JP2019052794A - 熱輸送装置 - Google Patents

熱輸送装置 Download PDF

Info

Publication number
JP2019052794A
JP2019052794A JP2017176967A JP2017176967A JP2019052794A JP 2019052794 A JP2019052794 A JP 2019052794A JP 2017176967 A JP2017176967 A JP 2017176967A JP 2017176967 A JP2017176967 A JP 2017176967A JP 2019052794 A JP2019052794 A JP 2019052794A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
heat
cooling unit
heat transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017176967A
Other languages
English (en)
Inventor
卓也 本郷
Takuya Hongo
卓也 本郷
礼 木村
Rei Kimura
礼 木村
高松 伴直
Tomonao Takamatsu
伴直 高松
智香子 岩城
Chikako Iwaki
智香子 岩城
英樹 堀江
Hideki Horie
英樹 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017176967A priority Critical patent/JP2019052794A/ja
Priority to US15/893,811 priority patent/US10677502B2/en
Publication of JP2019052794A publication Critical patent/JP2019052794A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0258Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with means to remove contaminants, e.g. getters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

【課題】例えば、凝縮部において冷媒の固化が抑制される構成のようなより不都合の少ない新規な構成を有した熱輸送装置を得る。【解決手段】実施形態の熱輸送装置は、例えば、蒸発部と、冷却部と、流路構造と、加熱機構と、を備えている。蒸発部は、発熱体が生じた熱によって冷媒を気化させる。冷却部は、蒸発部よりも上方に設けられ、蒸発部で気化した冷媒を冷却して凝縮させる。流路構造は、蒸発部と冷却部との間で冷媒が循環する流路を構成する。加熱機構は、冷却部を加熱し冷却部における冷媒の凝固を抑制する。【選択図】図1

