WO2016143213A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2016143213A1
WO2016143213A1 PCT/JP2015/085034 JP2015085034W WO2016143213A1 WO 2016143213 A1 WO2016143213 A1 WO 2016143213A1 JP 2015085034 W JP2015085034 W JP 2015085034W WO 2016143213 A1 WO2016143213 A1 WO 2016143213A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection pipe
refrigerant
pipe
cooling device
connection
Prior art date
Application number
PCT/JP2015/085034
Other languages
English (en)
French (fr)
Inventor
研介 青木
卓也 本郷
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201580077379.9A priority Critical patent/CN107532859A/zh
Publication of WO2016143213A1 publication Critical patent/WO2016143213A1/ja
Priority to US15/695,468 priority patent/US10845127B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20672Liquid coolant with phase change, e.g. heat pipes within sub-racks for removing heat from electronic boards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion

Definitions

  • Embodiments of the present invention relate to a cooling device.
  • Such a cooling device that cools a heating element using the heat of vaporization of a refrigerant.
  • a cooling device includes an evaporation section in which the refrigerant is vaporized by heat generated by the heating element, a condensation section in which the evaporated refrigerant is condensed, a first connection pipe that guides the refrigerant vaporized in the evaporation section to the condensation section, A second connecting pipe for guiding the refrigerant condensed in the condensing unit to the evaporating unit;
  • the diameter of the first connection pipe may not be sufficiently large due to installation space, piping cost, or other reasons.
  • liquid refrigerant part of the liquid-phase refrigerant (hereinafter referred to as liquid refrigerant) in the evaporation unit is taken out to the first connection pipe and the condensing unit by the refrigerant vaporized in the evaporation unit. If this phenomenon continues for a certain amount of time, the liquid refrigerant may be depleted in the evaporating section, and the cooling performance of the cooling device may be reduced.
  • the problem to be solved by the present invention is to provide a cooling device capable of suppressing a decrease in cooling efficiency.
  • the cooling device of the embodiment includes an evaporation unit, a condensing unit, a first connection pipe, a second connection pipe, and a third connection pipe.
  • the refrigerant is vaporized by the heat generated by the heating element.
  • the condensing part is provided above the evaporation part, and the vaporized refrigerant is condensed by heat exchange with an external fluid.
  • the first connecting pipe has a first end communicating with the evaporation unit and a second end communicating with the condensing unit, and guides the refrigerant vaporized in the evaporating unit to the condensing unit.
  • Sectional drawing which shows the cooling device of embodiment typically. Sectional drawing which shows the connection part of the 3rd connecting pipe shown in FIG. 1, and a 1st connecting pipe. Sectional drawing which shows typically the mode at the time of the stop of the cooling device shown in FIG. Sectional drawing which shows typically the 1st modification of the cooling device shown in FIG. Sectional drawing which shows typically the 2nd modification of the cooling device shown in FIG. Sectional drawing which shows typically the 3rd modification of the cooling device shown in FIG. Sectional drawing which shows typically the 4th modification of the cooling device shown in FIG.
  • FIG. 1 schematically shows a configuration example of the cooling device 1.
  • the cooling device 1 is a thermosiphon type (two-phase thermosiphon type) cooling device.
  • the cooling device 1 of the present embodiment includes an evaporation unit 2 that vaporizes the refrigerant, a condensation unit 3 that condenses the vaporized refrigerant, and a first connection pipe that guides the refrigerant vaporized in the evaporation unit 2 to the condensation unit 3. 4, a second connection pipe 5 that guides the refrigerant condensed in the condenser section 3 to the evaporation section 2, an expansion tank 6 connected to the second connection pipe 5, a part of the first connection pipe 4, and a second connection pipe 5 is provided with a third connecting pipe 7 connected to a part of 5.
  • the evaporation unit 2 includes a case 11 and a space (storage unit, storage unit) 12 provided inside the case 11.
  • the case 11 is formed of a material having good thermal conductivity such as metal.
  • the case 11 is thermally connected to the heating element H to be cooled.
  • the case 11 is arranged in the horizontal direction with respect to the heating element H.
  • the surface of the case 11 (for example, the side surface 11a of the case 11) is in contact with the heating element H.
  • the side surface 11a of the case 11 is formed to have substantially the same size as the main surface (surface having the largest area) of the heating element H.
  • the heating element H has, for example, a plate-like outer shape.
  • An example of the heating element H is a power amplifier that amplifies a radio signal for broadcasting output from a transmitter used in a broadcasting station or the like.
  • the cooling device 1 of the present embodiment can be widely applied to various heating elements H.
  • the heating element H to which the cooling device 1 can be applied is not particularly limited.
  • the space 12 can accommodate a refrigerant.
  • the refrigerant is put into the cooling device 1 so that the space portion 12 is sufficiently filled when the cooling device 1 is stopped.
  • the type of the refrigerant is not particularly limited.
  • the refrigerant is a fluid having a lower boiling point than water.
  • the refrigerant is a fluid having a boiling point of about 50 ° C.
  • the refrigerant receives heat generated by the heating element H in the evaporation unit 2. Thereby, a refrigerant
  • coolant is vaporized in the evaporation part 2 and becomes a vapor
  • the case 11 of this embodiment has a partition wall 11b between the heating element H and the space 12. For this reason, the refrigerant in the space portion 12 receives heat from the heating element H via the partition wall 11 b of the case 11.
  • the case 11 may have an opening that opens toward the heating element H. That is, the refrigerant in the space 12 may directly contact the heating element H through the opening of the case 11.
  • the evaporation unit 2 of the present embodiment is a so-called vertical type evaporation unit. That is, the horizontal width W1 of the space 12 in the direction in which the case 11 and the heating element H are arranged is smaller than the vertical width W2 of the space 12.
  • the condensing unit 3 includes a plurality of cooling pipes 15, a plurality of fins 16 attached to the cooling pipes 15, and a fan 17 that sends air toward the cooling pipes 15 and the fins 16.
  • each of the plurality of cooling pipes 15 extends in the vertical direction.
  • the plurality of cooling pipes 15 are arranged in the horizontal direction.
  • the inlets of the plurality of cooling pipes 15 are combined into one.
  • the outlets of the plurality of cooling pipes 15 are combined into one.
  • the plurality of fins 16 are respectively attached to the plurality of cooling pipes 15.
  • the fan 17 sends wind toward the plurality of cooling pipes 15 and the plurality of fins 16. Thereby, the fan 17 cools the plurality of cooling pipes 15 and the plurality of fins 16.
  • the condensing part 3 is provided above the evaporation part 2.
  • the refrigerant evaporated in the evaporation unit 2 flows into the condensing unit 3.
  • the refrigerant that has flowed into the condenser 3 is divided into a plurality of cooling pipes 15 and flows in.
  • the refrigerant flowing into the cooling pipe 15 is condensed by exchanging heat with an external fluid (for example, air) via the cooling pipe 15 and the fins 16.
  • the condensation part 3 is not limited to the said structure.
  • the condensing unit 3 may be one that does not have the fan 17 (by natural air cooling), for example.
  • the first connection pipe 4 communicates with the inlets of a plurality of cooling pipes 15 grouped together.
  • the refrigerant vaporized by the evaporator 2 flows into the first connection pipe 4.
  • the first connection pipe 4 guides the refrigerant evaporated in the evaporation unit 2 to the condensing unit 3.
  • the second connecting pipe (liquid pipe) 5 is provided between the condensing unit 3 and the evaporating unit 2, and connects the condensing unit 3 and the evaporating unit 2.
  • the second connecting pipe 5 has a first end 5a and a second end 5b.
  • the first end 5 a of the second connecting pipe 5 is connected to the lower end of the condensing unit 3 and communicates with the condensing unit 3.
  • the second connection pipe 5 communicates with the outlets of the plurality of cooling pipes 15 gathered together.
  • the second end 5 b of the second connection pipe 5 is connected to the lower end of the evaporator 2 and communicates with the evaporator 2.
  • the second connecting pipe 5 communicates with the lower end of the space 12 of the evaporation unit 2.
  • the refrigerant condensed in the condensing unit 3 flows into the second connection pipe 5.
  • the second connecting pipe 5 guides the refrigerant condensed in the condensing unit 3 to the evaporating unit 2.
  • the second connection pipe 5 has a portion 5c located between the first end 5a and the second end 5b.
  • the part 5 c of the second connection pipe 5 includes a descending pipe part 22 extending downward from the condensing part 3.
  • the descending piping part 22 extends, for example, in a substantially vertical direction.
  • the cooling device 1 includes a portion R in which the descending pipe part 22 of the second connection pipe 5 and the ascending pipe part 21 of the first connection pipe 4 extend substantially in parallel.
  • the cooling device 1 of the present embodiment is a thermosiphon type cooling device. That is, the refrigerant condensed in the condensing unit 3 flows into the second connecting pipe 5 by gravity and returns to the evaporating unit 2. Thereby, the cooling device 1 can circulate a refrigerant
  • the expansion tank 6 is an example of a “tank”.
