にかかる半導体装置20を示す。
メイン半導体素子11、および、メイン半導体素子11を保護・制御する回路部は、ピン状の配線部材(後述する端子ピン48a~48d)を用いた同一構成の配線構造を有する。メイン半導体素子11は、半導体チップ70のおもて面側にトレンチゲート構造のMOSゲートを備えた縦型MOSFETである。半導体チップ70は、炭化珪素からなるn+型出発基板31上にn-型ドリフト領域32およびp型ベース領域34aとなる各炭化珪素層71,72を順にエピタキシャル成長させた半導体基板である。メイン半導体素子11のMOSゲートを構成する各部は、活性領域1の有効領域1aに設けられている。
メイン半導体素子11のMOSゲートを構成する各部とは、p型ベース領域34a、n+型ソース領域35a、p++型コンタクト領域36a、トレンチ37a、ゲート絶縁膜38aおよびゲート電極39aである。トレンチ37aは、半導体チップ70のおもて面(p型炭化珪素層72の表面)から深さ方向Zにp型炭化珪素層72を貫通してn-型炭化珪素層71に達する。深さ方向Zとは、半導体チップ70のおもて面から裏面へ向かう方向である。メイン半導体素子11が配置された領域において、p型炭化珪素層72の、隣り合うトレンチ37a間(メサ領域)にp型ベース領域34aが設けられている。
トレンチ37aは、例えば、半導体チップ70のおもて面に平行で、かつ電極パッド21b,23a,23b,22が並ぶ方向(図2参照:以下、第1方向とする)X、または、第1方向Xと直交する方向(以下、第2方向とする)Yに延びるストライプ状に配置されていてもよいし、半導体チップ70のおもて面側から見てマトリクス状に配置されていてもよい。図2,3には、トレンチ37aが第1方向Xに延びるストライプ状に配置されている場合を示す。トレンチ37aの内部には、ゲート絶縁膜38aを介してゲート電極39aが設けられている。図3には、メイン半導体素子11の一部の単位セルを示す。
-型炭化珪素層71の内部において、メサ領域に、p型ベース領域34aに接して、n型領域(以下、n型電流拡散領域とする)33aが設けられていてもよい。n型電流拡散領域33aは、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)である。n型電流拡散領域33aは、p型ベース領域34aとの界面から、トレンチ37aの底面よりもn+型ドレイン領域(n+型出発基板31)に近い位置に達する。また、n-型炭化珪素層71の内部に、第1,2p+型領域61a,62aがそれぞれ選択的に設けられていてもよい。
第1p+型領域61aは、p型ベース領域34aと離して設けられ、かつ深さ方向Zにトレンチ37aの底面に対向する。第2p+型領域62aは、隣り合うトレンチ37a間(メサ領域)に、第1p+型領域61aおよびトレンチ37aと離して設けられ、かつp型ベース領域34aに接する。第1,2p+型領域61a,62aは、トレンチ37aの底面においてゲート絶縁膜38aにかかる電界を緩和させる機能を有する。n型電流拡散領域33aおよび第1,2p+型領域61a,62aとn+型ドレイン領域との間に、これらの領域に接してn-型ドリフト領域32が設けられている。
p型炭化珪素層72の内部には、p型ベース領域34a、n+型ソース領域35aおよびp++型コンタクト領域36aがそれぞれ選択的に設けられている。n+型ソース領域35aおよびp++型コンタクト領域36aは、半導体チップ70のおもて面とp型ベース領域34aとの間に設けられている。n+型ソース領域35aは、トレンチ37aの側壁のゲート絶縁膜38aに接し、当該ゲート絶縁膜38aを介してゲート電極39aに対向する。層間絶縁膜40は、ゲート電極39aを覆うように、半導体チップ70のおもて面全面に設けられている。
メイン半導体素子11のすべてのゲート電極39aは、図示省略する部分で、例えばポリシリコンからなるゲートランナー(不図示)を介してゲートパッド21b(図2参照)に電気的に接続されている。層間絶縁膜40には、層間絶縁膜40を深さ方向Zに貫通して半導体チップ70のおもて面に達する第1コンタクトホール40aが設けられている。第1コンタクトホール40aには、メイン半導体素子11のn+型ソース領域35aおよびp++型コンタクト領域36aが露出されている。
第1コンタクトホール40aの内部において、半導体チップ70のおもて面上に、ニッケルシリサイド(NiSi、Ni2Siまたは熱的に安定なNiSi2:以下、まとめてNiSiとする)膜41aが設けられている。NiSi膜41aは、第1コンタクトホール40aの内部において半導体チップ70にオーミック接触し、n+型ソース領域35aおよびp++型コンタクト領域36aに電気的に接続されている。
活性領域1の有効領域1aにおいて、層間絶縁膜40およびNiSi膜41aの表面全体に、バリアメタル(第1金属膜)46aが設けられている。バリアメタル46aは、バリアメタルの各金属膜間またはバリアメタルを挟んで対向する領域間での相互反応を防止する機能を有する。バリアメタル46aは、例えば、第1窒化チタン(TiN)膜42a、第1チタン(Ti)膜43a、第2TiN膜44aおよび第2Ti膜45aを順に積層した積層構造を有していてもよい。
第1TiN膜42aは、層間絶縁膜40の表面のみに設けられ、層間絶縁膜40の表面全体を覆う。第1Ti膜43aは、第1TiN膜42aおよびNiSi膜41aの表面に設けられている。第2TiN膜44aは、第1Ti膜43aの表面に設けられている。第2Ti膜45aは、第2TiN膜44aの表面に設けられている。バリアメタルは、例えば、温度センス部13には設けられていない。
ソースパッド21aは、第1コンタクトホール40aに埋め込まれ、かつ第2Ti膜45aの表面全面に設けられている。ソースパッド21aは、バリアメタル46aおよびNiSi膜41aを介してn+型ソース領域35aおよびp++型コンタクト領域36aに電気的に接続され、メイン半導体素子11のソース電極として機能する。ソースパッド21aは、例えば、アルミニウム(Al)膜またはAl合金膜である。
具体的には、ソースパッド21aをAl合金膜とする場合、ソースパッド21aは、例えば、シリコンを全体の5%以下程度含むアルミニウム-シリコン(Al-Si)膜であってもよいし、シリコンを全体の5%以下程度および銅(Cu)を全体の5%以下程度含むアルミニウム-シリコン-銅(Al-Si-Cu)膜であってもよいし、銅を全体の5%以下程度含むアルミニウム-銅(Al-Cu)膜であってもよい。
ソースパッド21a上には、めっき膜(第1めっき膜、第1めっき部)47aおよびはんだ層(不図示)を介して、端子ピン(第1配線)48aの一方の端部が接合されている。端子ピン48aの他方の端部は、半導体チップ70のおもて面に対向するように配置された金属バー(不図示)に接合されている。また、端子ピン48aの他方の端部は、半導体チップ70を実装したケース(不図示)の外側に露出し、外部装置(不図示)と電気的に接続される。
端子ピン48aは、所定直径を有する丸棒状(円柱状)の配線部材である。端子ピン48aは、半導体チップ70のおもて面に対して略垂直に立てた状態でめっき膜47aにはんだ接合されている。端子ピン48aは、ソースパッド21aの電位を外部に取り出す外部接続用端子となる。端子ピン48aを介して、ソースパッド21aが外部の接地電位(最低電位)に接続される。
めっき膜47aは、高温度条件下(例えば200℃~300℃)においてもソースパッド21aとの密着性が高く、ワイヤボンディングに比べて剥離しにくい材料で形成されている。ソースパッド21aの表面のめっき膜47a以外の部分は、第1保護膜49aで覆われている。めっき膜47aと第1保護膜49aとの境界は、第2保護膜50aで覆われている。第1,2保護膜49a,50aは、例えばポリイミド膜である。
ドレイン電極51は、半導体チップ70の裏面(n+型出発基板31の裏面)全面にオーミック接触している。ドレイン電極51上には、ドレインパッド(電極パッド:不図示)が設けられている。ドレインパッドは、例えば、Ti膜、ニッケル(Ni)膜および金(Au)膜を順に積層した積層構造を有する。ドレインパッドを構成するNi膜およびAu膜の厚さは、例えば、それぞれ20μm、100μmおよび2μmであってもよい。
ドレインパッドは、金属ベース板(不図示)にはんだ接合され、当該金属ベース板を介して冷却フィン(不図示)のベース部に少なくとも一部が接触している。半導体チップ70は両面冷却構造を備える。すなわち、半導体チップ70で発生した熱は、半導体チップ70の裏面に金属ベース板を介して接触させた冷却フィンのフィン部から放熱され、かつ半導体チップ70のおもて面の端子ピン48aを接合した金属バーから放熱される。