Description

本発明の実施形態は、熱輸送装置に関する。
従来、冷媒を介して熱を輸送する二相熱サイホンなどの熱輸送装置が知られている。
特表2011−530713号公報
この種の熱輸送装置では、より不都合の少ない新規な構成が得られれば、有益である。
実施形態の熱輸送装置は、例えば、蒸発部と、冷却部と、流路構造と、加熱機構と、を備えている。蒸発部は、発熱体が生じた熱によって冷媒を気化させる。冷却部は、蒸発部よりも上方に設けられ、蒸発部で気化した冷媒を冷却して凝縮させる。流路構造は、蒸発部と冷却部との間で冷媒が循環する流路を構成する。加熱機構は、冷却部を加熱し冷却部における冷媒の凝固を抑制する。
図1は、第1実施形態の熱輸送装置を示す例示的かつ模式的な断面図である。 図2は、第1実施形態の熱輸送装置を示す例示的かつ模式的な断面図であり、熱輸送装置の稼動開始当初の状態を示す図である。 図3は、第1実施形態の熱輸送装置を示す例示的かつ模式的な断面図であり、熱輸送装置の稼動中の状態を示す図である。 図4は、第2実施形態の熱輸送装置を示す例示的かつ模式的な断面図であり、熱輸送装置の稼動を停止した状態を示す図である。 図5は、第3実施形態の熱輸送装置を示す例示的かつ模式的な断面図であり、熱輸送装置の稼動を停止した状態を示す図である。 図6は、第4実施形態の熱輸送装置を示す例示的かつ模式的な断面図であり、第1流路および第2流路の内方にガスを供給している状態を示す図である。 図7は、第4実施形態の熱輸送装置の制御回路を示す例示的かつ模式的なブロック図である。 図8は、第4実施形態の熱輸送装置の作動手順を示す例示的かつ模式的なフローチャートである。 図9は、第5実施形態の熱輸送装置を示す例示的かつ模式的な断面図である。
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。
また、以下に開示される複数の実施形態には、同様の構成要素が含まれる。よって、以下では、それら同様の構成要素には共通の符号が付与されるとともに、重複する説明が省略される。
[第1実施形態]
図1に示すように、第1実施形態の熱輸送装置1は、例えば、蒸発部2と、冷却部3と、流路構造4と、熱伝導部材6と、を備える。熱輸送装置1は、重力環境下で用いられる。上下方向の下方は、重力方向であり、各図において下方である。
蒸発部2は、例えば、筒状の発熱体7と、発熱体7の内周側に設けられて冷媒Rを収容する収容部8と、を有する。蒸発部2は、発熱体7が生じた熱によって収容部8内の冷媒Rを気化させる。
発熱体7は、例えば、上下方向に延びた円筒体であり、上側に位置する上面7aと、下側に位置する下面7bと、外周側に位置する外周面7cと、内周側に位置する内周面7dと、を有する。発熱体7の上面7aにおける内周側の端部から上方に向けて隔壁9が延びている。隔壁9は、隔壁9の内部と外気とを隔離する。発熱体7の下端の開口は、封止板10で塞がれている。このような構成において、封止板10、発熱体7の内周面7d、および隔壁9の下部によって囲まれることにより、冷媒Rの収容部8が構成されている。なお、発熱体7は、例えば、原子炉や電子機器の発熱部などである。
冷却部3は、蒸発部2よりも上方に位置されており、蒸発部2で気化した冷媒Rを冷却して凝縮させる。冷却部3は、上側に位置する上面3aと、下側に位置する下面3bと、外周側に位置する外側面3cと、内周側に位置する内側面3dと、を有する。下面3bは、外周側に向かうに従って斜め下方に延びる平面状の傾斜面である。
流路構造4は、蒸発部2と冷却部3との間で冷媒Rが循環する循環流路を構成する。本実施形態では、流路構造4は、上下方向に略沿って延びた二重管構造を有しており、外側の隔壁9と内側の流通管11との間の第1流路4aと、流通管11の内側の第2流路4bと、を構成している。第1流路4aでは、気体としての冷媒Rが、対流により、蒸発部2から冷却部3へ上方に流れる。第2流路4bでは、液体としての冷媒Rが、重力により、冷却部3から蒸発部2へ下方に流れる。
冷却部3の内側面3dの下端には、例えば漏斗状の流入管12の上端が接続され、流入管12の下端には、第2流路4bを構成する流通管11の上端が接続されている。冷却部3の内側面3dで液体となった冷媒Rは、流入管12を介して流通管11内の第2流路4bに流れ込む。
