WO2016093649A1 - 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 - Google Patents

대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 Download PDF

Info

Publication number
WO2016093649A1
WO2016093649A1 PCT/KR2015/013541 KR2015013541W WO2016093649A1 WO 2016093649 A1 WO2016093649 A1 WO 2016093649A1 KR 2015013541 W KR2015013541 W KR 2015013541W WO 2016093649 A1 WO2016093649 A1 WO 2016093649A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber latex
parts
polymerization
diene rubber
Prior art date
Application number
PCT/KR2015/013541
Other languages
English (en)
French (fr)
Inventor
석재민
김영민
이진형
한수정
김유빈
정영환
정선행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580066907.0A priority Critical patent/CN107001514B/zh
Priority to JP2017527775A priority patent/JP6594426B2/ja
Priority to EP15867451.5A priority patent/EP3231821B1/en
Priority to US15/533,631 priority patent/US10208151B2/en
Publication of WO2016093649A1 publication Critical patent/WO2016093649A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/911Emulsifying agents

Definitions

  • the present invention provides a method for producing a large diameter diene rubber latex having improved impact strength by adjusting the type and timing of the crosslinking agent and a large diameter diene rubber latex prepared therefrom, and the solid content in the copolymer latex is reduced by including the same.
  • the impact index, glossiness and flowability are directed to improved acrylonitrile-butadiene-styrene graft copolymers and thermoplastics.
  • ABS resins In general, acrylonitrile-butadiene-styrene (hereinafter referred to as ABS) resins have relatively good physical properties such as impact resistance, mechanical strength, moldability, glossiness, and are widely used in electrical, electronic parts, office equipment, and automobile parts. .
  • rubber resin is dissolved in a monomer solution to carry out solution polymerization, or rubber latex is prepared using a diene monomer, and emulsion polymerization of styrene and acrylonitrile monomer is used to produce graft copolymerization. And the like.
  • emulsion polymerization method is widely used, and it is easy to modify prescription according to the quality level required at the same time and various matrix resins (PSAN) through extrusion process using products produced in powder form.
  • PC, PBT, PVC, etc. and additives (flame retardant, weathering stabilizer, antistatic agent, antimicrobial, etc.) can be manufactured in various products when mixing.
  • a diene rubber latex is used to manufacture the ABS resin by the emulsion polymerization method in order to improve impact resistance.
  • a commercially important part is i) production efficiency and ii) securing rubber latex properties (particle size, gel content) to effectively secure the impact resistance of ABS.
  • the general diene rubber latex manufacturing method generally requires a polymerization reaction of 30 hours or more to obtain a large diameter, and at a polymerization conversion rate of 90% or more, the polymerization conversion rate is rapidly lowered. Even if a lot of time is consumed, there is a disadvantage that the polymerization conversion rate is not greatly improved.
  • the particle size decreases, the reaction coagulation increases, and the reaction pressure is increased due to the excessive heat of reaction. Therefore, it is not commercially easy to obtain large diameter polybutadiene latex having high conversion in a short reaction time.
  • securing the physical properties of the rubber latex to secure the impact resistance of ABS is recognized as an important factor largely due to the size of the particle size and the gel content generated by internal crosslinking.
  • large diameter rubber latex (3000 kPa or more) is more advantageous than small particle size, and rubber latex having a low gel content is known to be advantageous than rubber latex having a high gel content.
  • rubber latex having a small particle diameter and a high gel content is usually produced, thereby making it difficult to secure effective rubber latex properties.
  • the present invention has been made to solve the problems of the prior art, and provides a method for producing a large diameter diene rubber latex having a low gel content.
  • the present invention provides a large diameter diene rubber latex with improved impact strength produced by the above method.
  • the present invention provides the acrylonitrile-butadiene-styrene graft copolymer and thermoplastic resin having improved powder strength, while improving impact strength, glossiness, and fluidity by including the above-described large diameter diene rubber latex.
  • step 1 50 parts by weight to 75 parts by weight of the conjugated diene monomer, 1 part by weight to 3 parts by weight of emulsifier, 0.1 parts by weight to 0.4 part by weight of polymerization initiator, 0.1 parts by weight to 3 parts by weight of electrolyte, 0.1 parts by weight to 0.5 parts by weight of molecular weight regulator, And 65 parts by weight to 100 parts by weight of ion-exchanged water in a reactor and stirring, while adding 0.05 parts by weight to 0.3 parts by weight of a crosslinking agent and performing a first polymerization (step 1);
  • step 1 At the time when the polymerization conversion rate of (step 1) is 45 to 60%, 0 to 0.1 parts by weight of the remainder of the conjugated diene monomer and the emulsifier and 0 to 0.2 parts by weight of the crosslinking agent are added (second step); And
  • It provides a process for producing a diene-based rubber latex comprising the step (step 3) terminating the polymerization at the time when the polymerization conversion rate of the (step 2) is 90 to 95% or more.
  • a large diameter diene rubber latex is prepared from the above production method, the average particle diameter of 2,500 kPa to 4,000 kPa, and the gel content of 60% to 80%.
  • acrylonitrile-butadiene containing 40 to 70% by weight of the diene rubber latex, 20 to 50% by weight of aromatic vinyl compound, and 10 to 40% by weight of vinyl cyan compound in the total copolymer content.
  • styrene graft copolymer Provides a styrene graft copolymer.
  • the present invention provides an acrylonitrile-butadiene-styrene graft thermoplastic resin comprising the acrylonitrile-butadiene-styrene graft copolymer.
  • the present invention by implementing a large diameter diene rubber latex having a low gel content, it is possible to prepare an acrylonitrile-butadiene-styrene graft copolymer having excellent impact strength, glossiness and fluidity.
  • an advantage that the industrial productivity can be increased by increasing the polymerization conversion rate of the final polymer.
  • the present invention in the production of diene rubber latex applied to the ABS resin,
  • step 1 50 parts by weight to 75 parts by weight of the conjugated diene monomer, 1 part by weight to 3 parts by weight of emulsifier, 0.1 parts by weight to 0.4 part by weight of polymerization initiator, 0.1 parts by weight to 3 parts by weight of electrolyte, 0.1 parts by weight to 0.5 parts by weight of molecular weight regulator, And 65 parts by weight to 100 parts by weight of ion-exchanged water in a reactor and stirring, while adding 0.05 parts by weight to 0.3 parts by weight of a crosslinking agent and performing a first polymerization (step 1);
  • step 2 At the time when the polymerization conversion rate of the (step 1) is 45% to 60%, the remaining amount of the conjugated diene monomer, 0 to 0.1 parts by weight of the emulsifier and 0 to 0.2 parts by weight of the crosslinking agent is added and secondary polymerization (step 2); And
  • It provides a process for producing a diene-based rubber latex comprising the step (step 3) terminating the polymerization at the time when the polymerization conversion rate of the (step 2) is 90 to 95% or more.
  • the step (1) is preferably 50 to 75 parts by weight of the conjugated diene monomer, 1 to 3 parts by weight of the emulsifier, and 0.1 to 0.4 parts by weight of the polymerization initiator in order to start the polymerization by mixing the conjugated diene monomer with an emulsifier and a molecular weight modifier. , 0.1 to 3 parts by weight of the electrolyte, 0.1 to 0.5 parts by weight of the molecular weight regulator, and 65 to 100 parts by weight of ion-exchanged water are added to the reactor, followed by the first polymerization in which 0.05 to 0.3 parts by weight of the crosslinking agent is added.
  • the conjugated diene monomer may be composed of a conjugated diene monomer alone, or may be composed of a conjugated diene monomer, an aromatic vinyl monomer, and a vinyl cyan monomer. That is, the conjugated diene monomer may mean a conjugated diene monomer or a monomer of a conjugated diene monomer, an aromatic vinyl monomer, and a vinyl cyan monomer.
  • the conjugated diene monomer is a mixture of the above monomers
  • the conjugated diene monomer is 80 to 99% by weight of the conjugated diene monomer; And 1 to 20% by weight of at least one comonomer selected from the group consisting of an aromatic vinyl monomer and a vinyl cyan monomer.
  • the conjugated diene-based monomer may include a single substance or two or more compounds selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene, and specifically, may be 1,3-butadiene.
  • the aromatic vinyl monomer may include a single substance or two or more compounds selected from the group consisting of styrene, ⁇ -methylstyrene, m-methylstyrene, ⁇ -ethylstyrene p-methylstyrene, and p-tert-butylstyrene. It may be specifically styrene.
  • the vinyl cyan-based monomer may include a single or two or more compounds selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, and isopropyl acrylonitrile, specifically acrylonitrile Can be.
  • the conjugated diene monomer is an acrylate compound such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, 2-ethyl hexyl acrylate, and the like.
  • One or more selected from the group consisting of can be further mixed.
  • step 1 50 parts by weight to 75 parts by weight of the conjugated diene monomer is used in the total amount of conjugated diene monomer used to prepare the large-diameter rubber latex. If the content is less than 50 parts by weight, it is difficult to obtain a high conversion rate and a high gel content in a short time, and if it exceeds 75 parts by weight, it is difficult to control the reaction temperature due to too fast reaction rate, and also impact resistance resin using the same It may cause the problem of lowering the impact strength when cleaning.
  • the emulsifier may be used alone or in combination of common anionic adsorptive emulsifiers, nonionic emulsifiers, reactive emulsifiers or polymer type reactive emulsifiers, etc., is not particularly limited, representative examples thereof Is a single or two or more selected from the group consisting of alkyl aryl sulfonates, alkali methyl alkyl sulfonates, sulfonated alkyl esters, soaps of fatty acids, alkali salts of oleic acid, alkali salts of stearic acid and alkali salts of rosin acid Mixtures may be included.
  • step 1 when the content of the emulsifier is less than 1 part by weight, the conversion rate is very slow, there is a disadvantage that the safety of the rubber latex is lowered, if it exceeds 3 parts by weight due to temperature control and high viscosity Due to rubber latex stability and particle size has the disadvantages.
  • the polymerization initiator may be used alone or in combination, such as a water-soluble polymerization initiator, a fat-soluble polymerization initiator or an oxidation-reduction catalyst, it is not particularly limited, the representative examples of the water-soluble polymerization initiator is potassium persulfate, sodium persulfate and At least one persulfate selected from the group consisting of ammonium sulfate, and the fat-soluble polymerization initiator is cumene hydroperoxide, diisopropyl benzene hydroperoxide, azobis isobutylnitrile, tertiary butyl hydroperoxide, para Methane hydroperoxide and benzoyl peroxide, and the redox catalyst may be selected from the group consisting of sodium formaldehyde, sulfoxylate, sodium ethylenediamine tetraacetate, ferrous sulfate, dextrose, sodium pyrrolate And sodium sulfite It may include those