活性領域1の無効領域1bには、メイン半導体素子11のゲートパッド21bが設けられている。ゲートパッド21bは、ゲートランナーに電気的に接続されている。ゲートランナーは、エッジ終端領域2において半導体ウエハ10のおもて面を覆うように設けられたフィールド酸化膜(不図示)上に配置されている。ゲートランナーは、活性領域1とエッジ終端領域2との境界に沿って設けられ、活性領域1の周囲を囲む。
また、活性領域1の無効領域1bにおいて、半導体チップ70のおもて面の表面領域に、電流センス部12のp型ベース領域34bが選択的に設けられている。電流センス部12のp型ベース領域34bは、p型炭化珪素層72を深さ方向Zに貫通してn-型炭化珪素層71に達するn-型領域32aによって、メイン半導体素子11のp型ベース領域34aと分離されている。すなわち、メイン半導体素子11と電流センス部12とは、n-型領域32aにより電気的に絶縁されている。
電流センス部12は、メイン半導体素子11の対応する各部と同じ構成のp型ベース領域34b、n+型ソース領域35b、p++型コンタクト領域36b、トレンチ37b、ゲート絶縁膜38b、ゲート電極39bおよび層間絶縁膜40を備える。電流センス部12のMOSゲートの各部は、活性領域1の無効領域1bにおける電流センス部12の形成領域に設けられている。電流センス部12は、メイン半導体素子11と同様に、n型電流拡散領域33bおよび第1,2p+型領域61b,62bを有していてもよい。
電流センス部12のすべてのゲート電極39bは、図示省略する部分でゲートランナーを介して、メイン半導体素子11のゲートパッド21b(図2参照)に電気的に接続されている。電流センス部12の形成領域において、層間絶縁膜40には、層間絶縁膜40を深さ方向Zに貫通して半導体チップ70のおもて面に達する第2コンタクトホール40bが設けられている。第2コンタクトホール40bには、電流センス部12のn+型ソース領域35bおよびp++型コンタクト領域36bが露出されている。
第2コンタクトホール40bの内部において、半導体チップ70のおもて面上に、NiSi膜41bが設けられている。NiSi膜41bは、第2コンタクトホール40bの内部において半導体チップ70にオーミック接触している。活性領域1の無効領域1bにおいて、電流センス部12の形成領域には、層間絶縁膜40の表面全面およびNiSi膜41bの表面全面に、バリアメタル(第1金属膜)46bが設けられている。バリアメタル46bは、例えば、メイン半導体素子11のバリアメタル46aと同じ積層構造および機能を有する。
すなわち、バリアメタル46bは、第1TiN膜42b、第1Ti膜43b、第2TiN膜44bおよび第2Ti膜45bを順に積層した積層構造を有する。第1TiN膜42bは、層間絶縁膜40の表面のみに設けられ、層間絶縁膜40の表面全体を覆う。第1Ti膜43bは、第1TiN膜42bの表面全面およびNiSi膜41bの表面全面を覆う。第2TiN膜44bは、第1Ti膜43bの表面全面を覆う。第2Ti膜45bは、第2TiN膜44bの表面全面を覆う。
OCパッド22は、第2コンタクトホール40bに埋め込まれ、かつ第2Ti膜45bの表面全面に設けられている。OCパッド22は、バリアメタル46bおよびNiSi膜41bを介してn+型ソース領域35bおよびp++型コンタクト領域36bに電気的に接続され、電流センス部12のソース電極として機能する。OCパッド22は、例えば、ソースパッド21aと同じ材料で、ソースパッド21aと同時に形成される。バリアメタル46bおよびOCパッド22の厚さは、メイン半導体素子11のバリアメタル46aおよびソースパッド21aと同じ厚さを有する。
OCパッド22上には、ソースパッド21a上の端子ピン48aと同様に、めっき膜(第1めっき膜、第2めっき部)47bおよびはんだ層(不図示)を介して、端子ピン(第2配線)48bの一方の端部が接合されている。端子ピン48bの他方の端部は、半導体チップ70を実装したケース(不図示)の外側に露出し、外部装置(不図示)と電気的に接続される。端子ピン48bは、端子ピン48aよりも小さい直径を有する丸棒状(円柱状)の配線部材である。端子ピン48bは、例えばOCパッド22の電位を外部に取り出す外部接続用端子となる。端子ピン48bおよび外部の抵抗体14(図4参照)を介してOCパッド22が接地電位に接続される。
OCパッド22の表面のめっき膜47b以外の部分は、ソースパッド21aと同様に第1保護膜49bで覆われている。めっき膜47bと第1保護膜49bとの境界は、第2保護膜50bで覆われている。めっき膜47bおよび第1,2保護膜49b,50bの材料は、それぞれ、ソースパッド21a上のめっき膜47aおよび第1,2保護膜49a,50aと同様である。
温度センス部13は、p型アノード領域であるp型ポリシリコン層81とn型カソード領域であるn型ポリシリコン層82とのpn接合で形成されたポリシリコンダイオードである。p型ポリシリコン層81およびn型ポリシリコン層82は、活性領域1の無効領域1bにおいて、フィールド絶縁膜80上に設けられている。温度センス部13は、フィールド絶縁膜80により、メイン半導体素子11と電流センス部12とから電気的に絶縁されている。
p型ポリシリコン層81およびn型ポリシリコン層82の直下において、半導体チップ70の内部には、p型ベース領域34c、p++型コンタクト領域36cおよび第2p+型領域62cが選択的に設けられている。p型ベース領域34cおよびp++型コンタクト領域36cは、電流センス部12のp型ベース領域34bおよびp++型コンタクト領域36bが温度センス部13の形成領域に延在した領域である。第2p+型領域62cは、p型ベース領域34cに接し、当該p型ベース領域34cよりもn+型ドレイン領域に近い位置に設けられている。
p型ポリシリコン層81およびn型ポリシリコン層82に代えて、半導体チップ70の内部に隣接して形成されたp型アノード領域およびn型カソード領域で温度センス部13が構成されていてもよい。フィールド絶縁膜80、p型ポリシリコン層81およびn型ポリシリコン層82は、層間絶縁膜83に覆われている。層間絶縁膜83には、層間絶縁膜83を深さ方向Zに貫通して、p型ポリシリコン層81およびn型ポリシリコン層82それぞれを露出する第3,4コンタクトホール83a,83bが設けられている。
アノードパッド23aおよびカソードパッド23bは、それぞれ第3,4コンタクトホール83a,83bにおいてp型ポリシリコン層81およびn型ポリシリコン層82に接する。アノードパッド23aおよびカソードパッド23bは、例えば、ソースパッド21aと同じ材料で、ソースパッド21aと同時に形成される。アノードパッド23aおよびカソードパッド23bには、ソースパッド21aと同様に、それぞれめっき膜47c,47dおよびはんだ層(不図示)を介して端子ピン48c,48dが接合されている。
アノードパッド23aおよびカソードパッド23bの表面のめっき膜47c,47d以外の部分は、ソースパッド21aと同様に第1保護膜49cで覆われている。めっき膜47cと第1保護膜49cとの境界は、第2保護膜50cで覆われている。めっき膜47cおよび第1,2保護膜49c,50cの材料は、それぞれ、ソースパッド21a上のめっき膜47aおよび第1,2保護膜49a,50aと同様である。
実施の形態1にかかる半導体装置20の動作について説明する。図4は、実施の形態1にかかる半導体装置20の等価回路を示す回路図である。図4に示すように、電流センス部12は、メイン半導体素子11を構成する複数のMOSFETの単位セルのうちの一部の単位セルで構成されている。メイン半導体素子11に流れるメイン電流に対する電流センス部12に流れるセンス電流の比率(以下、電流センス比率とする)は、予め設定されている。
電流センス比率は、例えば、メイン半導体素子11と電流センス部12とで単位セルの個数を変える等により設定可能である。電流センス部12には、電流センス比率に応じてメイン半導体素子11を流れるメイン電流よりも小さいセンス電流が流れる。メイン半導体素子11のソースは、接地電位の接地点GNDに接続されている。電流センス部12のソースと接地点GNDとの間には、外部部品である抵抗体14が接続されている。