熱伝導部材6は、流路構造4とは別に、流路構造4と並列に設けられている。熱伝導部材6は、上下方向に延び、発熱体7の上面7aおよび冷却部3の下面3bの双方に、熱的に接続されている。具体的には、例えば、熱伝導部材6の下端部6aが発熱体7の上面7aに接続され、上端部6bが冷却部3の下面3bに接続されている。また、熱伝導部材6は、例えば銅やアルミニウムのような熱伝導性の高い金属材料で構成されている。なお、熱伝導部材6内には、熱伝導性の高い材料が封入されてもよいし、熱伝導部材はヒートパイプでもよいし、熱伝導部材6は、直列に配置された複数の部材を含んでもよい。熱伝導部材6は、加熱機構の一例である。
冷媒Rは、融点以下の温度で固化し、融点以上の温度で融解し、沸点以上の温度で沸騰する流体である。冷媒Rは、例えば、ナトリウムであるが、ナトリウムには限定されない。
次に、図1〜3を用いて、熱輸送装置1の稼動状態および冷媒Rの状態の変化を説明する。
図1に示す熱輸送装置1の停止状態では、冷媒Rは液体または固体の状態で収容部8の内部に収容されている。
図2に示す熱輸送装置1の稼動開始状態では、発熱体7の温度が上昇し、冷却部3の温度が低下する。第1流路4aの内部の冷媒Rが固体の場合は、発熱体7の熱によって、冷媒Rが溶解して液体になる。発熱体7の熱によって、液体の冷媒Rの温度が沸点以上に上昇すると、冷媒Rが沸騰し気化する。気化した冷媒Rは、図2の矢印に示すように、第1流路4aの上端から隔壁9の内側に沿って移動し、冷却部3の内側面3dに当たる。冷却部3は冷媒Rの融点以下に冷却されているため、冷却部3の内側面3dにおいて冷媒Rが液化する。よって、冷媒Rと冷却部3との間で熱交換が生じ、冷媒Rが冷却されて冷却部3が加熱されることにより、蒸発部2から冷却部3に熱が輸送される。
図3に示すように、液化した冷媒Rは、冷却部3の内側面3dから流入管12を介して第2流路4bに流れ込み、収容部8に戻る。このようにして、図2,3の稼働状態において、熱輸送装置1の内部において冷媒Rが循環される。
ここで、熱輸送装置1の停止後、冷却部3の温度が急激に低下するような状況においては、冷却部3の内側面3dで凝固する冷媒Rの量が多くなる場合がある。このような場合には、熱輸送装置1を起動する際に、収容部8内に存在する冷媒Rの量が不足し、熱輸送装置1が通常の稼働状態となるまでに時間を要する虞がある。この点、本実施形態の熱輸送装置1は、発熱体7から冷却部3へ熱を伝導する熱伝導部材6を備えている。よって、発熱体7から熱伝導部材6を経て冷却部3へ伝導される熱により、冷却部3の急激な温度の低下を抑制することができ、冷却部3における冷媒Rの凝固が抑制される。冷却部3において凝固しない冷媒Rは、液体の状態で冷却部3から収容部8へ移動する。よって、このような構成により、冷媒Rが冷却部3で凝固され熱輸送装置1の起動時に収容部8の存在量が不足するような事態が、抑制される。本実施形態では、熱輸送装置1の停止後に、発熱体7の余熱を熱伝導部材6を経て冷却部3へ伝導することにより、冷却部3での冷媒Rの凝固を抑制している。
以上、説明したように、本実施形態では、熱輸送装置1は、熱伝導部材6(加熱機構)を備えている。よって、本実施形態によれば、例えば、冷却部3における冷媒Rの凝固を抑制することができ、ひいては、熱輸送装置1の起動不良を抑制することができる。
また、本実施形態では、例えば、加熱機構は、発熱体7から冷却部3へ熱を輸送する熱伝導部材6である。よって、本実施形態によれば、加熱機構を、比較的簡素な構成によって実現することができる。
[第2実施形態]
図4に示される第2実施形態の熱輸送装置1Aは、前記第1実施形態の熱輸送装置1と同様の構成を備えている。よって、第2実施形態によっても、前記第1実施形態と同様の構成に基づく同様の結果(効果)が得られる。
ただし、第2実施形態では、第1実施形態に対して、熱伝導部材6Aの位置および姿勢が変更されている。前述したように、冷却部3の下面3bは、外周側に向かうに従って下方に延びる平面状の傾斜面である。発熱体7の上面7aは、水平状に延びている。熱伝導部材6Aの下端部6Aaは、発熱体7の上面7aにおける外周側の端部に熱的に接続されている。熱伝導部材6Aの上端部6Abは、冷却部3の下面3bにおける外周側の端部に熱的に接続されている。よって、発熱体7の上面7aと冷却部3の下面3bとを接続する熱伝導部材6Aの長さは、本実施形態のように、発熱体7の上面7aにおける外周側の端部と、冷却部3の下面3bにおける外周側の端部との間で延びるように設けられた場合に、最も短い。
本実施形態によれば、例えば、発熱体7と冷却部3とを連結する熱伝導部材6Aの長さを短くすることができるため、発熱体7から冷却部3へより効率良く熱を伝導することができる。
[第3実施形態]
図5に示される第3実施形態の熱輸送装置1Bは、前記第1実施形態および第2実施形態の熱輸送装置1,1Aと同様の構成を備えている。よって、第3実施形態によっても、前記第1および第2実施形態と同様の構成に基づく同様の結果(効果)が得られる。