  • the electrolyte is KCl, NaCl, KHCO 3 , NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHSO 3 , NaHSO 3 , K 4 P 2 O 7 , Na 4 P 2 O 7 , K 3 PO 4 , Na 3 It may comprise a single or a mixture of two or more selected from the group consisting of PO 4 , K 2 HPO 4 and Na 2 HPO 4 .
  • step 1 when the content of the electrolyte is less than 0.1 parts by weight, a problem arises in maintaining rubber latex stability due to the reduction of the formation of large diameter particles and the increase of the viscosity during the reaction, and when the content of the electrolyte exceeds 3 parts by weight, the initial particle number decreases. There is a problem of lowering the reaction rate.
  • the molecular weight modifier is not particularly limited, but for example, mercaptans such as ⁇ -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide Sulfur-containing compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, diisopropylchianthogen disulfide.
  • mercaptans such as ⁇ -methylstyrene dimer, t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide Sul
  • the crosslinking agent is an oligomer having a small number average molecular weight (Mn), and as a representative example thereof, (propylene glycol) n diacrylate, wherein n is an integer of 3 to 15. And (propylene glycol) 7 diacrylate or (propylene glycol) 13 diacrylate whose number average molecular weight is 500-800 specifically, is mentioned.
  • Mn small number average molecular weight
  • step 1 when the content of the crosslinking agent is less than 0.05 parts by weight, the impact strength increase effect is insignificant or hardly occurs, and when the content of the crosslinking agent exceeds 0.3 parts by weight, rubber latex stability is deteriorated.
  • the effect of increasing the polymerization rate can be obtained by adding the acrylate crosslinking agent at the initial stage of the polymerization reaction and reacting.
  • step 2 0 to 0.1 parts by weight of the residual amount of the conjugated diene monomer, emulsifier and 0 to 0.2 parts by weight of the crosslinking agent are added at the time when the polymerization conversion rate of the first polymerization is 45 to 60%. Secondary polymerization.
  • the crosslinking agent may or may not be included in carrying out the polymerization reaction of (step 2), but it is more preferably included for further impact strength improvement.
  • the crosslinking agents used in (Step 1) and (Step 2) can use the same or different kind.
  • the total content of the crosslinking agent used to prepare the diene rubber latex of the present invention is preferably 0.05 to 0.5 parts by weight based on the total content of the conjugated diene compound monomer. If the total content of the crosslinking agent is lower than 0.05, the impact strength improving effect is not great. If the total amount of the crosslinking agent is more than 0.5 parts by weight, the stability of the rubber latex is caused.
  • the preparation method according to the present invention by dividing the conjugated diene monomer, the emulsifier and the crosslinking agent in two stages according to the polymerization conversion time point, as described above, easy to large-diameter rubber latex having a low gel content and an appropriate particle size Can be formed.
  • the primary polymerization and the secondary polymerization according to the present invention may be a polymerization is performed under different temperature conditions, respectively.
  • the primary polymerization may be performed under a temperature condition of 60 °C to 75 °C
  • the secondary polymerization may be performed under a temperature condition of 75 °C to 88 °C. That is, the present invention may be to perform the polymerization while gradually increasing the temperature conditions as the polymerization proceeds.
  • Step 3 is a step of terminating the polymerization when the polymerization conversion rate is 90% to 95% in order to obtain rubber polymerization latex.
  • the end of the polymerization step may be carried out typically through a temperature decrease, or may be carried out using conventional methods known in the art, such as known polymerization inhibitors.
  • the present invention provides a diene rubber latex prepared from the above production method.
  • the diene rubber latex according to an embodiment of the present invention may have an average particle diameter of 2,500 kPa to 4,000 kPa, and also may have a solid content (gel) content of 80% or less, specifically 60% to 80%, Swelling index may be 15 to 25.
  • represents a unit of the length used to express the wavelength of electromagnetic radiation, where 1 ⁇ is equal to 0.1 nm.
  • the solid content (gel) content indicates the degree of crosslinking in the polymer, that is, the degree of crosslinking of the polymer, and the lower the solid content (gel) content value, the higher the impact strength.
  • the swelling index indicates the degree of swelling of the polymer by the solvent. The higher the crosslinking degree of the polymer, the lower the swelling index.
  • the present invention provides an acrylonitrile-butadiene-styrene copolymer including the diene rubber latex.
  • the acrylonitrile-butadiene-styrene copolymer is 40 to 70% by weight of the diene rubber latex, 20 to 50% by weight of the aromatic vinyl compound, and 10 to 40% by weight of the vinyl cyan compound in the total content of the copolymer It features.
  • the total content of the solid content used for preparing the acrylonitrile-butadiene-styrene copolymer, that is, the diene rubber latex produced by the method of the present invention is 40 to 70% by weight, and the total content of the rubber latex is 40% by weight.
  • the impact strength improving effect is not large, and when it exceeds 70% by weight, the latex stability is lowered.
  • the acrylonitrile-butadiene-styrene copolymer may have a 90 to 99% polymerization conversion, a graft rate of 25 to 35%, and a product coagulant content of 0.01 to 0.1%, more specifically the copolymer May have a 97% polymerization conversion, a graft rate of 33%, and a product coagulant content of 0.05%.
  • the acrylonitrile-butadiene-styrene copolymer according to the present invention is not particularly limited and can be prepared by conventional methods known in the art, such as aromatic vinyl compound, vinyl cyan compound and It may be prepared by adding an additive such as an emulsifier, emulsion polymerization and then coagulation and washing. At this time, each component may be involved in the reaction through a method of adding to the reactor in a batch, a method of adding continuously or a part of the first addition and the divided input after the start of the polymerization.
  • Emulsification polymerization may be carried out typically in a temperature range of 10 °C to 90 °C, preferably a temperature range of 25 °C to 75 °C.
  • the agglomeration is to agglomerate the acrylonitrile-butadiene-styrene copolymer latex composition formed after the emulsion polymerization to form an acrylonitrile-butadiene-styrene copolymer latex coagulum, in a conventional method known in the art. It can be carried out by, for example, the composition can be carried out by treating the salt aqueous solution or acid aqueous solution and salt agglomeration or acid agglomeration.
  • the washing is to remove the impurities (residual emulsifier, flocculant, etc.) from the acrylonitrile-butadiene-styrene copolymer latex coagulum formed through the salt agglomeration or acid agglomeration to obtain an acrylonitrile-butadiene-styrene copolymer.
  • the coagulum may be added to an aqueous inorganic salt solution, washed, and dried.
  • washing and drying is not particularly limited and may be carried out by a method conventional in the art.
  • the monomer can be continuously or collectively added, and optionally, the continuous addition method and the batch addition method can be used in combination.
  • continuous dosing is effective for the cell graft reaction, and in some cases, 5% to 20% of the total monomers are added at the beginning of the reaction and the remaining monomers are continuously added. It is also possible to inject.
  • the monomer to be added at the beginning of the reaction is preferably added alone, and the monomer to be added at the end of the reaction is preferably added to the monomer in an emulsified state including an emulsifier, water and an initiator.
  • the graft polymerization time is 2 to 4 hours, the polymerization conversion rate after the reaction is 98.5% or more, and the molecular weight of the manufactured graft rubber latex is preferably 50,000 to 150,000.
  • acrylonitrile-butadiene-styrene thermoplastic resin comprising 20 to 50 wt% of the acrylonitrile-butadiene-styrene graft copolymer and 50 to 80 wt% of the styrene-acrylonitrile copolymer.
  • 60 parts by weight of the prepared rubber latex and 100 parts by weight of ion-exchanged water were added to a nitrogen-substituted polymerization reactor, 10 parts by weight of acrylonitrile, 30 parts by weight of styrene, 25 parts by weight of ion-exchanged water, A mixed solution consisting of 0.12 parts by weight of t-butyl hydroperoxide, 1.0 part by weight of potassium rosinate and 0.3 part by weight of tertiary dodecyl mercaptan, 0.054 part by weight of dextrose, 0.004 part by weight of sodium pyrrolate and 0.002 part by weight of ferrous sulfate Parts were continuously fed together into the polymerization reactor at 70 ° C.
  • the formed acrylonitrile-butadiene-styrene copolymer latex was coagulated with an aqueous sulfuric acid solution, washed and dried to obtain a powdered acrylonitrile-butadiene-styrene copolymer powder.
  • the physical properties of the obtained rubber latex were measured and shown in Table 1 below.
  • An acrylonitrile-butadiene-styrene copolymer powder was obtained in the same manner as in Example 1 except for using the prepared rubber latex instead of the rubber latex prepared in Example 1, thereby preparing a specimen.
  • the physical properties of the specimens were measured and shown in Table 1 below, and the values thereof were compared and analyzed.
  • An acrylonitrile-butadiene-styrene copolymer powder was obtained in the same manner as in Example 1 except for using the prepared rubber latex instead of the rubber latex prepared in Example 1, thereby preparing a specimen. .
  • the physical properties of the specimens were measured and shown in Table 1 below, and the values thereof were compared and analyzed.
  • An acrylonitrile-butadiene-styrene copolymer powder was obtained in the same manner as in Example 1 except for using the prepared rubber latex instead of the rubber latex prepared in Example 1, thereby preparing a specimen. .
  • the physical properties of the specimens were measured and shown in Table 1 below, and the values thereof were compared and analyzed.
  • An acrylonitrile-butadiene-styrene copolymer powder was obtained in the same manner as in Comparative Example 1 except for using the prepared rubber latex instead of the prepared rubber latex in Comparative Example 1, thereby preparing a specimen. .
  • the physical properties of the specimens were measured and shown in Table 1 below, and the values thereof were compared and analyzed.
  • Example 1 (Propylene glycol) 7 diacrylate0.2 parts by weight 34.5 20.1 90.2
  • Example 2 (Propylene glycol) 13 diacrylate0.2 parts by weight 35.4 20.5 91.4
  • Example 1 (5% powder reduction) 31.3 23.1 93.9
  • Example 2 (reduced powder 5%) 31.5 23.8 94.4
  • Example 3 (5% powder reduction) 31.8 24.1 95.0 Comparative Example 1 (5% powder reduction) 31.3 19.5 88.5 Comparative Example 2 (5% powder reduction) 27.4 21.2 91.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 충격강도, 광택도 및 유동성이 향상된 디엔계 고무 라텍스의 제조 방법과 이로부터 제조된 디엔계 고무 라텍스 및 이를 포함함으로써 고무질 고형분 함량 비율은 감소된 반면에, 충격 강도 및 생산 수율이 향상된 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체에 관한 것이다.