  • the expansion tank 6 includes a container 6a that can be expanded and contracted by fluctuations in atmospheric pressure, and an introduction pipe 6b that forms a connection port of the container 6a.
  • the expansion tank 6 is connected to the second connection pipe 5.
  • the expansion tank 6 is connected to the descending piping part 22 of the second connection pipe 5.
  • connection position between the expansion tank 6 and the second connection pipe 5 is a position lower than the condensing unit 3.
  • the connection position between the expansion tank 6 and the second connection pipe 5 is a position higher than the liquid level height H2 of the refrigerant in the second connection pipe 5. More specifically, the connection position between the expansion tank 6 and the second connection pipe 5 is a position higher than the maximum liquid level height H2max of the refrigerant in the second connection pipe 5 when the cooling device 1 is in operation.
  • the expansion tank 6 can expand or contract in accordance with the atmospheric pressure in the second connection pipe 5 even when the refrigerant in the second connection pipe 5 reaches the maximum liquid level height H2max.
  • “operation” in the present application means that the refrigerant circulates in the cooling device 1 through vaporization and condensation.
  • the maximum liquid level height H2max of the refrigerant will be described later.
  • the third connection pipe 7 is provided between the first connection pipe 4 and the second connection pipe 5.
  • the third connecting pipe 7 includes a portion 4c located between the first end 4a and the second end 4b in the first connecting pipe 4, and a first end 5a and a second end in the second connecting pipe 5.
  • the part 5c located between 5b is connected.
  • One end of the third connection pipe 7 is connected to a part of the rising pipe part 21 of the first connection pipe 4.
  • the other end of the third connection pipe 7 is connected to a part of the descending piping part 22 of the second connection pipe 5.
  • the third connection pipe 7 connects the ascending pipe part 21 and the descending pipe part 22 at, for example, a portion R in which the ascending pipe part 21 and the descending pipe part 22 are arranged in parallel.
  • the third connection pipe 7 extends between the ascending pipe part 21 and the descending pipe part 22 in a substantially horizontal direction.
  • the 3rd connecting pipe 7 connects between the ascending piping part 21 and the descending piping part 22 in the shortest distance.
  • a part of the liquid refrigerant in the evaporation unit 2 may be pushed up by the refrigerant evaporated in the evaporation unit 2.
  • the third connection pipe 7 can cause at least a part of the liquid refrigerant pushed up into the first connection pipe 4 to flow from the first connection pipe 4 into the second connection pipe 5. That is, the third connection pipe 7 can cause at least a part of the liquid refrigerant pushed up into the first connection pipe 4 to flow into the second connection pipe 5 more quickly than when passing through the condensing unit 3.
  • the liquid refrigerant flowing into the second connection pipe 5 through the third connection pipe 7 can return from the second connection pipe 5 to the evaporation unit 2.
  • FIG. 2 shows a connection portion between the third connection pipe 7 and the first connection pipe 4.
  • the liquid refrigerant pushed up into the first connection pipe 4 is pushed by the inner peripheral surface 21a of the ascending pipe portion 21 due to a large amount of refrigerant vapor, and is first attached while sticking to the inner peripheral surface 21a.
  • the pipe 4 is raised.
  • the inner peripheral surface 21 a of the rising pipe portion 21 is provided with an opening portion 21 b that opens in the radial direction of the first connecting pipe 4.
  • the third connecting pipe 7 is connected to the opening 21b.
  • the cooling device 1 when stopped, stores an amount of refrigerant that sufficiently fills the evaporation unit 2.
  • the liquid level height H2 of the refrigerant in the second connection pipe 5 and the liquid level height H1 of the refrigerant in the first connection pipe 4 are balanced by gravity and are substantially the same height. It is in.
  • the refrigerant is vaporized in the evaporating unit 2 when the cooling device 1 is in operation.
  • the vaporization of the refrigerant during the low output operation is in a milder state than during the high output operation described later.
  • the liquid refrigerant in the evaporation unit 2 is not pushed up to a relatively high position in the first connection pipe 4 by the refrigerant evaporated in the evaporation unit 2.
  • the region N in the first connection pipe 4 is occupied by the refrigerant bubbles evaporated in the evaporation section 2.
  • the substantial liquid level H1 of the refrigerant in the first connection pipe 4 is lower than when the cooling device 1 is stopped.
  • the cooling device 1 due to the difference between the liquid level height H2 of the refrigerant in the second connection pipe 5 and the liquid level height H1 of the refrigerant in the first connection pipe 4, the cooling device 1 has the inside of the second connection pipe 5 A driving force for moving the refrigerant toward the evaporation unit 2 is generated.
  • the cooling device 1 configured as described above, it is possible to suppress a decrease in cooling performance. That is, if the first connection pipe 4 is sufficiently thick in the cooling device 1, the liquid refrigerant in the evaporation unit 2 is hardly pushed up into the first connection pipe 4 by the vapor evaporated in the evaporation unit 2.
  • the diameter of the first connection pipe 4 may not be sufficiently large due to installation space, piping cost, or other reasons. In such a case, a phenomenon occurs in which part of the liquid refrigerant in the evaporation unit 2 is taken out to the first connection pipe 4 and the condensation unit 3 by the vapor evaporated in the evaporation unit 2.
  • the liquid refrigerant is depleted in the evaporation unit 2 and the cooling performance of the cooling device 1 may be reduced.
  • the temperature of the evaporation unit 2 continues to rise beyond the boiling point of the refrigerant.
  • the cooling device 1 of the present embodiment has the following configuration. That is, the cooling device 1 of the present embodiment includes the evaporation unit 2, the condensing unit 3, the first connection pipe 4, the second connection pipe 5, and the third connection pipe 7.
  • the refrigerant is vaporized by the heat generated by the heating element H.
  • the condensing part 3 is provided above the evaporation part 2, and the vaporized refrigerant condenses by heat exchange with an external fluid.
  • the first connection pipe 4 guides the refrigerant evaporated in the evaporation unit 2 to the condensing unit 3.
  • the second connecting pipe 5 guides the refrigerant condensed in the condensing unit 3 to the evaporating unit 2.
  • the third connection pipe 7 connects the part 4 c of the first connection pipe 4 and the part 5 c of the second connection pipe 5.
  • connection position between the third connection pipe 7 and the second connection pipe 5 may be a position lower than the liquid level height H2 of the refrigerant in the second connection pipe 5 as in the modification shown in FIG. .
  • the connection position between the third connection pipe 7 and the second connection pipe 5 may be a position lower than the liquid level height H2 of the refrigerant in the second connection pipe 5 as in the modification shown in FIG. .
  • at least a part of the liquid refrigerant pushed up into the first connection pipe 4 can be returned to the evaporator 2 by the third connection pipe 7.
  • a part of the liquid refrigerant condensed in the condensing unit 3 and accumulated in the second connection pipe 5 also flows into the third connection pipe 7 from the second connection pipe 5.
  • the connection position between the third connection pipe 7 and the second connection pipe 5 is at a position higher than at least the liquid level H2 of the refrigerant in the second connection pipe 5 when the cooling device 1 is stopped. is there.
  • the liquid refrigerant that condenses in the condensing unit 3 and accumulates in the second connection pipe 5 has a liquid level height H2 in the second connection pipe 5 of at least the connection between the third connection pipe 7 and the second connection pipe 5. It does not flow into the third connecting pipe 7 until the position is reached. For this reason, liquid refrigerant tends to accumulate in the second connection pipe 5 up to a relatively high position.
  • coolant within the cooling device 1 can be raised. Thereby, a liquid refrigerant can be returned to the evaporation part 2 more efficiently. As a result, a decrease in cooling performance of the cooling device 1 can be further suppressed.
  • connection position of the third connection pipe 7 and the second connection pipe 5 is higher than the maximum liquid level height H2max of the refrigerant in the second connection pipe 5 during the operation of the cooling device 1. is there.
  • a liquid refrigerant tends to accumulate to a higher position.
  • the driving force for circulating the refrigerant in the cooling device 1 can be further increased.
  • a decrease in cooling performance of the cooling device 1 can be further suppressed.
  • the position of the 3rd connection pipe 7 with respect to the condensation part 3 is demonstrated.
  • the connection position of the third connection pipe 7 and the second connection pipe 5 is at the same level as or higher than the condensation section 3, the third connection pipe 7 flows into the second connection pipe 5.
  • the liquid refrigerant to flow into the condensing unit 3 from the second connection pipe 5.
  • the function of the condensing unit 3 for condensing the vapor may be deteriorated.
  • connection position of the third connection pipe 7 and the second connection pipe 5 is a position lower than the condensing unit 3. According to such a structure, it can suppress that the liquid refrigerant which flows in into the 2nd connection pipe 5 from the 3rd connection pipe 7 flows back into the condensation part 3.