ただし、第3実施形態の熱輸送装置1Bは、ヒータ20を備えている。具体的には、ヒータ20は、冷却部3の外側面3cに当接している。本実施形態では、熱伝導部材6に加えて、ヒータ20によっても、冷却部3を加熱することができる。ヒータ20は、冷却部3の加熱状態と加熱停止状態とが切り替わるよう制御する加熱制御部によって制御することができる。ヒータ20の動作は、制御装置(不図示)によって電気的に制御される。制御装置は、例えば、熱輸送装置1Bの稼働中にはヒータ20が加熱を停止し、熱輸送装置1Bが停止した時点からの所定時間ヒータ20が冷却部3を加熱するよう、ヒータ20を制御することができる。また、制御装置は、各種センサの検出結果に基づいて、加熱するか否かを切り替えたり、加熱時間や発熱量を設定したり変更したり制御したりすることができる。ヒータ20は、加熱機構の一例である。
本実施形態によれば、例えば、冷却部3をより効果的にあるいはより効率良く加熱することができる。なお、本実施形態では、熱伝導部材6とともにヒータ20が設けられたが、ヒータ20の加熱による効果は、ヒータ20が設けられ熱伝導部材6が設けられない構成においても、得られる。
[第4実施形態]
図6に示される第4実施形態の熱輸送装置1Cは、前記第1実施形態の熱輸送装置1と同様の構成を備えている。よって、第4実施形態によっても、前記第1実施形態と同様の構成に基づく同様の結果(効果)が得られる。
ただし、本実施形態による熱輸送装置1Cでは、第1実施形態による熱輸送装置1に、ガス供給装置30とガス排出装置33とが追加されている。
図6に示すように、ガス供給装置30は、隔壁9内、すなわち第1流路4aおよび第2流路4b内に、ガスを供給する。具体的には、ガス供給装置30は、隔壁9内にガスを供給する第1配管31と、第1配管31の途中に設けられた第1バルブV1と、ガスボンベ32と、を有する。第1配管31の一端は隔壁9の内部に挿入され、他端はガスボンベ32に接続されている。ガス供給装置30は、加圧機構の一例である。加圧機構は、第1流路4aおよび第2流路4bの内部にガスを供給することにより当該流路内を加圧し、冷却部3における冷媒Rの凝固を抑制する。なお、ガスは、例えば、冷媒Rと反応しない不活性な気体であり、窒素やアルゴンなどである。
ガス排出装置33は、第1流路4aおよび第2流路4b内のガスを排出する。具体的には、隔壁9内からガスを排出するする第2配管34と、第2配管34の途中に設けられた第2バルブV2と、第2配管34に接続されたポンプPと、を有する。
このような構成において、第2バルブV2を閉じるとともに第1バルブV1を開くと、ガスボンベ32から第1配管31を介して、第1流路4aおよび第2流路4b内にガスが供給される。一方、第1バルブV1を閉じたまま第2バルブV2を開くと共にポンプPを稼動させると、第2配管34を介して、第1流路4aおよび第2流路4b内のガスが排出される。ここで、第1流路4aおよび第2流路4b内の内部圧力と隔壁9の外側の外部圧力とを比較したときに、内部圧力の方が低い場合、例えば、真空の場合は、第2バルブV2を開くだけで第1流路4aおよび第2流路4b内にガスを注入することができる。ポンプPは、例えば、バキュームポンプである。
以下に、ガス供給装置30およびガス排出装置33の作動について説明する。
図7に示すように、熱輸送装置1Cは、センサ40と、制御装置50と、アクチュエータ60と、発熱体7と、を備える。センサ40は、物理量を検出するセンサであって、例えば、図示しない温度センサや圧力センサ等である。温度センサは、例えば、冷却部3に設けられて冷却部3の温度を検出する。圧力センサは、例えば、第1流路4aや第2流路4bの内部の圧力を検出する。アクチュエータ60は、例えば、ガス供給装置30およびガス排出装置33である。あるいは、アクチュエータ60は、例えば、ガス供給装置30およびガス排出装置33に含まれるバルブを電気的に駆動するソレノイドや、ポンプを電気的に駆動するモータである。
制御装置50は、コンピュータであり、例えばECU(electronic control unit)として構成される。制御装置50は、制御部51と記憶部55とを有する。制御部51は、インストールされたプログラム(アプリケーション、ソフトウエア)にしたがって演算処理を実行することにより、制御装置50の各種機能を実現することができる。なお、制御部51の少なくとも一部の機能は、ASIC(application specific integrated circuit)や、FPGA(field-programmable gate array)、DSP(digital signal processor)等のハードウエアによって実現されてもよい。記憶部55は、例えば、主記憶装置や補助記憶装置である。また、制御装置50は、発熱体7やアクチュエータ60の電源回路や駆動回路(不図示)を備える。