Description

대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
관련 출원(들)과의 상호 인용
본 출원은 2014년 12월 11일자 한국 특허출원 제10-2014-0178743호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 표현된다.
기술분야
본 발명은 가교제의 종류 및 투입 시점을 조절하여 충격 강도를 향상시킨 대구경의 디엔계 고무 라텍스 제조 방법과 이로부터 제조된 대구경의 디엔계 고무 라텍스, 및 이를 포함함으로써 공중합체 라텍스 내의 고형분 함량은 감소한 반면에 충격지수, 광택도 및 유동성은 향상된 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 및 열가소성 수지에 관한 것이다.
일반적으로 아크릴로니트릴-부타디엔-스티렌(이하, ABS)계 수지는 내충격성, 기계적 강도, 성형성, 광택도 등의 물성이 비교적 양호하여 전기, 전자부품, 사무용기기, 자동차 부품 등에 광범위하게 사용되고 있다.
그 제조 방법으로는 고무 수지를 모노머 용액에 용해시켜 용액중합을 실시하는 방법, 또는 디엔계 모노머를 이용하여 고무질 라텍스를 제조하고, 이를 이용하여 스티렌 및 아크릴로니트릴 모노머를 유화중합하여 그라프트 공중합을 실시하는 방법 등이 있다. 상업적으로는 후자와 같은 유화중합 방법이 많이 이용되고 있는데, 이는 우선적으로 요구되는 품질 수준에 따른 처방의 수정이 용이한 동시에 분체의 형태로 생산된 제품을 이용하여 압출과정을 거쳐 다양한 메트릭스 수지(PSAN, PC, PBT, PVC 등) 및 첨가제(난연제, 내후성안정제, 대전방지제, 항균제 등)와 혼련 시 다양한 제품군을 제조할 수 있다는 장점이 있기 때문이다.
이러한 유화중합 방법에 의한 ABS 수지의 제조에는 앞서 언급이 된 바와 같이 내충격성 향상을 위하여 디엔계 고무 라텍스가 사용된다. 이러한 디엔계 고무 라텍스를 제조할 때 상업적으로 중요한 부분은 i) 생산 효율성 측면과 ii) ABS 내충격성을 효과적으로 확보하기 위한 고무 라텍스 물성(입경, 겔 함량) 확보라고 할 수 있다.
먼저 i) 생산 효율성 측면에서 보면, 일반적인 디엔계 고무 라텍스의 제조 방법의 경우 대구경을 얻기 위해서 통상 30시간 이상의 중합 반응을 실시해야 함과 동시에, 중합 전환율 90% 이상에서는 중합전환율이 급속도로 저하되어 더 많은 시간을 소모하여도 중합 전환율이 크게 향상되지 않는다는 단점이 있다. 이를 극복하기 위하여 짧은 반응시간과 높은 반응온도 조건하에서 중합을 실시할 경우, 입자경이 작아지고 반응 응고물이 많아지는 문제가 생길 뿐만 아니라 반응열 과다로 인한 반응압 상승으로 양산 공정 시에 안전성이 낮다. 따라서, 짧은 반응시간에 높은 전환율을 갖는 대구경의 폴리 부타디엔 라텍스를 얻는 것은 상업적으로 쉽지 않다.
또한, ii) ABS의 내충격성 확보를 위한 고무 라텍스의 물성 확보는 크게 입자경의 크기와 내부 가교로 인해 발생되는 겔 함량이 중요한 요소로 인지되고 있다. 예컨대, 일반적으로 내충격성을 효과적으로 확보하기 위해서는 소입경 보다는 대구경의 고무 라텍스(3000Å 이상)가 유리하고 겔 함량이 높은 고무 라텍스보다는 겔 함량이 낮은 고무 라텍스가 유리한 것으로 알려져 있다. 그러나 짧은 반응시간과 높은 전환율의 조건하에서는 통상적으로 입자경이 작고 겔 함량이 높은 고무 라텍스가 제조되기 때문에, 효과적인 고무 라텍스 물성 확보에 많은 어려움이 있다.
이에 많은 기업에서는 생산성 및 물성을 고려하여 대구경 고무 라텍스의 물성을 확보하기 위한 다양한 방법들이 시도되고 있다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 겔 함량이 낮은 대구경의 디엔계 고무 라텍스 제조 방법을 제공한다.
또한, 본 발명에서는 상기 방법에 의해 제조된 충격 강도가 향상된 대구경의 디엔계 고무 라텍스를 제공한다.
또한, 본 발명에서는 상기 대구경의 디엔계 고무 라텍스를 포함함으로써, 분말 함량은 감소한 반면에, 충격강도, 광택도 및 유동성이 향상된 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 및 열가소성 수지를 제공한다.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에서는
공액디엔 단량체 100 중량부에 대하여,
공액디엔계 단량체 50 중량부 내지 75 중량부, 유화제 1 중량부 내지 3 중량부, 중합개시제 0.1 중량부 내지 0.4 중량부, 전해질 0.1 중량부 내지 3 중량부, 분자량 조절제 0.1 중량부 내지 0.5 중량부, 및 이온교환수 65 중량부 내지 100 중량부를 반응기에 투입하고 교반하면서, 가교제 0.05 중량부 내지 0.3 중량부를 투입하고 1차 중합하는 단계(단계 1);
상기 (단계 1)의 중합 전환율이 45 내지 60%인 시점에 잔량의 공액디엔계 단량체와 유화제 0 내지 0.1 중량부 및 가교제 0 내지 0.2 중량부를 투입하고 2차 중합하는 단계(단계 2); 및
상기 (단계 2)의 중합 전환율이 90 내지 95% 이상인 시점에서 중합을 종료시키는 단계(단계 3);를 포함하는 디엔계 고무 라텍스의 제조 방법을 제공한다.
또한, 본 발명의 다른 일 실시예에서는, 상기의 제조방법으로부터 제조되며, 평균 입경이 2,500Å 내지 4,000Å이고, 겔 함량이 60% 내지 80%인 대구경의 디엔계 고무 라텍스를 제공한다.
또한, 본 발명의 실시예에서는 공중합체 전체 함량 중에 상기 디엔계 고무 라텍스 40 내지 70 중량%, 방향족 비닐 화합물 20 내지 50중량%, 및 비닐시안 화합물 10 내지 40 중량%를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 제공한다.
또한, 본 발명에서는 상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 열가소성 수지를 제공한다.
본 발명에 따르면 겔 함량이 낮은 대구경의 디엔계 고무 라텍스를 구현하고, 이를 이용함으로써 우수한 충격강도와 광택도 및 유동성을 가지는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 제조할 수 있다. 또한, 반응 조건을 효과적으로 제어하여, 최종적인 중합물의 중합 전환율을 높여 산업적 생산성을 높일 수 있다는 장점이 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 ABS 수지에 적용되는 디엔계 고무 라텍스의 제조에 있어서,
공액디엔 단량체 100 중량부에 대하여,
공액디엔계 단량체 50 중량부 내지 75 중량부, 유화제 1 중량부 내지 3 중량부, 중합개시제 0.1 중량부 내지 0.4 중량부, 전해질 0.1 중량부 내지 3 중량부, 분자량 조절제 0.1 중량부 내지 0.5 중량부, 및 이온교환수 65 중량부 내지 100 중량부를 반응기에 투입하고 교반하면서, 가교제 0.05 중량부 내지 0.3 중량부를 투입하고 1차 중합하는 단계(단계 1);
상기 (단계 1)의 중합 전환율이 45% 내지 60%인 시점에 잔량의 공액디엔계 단량체와 유화제 0 내지 0.1 중량부 및 가교제 0 내지 0.2 중량부를 투입하고 2차 중합하는 단계(단계 2); 및
상기 (단계 2)의 중합 전환율이 90 내지 95% 이상인 시점에서 중합을 종료시키는 단계(단계 3);를 포함하는 디엔계 고무 라텍스의 제조 방법을 제공한다.
상기 (단계 1)은 공액디엔계 단량체와 유화제 및 분자량 조절제를 혼합하여 중합을 개시하기 위하여, 우선적으로 공액디엔계 단량체 50 내지 75 중량부, 유화제 1 내지 3 중량부, 중합개시제 0.1 내지 0.4 중량부, 전해질 0.1 내지 3 중량부, 분자량 조절제 0.1 내지 0.5 중량부, 및 이온교환수 65 내지 100 중량부를 반응기에 투입한 다음, 가교제 0.05 내지 0.3 중량부를 투입하는 1차 중합하는 단계이다.
본 발명에서 상기 공액디엔계 단량체는 공액디엔계 단량체 단독으로 구성된 것이거나, 공액디엔계 단량체와 방향족 비닐계 단량체 및 비닐시안계 단량체로 구성되는 것일 수 있다. 즉, 상기 공액디엔계 단량체는 공액디엔계 단량체를 의미하는 것이거나, 또는 공액디엔계 단량체, 방향족 비닐계 단량체 및 비닐시안계 단량체의 단량체를 의미하는 것일 수 있다.