メイン半導体素子11のオン時、メイン半導体素子11のドレインからソースへ向かってメイン電流が流れる。このとき、メイン半導体素子11と同時に電流センス部12もオンして、電流センス部12のセンス電流が、電流センス部12のドレインからソースへ向かって流れ、抵抗体14を通って接地点GNDへと流れる。このため、電流センス部12のセンス電流により抵抗体14で電圧降下が生じる。
メイン半導体素子11に過電流が印加された場合、メイン半導体素子11に過電流の大きさに応じて電流センス部12のセンス電流が大きくなり、抵抗体14での電圧降下も大きくなる。このため、抵抗体14での電圧降下の大きさを監視することで、メイン半導体素子11での過電流を検知可能である。抵抗体14での電圧降下が所定値以上となったときに、演算回路部によりメイン半導体素子11のゲート電圧を遮断する。
温度センス部13には常にアノード・カソード間に一定の電圧(順方向電圧Vf)が印加されている。温度センス部13の順方向電圧Vfの変化量を監視し、温度センス部13の順方向電圧Vfの温度依存性を利用して、メイン半導体素子11の温度上昇を検知可能である。温度センス部13での順方向電圧Vfの変化値が所定値以上となった場合に、演算回路部によりメイン半導体素子11のゲート電圧を遮断する。
次に、実施の形態1にかかる半導体装置20の製造方法について説明する。図5~10,12は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。図11は、実施の形態1にかかる半導体装置の製造途中の状態を示す平面図である。図13は、は、実施の形態1にかかる半導体装置の製造途中の状態の別の一例を示す断面図である。図5~10には、メイン半導体素子11のみを示すが、メイン半導体素子11と同一の半導体ウエハ10に作製(製造)されるすべての素子の各部はメイン半導体素子11の各部と同時に形成される。
図11には、図1の半導体ウエハ10の1つのチップ領域10’を示す(図14,15においても同様)。図12は、図11の切断線X1’-X2’、切断線X2’-X3’および切断線Y1’-Y2’における断面構造を示す断面図である。図11の切断線X1’-Y2’は、図2の切断線X1-Y2と同じ箇所を切断している。すなわち、図12には、メイン半導体素子11、電流センス部12および温度センス部13を示す。ここでは、メイン半導体素子11の各部の形成については図5~13を参照し、電流センス部12および温度センス部13の各部の形成については図1,11~13を参照して説明する。
まず、図5に示すように、炭化珪素からなるn+型出発基板(半導体ウエハ)31を用意する。n+型出発基板31は、例えば窒素(N)ドープの炭化珪素単結晶基板であってもよい。次に、n+型出発基板31のおもて面に、n+型出発基板31よりも低濃度に窒素がドープされたn-型炭化珪素層71をエピタキシャル成長させる。メイン半導体素子11が耐圧3300Vクラスである場合、n-型炭化珪素層71の厚さt1は、例えば30μm程度であってもよい。
次に、図6に示すように、フォトリソグラフィおよび例えばAl等のp型不純物のイオン注入により、各チップ領域10’(図1参照)の活性領域1の有効領域1aにおいて、n-型炭化珪素層71の表面領域に、第1p+型領域61aおよびp+型領域91をそれぞれ選択的に形成する。このp+型領域91は、第2p+型領域62aの一部である。第1p+型領域61aとp+型領域91とは、n+型出発基板31のおもて面に平行な方向(例えば図1,2の第1方向Xまたは第2方向Y)に交互に繰り返し配置される。
第1p+型領域61aおよびp+型領域91は、例えば図1,2の第2方向Yまたは第1方向Xに延びるストライプ状に配置される。隣り合う第1p+型領域61aとp+型領域91との間の距離d2は、例えば1.5μm程度であってもよい。第1p+型領域61aおよびp+型領域91の深さd1および不純物濃度は、例えばそれぞれ0.5μm程度および5.0×1018/cm3程度であってもよい。そして、第1p+型領域61aおよびp+型領域91の形成に用いたイオン注入用マスク(不図示)を除去する。
次に、フォトリソグラフィおよび例えば窒素等のn型不純物のイオン注入により、各チップ領域10’それぞれに、活性領域1の有効領域1aの全域にわたって、n-型炭化珪素層71の表面領域にn型領域92を形成する。n型領域92は、例えば、第1p+型領域61aとp+型領域91との間に、これらの領域に接して形成される。n型領域92の深さd3および不純物濃度は、例えばそれぞれ0.4μm程度および1.0×1017/cm3程度であってもよい。
このn型領域92は、n型電流拡散領域33aの一部である。n-型炭化珪素層71の、n型領域92、第1p+型領域61aおよびp+型領域91と、n+型出発基板31と、に挟まれた部分がn-型ドリフト領域32となる。そして、n型領域92の形成に用いたイオン注入用マスク(不図示)を除去する。n型領域92と、第1p+型領域61aおよびp+型領域91と、の形成順序を入れ替えてもよい。
次に、図7に示すように、n-型炭化珪素層71上にさらに例えば窒素等のn型不純物をドープしたn-型炭化珪素層を例えば0.5μmの厚さt2でエピタキシャル成長させて、n-型炭化珪素層71の厚さを厚くする。n-型炭化珪素層71の厚さを増した部分71aの不純物濃度は、n-型炭化珪素層71の、厚さを増した部分71aとn+型出発基板31との間に挟まれた部分の不純物濃度と同じであってもよい。
次に、フォトリソグラフィおよびAl等のp型不純物のイオン注入により、n-型炭化珪素層71の厚さを増した部分71aの、深さ方向にp+型領域91に対向する部分に、p+型領域91に達する深さでp+型領域93を選択的に形成する。p+型領域91,93同士が深さ方向に連結されることで、第2p+型領域62aが形成される。p+型領域93の幅および不純物濃度は、例えばp+型領域91と略同じである。そして、p+型領域93の形成に用いたイオン注入用マスク(不図示)を除去する。
次に、フォトリソグラフィおよび例えば窒素などのn型不純物のイオン注入により、n-型炭化珪素層71の厚さを増した部分71aに、活性領域1の有効領域1aにおける隣り合うp+型領域93間に、n型領域92に達する深さでn型領域94を形成する。n型領域94の不純物濃度は、例えばn型領域92と略同じである。n型領域92,94同士が深さ方向に連結されることで、n型電流拡散領域33aが形成される。p+型領域93とn型領域94との形成順序を入れ替えてもよい。そして、n型領域94の形成に用いたイオン注入用マスク(不図示)を除去する。
次に、図8に示すように、n-型炭化珪素層71上に、例えばAl等のp型不純物をドープしたp型炭化珪素層72をエピタキシャル成長させる。p型炭化珪素層72の厚さt3および不純物濃度は、例えば、それぞれ1.3μm程度および4.0×1017/cm3程度であってもよい。これにより、n+型出発基板31上にエピタキシャル成長によりn-型炭化珪素層71およびp型炭化珪素層72を順に積層した半導体ウエハ10が形成される。
次に、フォトリソグラフィおよび例えばリン(P)等のn型不純物のイオン注入により、各チップ領域10’の活性領域1の有効領域1aにおいて、p型炭化珪素層72の表面領域に、n+型ソース領域35aを選択的に形成する。そして、n+型ソース領域35aの形成に用いたイオン注入用マスクを除去する。
次に、フォトリソグラフィおよびAl等のp型不純物のイオン注入により、各チップ領域10’の活性領域1の有効領域1aにおいて、p型炭化珪素層72の表面領域に、p++型コンタクト領域36aを選択的に形成する。そして、p++型コンタクト領域36aの形成に用いたイオン注入用マスクを除去する。
次に、フォトリソグラフィおよび例えばリン等のn型不純物のイオン注入により、活性領域1の有効領域1aと無効領域1bとの境界付近に、p型炭化珪素層72を深さ方向Zに貫通してn-型炭化珪素層71に達するn-型領域32a(図12参照)を形成する。このn-型領域32aにより、活性領域1の有効領域1aと無効領域1bとが分離される。そして、n-型領域32aの形成に用いたイオン注入用マスクを除去する。
+型ソース領域35a、p++型コンタクト領域36aおよびn-型領域32aの形成順序を入れ替えてもよい。活性領域1の有効領域1aにおいて、n+型ソース領域35aおよびp++型コンタクト領域36aと、n-型炭化珪素層71と、に挟まれた部分がp型ベース領域34aとなる。上述した各イオン注入において、例えばレジスト膜や酸化膜をイオン注入用マスクとして用いてもよい。