制御部51は、熱輸送制御部52と凝固抑制処理制御部53と再開準備処理制御部54とを有する。熱輸送制御部52は、熱輸送装置1Cが所定の熱輸送を実行するよう、発熱体7を制御する。凝固抑制処理制御部53は、冷却部3における冷媒Rの凝固を抑制する処理を実行する。再開準備処理制御部54は、熱輸送装置1Cの稼動を再開させる準備処理を実行する。
次に、図8のフローチャートを用いて、凝固抑制処理および再開準備処理の手順を説明する。
まず、制御部51は、凝固抑制処理制御部53として機能し、センサ40による検出値や制御装置50内の他の部位からの信号等に基づいて、凝固抑制処理の開始条件を満たすか否かを判断する(S1)。このS1における開始条件は、例えば、熱輸送装置1Cの動作(発熱体7の発熱制御)が停止したことや、センサ40の検出値が閾値以下となったこと、等である。また、センサ40の検出値による開始条件は、例えば、冷却部3の温度を検出する温度センサによる検出温度が所定の温度以下となったことや、第1流路4aまたは第2流路4b内の圧力を検出する圧力センサによる検出圧力が所定の圧力以上となったこと、等である。開始条件(閾値)は、冷媒Rが凝固する可能性が高い状態や凝固しそうな状態を示す物理量や信号の値に基づいて設定されてもよいし、冷媒Rの凝固が実際に生じた状態を示す物理量に基づいて設定されてもよい。
S1において、凝固抑制処理の開始条件が満たされた場合(S1でYes)、制御部51は、凝固抑制処理制御部53として機能し、凝固抑制処理を実行する(S2)。このS2において、凝固抑制処理制御部53は、凝固抑制処理として、第1流路4aおよび第2流路4b内にガスが供給され、第1流路4aおよび第2流路4b内の圧力が冷却部3における冷媒Rの凝固が生じない第1所定値で維持されるよう、ガス供給装置30およびガス排出装置33のアクチュエータ60を制御する。具体的には、凝固抑制処理制御部53は、まず、第2バルブV2が閉じるとともに第1バルブV1が開くよう、アクチュエータ60を制御する。また、凝固抑制処理制御部53は、センサ40としての圧力センサにより第1流路4aおよび第2流路4b内の圧力が第1圧力P1よりも高くなった場合には、あるいは制御開始から所定時間が経過した時点で、第2バルブV2が閉じるとともに第1バルブV1が閉じるよう、アクチュエータ60を制御する。また、凝固抑制処理制御部53は、センサ40としての圧力センサにより第1流路4aおよび第2流路4b内の圧力が第2圧力P2(<P1)よりも低くなった場合には、第2バルブV2が閉じるとともに第1バルブV1が開くよう、アクチュエータ60を制御する。なお、S1でNoの場合、S1に戻る。凝固抑制処理制御部53は、加圧制御部および加圧機構の一例である。
次に、制御部51は、再開準備処理制御部54として機能し、制御装置50内の他の部位からの信号に基づいて、凝固抑制処理の終了条件を満たすか否かを判断する(S3)。このS3における終了条件は、例えば、熱輸送制御部52から熱輸送制御の開始を指示する信号、あるいは再開準備処理の開始を指示する信号を受け取ったことである。
S3において、凝固抑制処理の終了条件が満たされた場合(S3でYes)、制御部51は、再開準備処理制御部54として機能し、再開準備処理を実行する(S4)。なお、S3でNoの場合、S2に戻る。S4において、再開準備処理制御部54は、再開準備処理として、第1流路4aおよび第2流路4b内からガスが排出され、第1流路4aおよび第2流路4b内の圧力が熱輸送装置1Cの動作時の第2所定値(<第1所定値)となるよう、ガス供給装置30およびガス排出装置33のアクチュエータ60を制御する。具体的には、再開準備処理制御部54は、まず、第2バルブV2が開き、第1バルブV1が閉じ、かつポンプPが動作するよう、アクチュエータ60を制御する。また、再開準備処理制御部54は、センサ40としての圧力センサにより第1流路4aおよび第2流路4b内の圧力が第3圧力P3よりも低くなった場合には、あるいはS4の制御開始から所定時間が経過した時点で、第2バルブV2が閉じ、第1バルブV1が閉じ、かつポンプPが停止するよう、アクチュエータ60を制御する。この場合、第2所定値は、熱輸送装置1Cにおける冷媒Rの気化に適した圧力に設定される。