상기 공액디엔계 단량체가 상기의 단량체들의 혼합물일 경우에는, 상기 공액디엔계 단량체는 공액디엔계 단량체 80 내지 99 중량%; 및 방향족 비닐계 단량체 및 비닐시안계 단량체로 이루어진 군으로부터 선택된 적어도 하나의 공단량체 1 내지 20 중량%를 포함하는 것일 수 있다.
이때, 상기 공액디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌(piperylene)으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함할 수 있으며, 구체적으로 1,3-부타디엔일 수 있다.
또한, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, m-메틸스티렌, α-에틸스티렌 p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함할 수 있으며, 구체적으로 스티렌일 수 있다.
또한, 상기 비닐시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴로 및 이소프로필 아크릴로니트릴로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함할 수 있으며, 구체적으로 아크릴로니트릴일 수 있다.
상기 공액디엔계 단량체는 메틸 메타 아크릴레이트, 에틸 메타아크릴레이트, n-프로필 메타아크릴레이트, i-프로필 메타아크릴레이트, n-브틸 메타아크릴레이트, 2-에틸 헥실 아크릴레이트 등과 같은 아크릴레이트계 화합물로 이루어진 군으로부터 선택된 1종 이상을 추가로 혼합할 수 있다.
상기 (단계 1)에서는, 대구경 고무 라텍스를 제조하는데 사용되는 공액디엔 단량체 전체 사용량 중에서 50 중량부 내지 75 중량부의 공액디엔 단량체를 사용한다. 그 함량이 50 중량부 미만일 경우에는 단시간에 높은 전환율과 높은 겔함량을 얻는데 어려움이 있고, 75 중량부를 초과할 경우에는 지나치게 빠른 반응속도로 인하여 반응 온도 제어에 어려움이 있고, 또한 이를 이용한 내충격성 수지 제소시 충격강도 저하의 문제점을 야기할 수 있다.
상기 (단계 1)에서, 유화제는 일반적인 음이온계 흡착형 유화제, 비이온계 유화제, 반응형 유화제 또는 고분자형 반응형 유화제 등을 단독으로 또는 혼용하여 사용할 수 있는데, 특별히 한정하는 것은 아니며, 그 대표적인 예로는 알킬 아릴 설포네이트, 알칼리 메틸 알킬 설포네이트, 설포네이트화된 알킬 에스테르, 지방산의 비누, 올레익산의 알칼리염, 스테아릭산의 알칼리염 및 로진산의 알칼리염으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 (단계 1)에서, 상기 유화제의 함량이 1 중량부 미만인 경우 전환율이 매우 느려지며, 고무 라텍스의 안전성이 저하되는 단점이 있고, 3 중량부를 초과하는 경우 지나치게 빠른 반응 속도로 인해 온도 제어 및 고점도로 인한 고무 라텍스 안정성 저하와 입자 크기가 작아지는 단점이 있다.
또한, 상기 중합개시제는 수용성 중합개시제, 지용성 중합개시제 또는 산화-환원 촉매 등을 단독으로 또는 혼용하여 사용할 수 있으며, 특별히 한정하는 것은 아니며, 그 대표적인 예로 상기 수용성 중합개시제는 과황산칼륨, 과황산나트륨 및 광황산암모늄으로 이루어진 군으로부터 선택된 적어도 하나의 과황산염을 들 수 있고, 상기 지용성 중합개시제는 큐멘하이드로퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드 및 벤조일퍼옥사이드로 이루어진 군으로부터 선택된 것을 들 수 있으며, 상기 산화-환원 촉매는 소듐포름알데히드, 술폭실레이트, 소듐 에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로즈, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
상기 중합개시제의 함량이 0.1 중량부 미만일 경우에는 초기 반응이 지연되는 문제점이 있으며, 0.4 중량부를 초과할 경우에는 초기 반응이 과다하여 중합 발열 제어 및 입자 크기 제어가 어려운 문제점이 있다.
상기 전해질은 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, Na4P2O7, K3PO4, Na3PO4, K2HPO4 및 Na2HPO4로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다.
상기 (단계 1)에서, 전해질의 함량이 0.1 중량부 미만일 경우에는 대구경 입자 형성 저하 및 반응 중 점도 상승에 의한 고무 라텍스 안정성 유지에 문제점이 발생하며, 3 중량부를 초과할 경우에는 초기 입자 개수 감소로 반응 속도 저하의 문제점이 있다.
상기 분자량 조절제는 특별히 한정되는 것은 아니나, 예컨대 α-메틸스티렌다이머, t-도데실 머캅탄, n-도데실 머캅탄, 옥틸 머캅탄과 같은 머캅탄류, 사염화탄소, 염화메틸렌, 브롬화메틸렌과 같은 할로겐화 탄화수소, 테트라 에틸 티우람 다이 설파이드, 디펜타메틸렌 티우람 다이 설파이드, 디이소프로필키산토겐 다이 설파이드와 같은 황 함유 화합물일 수 있다. 바람직하게는 t-도데실 머캅탄일 수 있다.
특히, 본 발명의 방법에서는 상기 (단계 1)에서, 가교제는 수평균분자량(Mn)이 작은 올리고머로서, 그 대표적인 예로 (프로필렌 글리콜)n 디아크릴레이트 (이때, n은 3 내지 15의 정수이다)를 들 수 있으며, 구체적으로 수평균분자량이 500 내지 800인 (프로필렌 글리콜)7 디아크릴레이트 또는 (프로필렌 글리콜)13 디아크릴레이트를 들 수 있다. 이때, n이 15를 초과하는 경우, 충격 강도는 향상하나, 고무 라텍스 안정성이 저하되는 단점이 있다.
또한, 상기 (단계 1)에서, 가교제의 함량이 0.05 중량부 미만인 경우 충격 강도 상승 효과가 미미하거나, 거의 발생하지 않으며, 0.3 중량부를 초과하는 경우에는 고무 라텍스 안정성이 저하되는 단점이 발생한다.
특히, 본 발명에서는 중합 반응 초기에 상기 아크릴레이트계 가교제를 투입하여 반응함으로써 중합 속도가 증가하는 효과를 얻을 수 있다.
또한, 본 발명의 방법에서 상기 (단계 2)는, 1차 중합의 중합 전환율이 45 내지 60%인 시점에 잔량의 공액디엔계 단량체와 유화제 0 내지 0.1 중량부 및 가교제 0 내지 0.2 중량부를 투입하고 2차 중합하는 단계이다.
본 발명의 방법에서는 상기 (단계 2)의 중합 반응을 실시함에 있어, 가교제를 포함할 수도 있고, 포함하지 않을 수도 있으나, 추가적인 충격 강도 향상을 위해 포함하는 것이 보다 바람직하다. 또한, (단계 1) 및 (단계 2)에 이용되는 가교제는 그 종류가 서로 동일하거나 또는 상이한 것을 이용할 수 있다.
본 발명의 디엔계 고무 라텍스 제조에 이용되는 가교제의 전체 함량은 공액디엔 화합물 단량체 전체 함량에 대하여 0.05 내지 0.5 중량부인 것이 바람직하다. 만약, 가교제 전체 함량이 0.05 보다 낮을 경우 충격 강도 향상 효과가 크지 않고, 0.5 중량부를 초과하는 경우에는 고무 라텍스의 안정성 저하를 야기한다.
또한, 본 발명에 따른 상기 제조방법은 전술한 바와 같이 공액디엔계 단량체와 유화제 및 가교제를 중합 전환율 시점에 따라 2단계로 나누어 투입함으로써, 겔 함량이 낮으며 적정 입경크기를 갖는 대구경 고무 라텍스를 용이하게 형성할 수 있다.
한편, 본 발명에 따른 상기 1차 중합 및 2차 중합은 각각 상이한 온도조건 하에서 중합이 이뤄지는 것일 수 있다.
구체적으로, 상기 1차 중합은 60℃ 내지 75℃의 온도조건 하에서 수행하는 것일 수 있고, 상기 2차 중합은 75℃ 내지 88℃의 온도조건 하에서 수행하는 것일 수 있다. 즉, 본 발명은 중합이 진행될수록 온도조건을 점차 상승시켜가며 중합을 수행하는 것일 수 있다.
상기 (단계 3)은 고무 중합 라텍스를 수득하기 위하여, 중합 전환율이 90% 내지 95%인 시점에서 중합을 종료시키는 단계이다.
상기 중합 종료 단계는 통상적으로 온도 저하를 통하여 수행할 수 있고, 또는 당업계에 공지된 통상적인 방법, 예컨대 공지의 중합 억제제를 사용하여 수행할 수도 있다.
또한, 본 발명에서는 상기의 제조방법으로부터 제조된 디엔계 고무 라텍스를 제공한다.
본 발명의 일 실시예에 따른 상기 디엔계 고무 라텍스는 평균입경이 2,500Å 내지 4,000Å인 것일 수 있고, 또한 고형분 (겔) 함량이 80% 이하, 구체적으로 60% 내지 80%인 것일 수 있으며, 팽윤지수는 15 내지 25 일 수 있다.