  • the position of the third connection pipe 7 with respect to the expansion tank 6 will be described. If the connection position between the third connection pipe 7 and the second connection pipe 5 is at the same level as or higher than the connection position between the second connection pipe 5 and the expansion tank 6, the third connection pipe 7 There is a possibility that the liquid refrigerant flowing into the second connecting pipe 5 flows into the expansion tank 6 from the second connecting pipe 5. When the liquid refrigerant flows into the expansion tank 6, there is a possibility that the operation of the expansion tank 6 that suppresses fluctuations in the atmospheric pressure in the second connection pipe 5 is weakened.
  • connection position between the third connection pipe 7 and the second connection pipe 5 is lower than the connection position between the second connection pipe 5 and the expansion tank 6. According to this configuration, the liquid refrigerant flowing from the third connection pipe 7 into the second connection pipe 5 can be prevented from flowing into the expansion tank 6 from the second connection pipe 5. Thereby, the expansion tank 6 can be functioned more reliably.
  • the expansion tank 6 may be provided below the third connection pipe 7.
  • the inner diameter of the third connecting pipe 7 is equal to or less than the maximum inner diameter at which the vaporized refrigerant does not form a continuous phase in the third connecting pipe 7. According to such a configuration, it is possible to prevent the steam flowing in the first connection pipe 4 from excessively flowing into the third connection pipe 7. Thereby, most of the vapor evaporated in the evaporation unit 2 can be moved to the condensation unit 3. Thereby, the cooling function of the cooling device 1 can be maintained more reliably.
  • the evaporation unit 2 has a space 12 that can accommodate the refrigerant.
  • the first connecting pipe 4 communicates with the upper end portion of the space portion 12.
  • the second connection pipe 5 communicates with the lower end portion of the space portion 12.
  • the horizontal width W1 of the space portion 12 in the direction in which the heating elements H and the case 11 are arranged is smaller than the vertical width W2 of the space portion 12. That is, the evaporation unit 2 of the present embodiment is a vertical type evaporation unit. In the vertical type evaporation unit 2, since the area of the interface between the liquid phase and the gas phase is reduced inside the evaporation unit 2, the liquid refrigerant in the evaporation unit 2 is transferred to the first connection pipe 4 by the evaporated refrigerant.
  • the third connection pipe 7 of the present embodiment is particularly effective in the cooling device 1 having such a vertically placed evaporation unit 2.
  • the third connection pipe 7 of the present embodiment quickly causes the refrigerant pushed up into the first connection pipe 4 even in the cooling device 1 in which the horizontal width W1 of the space 12 is larger than the vertical width W2. By returning to the evaporation part 2, the fall of the cooling performance of the cooling device 1 can be suppressed.
  • the first connecting pipe 4 has an inner peripheral surface 21a extending upward.
  • the inner peripheral surface 21 a has an opening 21 b that opens in the radial direction of the first connection pipe 4 and is connected to the third connection pipe 7 at a position higher than the evaporation section 2.
  • FIG. 4 schematically shows the cooling device 1 of the first modification.
  • the position of the expansion tank 6 is different from that of the above embodiment.
  • the other configurations of the present modification are the same as the configurations of the above-described embodiment. Therefore, the description of the same part as the above embodiment is omitted.
  • the expansion tank 6 of this modification is connected to the first connection pipe 4.
  • the expansion tank 6 can expand according to the atmospheric pressure in the first connection pipe 4.
  • the connection position between the third connection pipe 7 and the first connection pipe 4 is a position lower than the connection position between the expansion tank 6 and the first connection pipe 4.
  • the liquid refrigerant pushed up into the first connection pipe 4 can flow into the third connection pipe 7 before reaching the expansion tank 6. For this reason, it can suppress that the liquid refrigerant pushed up in the 1st connection pipe 4 flows in into the expansion tank 6. FIG. Thereby, the expansion tank 6 can be functioned more reliably.
  • FIG. 5 schematically shows a cooling device 1 according to a second modification.
  • the shape of the third connecting pipe 7 is different from that of the above embodiment.
  • the other configurations of the present modification are the same as the configurations of the above-described embodiment. Therefore, the description of the same part as the above embodiment is omitted.
  • the third connection pipe 7 of the present modification is inclined obliquely with respect to the horizontal direction. More specifically, the connection position between the third connection pipe 7 and the first connection pipe 4 is higher than the connection position between the third connection pipe 7 and the second connection pipe 5.
  • the third connecting pipe 7 is inclined so as to be positioned downward as it proceeds from the first connecting pipe 4 toward the second connecting pipe 5.
  • the connection position between the third connection pipe 7 and the first connection pipe 4 is the maximum liquid level of the refrigerant in the second connection pipe 5 during the operation of the cooling device 1 as in the above embodiment. It is above the height H2max.
  • the liquid refrigerant that has flowed into the third connecting pipe 7 can flow into the second connecting pipe 5 more smoothly.
  • the fall of the cooling performance of the cooling device 1 can further be suppressed.
  • the third connection pipe 7 of this modification is inclined so as to be positioned downward as it proceeds from the first connection pipe 4 toward the second connection pipe 5, as in the second modification. is doing.
  • the connection position of the 3rd connection pipe 7 and the 1st connection pipe 4 is a position higher than the maximum liquid level height H2max of the refrigerant
  • the connection position between the third connection pipe 7 and the second connection pipe 5 is a position lower than the maximum liquid level height H2max of the refrigerant in the second connection pipe 5 during operation of the cooling device 1.
  • the connection position between the third connection pipe 7 and the second connection pipe 5 may be a position lower than the liquid level height H2 in the second connection pipe 5 when the cooling device 1 is stopped.
  • FIG. 7 schematically shows a cooling device 1 according to a fourth modification.
  • the configuration of the evaporation unit 2 is different from that of the above embodiment.
  • the other configurations of the present modification are the same as the configurations of the above-described embodiment. Therefore, the description of the same part as the above embodiment is omitted.
  • each case 11 is a vertically placed type case as in the above embodiment. That is, in each case 11, the horizontal width W ⁇ b> 1 of the space portion 12 in the direction in which the heating element H and the case 11 are arranged is smaller than the vertical width W ⁇ b> 2 of the space portion 12.
  • the first connection pipe 4 has a plurality of branch pipes 4 a divided into the same number as the plurality of cases 11. Each branch pipe 4 a communicates with the upper end of the space 12 of each case 11. The branch pipes 4a are connected to the plurality of cases 11 at substantially the same height.
  • the plurality of branch pipes 4 a are an example of “first end portions” of the first connection pipe 4.
  • the second connection pipe 5 has a plurality of branch pipes 5 b divided into the same number as the plurality of cases 11. Each branch pipe 5 b communicates with the lower end of the space 12 of each case 11.
  • the branch pipes 5b are connected to the plurality of cases 11 at substantially the same height.
  • the plurality of branch pipes 5 b are an example of “second end portions” of the second connection pipe 5.
  • the liquid level height H2 of the refrigerant in the second connection pipe 5 and the liquid level height H1 of the refrigerant in the first connection pipe 4 with respect to the space portion 12 of the plurality of cases 11 The same driving force based on the difference can be applied.
  • the refrigerant can cover the entire region of the heating element H even if the amount of the liquid refrigerant is reduced in the space 12 of the case 11. For this reason, when the case 11 is placed horizontally, the cooling performance is less likely to deteriorate due to the exhaustion of the refrigerant.
  • the evaporation unit 2 includes a plurality of cases 11, the installation area is reduced by arranging a plurality of horizontally placed cases 11 in the vertical direction.
  • the cooling device has an evaporation section, a condensing section, a first connection pipe, a second connection pipe, and a third connection pipe.
  • the refrigerant is vaporized by the heat generated by the heating element.
  • the condensing part is provided above the evaporation part, and the vaporized refrigerant is condensed by heat exchange with an external fluid.
  • the first connecting pipe has a first end communicating with the evaporation unit and a second end communicating with the condensing unit, and guides the refrigerant vaporized in the evaporating unit to the condensing unit.
  • H heating element, 1 ... cooling device, 2 ... evaporating part, 3 ... condensing part, 4 ... first connecting pipe, 5 ... second connecting pipe, 6 ... expansion tank, 7 ... third connecting pipe, 12 ... space part , W1... Horizontal width of the space portion, W2... Width of the space portion in the vertical direction, H2... Liquid level height of the refrigerant in the second connection pipe, H2max.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 実施形態の冷却装置は、蒸発部と、凝縮部と、第1接続管と、第2接続管と、第3接続管とを持つ。前記蒸発部は、発熱体が発する熱によって冷媒が気化する。前記凝縮部は、前記蒸発部よりも上方に設けられ、気化した前記冷媒が外部流体との熱交換によって凝縮する。前記第1接続管は、前記蒸発部で気化した前記冷媒を前記凝縮部へ導く。前記第2接続管は、前記凝縮部で凝縮した前記冷媒を前記蒸発部へ導く。前記第3接続管は、前記第1接続管の一部と前記第2接続管の一部とを接続し、当該第3接続管と前記第1接続管との接続位置は、運転時における前記第2接続管内の前記冷媒の最大液面高さよりも高い位置である。