以上、説明したように、本実施形態では、熱輸送装置1Cは、例えば、第1流路4aおよび第2流路4b(流路)の内部にガスを供給することにより当該流路内を加圧するガス供給装置30およびガス排出装置33(加圧機構)を備えている。第1流路4aおよび第2流路4bの内部にガスを供給すると内部の圧力が上がり、冷媒Rの沸点が上昇する。蒸発部2において冷媒Rの気化が抑制され、冷却部3への気化した冷媒Rの供給が抑制される。よって、本実施形態によれば、例えば、冷却部3における冷媒Rの凝固を抑制することができる。
また、本実施形態では、例えば、熱輸送装置1Cは、加圧機構として、例えば、アクチュエータ60と、凝固抑制処理制御部53(加圧制御部)と、を備えている。よって、本実施形態によれば、例えば、第1流路4aおよび第2流路4bの内のガスの加圧による凝固抑制を、より容易に、より精度良く、あるいはより効率良く、実行することができる。
また、本実施形態では、例えば、凝固抑制処理制御部53(加圧制御部)は、物理量を検出するセンサ40の検出結果に基づいてアクチュエータ60を制御する。よって、本実施形態によれば、例えば、第1流路4aおよび第2流路4bの内のガスの加圧による凝固抑制を、より精度良くあるいはより効率良く実行することができる。なお、本実施形態では、熱伝導部材6とともに加圧機構が設けられたが、加圧機構による効果は、当該加圧機構が設けられ熱伝導部材6が設けられない構成においても、得られる。
[第5実施形態]
図9に示される第5実施形態の熱輸送装置1Dは、前記第4実施形態の熱輸送装置1Cと同様の構成を備えている。よって、第5実施形態によっても、前記第4実施形態と同様の構成に基づく同様の結果(効果)が得られる。
ただし、本実施形態による熱輸送装置1Dには、第4実施形態の熱輸送装置1Cに対して、第3配管62および第3バルブV3が追加されている。第3配管62の一端は、ポンプPに接続され、第3配管62の他端は、第1配管31における第1バルブV1とガスボンベ32との間の部位に接続されている。第3配管62の途中部には、第3バルブV3が設けられている。
本実施形態では、第1流路4aおよび第2流路4b内からガスが排出される場合には、第1バルブV1が閉じられるとともに、第2バルブV2と第3バルブV3とが開かれ、ポンプPが作動される。これにより、本実施形態では、第1流路4aおよび第2流路4bから排出されたガスをガスボンベ32に回収して再利用することができる。即ち、再利用構造100は、例えば、ガス供給装置30と、ガス排出装置33と、第3配管62および第3バルブV3と、を有する。
本実施形態では、例えば、第1流路4aおよび第2流路4b(流路)から排出したガスを回収して第1流路4aおよび第2流路4bの内部に供給可能な再利用構造100を有する。よって、本実施形態によれば、例えば、ガスを外気に放出しないため、ガスの有効利用を図ることができる。
以上、本発明の実施形態を例示したが、前記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。前記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。前記実施形態は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。本発明は、前記実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成(技術的特徴)によって得られる種々の効果(派生的な効果も含む)を得ることが可能である。また、各構成要素のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
例えば、前記実施形態では、冷却部3は箱型形状のものを示したが、金属板と当該金属板に設けられたフィンとを有するものであってもよい。また、上記実施形態では、熱輸送装置は、二重管式の二相熱サイホンであったが、例えばループ式や一本管式の熱サイホンにおいても、上記実施形態と同様の構成を備えることが可能である。また、制御装置50(制御部51)は、第4実施形態における凝固抑制処理として、ヒータ20(図5,8)による冷却部3の加熱処理を実行してもよい。この場合、制御部51は、加熱制御部の一例である。また、ガス供給装置30は、ガスボンベ32に替えて、ポンプやアキュムレータ等を有してもよい。また、第4実施形態における凝固抑制処理の終了の判断と、再開準備処理の開始の判断とは、別の条件によって実行してもよい。
2…蒸発部、3…冷却部、4…流路構造、6,6A…熱伝導部材(加熱機構)、20…ヒータ(加熱機構)、30…ガス供給装置(アクチュエータ)(加圧機構)、33…ガス排出装置(アクチュエータ)(加圧機構)、40…センサ、100…再利用構造。