次に、イオン注入で形成したすべての拡散領域(第1,2p+型領域61a,62a、n型電流拡散領域33a、n+型ソース領域35a、p++型コンタクト領域36aおよびn-型領域32a)について、不純物を活性化させるための例えば1700℃程度の温度で2分間程度の熱処理(活性化アニール)を行う。活性化アニールは、すべての拡散領域を形成した後にまとめて1回行ってもよいし、イオン注入により拡散領域を形成するごとに行ってもよい。
次に、図9に示すように、フォトリソグラフィおよび例えばドライエッチングにより、n+型ソース領域35aおよびp型ベース領域34aを貫通して、n型電流拡散領域33aの内部の第1p+型領域61aに達するトレンチ37aを形成する。トレンチ37aを形成するためのエッチング用マスクには、例えばレジスト膜や酸化膜を用いてもよい。
次に、図10に示すように、半導体ウエハ10の表面およびトレンチ37aの内壁に沿ってゲート絶縁膜38aを形成する。ゲート絶縁膜38aは、例えば、酸素(O2)雰囲気中において1000℃程度の温度での熱酸化により形成してもよい。また、ゲート絶縁膜38aは、高温酸化(HTO:High Temperature Oxide)の化学反応による堆積膜であってもよい。
次に、トレンチ37aに埋め込むように、ゲート絶縁膜38a上に例えばリンドープのポリシリコン(poly-Si)層を堆積してパターニングし、トレンチ37aの内部にのみゲート電極39aとなる部分を残す(第1工程)。このとき、ポリシリコン層の、ゲート電極39aとなる部分を、半導体ウエハ10のおもて面から外側に突出するように残してもよいし、半導体ウエハ10のおもて面より低くなるように残してもよい。
メイン半導体素子11以外のすべての素子(例えば電流センス部12や、過電圧保護部となる例えば拡散ダイオード、演算回路部を構成するCMOS(Complementary MOS:相補型MOS))は、上述したメイン半導体素子11の各部の形成においてメイン半導体素子11の対応する各部と同時に、半導体ウエハ10の各チップ領域10’の、活性領域1の無効領域1bにそれぞれ形成する。
例えば、半導体ウエハ10に配置される各素子の拡散領域は、メイン半導体素子11を構成する拡散領域のうちの導電型、不純物濃度および拡散深さの同じ拡散領域と同時に形成すればよい。また、半導体ウエハ10に配置される素子のゲートトレンチ、ゲート絶縁膜およびゲート電極は、それぞれメイン半導体素子11のトレンチ37a、ゲート絶縁膜38aおよびゲート電極39aと同時に形成すればよい(第2工程)。
次に、温度センス部13の形成領域において、半導体ウエハ10のおもて面上にフィールド絶縁膜80を形成する。このとき、短絡領域4における半導体ウエハ10のおもて面上にもフィールド絶縁膜80を形成する。次に、フィールド絶縁膜80上に、n型ポリシリコン層82となる例えばリンドープのポリシリコン層を堆積し、当該ポリシリコン層の一部をp型領域にしてp型ポリシリコン層81とする。次に、当該ポリシリコン層をパターニングしてp型ポリシリコン層81およびn型ポリシリコン層82となる部分のみを残す。
p型ポリシリコン層81およびn型ポリシリコン層82を形成するために堆積したポリシリコン層で、p型ポリシリコン層81およびn型ポリシリコン層82の形成と同時に、ゲートランナー(不図示)を形成してもよい。この場合、エッジ終端領域2における半導体ウエハ10のおもて面上にもフィールド絶縁膜80を形成する。そして、エッジ終端領域2に、ポリシリコン層の、ゲートランナーとなる部分を残せばよい。
次に、半導体ウエハ10のおもて面全面に、ゲート電極39a,39bおよびp型ポリシリコン層81およびn型ポリシリコン層82を覆うように層間絶縁膜40,83を形成する。また、短絡領域4におけるフィールド絶縁膜80にも層間絶縁膜40を形成する。層間絶縁膜40,83は、例えば、PSG(Phospho Silicate Glass)であってもよい。層間絶縁膜40,83の厚さは、例えば1μm程度であってもよい。次に、フォトリソグラフィおよびエッチングにより層間絶縁膜40およびゲート絶縁膜38a,38bを選択的に除去して、所定箇所にコンタクトホールを形成する。
具体的には、層間絶縁膜40に第1,2コンタクトホール40a,40bを形成して、n+型ソース領域35a,35bおよびp++型コンタクト領域36a,36bを露出させる。層間絶縁膜40の、活性領域1の有効領域1aと無効領域1bとの境界付近に第5コンタクトホール40dを形成して、短絡領域4を露出させる(図11,12参照)。次に、熱処理により層間絶縁膜40,83を平坦化(リフロー)する。
次に、例えばスパッタリングにより、半導体ウエハ10のおもて面の全面に、バリアメタルとなる第1TiN膜(第1,2金属膜)102を形成する。第1TiN膜102は、層間絶縁膜40,83の表面全面を覆うとともに、半導体ウエハ10のおもて面の、第1,2,5コンタクトホール40a,40b,40dに露出された部分(n+型ソース領域35a,35b、p++型コンタクト領域36a,36bおよび短絡領域4)を覆う。
次に、フォトリソグラフィおよびエッチングにより、第1TiN膜102の、第1,2コンタクトホール40a,40bの内部において半導体ウエハ10を覆う部分を除去して、n+型ソース領域35a,35bおよびp++型コンタクト領域36a,36bを再度露出させる。短絡領域4には、第1TiN膜102を残す。これによって、第1TiN膜102を、層間絶縁膜40,83の表面全面および短絡領域4に残す(短絡工程)。
第1TiN膜102の、層間絶縁膜40上に残る部分は、メイン半導体素子11のバリアメタル46aを構成する第1TiN膜42a、および、電流センス部12のバリアメタル46bを構成する第1TiN膜42bとなる。第1TiN膜102の、短絡領域4に残る部分(以下、第1TiN膜とする)42dは、第1TiN膜42aと第1TiN膜42bとを短絡(ショート)する短絡電極111(図11のハッチング部分)となる。
次に、例えばスパッタリングにより、第1,2コンタクトホール40a,40bに露出される半導体部(半導体ウエハ10のおもて面)上にNi膜(不図示)を形成する。このとき、第1TiN膜102上にもNi膜が形成される。次に、例えば970℃程度での熱処理により、Ni膜の、半導体部との接触箇所をシリサイド化して、半導体部にオーミック接触するNiSi膜(第1金属膜)101を形成する。
第1コンタクトホール40a内のNiSi膜101は、メイン半導体素子11のn+型ソース領域35aおよびp++型コンタクト領域36aにオーミック接触するNiSi膜41aとなる。第2コンタクトホール40b内のNiSi膜101は、電流センス部12のn+型ソース領域35bおよびp++型コンタクト領域36bにオーミック接触するNiSi膜41bとなる。
このニッケルのシリサイド化のための熱処理時、層間絶縁膜40,83とNi膜との間に第1TiN膜102が配置されていることで、Ni膜中のニッケル原子の層間絶縁膜40,83内への拡散を防止することができる。Ni膜の、層間絶縁膜40,83上の部分は、半導体部に接触していないため、シリサイド化されない。Ni膜の、層間絶縁膜40,83上の部分を除去し、層間絶縁膜40,83を露出させる。
次に、半導体ウエハ10の裏面に、例えばNi膜を形成する。次に、例えば970℃程度での熱処理により、Ni膜をシリサイド化し、ドレイン電極51として、半導体部(半導体ウエハ10の裏面)にオーミック接触するNiSi膜を形成とする。ドレイン電極51となるNiSi膜を形成する際のシリサイド化のための熱処理は、半導体ウエハ10のおもて面のNiSi膜101を形成する際の熱処理と同時に行ってもよい。
次に、スパッタリングにより、半導体ウエハ10のおもて面上に、バリアメタルとなる第1Ti膜103、第2TiN膜104および第2Ti膜105と、電極パッドとなるAl膜またはAl合金膜(以下、まとめてAl膜とする)106と、を順に積層する。第1,2TiN膜102,104の厚さは、例えば50nm以上200nm以下程度であり、例えば100nm程度であってもよい。第1,2Ti膜103,105の厚さは、例えば10nm以上50nm以下程度であり、例えば20nm程度であってもよい。Al膜106の厚さは、例えば5μm以下程度である。