Description

冷却装置
 本発明の実施形態は、冷却装置に関する。
 冷媒の気化熱を利用して発熱体を冷却する冷却装置が知られている。このような冷却装置は、発熱体が発する熱によって冷媒が気化する蒸発部と、気化した冷媒が凝縮する凝縮部と、蒸発部で気化した前記冷媒を前記凝縮部へ導く第1接続管と、前記凝縮部で凝縮した前記冷媒を前記蒸発部へ導く第2接続管と備える。
 ここで、前記第1接続管の直径は、設置スペースや配管コスト、またはその他の理由で十分に大きくできない場合がある。このような場合、前記蒸発部で気化した冷媒によって前記蒸発部内の液相の冷媒(以下、液冷媒という。)の一部が前記第1接続管及び前記凝縮部へ持ち出される現象が生じる。この現象が一定以上続くと、前記蒸発部で液冷媒が枯渇し、冷却装置の冷却低能が低下する場合があった。
日本国特開2012-241976号公報 日本国特開平11-193980号公報 日本国特表2007-513506号公報 日本国特表2008-527285号公報
 本発明が解決しようとする課題は、冷却効率の低下を抑制することができる冷却装置を提供することである。
 実施形態の冷却装置は、蒸発部と、凝縮部と、第1接続管と、第2接続管と、第3接続管とを持つ。前記蒸発部は、発熱体が発する熱によって冷媒が気化する。前記凝縮部は、前記蒸発部よりも上方に設けられ、気化した前記冷媒が外部流体との熱交換によって凝縮する。前記第1接続管は、前記蒸発部に連通する第1端部と、前記凝縮部に連通する第2端部とを有し、前記蒸発部で気化した前記冷媒を前記凝縮部へ導く。前記第2接続管は、前記凝縮部に連通する第1端部と、前記蒸発部に連通する第2端部とを有し、前記凝縮部で凝縮した前記冷媒を前記蒸発部へ導く。前記第3接続管は、前記第1接続管の前記第1端部と前記第2端部との間に位置する前記第1接続管の一部と前記第2接続管の前記第1端部と前記第2端部との間に位置する前記第2接続管の一部とを接続する。前記第3接続管は、該第3接続管と前記第1接続管との接続位置は、運転時における前記第2接続管内の前記冷媒の最大液面高さよりも高い位置である。
実施形態の冷却装置を模式的に示す断面図。 図1中に示された第3接続管と第1接続管との接続部を示す断面図。 図1中に示された冷却装置の停止時と運転時の様子を模式的に示す断面図。 図1中に示された冷却装置の第1の変形例を模式的に示す断面図。 図1中に示された冷却装置の第2の変形例を模式的に示す断面図。 図1中に示された冷却装置の第3の変形例を模式的に示す断面図。 図1中に示された冷却装置の第4の変形例を模式的に示す断面図。
 以下、実施形態の冷却装置を、図面を参照して説明する。
 まず、図1から図3を参照して、一つの実施形態の冷却装置1を説明する。
 図1は、冷却装置1の構成例を模式的に示す。図1に示すように、冷却装置1は、サーモサイホン式(二相サーモサイホン式)の冷却装置である。
 詳しく述べると、本実施形態の冷却装置1は、冷媒が気化する蒸発部2と、気化した冷媒が凝縮する凝縮部3と、蒸発部2で気化した冷媒を凝縮部3へ導く第1接続管4と、凝縮部3で凝縮した冷媒を蒸発部2へ導く第2接続管5と、第2接続管5に接続された膨張タンク6と、第1接続管4の一部と第2接続管5の一部とを接続した第3接続管7とを備える。
 まず、蒸発部2について説明する。
 蒸発部2は、ケース11と、このケース11の内部に設けられた空間部(貯留部、収容部)12とを有する。ケース11は、金属のような熱伝導性が良好な材料で形成される。
 ケース11は、冷却対象となる発熱体Hに熱的に接続される。例えば、ケース11は、発熱体Hに対して水平方向に並べられる。例えば、ケース11の表面(例えばケース11の側面11a)は、発熱体Hに接する。例えば、ケース11の側面11aは、発熱体Hの主面(面積が最も大きな面)と略同じ大きさに形成される。
 発熱体Hは、例えば板状の外形を有する。発熱体Hの一例は、放送局等で用いられる送信機から出力される放送用の無線信号を増幅させる電力増幅器である。なお、本実施形態の冷却装置1は、種々の発熱体Hに対して幅広く適用可能である。冷却装置1が適用可能な発熱体Hは、特に限定されない。
 空間部12は、冷媒を収容可能である。冷媒は、冷却装置1の停止時において、空間部12を十分に満たすように冷却装置1に入れられる。ここで、冷媒の種類は、特に限定されない。例えば、冷媒は、水よりも沸点が低い流体である。例えば、冷媒は、沸点が50℃程度の流体である。冷媒は、蒸発部2において、発熱体Hの発する熱を受け取る。これにより、冷媒は、蒸発部2において気化して蒸気になる。気化した冷媒は、空間部12から上方に向けて移動する。
 ここで、本実施形態のケース11は、発熱体Hと空間部12との間に隔壁11bを有する。このため、空間部12の冷媒は、ケース11の隔壁11bを介して発熱体Hから熱を受け取る。なお、ケース11は、発熱体Hに向けて開口した開口部を有してもよい。すなわち、空間部12内の冷媒は、ケース11の開口部を通じて発熱体Hに直接に接してもよい。
 図1に示すように、本実施形態の蒸発部2は、いわゆる縦置きタイプの蒸発部である。すなわち、ケース11と発熱体Hとが並ぶ方向における空間部12の水平方向の幅W1は、空間部12の鉛直方向の幅W2よりも小さい。
 次に、凝縮部3について説明する。
 凝縮部3は、複数の冷却管15と、この冷却管15に取り付けられた複数のフィン16と、冷却管15及びフィン16に向けて風を送るファン17とを有する。
 詳しく述べると、複数の冷却管15の各々は、鉛直方向に延びている。複数の冷却管15は、水平方向に並べられる。複数の冷却管15の入口は、ひとつに纏められる。同様に、複数の冷却管15の出口は、ひとつに纏められる。
 複数のフィン16は、それぞれ複数の冷却管15に取り付けられる。
 ファン17は、複数の冷却管15及び複数のフィン16に向けて風を送る。これにより、ファン17は、複数の冷却管15及び複数のフィン16を冷却する。
 凝縮部3は、蒸発部2よりも上方に設けられる。凝縮部3には、蒸発部2で気化した冷媒が流入する。凝縮部3に流入した冷媒は、複数の冷却管15に分かれて流入する。冷却管15に流入した冷媒は、冷却管15を通過する過程で、冷却管15及びフィン16を介して、外部流体(例えば空気)と熱交換することによって凝縮する。なお、凝縮部3は、上記構成に限定されない。凝縮部3は、例えばファン17を有しないもの(自然空冷によるもの)でもよい。
 次に、第1接続管4について説明する。
 第1接続管(蒸気管)4は、蒸発部2と凝縮部3との間に設けられ、蒸発部2と凝縮部3とを接続する。詳しく述べると、第1接続管4は、第1端部4aと、第2端部4bとを有する。第1接続管4の第1端部4aは、蒸発部2の上端部(ケース11の上端部)に接続され、蒸発部2に連通する。すなわち、第1接続管4は、蒸発部2の空間部12の上端部に連通する。第1接続管4の第2端部4bは、凝縮部3の上端部に接続され、凝縮部3に連通する。第1接続管4は、ひとつに纏められた複数の冷却管15の入口に連通する。第1接続管4には、蒸発部2で気化した冷媒が流入する。第1接続管4は、蒸発部2で気化した冷媒を凝縮部3へ導く。
 また、第1接続管4は、第1端部4aと、第2端部4bとの間に位置する部分4cを有する。第1接続管4の部分4cは、蒸発部2から上方に向けて延びた上昇配管部21を含む。上昇配管部21は、例えば略鉛直方向に延びている。上昇配管部21は、上方に向けて延びた内周面21aを有する。
 次に、第2接続管5について説明する。
 図1に示すように、第2接続管(液管)5は、凝縮部3と蒸発部2との間に設けられ、凝縮部3と蒸発部2とを接続する。詳しく述べると、第2接続管5は、第1端部5aと、第2端部5bとを有する。第2接続管5の第1端部5aは、凝縮部3の下端部に接続され、凝縮部3に連通する。第2接続管5は、ひとつに纏められた複数の冷却管15の出口に連通する。第2接続管5の第2端部5bは、蒸発部2の下端部に接続され、蒸発部2に連通する。すなわち、第2接続管5は、蒸発部2の空間部12の下端部に連通する。第2接続管5には、凝縮部3で凝縮した冷媒が流入する。第2接続管5は、凝縮部3で凝縮した冷媒を蒸発部2へ導く。
 また、第2接続管5は、第1端部5aと、第2端部5bとの間に位置する部分5cを有する。第2接続管5の部分5cは、凝縮部3から下方に向けて延びた下降配管部22を含む。下降配管部22は、例えば略鉛直方向に延びている。冷却装置1は、第2接続管5の下降配管部22と第1接続管4の上昇配管部21とが略平行に延びた部分Rを含む。
 ここで、本実施形態の冷却装置1は、サーモサイホン式の冷却装置である。すなわち、凝縮部3で凝縮した冷媒は、重力によって第2接続管5内に流入し、蒸発部2へ戻る。これにより、冷却装置1は、ポンプを有さずに、冷媒を循環させることができる。
 以上のように、冷却装置1は、上述の蒸発部2と凝縮部3との間で冷媒を循環させる。すなわち、冷却装置1は、蒸発部2で発熱体Hから冷媒に熱を移動させ、凝縮部3で冷媒から外部に熱を排出する。これにより、冷却装置1は、発熱体Hを冷却する。
 次に、膨張タンク6について説明する。
 膨張タンク6は、「タンク」の一例である。膨張タンク6は、気圧の変動によって伸縮可能な容器6aと、この容器6aの接続口を形成する導入管6bとを含む。
 本実施形態では、膨張タンク6は、第2接続管5に接続される。例えば、膨張タンク6は、第2接続管5の下降配管部22に接続される。
 膨張タンク6は、第2接続管5内の気圧に応じて膨張する。すなわち、膨張タンク6は、第2接続管5内の気圧がある基準値よりも高くなると膨らむ。一方で、膨張タンク6は、第2接続管5内の気圧が前記基準値よりも高い状態から前記基準値に向けて小さくなると縮む。これにより、膨張タンク6は、第2接続管5内の気圧の変動を抑える機能を持つ。
 図1に示すように、膨張タンク6と第2接続管5との接続位置は、凝縮部3よりも低い位置である。
 また、膨張タンク6と第2接続管5との接続位置は、第2接続管5内の冷媒の液面高さH2よりも高い位置である。より具体的には、膨張タンク6と第2接続管5との接続位置は、冷却装置1の運転時における第2接続管5内の冷媒の最大液面高さH2maxよりも高い位置である。これにより、膨張タンク6は、第2接続管5内の冷媒が最大液面高さH2maxに達する状態でも、第2接続管5内の気圧に応じて膨張または収縮することができる。なお、本願でいう「運転」とは、冷却装置1内において冷媒が気化と凝縮を通じて循環することを意味する。なお、冷媒の最大液面高さH2maxについては後述する。
 次に、第3接続管7について説明する。
 第3接続管(バイパス管)7は、第1接続管4と第2接続管5との間に設けられる。第3接続管7は、第1接続管4において第1端部4aと第2端部4bとの間に位置する部分4cと、第2接続管5において第1端部5aと第2端部5bとの間に位置する部分5cとを接続する。第3接続管7の一端部は、第1接続管4の上昇配管部21の一部に接続される。第3接続管7の他端部は、第2接続管5の下降配管部22の一部に接続される。