Claims (10)

  1. 発熱体が生じた熱によって冷媒を気化させる蒸発部と、
    前記蒸発部よりも上方に設けられ、前記蒸発部で気化した前記冷媒を冷却して凝縮させる冷却部と、
    前記蒸発部と前記冷却部との間で前記冷媒が循環する流路を構成する流路構造と、
    前記冷却部を加熱し前記冷却部における前記冷媒の凝固を抑制する加熱機構と、
    を備えた熱輸送装置。
  2. 前記加熱機構は、前記発熱体から前記冷却部へ熱を輸送する熱伝導部材である、請求項1に記載の熱輸送装置。
  3. 前記熱伝導部材は、前記発熱体と前記冷却部のうち前記発熱体に近い端部との間で前記流路構造と並行して設けられた、請求項2に記載の熱輸送装置。
  4. 前記加熱機構は、前記冷却部を加熱するヒータを含む、請求項1に記載の熱輸送装置。
  5. 前記加熱機構は、前記ヒータの加熱状態と加熱停止状態とが切り替わるよう制御する加熱制御部を有した、請求項4に記載の熱輸送装置。
  6. 前記流路内にガスを供給することにより当該流路内を加圧し前記冷却部における前記冷媒の凝固を抑制する加圧機構と、
    を備えた、請求項1〜5のうちいずれか一つに記載の熱輸送装置。
  7. 発熱体が生じた熱によって冷媒を気化させる蒸発部と、
    前記蒸発部よりも上方に設けられ、前記蒸発部で気化した前記冷媒を冷却して凝縮させる冷却部と、
    前記蒸発部と前記冷却部との間で前記冷媒が循環する流路を構成する流路構造と、
    前記流路内にガスを供給することにより当該流路内を加圧し前記冷却部における前記冷媒の凝固を抑制する加圧機構と、
    を備えた熱輸送装置。
  8. 前記加圧機構は、前記流路内の圧力を変化させるアクチュエータと、前記流路内の圧力が変化するよう前記アクチュエータを制御する加圧制御部と、を有した、請求項7に記載の熱輸送装置。
  9. 前記加圧制御部は、物理量を検出するセンサの検出結果に基づいて前記アクチュエータを制御する、請求項8に記載の熱輸送装置。
  10. 前記加圧機構は、前記流路から排出したガスを回収して前記流路内に供給可能な再利用構造を有した、請求項7〜9のうちいずれか一つに記載の熱輸送装置。
JP2017176967A 2017-09-14 2017-09-14 熱輸送装置 Pending JP2019052794A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017176967A JP2019052794A (ja) 2017-09-14 2017-09-14 熱輸送装置
US15/893,811 US10677502B2 (en) 2017-09-14 2018-02-12 Heat transport apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176967A JP2019052794A (ja) 2017-09-14 2017-09-14 熱輸送装置