次に、フォトリソグラフィおよびエッチングにより、金属膜(第1,2金属膜)103~106をパターニングして、バリアメタル46a,46bおよび電極パッド21a,21b,22となる部分を残す。金属膜103~106の、活性領域1の有効領域1aの部分は、それぞれメイン半導体素子11の第1Ti膜43a、第2TiN膜44a、第2Ti膜45aおよびソースパッド21aとなる。金属膜103~106の、活性領域1の無効領域1bの部分の一部は、それぞれ電流センス部12の第1Ti膜43b、第2TiN膜44b、第2Ti膜45bおよびOCパッド22となる(第3工程)。
金属膜103~106の短絡領域4の部分も除去して、短絡領域4に、短絡電極111となる第1TiN膜42dのみを残す(図12)。これによって、短絡電極111およびバリアメタル46a,46bを介して、メイン半導体素子11のソースパッド21aと、電流センス部12のOCパッド22と、が短絡された状態となる。厚さの薄い第1TiN膜42dのみで短絡電極111が構成されるため、後の工程において短絡電極111を切断しやすい。
第1TiN膜42dのみで短絡電極111を構成した場合、第1TiN膜102を層間絶縁膜40,83上のみに残すために行うエッチングによって、第1TiN膜102の、短絡電極111となる部分(第1TiN膜42d)を残すことができる。一方、金属膜103~106のいずれかを短絡電極111として残す場合、金属膜103~106の順に堆積する途中に、短絡電極111として残さない金属膜をパターニングするためのエッチング工程を行うことになる。このため、第1TiN膜42dのみで短絡電極111を構成した場合、当該エッチング工程を間に挟むことなく、すべての金属膜103~106を連続して堆積することができ、製造工程を簡略化することができる。
すべての金属膜103~106の短絡領域4の部分を残して、第1TiN膜42d、第1Ti膜43d、第2TiN膜44d、第2Ti膜45dおよびAl膜24が順に積層された積層構造の短絡電極111としてもよい(図13)。金属膜102~105の短絡領域4の部分を1層以上残して、短絡電極111としてもよい。金属膜102のみ、短絡領域4の部分を残した場合は図12の構成となり、それ以外の構成は図示省略する。
これらNiSi膜41a,41bおよびバリアメタル46a,46bの形成は、温度センス部13のp型ポリシリコン層81およびn型ポリシリコン層82の全体が層間絶縁膜83で覆われた状態で行われる。ソースパッド21aおよびOCパッド22と同じ積層構造で、メイン半導体素子11のゲートパッド21bおよび過電圧保護部のOVパッド(不図示)を形成してもよい(第4工程)。
次に、フォトリソグラフィおよびエッチングにより層間絶縁膜83を選択的に除去して第3,4コンタクトホール83a,83bを形成し、第3,4コンタクトホール83a,83bにそれぞれp型ポリシリコン層81およびn型ポリシリコン層82を露出させる。次に、熱処理により層間絶縁膜83を平坦化する。次に、Al膜またはAl合金膜で、温度センス部13のアノードパッド23aおよびカソードパッド23bを形成する。
温度センス部13のアノードパッド23aおよびカソードパッド23bは、ソースパッド21aを形成するために堆積したAl膜106の一部で、ソースパッド21aの形成と同時に形成されてもよい。この場合、バリアメタル46a,46bの形成後、Al膜106の形成前に、層間絶縁膜83に第3,4コンタクトホール83a,83bを形成して、p型ポリシリコン層81およびn型ポリシリコン層82の一部を露出させればよい。
次に、例えばスパッタリングにより、ドレイン電極51の表面に、例えばTi膜、Ni膜および金(Au)膜を順に積層してドレインパッド(不図示)を形成する。
次に、例えばCVDにより、半導体ウエハ10のおもて面をポリイミド膜で保護する。次に、フォトリソグラフィおよびエッチングにより当該ポリイミド膜を選択的に除去して、電極パッドをそれぞれ覆う第1保護膜49a~49cを形成するとともに、これら第1保護膜49a~49cを開口する。このとき、ポリイミド膜の、短絡領域4の部分も開口して、短絡電極111を露出させる。
次に、一般的なめっき前処理の後、一般的なめっき処理により、電極パッド21a,21b,22,23a,23bの、第1保護膜49a~49cの開口部に露出する部分にめっき膜(第1,2めっき膜)47a~47cを形成する。このとき、第1保護膜49a~49cは、めっき膜47a~47cの濡れ広がりを抑制するマスクとして機能する(第1間隙部)。めっき膜47a~47cの厚さは、例えば5μm程度であってもよい。めっき膜47a~47cは、短絡電極111上に形成されなくてもよい。
次に、例えばCVDにより、めっき膜47a~47cと第1保護膜49a~49cとの各境界を覆う第2保護膜50a~50cとなるポリイミド膜を形成する。次に、めっき膜47a~47c上に、それぞれはんだ層(不図示)により端子ピン48a~48cを接合する。このとき、第2保護膜50a~50cは、はんだ層の濡れ広がりを抑制するマスクとして機能する。
短絡電極111の形成後、ここまでの工程(所定の工程)は、短絡電極111によりソースパッド21aとOCパッド22が短絡された状態で行われる。その理由は、次の通りである。ソース電位となる金属膜(最初に形成されるNiSi膜41a,41b)の形成前、メイン半導体素子11および電流センス部12は、ソース電位がフローティング(浮遊電位)の状態であるため、電流センス部12のゲート絶縁膜38bはプラズマや静電気による影響を受けにくい。一方、ソース電位となる金属膜が形成されると、メイン半導体素子11および電流センス部12ともに、ソース電位がある程度固定される。
上述したように、電流センス部12は、メイン半導体素子11と同一構成の単位セルを、メイン半導体素子11の単位セルの個数の1/1000程度の個数で備えた構造となっている。このため、電流センス部12は、メイン半導体素子11と比べて、ゲート電極39bの占める表面積が小さく、ゲート容量が極めて小さい。また、特に炭化珪素を半導体材料として用いる場合、トレンチ37bの側壁に沿って設けられたゲート絶縁膜38bの膜質が悪く、電荷に弱いため、製造工程(ウエハプロセス)中のCVDやスパッタリング時に発生するプラズマや静電気によりゲート絶縁膜38bが劣化する。
したがって、メイン半導体素子11および電流センス部12にそれぞれソース電位となる金属膜が形成されて、ソース電位が固定されると、製造工程中に発生したプラズマや静電気により、電流センス部12のソース電位がふらつく。これによって、メイン半導体素子11と比べてゲート容量の小さい電流センス部12で、ゲート絶縁膜38bが破壊しやすくなる。そこで、上述したように、ソースパッド21aとOCパッド22とを短絡電極111によって短絡した状態で、短絡電極111の形成以降の工程を行う。これによって、ソースパッド21aとOCパッド22とが短絡されている間、電流センス部12のソース電位を安定させることができるからである。
電流センス部12のソース電位を安定させることで、製造工程中における電流センス部12のESD耐量を高くすることができる。短絡電極111の長さw1(図11参照)は、例えば5μm以上10μm以下程度であることがよい。短絡電極111の長さw1を短くするほど、チップサイズを小さくすることができる。短絡電極111の長さw1とは、ソースパッド21aとOCパッド22との間の間隔(第2方向Yの幅)である。短絡電極111としてAl膜106を残した場合、短絡電極111の幅(第1方向Xの幅)w2は、5μm以下であることがよい。その理由は、Al膜106の厚さが薄いほど、後の工程において短絡電極111を切断しやすいからである。
次に、実施の形態1にかかる半導体装置20の電気的特性や良・不良の有無を確認する性能試験(第5工程)を行う前に、短絡電極111を切断することで、メイン半導体素子11のソースパッド21aと電流センス部12のOCパッド22とをオープンに(断線)する。性能試験は、半導体ウエハ10の状態で行ってもよいし、半導体ウエハ10(半導体ウェハ)をダイシング(切断)して個々のチップ状に個片化した状態で行ってもよい。組立工程の途中で、短絡電極111を切断してもよい。特に、電流センス部12の試験においては、メイン半導体素子11と電流センス部12とのソース間に抵抗体14(図4参照)を付加して試験を行う。このため、可能な限り試験の直前まで、ソースパッド21aとOCパッド22とが短絡されていることがよい。