 第3接続管7は、例えば、上昇配管部21と下降配管部22とが略平行に並ぶ部分Rにおいて、上昇配管部21と下降配管部22とを接続する。本実施形態では、第3接続管7は、上昇配管部21と下降配管部22との間を、略水平方向に延びている。これにより、第3接続管7は、上昇配管部21と下降配管部22との間を最短距離で接続する。
 第1接続管4内には、蒸発部2で気化した冷媒によって、蒸発部2内の液冷媒の一部が押し上げられる場合がある。第3接続管7は、第1接続管4内に押し上げられた液冷媒の少なくとも一部を、第1接続管4から第2接続管5に流入させることができる。すなわち、第3接続管7は、第1接続管4内に押し上げられた液冷媒の少なくとも一部を、凝縮部3を経由する場合よりも速やかに第2接続管5に流入させることができる。第3接続管7を通って第2接続管5に流入した液冷媒は、第2接続管5から蒸発部2に戻ることができる。
 詳しく述べると、図2は、第3接続管7と第1接続管4との接続部を示す。図2に示すように、第1接続管4内に押し上げられた液冷媒は、冷媒蒸気が多いことから上昇配管部21の内周面21aに押しやられ、内周面21aに張り付きながら第1接続管4内を上昇する。
 本実施形態では、上昇配管部21の内周面21aには、第1接続管4の径方向に開口した開口部21bが設けられる。第3接続管7は、この開口部21bに接続される。
 上記のような開口部21bが上昇配管部21の内周面21aに設けられると、冷媒蒸気によって上昇配管部21の内周面21aに押しやられて内周面21aに張り付きながら上昇する液冷媒は、開口部21bに達することで第3接続管7内に押しやられる。これにより、液冷媒は、第3接続管7に入りやすくなる。
 次に、冷却装置1の停止時及び運転時の状態について説明する。
 図3は、冷却装置1の停止時と運転時の様子を模式的に示す。図3中の(a)は、冷却装置1の停止時の状態を示す。図3中の(b)は、冷却装置1の低出力運転時(発熱体Hの発熱量が比較的小さい時)の状態を示す。図3中の(c)は、冷却装置1の高出力運転時(発熱体Hの発熱量が比較的大きい時)の状態を示す。なお、図3中に示す第1接続管4の領域Nは、液冷媒の一部が存在するものの、ほとんど気泡で満たされているため液冷媒と見なされない領域である。
 図3中の(a)に示すように、停止時において、冷却装置1は、蒸発部2を十分に満たす量の冷媒を収納する。冷却装置1の停止時では、第2接続管5内の冷媒の液面高さH2と、第1接続管4内の冷媒の液面高さH1は、重力によってバランスが取れ、略同じ高さにある。
 図3中の(b)に示すように、冷却装置1の運転時の状態では、蒸発部2において冷媒が気化する。ただし、低出力運転時の冷媒の気化は、後述する高出力時運転時に比べて穏やかな状態である。このため、蒸発部2で気化した冷媒によって蒸発部2内の液冷媒が第1接続管4内の比較的高い位置まで押し上げられることはない。
 この低出力運転時の状態では、蒸発部2で気化した冷媒は、第1接続管4を通って凝縮部3に移動する。凝縮部3に移動した冷媒は、凝縮部3において凝縮する。凝縮した冷媒は、液冷媒として第2接続管5に流入する。第2接続管5に流入した液冷媒は、第2接続管5内に溜まる。その結果、第2接続管5の冷媒の液面高さH2は、冷却装置1の停止時に比べて高くなる。
 このとき、第1接続管4内の領域Nは、蒸発部2で気化した冷媒の気泡で占められる。このため、第1接続管4内の冷媒の実質的な液面高さH1は、冷却装置1の停止時に比べて低くなる。このため、第2接続管5内の冷媒の液面高さH2と第1接続管4内の冷媒の液面高さH1との違いによって、冷却装置1には、第2接続管5内の冷媒を蒸発部2に向けて移動させる駆動力が生じる。
 一方で、図3中の(c)に示すように、冷却装置1の高出力運転時の状態では、蒸発部2において冷媒の気化が活発になる。このため、蒸発部2で気化した冷媒によって、蒸発部2内の液冷媒の一部が第1接続管4内の高い位置まで押し上げられる。第1接続管4内に押し上げられた液冷媒の一部は、凝縮部3に至る。
 また、蒸発部2における冷媒の気化が活発になると、より多くの蒸気が蒸発部2から凝縮部3に移動する。そしてこれら蒸気は、凝縮部3で凝縮されて、第2接続管5に流入する。このため、第2接続管5に流入する液冷媒の量が増える。その結果、第2接続管5内の冷媒の液面高さH2は、冷却装置1の低出力運転時の場合に比べて高くなることが多い。本実施形態の冷却装置1では、冷却装置1の最高出力運転時の状態で、第2接続管5内の冷媒の液面高さH2が最大液面高さH2maxとなる。
 以上のような構成の冷却装置1によれば、冷却性能の低下を抑制することができる。
 すなわち、冷却装置1において第1接続管4が十分に太ければ、蒸発部2で気化した蒸気によって蒸発部2内の液冷媒が第1接続管4内に押し上げられることは少ない。
 ただし、第1接続管4の直径は、設置スペースや配管コスト、またはその他の理由で十分に大きくできない場合がある。このような場合、蒸発部2で気化した蒸気によって蒸発部2内の液冷媒の一部が第1接続管4及び凝縮部3へ持ち出される現象が生じる。この現象が一定以上続くと、蒸発部2で液冷媒が枯渇し、冷却装置1の冷却低能が低下する場合がある。例えば、蒸発部2で液冷媒が枯渇すると、蒸発部2の温度が冷媒の沸点を越えて上昇し続けることになる。
 この現象を解決するために、蒸発部2に気液分離構造を設けることが考えられる。しかしながら、蒸発部2に気液分離構造を設けると、蒸発部2の寸法の大型化、構造の複雑化、及び圧力損失の増加を生じる。
 そこで、本実施形態の冷却装置1は、以下の構成を有する。すなわち本実施形態の冷却装置1は、蒸発部2と、凝縮部3と、第1接続管4と、第2接続管5と、第3接続管7とを有する。蒸発部2は、発熱体Hが発する熱によって冷媒が気化する。凝縮部3は、蒸発部2よりも上方に設けられ、気化した冷媒が外部流体との熱交換によって凝縮する。第1接続管4は、蒸発部2で気化した冷媒を凝縮部3へ導く。第2接続管5は、凝縮部3で凝縮した冷媒を蒸発部2へ導く。第3接続管7は、第1接続管4の部分4cと第2接続管5の部分5cとを接続する。
 このような構成によれば、蒸発部2で気化した冷媒によって第1接続管4内に押し上げられた液冷媒の少なくとも一部を、第3接続管7を通じて、第2接続管5に流入させることができる。これにより、第1接続管4内に押し上げられた液冷媒を速やかに蒸発部2に戻すことができる。これにより、蒸発部2において液冷媒が枯渇することを抑制することができる。これにより、気液分離構造を設けることなく、冷却装置1の冷却性能の低下を抑制することができる。
 特に本実施形態では、第3接続管7と第1接続管4との接続位置は、冷却装置1の運転時における第2接続管5内の最大液面高さH2maxよりも高い位置である。このような構成によれば、第2接続管5内で液冷媒が最大液面高さH2maxに達する場合でも、第2接続管5内の液冷媒が第3接続管7を通って第1接続管4に逆流することを抑制することができる。これにより、液冷媒を第2接続管5から蒸発部2により確実に戻すことができる。これにより、冷却装置1の冷却性能の低下をさらに抑制することができる。
 ここで、第3接続管7と第2接続管5との接続位置は、図6に示す変形例のように、第2接続管5内の冷媒の液面高さH2よりも低い位置でもよい。このような構成においても、第1接続管4内に押し上げられた液冷媒の少なくとも一部を第3接続管7によって蒸発部2に戻すことができる。
 しかしながらこのような構成では、凝縮部3で凝縮して第2接続管5内に溜まる液冷媒の一部が、第2接続管5から第3接続管7内にも流入する。このため、凝縮部3で凝縮した液冷媒が第2接続管5内のみに溜まる場合に比べて、第2接続管5内の冷媒の液面高さH2が高くなりにくい。その結果、冷却装置1内で冷媒を循環させる駆動力が大きくなりにくい。
 そこで本実施形態では、第3接続管7と第2接続管5との接続位置は、少なくとも冷却装置1の停止時における第2接続管5内の冷媒の液面高さH2よりも高い位置である。これにより、凝縮部3で凝縮して第2接続管5内に溜まる液冷媒は、少なくとも第2接続管5内の液面高さH2が第3接続管7と第2接続管5との接続位置に達するまで、第3接続管7に流入しない。このため、第2接続管5内には、比較的高い位置まで液冷媒が溜まりやすい。このため、冷却装置1内で冷媒を循環させる駆動力を高めることができる。これにより、さらに効率的に液冷媒を蒸発部2に戻すことができる。その結果、冷却装置1の冷却性能の低下をさらに抑制することができる。
 なお本実施形態では、第3接続管7と第2接続管5との接続位置は、冷却装置1の運転時における第2接続管5内の冷媒の最大液面高さH2maxよりも高い位置である。これにより、第2接続管5内には、さらに高い位置まで液冷媒が溜まりやすくなる。これにより、冷却装置1内で冷媒を循環させる駆動力をさらに高めることができる。その結果、冷却装置1の冷却性能の低下をさらに抑制することができる。
 次に、凝縮部3に対する第3接続管7の位置について説明する。
 ここで、第3接続管7と第2接続管5との接続位置が凝縮部3と同程度または凝縮部3よりも高い位置にあると、第3接続管7から第2接続管5に流入する液冷媒が、第2接続管5から凝縮部3に流入する可能性がある。凝縮部3に液冷媒が流入すると、蒸気を凝縮させる凝縮部3の機能が低下する可能性がある。
 一方で、本実施形態では、第3接続管7と第2接続管5との接続位置は、凝縮部3よりも低い位置である。このような構成によれば、第3接続管7から第2接続管5に流入する液冷媒が、凝縮部3に逆流することを抑制することができる。
 また、第3接続管7と第1接続管4との接続位置は、凝縮部3と同程度または凝縮部3よりも高い位置でもよい。このような構成においても、第1接続管4内に押し上げられた液冷媒の少なくとも一部を第2接続管5に流入させることができる。このため上記構成によっても、冷却装置1の冷却性能の低下を抑制することができる。
 しかしながらこの場合、蒸発部2と第3接続管7との距離が比較的大きく離れる。このため、第1接続管4内に押し上げられた液冷媒を蒸発部2に戻すのに時間が掛かる可能性がある。この場合、蒸発部2で液冷媒が枯渇しないように、冷却装置1の設置時に入れる冷媒の量を増やす必要がある。このため、冷却装置1の大型化を招く場合がある。
 そこで本実施形態では、第3接続管7と第1接続管4との接続位置は、凝縮部3よりも低い位置である。このような構成によれば、第1接続管4内に押し上げられた冷媒を速やかに蒸発部2に戻すことができる。これにより、冷却装置1の設置時に入れる必要がある冷媒の量を減らすことができる。これにより、冷却装置1の小型化を図ることができる。
 ここで、膨張タンク6に対する第3接続管7の位置について説明する。
 仮に、第3接続管7と第2接続管5と接続位置が、第2接続管5と膨張タンク6との接続位置と同程度またはそれよりも高い位置にあると、第3接続管7から第2接続管5に流入する液冷媒が、第2接続管5から膨張タンク6に流入する可能性がある。液冷媒が膨張タンク6に流入すると、第2接続管5内の気圧の変動を抑える膨張タンク6の動作が弱まる可能性がある。