Publications (1)

Publication Number Publication Date
JP2019052794A true JP2019052794A (ja) 2019-04-04

Family

ID=65630850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176967A Pending JP2019052794A (ja) 2017-09-14 2017-09-14 熱輸送装置

Country Status (2)

Country Link
US (1) US10677502B2 (ja)
JP (1) JP2019052794A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111750724B (zh) * 2020-06-18 2021-04-20 上海交通大学 一种用于水流冷却降温的非能动脉冲式水流调节装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623698A (en) * 1979-08-04 1981-03-06 Babcock Hitachi Kk Heat pipe
JPS5675586U (ja) * 1979-11-09 1981-06-20
JPS591994A (ja) * 1982-06-25 1984-01-07 Toshiba Corp 温度制御用ヒ−トパイプ
JPH07180982A (ja) * 1993-11-09 1995-07-18 Toshiba Corp ヒートパイプ式冷却装置
JP2002352824A (ja) * 2001-05-30 2002-12-06 Nissan Motor Co Ltd 燃料電池システム
JP2008286484A (ja) * 2007-05-18 2008-11-27 Yokogawa Electric Corp 冷却菅
US20080308259A1 (en) * 2002-03-26 2008-12-18 Garner Scott D Multiple temperature sensitive devices using two heat pipes
JP2011530713A (ja) * 2008-08-12 2011-12-22 シーレイト リミテッド ライアビリティー カンパニー 熱パイプを利用する核***爆燃波型の原子炉の冷却
JP2013194919A (ja) * 2012-03-15 2013-09-30 Toyota Central R&D Labs Inc 自励振動ヒートパイプ及びプログラム
US20140221214A1 (en) * 2011-09-08 2014-08-07 Siemens Aktiengesellschaft Device and method for cooling a unit
JP2014215830A (ja) * 2013-04-25 2014-11-17 株式会社堀場エステック 流体制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110295A (ja) 1988-10-19 1990-04-23 Kenji Fukuda 内部下降管を有する二重管型二相熱サイフォン
US5313787A (en) * 1990-10-01 1994-05-24 General Cryogenics Incorporated Refrigeration trailer
CN101663546B (zh) * 2007-03-09 2011-11-16 开利公司 制冷剂凝固的预防
JP2008286480A (ja) 2007-05-18 2008-11-27 Fuji Electric Systems Co Ltd 電力変換装置の冷却装置
JP4961380B2 (ja) 2008-04-10 2012-06-27 日立Geニュークリア・エナジー株式会社 高速増殖炉型原子力発電システム
US8020350B2 (en) * 2008-07-21 2011-09-20 Vkr Holding A/S Seamless deck-sealing surround for skylights and roof windows
DE102010009181A1 (de) * 2010-02-24 2011-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Verfahren und Vorrichtung zur Speicherung und Abgabe von Wärme mittels eines Phasenwechselmaterials
US8658918B1 (en) * 2012-09-07 2014-02-25 Institute Of Nuclear Energy Research, Atomic Energy Council Power generation using a heat transfer device and closed loop working fluid
JP6605819B2 (ja) 2015-03-06 2019-11-13 株式会社東芝 冷却装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623698A (en) * 1979-08-04 1981-03-06 Babcock Hitachi Kk Heat pipe
JPS5675586U (ja) * 1979-11-09 1981-06-20
JPS591994A (ja) * 1982-06-25 1984-01-07 Toshiba Corp 温度制御用ヒ−トパイプ
JPH07180982A (ja) * 1993-11-09 1995-07-18 Toshiba Corp ヒートパイプ式冷却装置
JP2002352824A (ja) * 2001-05-30 2002-12-06 Nissan Motor Co Ltd 燃料電池システム
US20080308259A1 (en) * 2002-03-26 2008-12-18 Garner Scott D Multiple temperature sensitive devices using two heat pipes
JP2008286484A (ja) * 2007-05-18 2008-11-27 Yokogawa Electric Corp 冷却菅
JP2011530713A (ja) * 2008-08-12 2011-12-22 シーレイト リミテッド ライアビリティー カンパニー 熱パイプを利用する核***爆燃波型の原子炉の冷却
US20140221214A1 (en) * 2011-09-08 2014-08-07 Siemens Aktiengesellschaft Device and method for cooling a unit
JP2013194919A (ja) * 2012-03-15 2013-09-30 Toyota Central R&D Labs Inc 自励振動ヒートパイプ及びプログラム
JP2014215830A (ja) * 2013-04-25 2014-11-17 株式会社堀場エステック 流体制御装置

Also Published As

Publication number Publication date
US10677502B2 (en) 2020-06-09
US20190078815A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP5061911B2 (ja) ループ型ヒートパイプおよび電子機器
US20030205364A1 (en) Method and apparatus for dissipating heat from an electronic device
JP6394331B2 (ja) 冷却部品及び電子機器
JP6655487B2 (ja) 超電導磁石装置
JP5360226B2 (ja) ループ型ヒートパイプシステム及び情報処理装置
JP6169969B2 (ja) 冷却装置及びその製造方法
JP2014183107A (ja) 冷却装置
JP5768514B2 (ja) ループヒートパイプ及び該ヒートパイプを備えた電子機器
JP6794735B2 (ja) 冷却ユニットおよび空気除去装置
JP2019052794A (ja) 熱輸送装置
TW201408980A (zh) 沸騰冷卻裝置
JP5950054B2 (ja) 熱輸送装置
JP5321716B2 (ja) ループ型ヒートパイプおよび電子機器
JP5696466B2 (ja) ループ型ヒートパイプ及び情報処理装置
US11800688B2 (en) Heat dissipation structure and electronic device including same
WO2013179466A1 (ja) 排気熱回収装置
JP2009203903A (ja) 外燃機関
JP5123703B2 (ja) ヒートパイプの製造方法及びヒートパイプ
JP5942918B2 (ja) 冷却器
JP2008255945A (ja) エンジンの暖機装置
JP5344847B2 (ja) 冷却装置
JP6596986B2 (ja) 冷却部品及び電子機器
JP2007198661A (ja) サーモサイフォン
JP5799205B2 (ja) 冷却装置およびこれを搭載した電子機器、および電気自動車
JP2018141589A (ja) 冷却装置、これを搭載した電子機器および電気自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330