여기에서, 상기 Å는 전자기 방사선(electromagnetic radiation)의 파장을 표현하는데 사용하는 길이의 단위를 나타내는 것으로, 1Å는 0.1 nm와 같다.
상기 고형분 (겔) 함량은 중합체 내에 가교결합 정도, 즉 중합체의 가교도를 나타내는 것으로, 고형분 (겔) 함량 수치가 낮을수록 충격 강도가 높다는 것을 의미한다.
상기 팽윤지수는 중합체가 용매에 의하여 팽윤하는 정도를 나타내는 것으로, 중합체의 가교도가 높을수록 팽윤지수는 낮을 수 있다.
아울러, 본 발명은 상기의 디엔계 고무 라텍스를 포함하는 아크릴로니트릴-부타디엔-스티렌 공중합체를 제공한다.
이때, 상기 아크릴로니트릴-부타디엔-스티렌 공중합체는 공중합체 전체 함량 중에 디엔계 고무 라텍스 40 내지 70 중량%, 방향족 비닐 화합물 20 내지 50 중량%, 및 비닐시안 화합물 10 내지 40 중량%를 포함하는 것을 특징으로 한다.
상기 아크릴로니트릴-부타디엔-스티렌 공중합체 제조에 이용되는 고형분, 즉 본 발명의 방법에 의해 제조된 상기 디엔계 고무 라텍스의 전체 함량은 40 내지 70 중량% 로서, 고무 라텍스의 전체 함량이 40 중량% 보다 낮을 경우 충격 강도 향상 효과가 크지 않고, 70 중량%를 초과하는 경우에는 라텍스 안정성을 저하시킨다.
구체적으로, 상기 아크릴로니트릴-부타디엔-스티렌 공중합체는 90 내지 99% 중합 전환율과, 25 내지 35%의 그라프트율, 및 0.01 내지 0.1%의 생성 응고물 함량을 가질 수 있으며, 보다 구체적으로 상기 공중합체는 97% 중합 전환율과, 33%의 그라프트율, 및 0.05%의 생성 응고물 함량을 가질 수 있다.
한편, 본 발명에 따른 상기 아크릴로니트릴-부타디엔-스티렌 공중합체는 특별히 한정되지 않고 당업계에 공지된 통상적인 방법에 의하여 제조할 수 있으며, 예컨대 디엔계 고무 라텍스에 방향족 비닐 화합물, 비닐시안 화합물 및 유화제 등의 첨가제를 투입하고 유화 중합한 후 응집 및 세척하여 제조하는 것일 수 있다. 이때, 각 구성성분은 반응기에 일괄적으로 첨가하는 방법, 연속적으로 첨가하는 방법 또는 일부를 1차로 첨가하고 중합 개시 후 분할 투입하는 방법을 통하여 반응에 참여시킬 수 있다.
또한, 유화중합을 용이하게 이루어지게 하기 위하여, 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경조정제, 노화방지제, 산소포착제(oxygen scavenger)와 같은 첨가제를 추가로 사용할 수 있으며, 상기 유화중합은 통상적으로 10℃ 내지 90℃의 온도범위에서 수행될 수 있으나, 바람직하게는 25℃ 내지 75℃의 온도범위일 수 있다.
또한, 상기 응집은 유화중합 이후 형성된 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스 조성물을 응집하여 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스 응고물을 형성하기 위한 것으로, 당업계에 공지된 통상적인 방법에 의하여 수행할 수 있으며, 예컨대 상기 조성물에 염 수용액 또는 산 수용액을 처리하고 염응집 또는 산응집하여 수행할 수 있다.
상기 세척은 상기 염응집 또는 산응집을 통해 형성된 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스 응고물로부터 불순물(잔류 유화제, 응집제 등)을 제거하여 아크릴로니트릴-부타디엔-스티렌 공중합체를 수득하기 위한 것으로, 상기 응고물을 무기염 수용액에 첨가하여 세척한 후 건조하여 수행할 수 있다.
이때, 상기 세척 및 건조는 특별히 한정하지 않고 당업계에 통상적인 방법에 의하여 수행할 수 있다.
본 발명의 그라프트 중합시 단량체는 연속 내지 일괄 투입하는 것이 가능하며, 선택적으로 연속 투입 방법과 일괄 투입 방법을 혼용하여 사용하는 것도 가능하다. 본 발명에서 이에 대해 특별한 제한을 두지는 않으나, 바람직하게는 연속투입하는 것이 셀 그라프트 반응에 효과적이며, 경우에 따라서는 총 단량체의 5% 내지 20%를 반응 초기에 일괄 투입하고 연속적으로 나머지 단량체를 투입하는 것도 가능하다. 이 경우 반응 초기에 투입되는 단량체는 단독 투입되는 것이 바람직하며, 반응 후기에 투입되는 단량체는 유화제 및 물, 개시제가 포함된 유화 상태의 단량체로 투입되는 것이 바람직하다. 그라프트 중합시간은 2 내지 4 시간인 것이 바람직하고, 반응 후 중합 전환율은 98.5% 이상이며, 제조된 그라프트 고무 라텍스의 분자량은 5만 내지 15 만인 것이 바람직하다.
또한, 본 발명에서는 상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 20 중량% 내지 50 중량% 및 스티렌-아크릴로니트릴 공중합체 50 내지 80 중량%를 포함하는 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지를 제공한다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예
실시예 1
(고무 라텍스 제조)
질소 치환된 중합반응기(오토크레이브)에 이온교환수 65 중량부, 단량체로 1,3-부타디엔 75 중량부, 유화제로 로진산 칼륨염 1.0 중량부, 올레인산 포타슘염 1.5 중량부, 전해질로 탄산칼륨(K2CO3) 0.3 중량부, 분자량조절제로 3급 도데실머캅탄(TDDM) 0.3 중량부, 개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄투여하여 혼합한 다음, 가교제로서 (프로필렌 글리콜)7 디아크릴레이트 0.2 중량부를 투입하고 반응온도 70℃에서 중합 전환율 40%까지 반응(1차 중합)시킨 후 잔량의 1,3-부타디엔과 로진산 칼륨염 0.3 중량부를 분할 투여하고 82℃까지 승온하여 반응(2차 중합)시켰다. 그 후 중합 전환율 93%에서 온도 저하를 통하여 반응을 종료시켜 겔 함량 78% 및 3100Å대구경의 고무 라텍스를 수득하였다.
(아크릴로니트릴-부타디엔-스티렌 공중합체의 제조)
질소 치환된 중합 반응기에 상기 제조된 고무 라텍스 60 중량부 및 이온 교환수 100 중량부를 투입하고, 별도의 혼합장치에서 혼합된 아크릴로니트릴 10 중량부, 스티렌 30 중량부, 이온 교환수 25 중량부, t-부틸 하이드로퍼옥사이드 0.12 중량부, 로진산 칼륨 1.0 중량부 및 3급 도데실 머캅탄 0.3 중량부로 이루어진 혼합용액과 덱스트로즈 0.054 중량부, 피롤린산 나트륨 0.004 중량부 및 황산 제1철 0.002 중량부를 함께 상기 중합 반응기에 70℃에서 3시간 동안 연속투입하였다. 연속투입이 끝난 후 덱스트로즈 0.05 중량부, 피롤린산 나트륨 0.03 중량부, 황산 제1철 0.001 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부를 일괄적으로 상기 중합 반응기에 투입하고 온도를 80℃까지 1시간에 걸쳐 승온한 후 반응을 종결하여 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스 (중합 전환율은 97% 이고, 제조된 ABS 공중합체의 그라프트율은 41% 이며, 생성 응고물 함량은 0.3%)를 제조하였다. 형성된 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스를 황산 수용액으로 응고시켜 세척하고 건조하여 분말상태의 아크릴로니트릴-부타디엔-스티렌 공중합체 분말을 수득하였다. 얻어진 고무 라텍스의 물성을 측정하여 하기 표 1에 나타내었다.
(아크릴로니트릴-부타디엔-스티렌계 열가소성 수지)
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 분말 22.5 중량%와 스티렌-아크릴로니트릴계 수지 (LG SAN 92 HR)) 77.5 중량%를 혼합한 후, 이를 압출기를 이용하여 펠렛화한 뒤 사출 성형기를 이용하여 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지의 시험편을 얻었다. 상기 시편의 충격강도, 유동성 및 광택도와 같은 물성을 측정하여 하기 표 2에 나타내고 그 값을 비교분석하였다. 이때, 상기 충격 강도는 상기 각 펠렛을 1/4 인치 두께의 시험편으로 제조하고, ASTM D256에 의거하여 측정하였다.
실시예 2
(고무 라텍스 제조)