 一方で、本実施形態では、第3接続管7と第2接続管5との接続位置は、第2接続管5と膨張タンク6との接続位置よりも低い位置にある。この構成によれば、第3接続管7から第2接続管5に流入する液冷媒が、第2接続管5から膨張タンク6に流入することを抑制することができる。これにより、膨張タンク6をより確実に機能させることができる。
 なお、膨張タンク6として、液冷媒が流入することで圧力変動を吸収する膨張タンクが採用される場合は、膨張タンク6は、第3接続管7よりも下方に設けられてもよい。
 本実施形態では、第3接続管7の内径は、蒸発部2の温度が冷媒の沸点を越えて上昇し続けない最小内径以上である。このような構成によれば、第1接続管4内に押し上げられた液冷媒のうち、蒸発部2において液冷媒が枯渇しないための十分な量の液冷媒を第2接続管5に流入させることができる。これにより、冷却装置1の冷却性能の低下をさらに抑制することができる。
 本実施形態では、第3接続管7の内径は、気化した冷媒が第3接続管7内で連続相を成さない最大内径以下である。このような構成によれば、第1接続管4内を流れる蒸気が過度に第3接続管7に流入しないようにすることができる。これにより、蒸発部2で気化した蒸気の大部分を凝縮部3に移動させることができる。これにより、冷却装置1の冷却機能をより確実に保つことができる。
 本実施形態では、蒸発部2は、冷媒を収容可能な空間部12を有する。第1接続管4は、空間部12の上端部に連通する。第2接続管5は、空間部12の下端部に連通する。発熱体Hとケース11とが並ぶ方向における空間部12の水平方向の幅W1は、空間部12の鉛直方向の幅W2よりも小さい。すなわち、本実施形態の蒸発部2は、縦置きタイプの蒸発部である。
 このような縦置きタイプの蒸発部2では、蒸発部2の内部において液相と気相の界面の面積が小さくなるため、気化した冷媒によって蒸発部2内の液冷媒が第1接続管4に持ち出されやすい。すなわち本実施形態の第3接続管7は、このような縦置きタイプの蒸発部2を有する冷却装置1において特に有効であると言える。ただし、本実施形態の第3接続管7は、空間部12の水平方向の幅W1が鉛直方向の幅W2よりも大きな冷却装置1においても、第1接続管4内に押し上げられた冷媒を速やかに蒸発部2に戻すことで、冷却装置1の冷却性能の低下を抑制することができる。
 本実施形態では、第1接続管4は、上方に向けて延びた内周面21aを有する。この内周面21aは、蒸発部2よりも高い位置に、第1接続管4の径方向に開口して第3接続管7に接続される開口部21bを有する。
 このような構成によれば、冷媒蒸気が多いことから上昇配管部21の内周面21aに押しやられて内周面21aに張り付きながら第1接続管4内を上昇する液冷媒は、開口部21bに達することで第3接続管7内に押しやられる。これにより、液冷媒が第3接続管7に流入しやすくなる。
 次に、上記の実施形態のいくつかの変形例について説明する。なお、以下の変形例において、上記の実施形態と同一または類似する構成には、同一の符号を付す。
 (第1の変形例)
 図4は、第1の変形例の冷却装置1を模式的に示す。本変形例は、膨張タンク6の位置が上記の実施形態とは異なる。なお本変形例のその他の構成は、上記の実施形態の構成と同様である。そのため、上記の実施形態と同様の部分の説明は省略する。
 図4に示すように、本変形例の膨張タンク6は、第1接続管4に接続される。膨張タンク6は、第1接続管4内の気圧に応じて膨張可能である。
 第3接続管7と第1接続管4との接続位置は、膨張タンク6と第1接続管4との接続位置よりも低い位置である。
 このような構成によれば、第1接続管4内に押し上げられる液冷媒が膨張タンク6に達する前に、その液冷媒を第3接続管7に流入させることができる。このため、第1接続管4内に押し上げられる液冷媒が、膨張タンク6に流入することを抑制することができる。これにより、膨張タンク6をより確実に機能させることができる。
 (第2の変形例)
 図5は、第2の変形例の冷却装置1を模式的に示す。本変形例は、第3接続管7の形状が上記の実施形態とは異なる。なお本変形例のその他の構成は、上記の実施形態の構成と同様である。そのため、上記の実施形態と同様の部分の説明は省略する。
 図5に示すように、本変形例の第3接続管7は、水平方向に対して斜めに傾斜する。詳しく述べると、第3接続管7と第1接続管4との接続位置は、第3接続管7と第2接続管5との接続位置よりも高い。第3接続管7は、第1接続管4から第2接続管5に向けて進むに従い下方に位置するように傾斜している。ただし本変形例では、第3接続管7と第1接続管4との接続位置は、上記の実施形態と同様に、冷却装置1の運転時における第2接続管5内の冷媒の最大液面高さH2maxよりも上方である。
 このような構成によれば、第3接続管7に流入した液冷媒を、よりスムーズに第2接続管5に流入させることができる。また上記の構成によれば、第2接続管5内の冷媒が第3接続管7を通って第1接続管4に逆流しにくくなる。このため上記の構成によれば、冷却装置1の冷却性能の低下をさらに抑制することができる。
 (第3の変形例)
 図6は、第3の変形例の冷却装置1を模式的に示す。本変形例は、第3接続管7と第2接続管5との接続位置が第2接続管5内の冷媒の液面高さH2よりも下方に位置する点で上記の第2の変形例とは異なる。なお本変形例のその他の構成は、上記の第2の変形例の構成と同様である。そのため、上記の実施形態及び第2の変形例と同様の部分の説明は省略する。
 図6に示すように、本変形例の第3接続管7は、第2の変形例と同様に、第1接続管4から第2接続管5に向けて進むに従い下方に位置するように傾斜している。
 第3接続管7と第1接続管4との接続位置は、上記の実施形態と同様に、運転時における第2接続管5内の冷媒の最大液面高さH2maxよりも高い位置である。
 一方で、第3接続管7と第2接続管5との接続位置は、冷却装置1の運転時における第2接続管5内の冷媒の最大液面高さH2maxよりも低い位置である。なお、第3接続管7と第2接続管5との接続位置は、冷却装置1の停止時における第2接続管5内の液面高さH2よりも低い位置でもよい。
 このような構成によっても、第2の変形例と同様に、第1接続管4内に押し上げられた液冷媒を第3接続管7及び第2接続管5を通じて蒸発部2に戻すことができる。このため、上記の構成によっても、冷却装置1の冷却性能の低下を抑制することができる。
 (第4の変形例)
 図7は、第4の変形例の冷却装置1を模式的に示す。本変形例は、蒸発部2の構成が上記の実施形態とは異なる。なお本変形例のその他の構成は、上記の実施形態の構成と同様である。そのため、上記の実施形態と同様の部分の説明は省略する。
 図7に示すように、本変形例では、複数の発熱体Hが存在する。蒸発部2は、複数の発熱体Hと水平方向に交互に配置可能な複数のケース11を有する。各ケース11は、それぞれ発熱体Hに熱的に接続される。各ケース11は、空間部12を有する。
 図7に示すように、各ケース11は、上記の実施形態と同様に、縦置きタイプのケースである。すなわち、各ケース11において、発熱体Hとケース11とが並ぶ方向における空間部12の水平方向の幅W1は、空間部12の鉛直方向の幅W2よりも小さい。
 第1接続管4は、複数のケース11と同数に分かれた複数の分岐配管4aを有する。各分岐配管4aは、各ケース11の空間部12の上端部に連通する。分岐配管4aは、複数のケース11に対して、互いに略同じ高さで接続される。複数の分岐配管4aは、第1接続管4の「第1端部」の一例である。
 同様に、第2接続管5は、複数のケース11と同数に分かれた複数の分岐配管5bを有する。各分岐配管5bは、各ケース11の空間部12の下端部に連通する。分岐配管5bは、複数のケース11に対して、互いに略同じ高さで接続される。複数の分岐配管5bは、第2接続管5の「第2端部」の一例である。
 このような構成によれば、複数のケース11の空間部12に対して、第2接続管5内の冷媒の液面高さH2と第1接続管4内の冷媒の液面高さH1との違いに基づく同一の駆動力を作用させることができる。
 このような構成によっても、上記の実施形態と同様に、冷却装置1の冷却性能の低下を抑制することができる。
 ここで、発熱体H及びケース11を水平に寝かせ、発熱体Hの上にケース11を載せる場合(いわゆる横置きの場合)を考える。この場合、ケース11の空間部12において液冷媒の量が少なくなっても、発熱体Hの全領域を冷媒が覆うことができる。このため、ケース11を横置きにすると、冷媒枯渇による冷却性能の低下が生じにくくなる。
 ここで、蒸発部2が複数のケース11を有する場合、複数の横置きのケース11を鉛直方向に並べると、設置面積は小さくなる。しかしながら、複数の横置きのケース11を略鉛直方向に並べると、各ケース11に供給される液冷媒の駆動力に差が生じるため、各ケース11の冷却性能が不均一になる。
 一方で、複数の横置きのケース11を水平方向に並べると、各ケース11の冷却性能は均一になるが、設置面積が大きくなる。
 そこで、本変形例では、複数のケース11を縦置きにすることで、各ケース11の冷却性能の均一化と、設置面積の縮小とを同時に実現している。さらに本変形例では、第3接続管7を設けることで、冷媒枯渇による冷却性能の低下を抑制することができる。これにより、小型で且つ優れた性能を発揮可能な冷却装置1を提供することができる。
 以上説明した少なくとも一つの実施形態によれば、冷却装置は、蒸発部と、凝縮部と、第1接続管と、第2接続管と、第3接続管とを持つ。前記蒸発部は、発熱体が発する熱によって冷媒が気化する。前記凝縮部は、前記蒸発部よりも上方に設けられ、気化した前記冷媒が外部流体との熱交換によって凝縮する。前記第1接続管は、前記蒸発部に連通する第1端部と、前記凝縮部に連通する第2端部とを有し、前記蒸発部で気化した前記冷媒を前記凝縮部へ導く。前記第2接続管は、前記凝縮部に連通する第1端部と、前記蒸発部に連通する第2端部とを有し、前記凝縮部で凝縮した前記冷媒を前記蒸発部へ導く。前記第3接続管は、前記第1接続管の前記第1端部と前記第2端部との間に位置する前記第1接続管の一部と前記第2接続管の前記第1端部と前記第2端部との間に位置する前記第2接続管の一部とを接続する。前記第3接続管は、該第3接続管と前記第1接続管との接続位置は、運転時における前記第2接続管内の前記冷媒の最大液面高さよりも高い位置である。このような構成によれば、冷却装置の冷却性能の低下を抑制することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 H…発熱体、1…冷却装置、2…蒸発部、3…凝縮部、4…第1接続管、5…第2接続管、6…膨張タンク、7…第3接続管、12…空間部、W1…空間部の水平方向の幅、W2…空間部の鉛直方向の幅、H2…第2接続管内の冷媒の液面高さ、H2max…第2接続管内の冷媒の最大液面高さ。