性能試験で行う電流センス部12の試験は、例えば、ゲート絶縁膜38bの信頼性を評価する耐圧試験(スクリーニング)等である。スクリーニングにおいては、電流センス部12のOCパッド22を、外部の抵抗体14(図4参照)を介して接地電位に接続した状態で、ゲート絶縁膜38bに所定電圧を印加する。そして、ゲート絶縁膜38bの経時破壊現象を観察し、ゲート絶縁膜38bのリーク電流を確認することで、ゲート絶縁膜38bの信頼性を評価する。
また、性能試験は、製造開始から製品の出荷時までの所定のタイミングで複数回行ってもよい。この場合、性能試験の後に、ソースパッド21aとOCパッド22を短絡する新たな短絡電極111を形成する。このとき、ソースパッド21aとOCパッド22との間において、すでに短絡電極111を形成した部分以外の部分を、新たな短絡電極111を形成する短絡領域4とする。そして、ソースパッド21aとOCパッド22とを新たな短絡電極111によって短絡した状態で、新たな短絡電極111の形成以降の工程を行う。その後、次の性能試験を行う前に、新たな短絡電極111を切断すればよい。
具体的には、性能試験を複数回行う場合、例えば、次の第1~3試験を行ってもよい。第1試験は、半導体ウエハ10の状態で行うウエハ試験である。第2試験は、半導体ウエハ10のダイシング(切断)後の半導体チップ70の状態で行う試験である。第3試験は、製品の組立工程後のモジュールの状態で行う試験である。実施の形態1にかかる半導体装置20の製品として低コスト化を優先する場合、性能試験の工程上やりやすさや、品質など適宜を選択すればよい。例えば、第1試験を行った場合は、第2,3試験を行わないなどの選択が可能である。
第1~3試験のすべてを行う場合、まず、第1試験を行う前に短絡電極111を切断する。そして、第1試験を行い、第1試験で良品と判定された場合、半導体ウエハ10のおもて面に導電性膜を塗布してパターンニングし、ソースパッド21aとOCパッド22との間においてすでに短絡電極111を形成した部分以外の部分にのみ導電性膜を残して新たな短絡電極111とする。次に、ソースパッド21aとOCパッド22とを新たな短絡電極111によって短絡した状態で、新たな短絡電極111の形成以降の工程を行う。
次に、第2試験を行う前に新たな短絡電極111を切断する。そして、第2試験を行い、第2試験で良品と判定された場合、半導体ウエハ10のおもて面に導電性膜を塗布してパターンニングし、ソースパッド21aとOCパッド22との間においてすでに短絡電極111を形成した部分以外の部分にのみ、再度、導電性膜を残して新たな短絡電極111とする。次に、ソースパッド21aとOCパッド22とを2つ目の新たな短絡電極111によって短絡した状態で、2つ目の新たな短絡電極111の形成以降の工程を行う。
次に、第3試験を行う前に2つ目の新たな短絡電極111を切断する。次に、第3試験を行い、第3試験で良品と判定された場合に製品として出荷する。新たな短絡電極111の形成は、マニュアル(手動)であってもよいし、オートメーション化(自動)されていてもよい。このようにソースパッド21aとOCパッド22とを新たな短絡電極111によって短絡して、電流センス部12のゲート絶縁膜38bを保護した状態で、複数回の性能試験間の所定工程を行うことが好ましい。これによって、電流センス部12のESD耐量をさらに向上させることができる。
短絡電極111がいずれの金属膜102~106で構成されていたとしても、短絡電極111の切断に例えばレーザーやエッチングを用いることができる。短絡電極111の切断にレーザーを用いる場合、1回のレーザー照射で短絡電極111を切断してもよいし、複数回のレーザー照射を繰り返し行って短絡電極111を切断してもよい。例えば、短絡電極111が第1,2TiN膜102,104や第1,2Ti膜103,105で構成されていることで、短絡電極111の厚さが薄い場合、レーザーを用いることで短絡電極111を短時間で切断することができる。例えば、短絡電極111がTiN膜である場合、短絡電極111の切断時、レーザー波形を0.1sステップで連続発振させて、10msステップで繰り返し照射してもよい。
短絡電極111にAl膜106が含まれる場合、短絡電極111全体をレーザーで切断してもかまわないが、短絡電極111の切断に時間がかかる。例えば、短絡電極111がAl膜である場合、短絡電極111の切断時、レーザー波形を、0.5mJのエネルギーで、100msステップで繰り返し照射してもよい。このため、短絡電極111にAl膜106が含まれる場合、例えば、Al膜106をエッチングで除去した後に、その他の金属膜102~105の切断にレーザーを用いてもよい。これにより、短絡電極111にAl膜106が含まれる場合においても、短絡電極111を効率よく切断することができる。
また、短絡電極111にAl膜106が含まれる場合、短絡電極111でレーザーを切断するときに、溶融した切断屑が周囲に飛散し、当該切断屑で電極パッド同士が短絡してしまう虞がある。このため、短絡電極111を形成する際の金属膜はAl膜106以外の金属膜102~105であることが好ましい。また、短絡電極111にAl膜106が含まれる場合、短絡電極111の切断後に、例えば一般的な排気処理装置(スクラバー)を用いて切断屑を除去する工程を行ってもよい。
短絡電極111の切断後に、ソースパッド21aとOCパッド22とが電気的に分離されていればよく、ソースパッド21aやOCパッド22に短絡電極111の一部が残っていてもよい。また、短絡電極111をレーザーで切断することで、ソースパッド21aやOCパッド22にレーザーによる干渉縞ができるが、半導体装置20の性能には影響しない。
その後、半導体ウエハ10の状態で試験を行った場合には、半導体ウエハ10をスクライブライン3に沿ってダイシング(切断)して個々のチップ状(半導体チップ70)に個片化する。以上の工程により、図1~3に示す半導体装置20が完成する。
以上、説明したように、実施の形態1によれば、メイン半導体素子のソースパッドと電流センス部のOCパッドとを短絡電極によって短絡した状態で、短絡電極の形成以降の工程を行う。メイン半導体素子のソースパッドと電流センス部のOCパッドとが短絡されている間、電流センス部のソース電位を安定させることができる。これによって、製造工程中における電流センス部のESD耐量を高くすることができるため、製造工程中のCVDやスパッタリング時に発生するプラズマや静電気により電流センス部でゲート絶縁膜が劣化することを抑制することができる。このため、電流センス部で絶縁破壊しにくい半導体装置を提供することができる。
また、実施の形態1によれば、メイン半導体素子のソースパッドと電流センス部のOCパッドとを短絡電極によって短絡することで、メイン半導体素子のソース電位も安定させることができるため、製造工程中における電流センス部のESD耐量を高くすることができる。実施の形態1によれば、メイン半導体素子のソースパッドと電流センス部のOCパッドとの間に短絡電極を形成することで、当該短絡電極を切断する際に、レーザー等によってゲートパッドやゲート電極がきずつくことを防止することができる。このため、短絡電極を切断することによってメイン半導体素子および電流センス部のゲート特性が変動することを防止することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の製造方法について説明する。図14は、実施の形態2にかかる半導体装置の製造途中の状態を示す平面図である。実施の形態2にかかる半導体装置120の製造方法が実施の形態1にかかる半導体装置20の製造方法(図11参照)と異なる点は、ソースパッド21aとOCパッド22とを短絡することに代えて、短絡電極112(図14のハッチング部分)によってソースパッド21aとゲートパッド21bとを短絡した状態で、その後の性能試験の前までの工程を行う点である。
電流センス部12のゲート電極39bは、ゲートランナーを介して、メイン半導体素子11のゲート電極39aに電気的に接続されている。このため、メイン半導体素子11のソースパッド21aとゲートパッド21bとを短絡することで、ゲートパッド21b、ゲートランナーを介して、メイン半導体素子11のソースパッド21aに電流センス部12のゲート電極39bを電気的に接続することができる。これによって、実施の形態1と同様に、製造工程中における電流センス部12のESD耐量を高くすることができる。
すなわち、実施の形態2にかかる半導体装置120の製造方法は、短絡電極112の配置が異なる以外、実施の形態1にかかる半導体装置20の製造方法と同様である。短絡電極112は、ソースパッド21aとゲートパッド21bとの間に配置される。短絡電極112は、例えば実施の形態1の短絡電極111と同じ層構造、同じ長さw11および同じ幅w12寸法で、短絡電極111と同じ方法で形成してもよい。図14には、ソースパッド21aとゲートパッド21bとの間の、短絡電極112が配置される部分(短絡領域)に符号5を付している。
以上、説明したように、実施の形態2によれば、メイン半導体素子のソースパッドに電流センス部のゲート電極を電気的に接続することで、製造工程中における電流センス部のゲート容量を疑似的に大きくすることができるため、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の製造方法について説明する。図15は、実施の形態3にかかる半導体装置の製造途中の状態を示す平面図である。実施の形態3にかかる半導体装置120’の製造方法は、実施の形態1にかかる半導体装置20の製造方法(図11参照)に実施の形態2にかかる半導体装置120の製造方法(図14参照)を適用したものである。すなわち、ソースパッド21aに、OCパッド22とゲートパッド21bとを短絡する。
具体的には、実施の形態3にかかる半導体装置120’の製造方法が実施の形態1にかかる半導体装置20の製造方法と異なる点は、短絡領域4に形成した短絡電極111(ハッチング部分)によってソースパッド21aとOCパッド22とを短絡し、さらに短絡領域5に形成した短絡電極112(ハッチング部分)によってソースパッド21aとゲートパッド21bとを短絡した状態で、その後の性能試験の前までの工程を行う点である。
性能試験前に短絡電極111,112を切断する際には、ソースパッド21aとゲートパッド21bとを短絡する高電位側の短絡電極112を切断した後に、ソースパッド21aとOCパッド22とを短絡する低電位(接地電位)側の短絡電極111を切断することが好ましい。その理由は、短絡電極111によってソースパッド21aを接地した状態で、短絡電極112を切断することができるため、ソースパッド21aに高電位がかかることを防止することができるからである。
以上、説明したように、実施の形態3によれば、メイン半導体素子のゲートパッドと電流センス部のOCパッドとをそれぞれ異なる短絡電極によってメイン半導体素子のソースパッドに短絡した場合においても、実施の形態1,2と同様の効果を得ることができる。
(実施の形態4)
次に、実施の形態4にかかる半導体装置の製造方法について説明する。図16は、実施の形態4にかかる半導体装置の製造途中の状態を示す平面図である。図16には、短絡電極の平面形状を示す。実施の形態4にかかる半導体装置20’の製造方法が実施の形態1にかかる半導体装置20の製造方法(図11参照)と異なる点は、短絡電極111’の一部分111cの幅w2’を狭くする点である。
具体的には、実施の形態5において、短絡電極111’の、ソースパッド21aとOCパッド22との各連結部分111a,111bは、金属膜102~106(図12,13参照)のいずれかの金属膜を短絡電極111’として残す際のエッチング(以下、短絡電極111’を形成する際のエッチングとする)時に、短絡電極111’とソースパッド21aおよびOCパッド22とが切り離されない程度の幅w2を有する。
短絡電極111’の、幅w2’を狭くした部分(以下、切断部分とする)111cは、性能試験前に短絡電極111’を切断する際の切断部分である。短絡電極111’の切断部分111cは、短絡電極111’を形成する際のエッチング時に切断されない程度の幅w2’を有する。短絡電極111’は、例えば、切断部分111cを、ソースパッド21aとの連結部分111aおよびOCパッド22との連結部分111bよりも狭くした略I字状の平面形状を有していてもよい。
以上、説明したように、実施の形態4によれば、実施の形態1~3と同様の効果を得ることができる。また、実施の形態4によれば、短絡電極の切断部分の幅を狭くすることで、性能試験前に短絡電極をさらに効率よく切断することができる。
以上において本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した実施の形態では、バリアメタルを構成する金属膜のうち、最も薄い金属膜で短絡電極を構成することにより、短絡電極の切断を効率的に行うことができる。炭化珪素を半導体材料にすることに代えて、ワイドバンドギャップ半導体を半導体材料とした場合においても本発明を適用可能である。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置は、電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 活性領域
1a 活性領域の有効領域
1b 活性領域の無効領域
2 エッジ終端領域
3 スクライブライン
4,5 短絡領域
10 半導体ウエハ
10’ 半導体ウエハのチップ領域
11 メイン半導体素子
12 電流センス部
13 温度センス部
14 抵抗体
20,20’,120,120’ 半導体装置
21a ソースパッド(電極パッド)
21b ゲートパッド(電極パッド)
22 OCパッド(電極パッド)
23a アノードパッド(電極パッド)
23b カソードパッド(電極パッド)
24,106 Al膜
31 n+型出発基板
32 n-型ドリフト領域
32a n-型領域
33a,33b n型電流拡散領域
34a~34c p型ベース領域
35a,35b n+型ソース領域
36a~36c p++型コンタクト領域
37a,37b トレンチ
38a,38b ゲート絶縁膜
39a,39b ゲート電極
40,83 層間絶縁膜
40a~40d,83a,83b コンタクトホール
41a,41b,101 NiSi膜
42a,42b,42d,102 第1TiN膜
43a,43b,43d,103 第1Ti膜
44a,44b,44d,104 第2TiN膜
45a,45b,45d,105 第2Ti膜
46a,46b バリアメタル
47a~47d めっき膜
48a~48d 端子ピン
49a~49c 第1保護膜
50a~50c 第2保護膜
51 ドレイン電極
61a,61b,62a~62c,91 p+型領域
70 半導体チップ
71 n-型炭化珪素層
71a n-型炭化珪素層の厚さを増した部分
72 p型炭化珪素層
80 フィールド絶縁膜
81 p型ポリシリコン層
82 n型ポリシリコン層
92,94 n型領域
111,111’,112 短絡電極
GND 接地点
X 半導体チップのおもて面に平行でかつ無効領域の電極パッドが並ぶ方向(第1方向)
Y 半導体チップのおもて面に平行でかつ第1方向と直交する方向(第2方向)
Z 深さ方向
d1 p+型領域間の深さ
d2 p+型領域間の距離
d3 n型領域の深さ
t1 n-型炭化珪素層の、n+型出発基板上に最初に積層する厚さ
t2 n-型炭化珪素層の、厚さを増した部分の厚さ
t3 p型炭化珪素層の厚さ
w1,w11 短絡電極の長さ
w2,w2’,w12 短絡電極の幅

Claims (20)

  1. 表面を有する半導体チップと、
    前記表面の上に配置された第1金属膜と、
    前記第1金属膜の上に配置された、前記第1金属膜と同電位である第1めっき膜と、
    を備え、
    前記第1めっき膜は、断面視において、第1間隙部により間隔をあけて配置された部分を含むことを特徴とする半導体装置。
  2. 前記第1めっき膜は、少なくとも第1めっき部と第2めっき部とを有し、
    前記第1間隙部は、前記第1めっき部と前記第2めっき部との間に設けられていることを特徴とする請求項1に記載の半導体装置。
  3. 前記第1めっき部と前記第2めっき部とは、直接接続されていないことを特徴とする請求項2に記載の半導体装置。
  4. 前記第1めっき部に接続される第1配線と、
    前記第2めっき部に接続される第2配線と、
    を備え、
    前記第1配線および前記第2配線は、接地電位に接続されていることを特徴とする請求項2または3に記載の半導体装置。
  5. 前記第1配線と前記第2配線とは、直接接続されていないことを特徴とする請求項4に記載の半導体装置。
  6. 前記第1間隙部は、平面視において、前記第1金属膜の少なくとも一部と重なっていることを特徴とする請求項1から5のいずれか1項に記載の半導体装置。
  7. 前記第1間隙部の内部には、保護膜が設けられていて、
    前記第1めっき膜の上面の少なくとも一部は前記保護膜から露出していることを特徴とする請求項1から6のいずれか1項に記載の半導体装置。