(프로필렌 글리콜)7 디아크릴레이트를 사용하는 대신 가교제로서 (프로필렌 글리콜)13 디아크릴레이트를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 겔 함량 76% 및 3100Å 대구경의 고무 라텍스를 수득하였다.
(아크릴로니트릴-부타디엔-스티렌 공중합체의 제조)
실시예 1에서 제조된 고무 라텍스 대신 상기 제조된 고무 라텍스를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아크릴로니트릴-부타디엔-스티렌 공중합체 분말을 수득하고, 이를 이용해 시편을 제조하였다. 상기 시편의 물성을 측정하여 하기 표 1에 나타내고 그 값을 비교분석하였다.
(아크릴로니트릴-부타디엔-스티렌계 열가소성 수지)
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 분말 22.5 중량%와 스티렌-아크릴로니트릴계 수지 (LG SAN 92 HR)) 77.5 중량%를 혼합한 후, 이를 압출기를 이용하여 펠렛화한 뒤 사출 성형기를 이용하여 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지의 시험편을 얻었다. 상기 시편의 충격강도, 유동성 및 광택도와 같은 물성을 측정하여 하기 표 2에 나타내었다.
실시예 3
(고무 라텍스 제조)
질소 치환된 중합반응기(오토크레이브)에 이온교환수 65 중량부, 단량체로 1,3-부타디엔 75 중량부, 유화제로 로진산 칼륨염 1.0 중량부, 올레인산 포타슘염 1.5 중량부, 전해질로 탄산칼륨(K2CO3) 0.3 중량부, 분자량조절제로 3급 도데실머캅탄(TDDM) 0.3 중량부, 개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄투여 하여 혼합한 다음, 가교제로서 (프로필렌 글리콜)13 디아크릴레이트 0.2 중량부를 투입하고 반응온도 70℃에서 중합 전환율 40%까지 반응(1차 중합)시킨 후 잔량의 1,3-부타디엔과 로진산 칼륨염 0.3 중량부 및 가교제로서 (프로필렌 글리콜)13 디아크릴레이트 0.1 중량부를 연속적으로 분할 투여하고 82℃까지 승온시켜 반응(2차 중합)시켰다. 그 후 중합 전환율 93%에서 온도 저하를 통하여 반응을 종료시켜 겔 함량 70% 및 3100Å대구경의 고무 라텍스를 수득하였다.
(아크릴로니트릴-부타디엔-스티렌 공중합체의 제조)
상기 실시예 1에서 제조된 고무 라텍스 대신 상기 제조된 고무 라텍스를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아크릴로니트릴-부타디엔-스티렌 공중합체 분말을 수득하고, 이를 이용해 시편을 제조하였다. 상기 시편의 물성을 측정하여 하기 표 1에 나타내고 그 값을 비교분석하였다.
(아크릴로니트릴-부타디엔-스티렌계 열가소성 수지)
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 분말 22.5 중량%와 스티렌-아크릴로니트릴계 수지 (LG SAN 92 HR)) 77.5 중량%를 혼합한 후, 이를 압출기를 이용하여 펠렛화한 뒤 사출 성형기를 이용하여 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지의 시험편을 얻었다. 상기 시편의 물성을 측정하여 하기 표 2에 나타내었다.
비교예 1
(고무 라텍스 제조: 가교제 사용 안함)
질소 치환된 중합반응기(오토크레이브)에 이온교환수 65 중량부, 단량체로 1,3-부타디엔 75 중량부, 유화제로 로진산 칼륨염 1.0 중량부, 올레인산 포타슘염 1.5 중량부, 전해질로 탄산칼륨(K2CO3) 0.3 중량부, 분자량조절제로 3급 도데실머캅탄(TDDM) 0.3 중량부, 개시제로 과황산 칼륨(K2S2O8) 0.3 중량부를 일괄투여 하여 반응온도 70℃에서 중합 전환율 40%까지 반응(1차 중합)시킨 후 잔량의 1,3-부타디엔을 연속 투여하고, 82℃까지 승온시키고 중합전환율 75% 사이에 로진산 포타슘염 0.3 중량부를 분할 투여하고 반응(2차 중합)시켰다. 그 후 중합 전환율 93%에서 온도 저하를 통하여 반응을 종료시켜 고무 라텍스를 수득하였다.
(아크릴로니트릴-부타디엔-스티렌 공중합체의 제조)
상기 실시예 1에서 제조된 고무 라텍스 대신 상기 제조된 고무 라텍스를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 아크릴로니트릴-부타디엔-스티렌 공중합체 분말을 수득하고, 이를 이용해 시편을 제조하였다. 상기 시편의 물성을 측정하여 하기 표 1에 나타내고 그 값을 비교분석하였다.
(아크릴로니트릴-부타디엔-스티렌계 열가소성 수지)
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 분말 22.5 중량%와 스티렌-아크릴로니트릴계 수지 (LG SAN 92 HR)) 77.5 중량%를 혼합한 후, 이를 압출기를 이용하여 펠렛화한 뒤 사출 성형기를 이용하여 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지의 시험편을 얻었다. 상기 시편의 물성을 측정하여 하기 표 2에 나타내었다.
비교예 2
(고무 라텍스 제조)
상기 1차 중합 시에 가교제로 폴리프로필렌 글리콜 디아크릴레이트 (Mn= 6,000) 0.2 중량부를 추가로 사용하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 3100Å 대구경의 고무 라텍스를 수득하였다.
(아크릴로니트릴-부타디엔-스티렌 공중합체의 제조)
상기 비교예 1에서 제조된 고무 라텍스 대신 상기 제조된 고무 라텍스를 사용하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 아크릴로니트릴-부타디엔-스티렌 공중합체 분말을 수득하고, 이를 이용해 시편을 제조하였다. 상기 시편의 물성을 측정하여 하기 표 1에 나타내고 그 값을 비교분석하였다.
(아크릴로니트릴-부타디엔-스티렌계 열가소성 수지)
상기 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 분말 22.5 중량%와 스티렌-아크릴로니트릴계 수지 (LG SAN 92 HR)) 77.5 중량%를 혼합한 후, 이를 압출기를 이용하여 펠렛화한 뒤 사출 성형기를 이용하여 아크릴로니트릴-부타디엔-스티렌계 열가소성 수지의 시험편을 얻었다. 상기 시편의 물성을 측정하여 하기 표 2에 나타내었다.
가교제 충격강도(Izod 1/4, kg-cm/cm) 유동성(g/10min) 광택도(%)
실시예 1 (프로필렌 글리콜)7디아크릴레이트0.2 중량부 34.5 20.1 90.2
실시예 2 (프로필렌 글리콜)13디아크릴레이트0.2 중량부 35.4 20.5 91.4
실시예 3 (프로필렌 글리콜)13 디아크릴레이트 0.2 중량부 / 0.1 중량부 37.2 21.4 91.8
비교예 1 x 31.3 19.5 88.5
비교예 2 (Mn=6000) 폴리프로필렌 글리콜 디아크릴레이트 (Mn= 6,000) 0.2 중량부 31.8 19.4 88.8
상기 표 1에 나타낸 바와 같이, 본 발명의 고무 라텍스를 이용한 실시예 1 내지 3의 아크릴로니트릴-부타디엔-스티렌 공중합체의 경우, 가교제를 사용하지 않은 비교예 1의 공중합체나, 수평균분자량이 큰 올리고머 가교제를 사용하여 제조한 고무 라텍스를 이용한 비교예 2의 공중합체와 비교하여 충격 강도는 평균 약 15%, 유동성은 평균 약 6% 및 광택도는 평균 약 3% 정도 향상된 것을 알 수 있었다.
구분 충격강도(Izod 1/4, kg-cm 유동성(g/10min) 광택도(%)
실시예 1(분말 5% 감량) 31.3 23.1 93.9
실시예 2(분말 5% 감량) 31.5 23.8 94.4
실시예 3(분말 5% 감량) 31.8 24.1 95.0
비교예 1(분말 5% 감량) 31.3 19.5 88.5
비교예 2(분말 5% 감량) 27.4 21.2 91.3
또한, 상기 표 2에 나타낸 바와 같이, 본 발명의 고무 라텍스를 이용한 실시예 1 내지 3의 아크릴로니트릴-부타디엔-스티렌 열가소성 수지의 경우, 열가소성 수지 내의 분말 중량은 5%를 감소한 반면에, 충격 강도가 비교예 1과 서로 유사하거나 더 우수하고, 유동성은 평균 약 21% 향상되었으며, 광택도는 평균 약 7% 정도 향상된 것을 확인할 수 있었다. 특히, 가교제로서 (프로필렌 글리콜)13 디아크릴레이트를 사용한 실시예 2 및 3의 경우 비교예 2에 비하여 충격강도는 평균 약 15% 향상되고, 유동성은 평균 약 12% 증가하였으며, 광택도는 평균 약 3% 향상된 것을 알 수 있었다.