Claims (8)

  1.  発熱体が発する熱によって冷媒が気化する蒸発部と、
     前記蒸発部よりも上方に設けられ、気化した前記冷媒が外部流体との熱交換によって凝縮する凝縮部と、
     前記蒸発部に連通する第1端部と、前記凝縮部に連通する第2端部とを有し、前記蒸発部で気化した前記冷媒を前記凝縮部へ導く第1接続管と、
     前記凝縮部に連通する第1端部と、前記蒸発部に連通する第2端部とを有し、前記凝縮部で凝縮した前記冷媒を前記蒸発部へ導く第2接続管と、
     前記第1接続管の前記第1端部と前記第2端部との間に位置する前記第1接続管の一部と前記第2接続管の前記第1端部と前記第2端部との間に位置する前記第2接続管の一部とを接続し、該第3接続管と前記第1接続管との接続位置は、該冷却装置の運転時における前記第2接続管内の前記冷媒の最大液面高さよりも高い位置である第3接続管と
     を備える冷却装置。
  2.  前記第3接続管と前記第2接続管との接続位置は、該冷却装置の停止時における前記第2接続管内の前記冷媒の液面高さよりも高い位置である
     請求項1に記載の冷却装置。
  3.  前記第3接続管と前記第2接続管との接続位置は、該冷却装置の運転時における前記第2接続管内の前記冷媒の最大液面高さよりも高い位置である
     請求項2に記載の冷却装置。
  4.  前記第3接続管と前記第2接続管との接続位置は、前記凝縮部よりも低い位置である
     請求項1に記載の冷却装置。
  5.  前記凝縮部よりも低い位置で前記第2接続管に接続され、前記第2接続管内の気圧に応じて膨張可能なタンクをさらに備え、
     前記第3接続管と前記第2接続管との接続位置は、前記タンクと前記第2接続管との接続位置よりも低い位置である
     請求項1に記載の冷却装置。
  6.  前記第3接続管の内径は、前記蒸発部の温度が前記冷媒の沸点を越えて上昇し続けない最小内径以上である
     請求項1に記載の冷却装置。
  7.  前記第3接続管の内径は、気化した前記冷媒が前記第3接続管内で連続相を成さない最大内径以下である
     請求項1に記載の冷却装置。
  8.  前記発熱体を含む複数の発熱体を備え、
     前記蒸発部は、前記複数の発熱体と水平方向に交互に配置可能な複数のケースを有し、前記複数のケースの各々は、前記冷媒を収容可能な空間部を含み、
     前記第1接続管は、前記複数のケースの前記空間部の上端部に連通し、
     前記第2接続管は、前記複数のケースの前記空間部の下端部に連通し、
     前記複数のケースの各々において、前記発熱体と前記複数のケースとが並ぶ方向における前記空間部の水平方向の幅は、前記空間部の鉛直方向の幅よりも小さい
     請求項1に記載の冷却装置。
PCT/JP2015/085034 2015-03-06 2015-12-15 冷却装置 WO2016143213A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580077379.9A CN107532859A (zh) 2015-03-06 2015-12-15 冷却装置
US15/695,468 US10845127B2 (en) 2015-03-06 2017-09-05 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-045166 2015-03-06
JP2015045166A JP6605819B2 (ja) 2015-03-06 2015-03-06 冷却装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/695,468 Continuation US10845127B2 (en) 2015-03-06 2017-09-05 Cooling device