  8. 前記第1金属膜は、Al膜またはAl合金膜で構成され、
    前記第1金属膜は、断面視において、第2間隙部により間隔をあけて配置された部分を含み、
    前記第1間隙部は、平面視において、前記第2間隙部と重なっていることを特徴とする請求項1から7のいずれか1項に記載の半導体装置。
  9. 前記第1金属膜は、少なくとも第1パッド部と第2パッド部とを有し、
    前記第2間隙部は、前記第1パッド部と前記第2パッド部との間に設けられていることを特徴とする請求項8に記載の半導体装置。
  10. 前記第1パッド部と前記第2パッド部とは、直接接続されていないことを特徴とする請求項9に記載の半導体装置。
  11. 前記保護膜は、前記第1金属膜の上面から前記第1めっき膜の上面にかけて設けられていることを特徴とする請求項7に記載の半導体装置。
  12. 前記半導体チップの前記表面を覆う絶縁膜を備え、
    前記第2間隙部は、前記絶縁膜の少なくとも一部を露出することを特徴とする請求項8から10のいずれか1項に記載の半導体装置。
  13. 前記表面の上に配置された第2金属膜と、
    前記第2金属膜の上に配置された、前記第2金属膜と同電位である第2めっき膜と、
    をさらに備えることを特徴とする請求項1に記載の半導体装置。
  14. 前記第2金属膜は、ゲート電極であり、
    前記第2めっき膜は、断面視において、当該第2めっき膜を貫通する間隙部を有さないことを特徴とする請求項13に記載の半導体装置。
  15. 前記第1金属膜は、ソース電極であることを特徴とする請求項1から14のいずれか1項に記載の半導体装置。
  16. 前記第1めっき膜は、少なくとも第1めっき部と第2めっき部とを有し、
    前記第1間隙部は、前記第1めっき部と前記第2めっき部との間に設けられ、
    前記第1めっき部の表面積は、前記第2めっき部の表面積よりも大きいことを特徴とする請求項13または14に記載の半導体装置。
  17. 前記第1金属膜および前記第2金属膜は、Al膜またはAl合金膜で構成され、
    前記第1金属膜は、断面視において、第2間隙部により間隔をあけて配置された部分を含み、
    前記第1間隙部は、平面視において、前記第2間隙部と重なっていることを特徴とする請求項13または14に記載の半導体装置。
  18. 前記第1金属膜は、少なくとも第1パッド部と第2パッド部とを有し、
    前記第2間隙部は、前記第1パッド部と前記第2パッド部との間に設けられ、
    前記第2間隙部は、少なくとも一部において、前記第1間隙部よりも間隔が狭いことを特徴とする請求項17に記載の半導体装置。
  19. 前記第1金属膜は、少なくとも一部にレーザーによる干渉縞を含むことを特徴とする請求項1から18のいずれか1項に記載の半導体装置。
  20. 前記半導体チップは、半導体材料として炭化珪素が用いられていることを特徴とする請求項1から19のいずれか1項に記載の半導体装置。
JP2023104570A 2019-02-15 2023-06-26 半導体装置 Pending JP2023112212A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023104570A JP2023112212A (ja) 2019-02-15 2023-06-26 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025287A JP7305979B2 (ja) 2019-02-15 2019-02-15 半導体装置の製造方法
JP2023104570A JP2023112212A (ja) 2019-02-15 2023-06-26 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019025287A Division JP7305979B2 (ja) 2019-02-15 2019-02-15 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2023112212A true JP2023112212A (ja) 2023-08-10

Family

ID=72279119

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019025287A Active JP7305979B2 (ja) 2019-02-15 2019-02-15 半導体装置の製造方法
JP2023104570A Pending JP2023112212A (ja) 2019-02-15 2023-06-26 半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019025287A Active JP7305979B2 (ja) 2019-02-15 2019-02-15 半導体装置の製造方法

Country Status (1)

Country Link
JP (2) JP7305979B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330396B2 (ja) * 2020-11-05 2023-08-21 三菱電機株式会社 半導体装置及び電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974583B2 (ja) * 1994-05-31 1999-11-10 株式会社東芝 半導体装置およびその製造方法
JP2002100775A (ja) 2000-09-21 2002-04-05 Denso Corp 電圧駆動型パワー素子
JP5694119B2 (ja) 2010-11-25 2015-04-01 三菱電機株式会社 炭化珪素半導体装置
JP6404591B2 (ja) 2014-04-23 2018-10-10 富士電機株式会社 半導体装置の製造方法、半導体装置の評価方法および半導体装置
JP2016025124A (ja) 2014-07-16 2016-02-08 株式会社デンソー 半導体装置およびその製造方法
JP6338776B2 (ja) 2015-07-02 2018-06-06 三菱電機株式会社 半導体装置
JP6795032B2 (ja) 2016-06-03 2020-12-02 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP7305979B2 (ja) 2023-07-11
JP2020136380A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
US11121248B2 (en) Semiconductor device
US11876131B2 (en) Semiconductor device
JP2017079324A (ja) 半導体装置および半導体装置の製造方法
JP7467918B2 (ja) 半導体装置
JP2021015884A (ja) 半導体装置および半導体装置の製造方法
US20200258991A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2023112212A (ja) 半導体装置
US11133385B2 (en) Semiconductor device
US11133300B2 (en) Semiconductor device
JP7302285B2 (ja) 半導体装置
JP7371335B2 (ja) 半導体装置
US11177360B2 (en) Semiconductor device
US11245031B2 (en) Semiconductor device
JP7346855B2 (ja) 半導体装置
JP7310356B2 (ja) 半導体装置
US11121221B2 (en) Semiconductor device
JP7318226B2 (ja) 半導体装置および半導体装置の製造方法
JP7472613B2 (ja) 半導体装置
JP7103435B2 (ja) 半導体装置および半導体装置の製造方法
JP7306060B2 (ja) 半導体装置
JP2021170609A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240524