Claims (23)

  1. 공액디엔 단량체 100 중량부에 대하여,
    상기 공액디엔계 단량체 50 중량부 내지 75 중량부, 유화제 1 중량부 내지 3 중량부, 중합개시제 0.1 중량부 내지 0.4 중량부, 전해질 0.1 중량부 내지 3 중량부, 분자량 조절제 0.1 중량부 내지 0.5 중량부, 및 이온교환수 65 중량부 내지 100 중량부를 반응기에 투입하고 교반하면서, 가교제 0.05 중량부 내지 0.3 중량부를 투입하고 1차 중합하는 단계(단계 1);
    상기 (단계 1)의 중합 전환율이 45% 내지 60%인 시점에 상기 공액디엔계 단량체 잔량과 유화제 0 내지 0.1 중량부 및 가교제 0 내지 0.2 중량부를 투입하고 2차 중합하는 단계(단계 2); 및
    상기 (단계 2)의 중합 전환율이 90% 내지 95% 이상인 시점에서 중합을 종료시키는 단계(단계 3)를 포함하는 디엔계 고무 라텍스의 제조 방법.
  2. 청구항 1에 있어서,
    상기 공액디엔 단량체는 공액디엔계 단량체 단일물로 구성되는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  3. 청구항 1에 있어서,
    상기 공액디엔 단량체는
    공액디엔계 단량체 80 중량% 내지 99 중량%; 및
    방향족 비닐계 단량체 및 비닐시안계 단량체로 이루어진 군으로부터 선택된 적어도 하나의 공단량체 1 중량% 내지 20 중량%로 구성된 혼합물인 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 공액디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌(piperylene)으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  5. 청구항 3에 있어서,
    상기 방향족 비닐계 단량체는 스티렌, α-메틸 스티렌, m-메틸 스티렌, α-에틸스티렌 p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  6. 청구항 3에 있어서,
    상기 비닐시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴로 및 이소프로필 아크릴로니트릴로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 화합물을 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  7. 청구항 1에 있어서,
    상기 가교제는 (프로필렌 글리콜)n 디아크릴레이트 (이때, n은 3 내지 15이다)인 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  8. 청구항 7에 있어서,
    상기 가교제는 수평균분자량이 500 내지 850인 (프로필렌 글리콜)7 디아크릴레이트 또는 (프로필렌 글리콜)13 디아크릴레이트인 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  9. 청구항 1에 있어서,
    상기 유화제는 알킬 아릴 설포네이트, 알칼리 메틸 알킬 설포네이트, 설포네이트화된 알킬 에스테르, 지방산의 비누, 올레익산의 알칼리염, 스테라익산의 알칼리염 및 로진산의 알칼리염으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  10. 청구항 1에 있어서,
    상기 중합개시제는 수용성 중합개시제, 지용성 중합개시제 또는 산화-환원 촉매를 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  11. 청구항 10에 있어서,
    상기 수용성 중합개시제는 과황산칼륨, 과황산나트륨 및 광황산암모늄으로 이루어진 군으로부터 선택된 적어도 하나의 과황산염인 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  12. 청구항 10에 있어서,
    상기 지용성 중합개시제는 큐멘하이드로퍼옥사이드, 디이소프로필 벤젠 하이드로퍼옥사이드, 아조비스 이소부틸니트릴, 3급 부틸 하이드로퍼옥사이드, 파라메탄 하이드로퍼옥사이드 및 벤조일퍼옥사이드로 이루어진 군으로부터 선택된 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  13. 청구항 10에 있어서,
    상기 산화-환원 촉매는 소듐포름알데히드, 술폭실레이트, 소듐 에틸렌디아민 테트라아세테이트, 황산 제1철, 덱스트로즈, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택된 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  14. 청구항 1에 있어서,
    상기 전해질은 KCl, NaCl, KHCO3, NaHCO3, K2CO3, Na2CO3, KHSO3, NaHSO3, K4P2O7, Na4P2O7, K3PO4, Na3PO4, K2HPO4 및 Na2HPO4로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  15. 청구항 1에 있어서,
    상기 (단계 1)의 중합은 60℃ 내지 75℃ 온도 범위에서 수행하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  16. 청구항 1에 있어서,
    상기 (단계 2)의 중합은 75℃ 내지 88℃ 온도 범위에서 수행하는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  17. 청구항 1에 있어서,
    상기 (단계 3)의 중합 종료는 온도 저하를 통하여 수행되는 것을 특징으로 하는 디엔계 고무 라텍스의 제조 방법.
  18. 청구항 1의 제조 방법에 의하여 제조되며,
    평균 입경이 2,500Å 내지 4,000Å인 것을 특징으로 하는 디엔계 고무 라텍스.
  19. 청구항 18에 있어서,
    상기 디엔계 고무 라텍스는 젤 함량이 60% 내지 80%인 것을 특징으로 하는 디엔계 고무 라텍스.
  20. 청구항 18에 있어서,
    상기 디엔계 고무 라텍스는 팽윤 지수가 15 내지 25인 것을 특징으로 하는 디엔계 고무 라텍스.
  21. 청구항 18 기재된 디엔계 고무 라텍스 40 중량% 내지 70 중량%,
    방향족 비닐 화합물 20 중량% 내지 50 중량%, 및
    비닐시안 화합물 10 중량% 내지 40 중량%를 포함하는 것을 특징으로 하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체.
  22. 청구항 21에 있어서,
    상기 공중합체는 90% 내지 99% 중합 전환율과,
    25 내지 35%의 그라프트율, 및
    0.01 내지 0.1%의 생성 응고물 함량을 갖는 것을 특징으로 하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체.
  23. 청구항 22에 있어서,
    상기 공중합체는 97% 중합 전환율과,
    33%의 그라프트율, 및 0.05%의 생성 응고물 함량을 갖는 것을 특징으로 하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체.
PCT/KR2015/013541 2014-12-11 2015-12-10 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 WO2016093649A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580066907.0A CN107001514B (zh) 2014-12-11 2015-12-10 大尺寸二烯类橡胶胶乳的制备方法和包含该橡胶胶乳的丙烯腈-丁二烯-苯乙烯接枝共聚物
JP2017527775A JP6594426B2 (ja) 2014-12-11 2015-12-10 大口径のジエン系ゴムラテックスの製造方法、及びこれを含むアクリロニトリル‐ブタジエン‐スチレングラフト共重合体
EP15867451.5A EP3231821B1 (en) 2014-12-11 2015-12-10 Method for preparing large-diameter diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer including large-diameter diene-based rubber latex
US15/533,631 US10208151B2 (en) 2014-12-11 2015-12-10 Method for preparing large-size diene-based rubber latex and acrylonitrile-butadiene-styrene graft copolymer comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140178743A KR101692117B1 (ko) 2014-12-11 2014-12-11 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
KR10-2014-0178743 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016093649A1 true WO2016093649A1 (ko) 2016-06-16