Publications (1)

Publication Number Publication Date
WO2016143213A1 true WO2016143213A1 (ja) 2016-09-15

Family

ID=56876738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085034 WO2016143213A1 (ja) 2015-03-06 2015-12-15 冷却装置

Country Status (4)

Country Link
US (1) US10845127B2 (ja)
JP (1) JP6605819B2 (ja)
CN (1) CN107532859A (ja)
WO (1) WO2016143213A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904704B2 (ja) * 2014-08-27 2021-07-21 日本電気株式会社 相変化冷却装置および相変化冷却方法
WO2017051531A1 (ja) * 2015-09-25 2017-03-30 日本電気株式会社 相変化冷却装置およびその制御方法
US10260819B2 (en) * 2016-07-26 2019-04-16 Tokitae Llc Thermosiphons for use with temperature-regulated storage devices
JP6601567B2 (ja) * 2016-09-09 2019-11-06 株式会社デンソー 機器温調装置
CN109690222B (zh) * 2016-09-09 2020-07-03 株式会社电装 设备温度调节装置
US20210280925A1 (en) * 2016-09-09 2021-09-09 Denso Corporation Device temperature regulator
US20190277572A1 (en) * 2016-09-21 2019-09-12 Nec Corporation Phase-change cooling apparatus and phase-change cooling method
JP6784279B2 (ja) * 2017-08-21 2020-11-11 株式会社デンソー 機器温調装置
JP2019052794A (ja) 2017-09-14 2019-04-04 株式会社東芝 熱輸送装置
JP2019082273A (ja) * 2017-10-30 2019-05-30 下田 一喜 冷却システム
CN111163610B (zh) * 2018-11-07 2021-08-10 英业达科技有限公司 冷却装置
US11525636B2 (en) * 2019-03-20 2022-12-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method and system for stabilizing loop heat pipe operation with a controllable condenser bypass
US11191190B2 (en) * 2020-03-31 2021-11-30 GM Cruise Holdings, LLC Two-phase cooling systems for autonomous driving super computers
CN112736046B (zh) * 2020-12-11 2024-03-22 杭州电子科技大学 一种集成芯片散热装置及其散热方法
US11650015B2 (en) 2021-08-09 2023-05-16 Aavid Thermalloy, Llc Method and apparatus for thermosiphon device
US11943904B2 (en) 2022-05-31 2024-03-26 GE Grid GmbH Hybrid thermosyphon with immersion cooled evaporator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131876A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Constant pressure type boiling cooler
JPS5681597U (ja) * 1979-11-26 1981-07-01
JPS6179773U (ja) * 1984-10-29 1986-05-28
JPH0323604U (ja) * 1989-07-17 1991-03-12
JPH09273876A (ja) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk 自然循環ループを備えた冷房装置
JP2003318342A (ja) * 2002-04-26 2003-11-07 Japan Science & Technology Corp 沸騰冷却方法および装置
US20040037045A1 (en) * 2002-08-14 2004-02-26 Phillips Alfred L. Thermal bus for electronics systems
WO2012144123A1 (ja) * 2011-04-22 2012-10-26 パナソニック株式会社 冷却装置およびこれを搭載した電気自動車
JP2014154683A (ja) * 2013-02-07 2014-08-25 Toshiba Corp 冷却装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US958795A (en) * 1909-12-02 1910-05-24 Art Metal Construction Co Door-frame.
JPS51116447A (en) * 1975-04-07 1976-10-13 Hitachi Ltd A heat conducting device
JPS53122161A (en) * 1977-03-31 1978-10-25 Hitachi Ltd Boiling cooler
JPS5430552A (en) * 1977-08-12 1979-03-07 Hitachi Ltd Boiling cooling apparatus
JPS5651848A (en) * 1979-10-05 1981-05-09 Hitachi Ltd Condenser for boiling type cooling device
JPS56135949A (en) * 1980-03-28 1981-10-23 Hitachi Ltd Cooling device by boiling
SU958795A2 (ru) * 1981-02-02 1982-09-15 Киевский Ордена Ленина Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Отопительный радиатор
JPS5994445A (ja) * 1982-11-20 1984-05-31 Mitsubishi Electric Corp 自然循環式沸騰冷却装置
JP3908369B2 (ja) 1997-12-29 2007-04-25 株式会社フジクラ 熱駆動型冷却装置
JPH11325766A (ja) * 1998-05-20 1999-11-26 Denso Corp 沸騰冷却装置
CN1330922C (zh) * 2002-01-22 2007-08-08 汉尼·迪那 具有泵辅助的热管回路
US7823629B2 (en) * 2003-03-20 2010-11-02 Thermal Corp. Capillary assisted loop thermosiphon apparatus
JP4524289B2 (ja) 2003-12-08 2010-08-11 ノイズ リミット エーピーエス バブルポンプを有する冷却システム
RU2007129729A (ru) 2005-01-03 2009-02-10 НОЙЗ ЛИМИТ АпС (DK) Многоориентационная система охлаждения с пузырьковым насосом
JP2007333293A (ja) * 2006-06-14 2007-12-27 Denso Corp ループ式ヒートパイプ
CN1995896A (zh) * 2007-01-08 2007-07-11 刘海云 两维循环重力热管
JP2012241976A (ja) 2011-05-19 2012-12-10 Fujikura Ltd ループ型ヒートパイプ
EP2703763A1 (en) * 2012-09-03 2014-03-05 ABB Technology AG Evaporator with integrated pre-heater for power electronics cooling
CN103968573A (zh) * 2013-01-28 2014-08-06 大厂菲斯曼太阳能集热器有限公司 一种真空式太阳能热水***的热传输方法、***及其制造方法
FR3002028B1 (fr) * 2013-02-14 2017-06-02 Euro Heat Pipes Dispositif de transport de chaleur a fluide diphasique

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131876A (en) * 1978-04-05 1979-10-13 Hitachi Ltd Constant pressure type boiling cooler
JPS5681597U (ja) * 1979-11-26 1981-07-01
JPS6179773U (ja) * 1984-10-29 1986-05-28
JPH0323604U (ja) * 1989-07-17 1991-03-12
JPH09273876A (ja) * 1996-04-08 1997-10-21 Mitsubishi Denki Bill Techno Service Kk 自然循環ループを備えた冷房装置
JP2003318342A (ja) * 2002-04-26 2003-11-07 Japan Science & Technology Corp 沸騰冷却方法および装置
US20040037045A1 (en) * 2002-08-14 2004-02-26 Phillips Alfred L. Thermal bus for electronics systems
WO2012144123A1 (ja) * 2011-04-22 2012-10-26 パナソニック株式会社 冷却装置およびこれを搭載した電気自動車
JP2014154683A (ja) * 2013-02-07 2014-08-25 Toshiba Corp 冷却装置

Also Published As

Publication number Publication date
JP6605819B2 (ja) 2019-11-13
US20170363365A1 (en) 2017-12-21
US10845127B2 (en) 2020-11-24
CN107532859A (zh) 2018-01-02
JP2016164478A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6605819B2 (ja) 冷却装置
JP6423221B2 (ja) 蒸発器及び冷凍機
JP6137167B2 (ja) 冷却装置および冷却システム
CN107850359B (zh) 蒸发器及具备该蒸发器的涡轮制冷装置
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
JP6927229B2 (ja) 相変化冷却装置および相変化冷却方法
US9903659B2 (en) Low pressure chiller
JP2012241976A (ja) ループ型ヒートパイプ
CN105650927A (zh) 装置
WO2014007354A1 (ja) 沸騰冷却装置
KR102266037B1 (ko) 수동 2-상 쿨링 회로
WO2017110740A1 (ja) 放熱装置、それを用いた相変化冷却装置、および放熱方法
JP2010236792A (ja) 沸騰冷却装置
WO2017208558A1 (ja) 熱交換器
JP2011142298A (ja) 沸騰冷却装置
JP2010050326A (ja) 冷却装置
JP6597074B2 (ja) 冷却システム
US10631434B2 (en) Self-priming thermosyphon
JP2016133287A (ja) ループ型ヒートパイプ
WO2017082127A1 (ja) 電子機器の冷却装置
JP6801665B2 (ja) 相変化冷却装置およびその制御方法
WO2018164085A1 (ja) 冷却装置及び気液分離タンク
JP2012220081A (ja) 凝縮器、及びこれを備えた凝縮システム
JP2010223463A (ja) 沸騰冷却装置
JP2015064141A (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884697

Country of ref document: EP

Kind code of ref document: A1