Family

ID=56107750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013541 WO2016093649A1 (ko) 2014-12-11 2015-12-10 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체

Country Status (6)

Country Link
US (1) US10208151B2 (ko)
EP (1) EP3231821B1 (ko)
JP (1) JP6594426B2 (ko)
KR (1) KR101692117B1 (ko)
CN (1) CN107001514B (ko)
WO (1) WO2016093649A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473637A (zh) * 2016-11-01 2018-08-31 株式会社Lg化学 制备具有提高的冲击强度的abs类接枝共聚物的方法和制造包含其的abs类注塑制品的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197358B1 (ko) * 2016-11-01 2020-12-31 주식회사 엘지화학 Abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
KR102349520B1 (ko) * 2017-12-19 2022-01-07 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스 제조방법, 카르본산 변성 니트릴계 공중합체 라텍스 및 이로부터 성형된 성형품
KR102278035B1 (ko) * 2018-02-07 2021-07-15 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 열가소성 수지 성형품
KR102297798B1 (ko) * 2018-12-14 2021-09-06 주식회사 엘지화학 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이 그라프트 공중합체를 포함하는 열가소성 수지 조성물
KR102511428B1 (ko) * 2019-09-20 2023-03-20 주식회사 엘지화학 디엔계 고무질 중합체의 제조방법 및 이를 포함하는 그라프트 중합체의 제조방법
KR20220037640A (ko) * 2020-09-18 2022-03-25 주식회사 엘지화학 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
CN113024728B (zh) * 2021-03-10 2022-08-05 万华化学(四川)有限公司 一种聚丁二烯胶乳及其制备方法,一种abs树脂
CN113072661B (zh) * 2021-04-13 2022-05-31 长春工业大学 一种大粒径聚丁二烯胶乳的制备方法
KR20230077229A (ko) * 2021-11-25 2023-06-01 주식회사 엘지화학 디엔계 고무질 중합체의 제조방법 및 이를 포함하는 그라프트 중합체의 제조방법
WO2024128877A1 (ko) * 2022-12-16 2024-06-20 주식회사 엘지화학 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법
CN115947884B (zh) * 2022-12-20 2024-03-05 山东万达化工有限公司 一种大粒径聚丁二烯胶乳的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179314B1 (ko) * 1996-02-28 1999-05-15 유현식 내충격성 및 광택성이 우수한 열가소성 수지 조성물의 제조방법
KR20020036556A (ko) * 2000-11-10 2002-05-16 노기호 총고형분 함량이 높은 아크릴로니트릴-부타디엔-스티렌라텍스의 제조방법
KR100806123B1 (ko) * 2005-12-09 2008-02-22 제일모직주식회사 반응성 유화제를 이용한 열가소성 수지 조성물과 그 제조방법
KR20110065019A (ko) * 2009-12-09 2011-06-15 주식회사 엘지화학 고무질 중합체 라텍스, 이의 제조 방법, 이를 포함하는 abs 그라프트 공중합체
KR101223295B1 (ko) * 2010-07-06 2013-01-16 주식회사 엘지화학 고무질 중합체의 제조방법 및 이를 이용한 고무 강화 열가소성 수지 조성물

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU610893B2 (en) 1987-06-15 1991-05-30 H. Neil Paton Tubular elastomeric spring having controllable breakover and spring rate
KR20030012155A (ko) * 2001-07-30 2003-02-12 주식회사 엘지화학 압출쉬트용 아크릴로니트릴-부타디엔-스티렌(abs)열가소성 투명수지의 제조방법
KR100484720B1 (ko) 2001-11-20 2005-04-20 주식회사 엘지화학 열가소성 수지 및 그 제조방법
WO2004096909A1 (en) * 2003-05-02 2004-11-11 Lg Chem. Ltd. Thermoplastic resin composition
KR100623850B1 (ko) * 2004-10-08 2006-09-19 주식회사 엘지화학 고무질 라텍스의 제조 방법
KR100822159B1 (ko) * 2005-10-21 2008-04-17 주식회사 엘지화학 안정성이 우수한 abs계 그라프트 공중합체의 제조방법
KR100923626B1 (ko) 2007-11-07 2009-10-23 주식회사 엘지화학 광택성과 충격강도, 백색도가 우수한 열가소성 수지제조방법
KR101126583B1 (ko) * 2008-09-26 2012-03-29 주식회사 엘지화학 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
JP5272226B2 (ja) 2008-12-16 2013-08-28 エルジー・ケム・リミテッド カルボン酸変性ニトリル系共重合体ラテックス、これを含むディップ成形用ラテックス組成物
CN103930482B (zh) 2012-10-11 2016-08-24 Lg化学株式会社 具有改善的低温冲击强度的丙烯酸烷基酯-芳族乙烯基化合物-乙烯基氰化合物共聚物以及包含该共聚物的聚碳酸酯组合物
JP6001777B2 (ja) * 2013-06-19 2016-10-05 エルジー・ケム・リミテッド 多層コア−シェル構造のゴム重合体ラテックス、その製造方法及びこれを含むアクリロニトリル−ブタジエン−スチレングラフト共重合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179314B1 (ko) * 1996-02-28 1999-05-15 유현식 내충격성 및 광택성이 우수한 열가소성 수지 조성물의 제조방법
KR20020036556A (ko) * 2000-11-10 2002-05-16 노기호 총고형분 함량이 높은 아크릴로니트릴-부타디엔-스티렌라텍스의 제조방법
KR100806123B1 (ko) * 2005-12-09 2008-02-22 제일모직주식회사 반응성 유화제를 이용한 열가소성 수지 조성물과 그 제조방법
KR20110065019A (ko) * 2009-12-09 2011-06-15 주식회사 엘지화학 고무질 중합체 라텍스, 이의 제조 방법, 이를 포함하는 abs 그라프트 공중합체
KR101223295B1 (ko) * 2010-07-06 2013-01-16 주식회사 엘지화학 고무질 중합체의 제조방법 및 이를 이용한 고무 강화 열가소성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231821A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473637A (zh) * 2016-11-01 2018-08-31 株式会社Lg化学 制备具有提高的冲击强度的abs类接枝共聚物的方法和制造包含其的abs类注塑制品的方法
US10711130B2 (en) 2016-11-01 2020-07-14 Lg Chem, Ltd. Method of preparing ABS-based graft copolymer having improved impact strength and method of manufacturing ABS-based injection-molded article including the same

Also Published As

Publication number Publication date
EP3231821A4 (en) 2017-12-20
US10208151B2 (en) 2019-02-19
CN107001514A (zh) 2017-08-01
KR101692117B1 (ko) 2017-01-17
EP3231821B1 (en) 2019-06-12
KR20160071249A (ko) 2016-06-21
EP3231821A1 (en) 2017-10-18
US20170327619A1 (en) 2017-11-16
JP6594426B2 (ja) 2019-10-23
CN107001514B (zh) 2019-08-09
JP2017537192A (ja) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
WO2018084486A2 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 asa계 수지 조성물의 제조방법 및 asa계 성형품의 제조방법
WO2019066375A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2018174395A1 (ko) Asa계 그라프트 공중합체의 제조방법, 이를 포함하는 열가소성 수지 조성물의 제조방법 및 성형품의 제조방법
WO2020122499A1 (ko) 열가소성 공중합체의 제조방법, 이로부터 제조된 열가소성 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2018139775A1 (ko) 그라프트 공중합체, 이의 제조방법, 이를 포함하는 열가소성 수지 조성물 및 성형품
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2016099129A1 (ko) 디엔계 고무 중합체의 제조방법, 이로부터 제조된 디엔계 고무 중합체 및 이를 포함하는 코어-쉘 구조의 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2016204485A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016182338A1 (ko) 아크릴계 가공조제 및 이를 포함하는 염화비닐계 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016105171A1 (ko) 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2021101101A1 (ko) 공중합체 제조방법, 이로부터 제조된 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2015030415A1 (ko) 투명 abs 수지 및 투명 abs 수지 조성물
WO2018110825A2 (ko) 열가소성 수지의 제조방법
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2016043424A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2015016520A1 (ko) 고무강화 열가소성 수지의 제조방법
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2021040269A1 (ko) (메트)아크릴레이트 그라프트 공중합체를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2021033953A1 (ko) 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이 그라프트 공중합체를 포함하는 열가소성 수지 조성물
WO2013105737A1 (ko) 열 안정화제 프리 열가소성 수지 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867451

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015867451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017527775

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15533631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE