WO2015005206A1 - ポリジオキソランの製造方法 - Google Patents

ポリジオキソランの製造方法 Download PDF

Info

Publication number
WO2015005206A1
WO2015005206A1 PCT/JP2014/067744 JP2014067744W WO2015005206A1 WO 2015005206 A1 WO2015005206 A1 WO 2015005206A1 JP 2014067744 W JP2014067744 W JP 2014067744W WO 2015005206 A1 WO2015005206 A1 WO 2015005206A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dioxolane
polymerization
polydioxolane
formula
Prior art date
Application number
PCT/JP2014/067744
Other languages
English (en)
French (fr)
Inventor
顕 伊東
大幸 寺本
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2015526290A priority Critical patent/JP6241478B2/ja
Priority to EP14822990.9A priority patent/EP3020741B1/en
Priority to KR1020167001012A priority patent/KR102282549B1/ko
Priority to US14/903,366 priority patent/US9868819B2/en
Priority to CN201480038061.5A priority patent/CN105358597B/zh
Publication of WO2015005206A1 publication Critical patent/WO2015005206A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/06Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G4/00Condensation polymers of aldehydes or ketones with polyalcohols; Addition polymers of heterocyclic oxygen compounds containing in the ring at least once the grouping —O—C—O—

Definitions

  • the present invention relates to a method for producing a polyether polymer. More specifically, the present invention relates to a production method for obtaining a polyether polymer using cyclic formal as a raw material.
  • a high molecular weight polyether polymer obtained by polymerizing cyclic formal with a cationic catalyst is generally soluble in warm water, and has fluidity at a temperature close to room temperature while having a high molecular weight. Processing as a flexible film is also possible. Therefore, using this feature, many uses such as packaging materials, fiber treatment agents, thickeners, plasticizers, heat media, and lubricants can be considered.
  • a method for producing a high molecular weight polyether polymer a method using a complex polymerization catalyst comprising a heteropolyacid and a carbonyl compound using 1,3-dioxolane as a main monomer has been disclosed (for example, special (See Kaihei 7-41532).
  • the heteropolyacid alone as a catalyst has a long polymerization time and the number average molecular weight does not increase sufficiently. If the amount of the catalyst is increased, the temperature in the polymerization system rises rapidly and the molecular weight decreases. It is said that it is effective.
  • a method of obtaining a high molecular weight by copolymerizing with trioxane while controlling so that the temperature during polymerization is not excessively high see, for example, JP-A-2003-246857, or co-polymerizing with 1,3-dioxepane.
  • Methods of polymerization are disclosed (see, for example, US Pat. No. 5,166,224, US Pat. No. 5,420,422).
  • an object of the present invention is to provide a method for producing polydioxolane, which can polymerize a 1,3-dioxolane compound in the presence of a cationic catalyst to obtain a high molecular weight polydioxolane.
  • the present invention polymerizes the 1,3-dioxolane compound represented by the formula (1) in the presence of a cationic catalyst and 10 to 1500 ppm of sterically hindered phenol with respect to the 1,3-dioxolane compound.
  • a process for producing polydioxolane comprising a step.
  • R1 to R6 are independently the same or different and each represents a hydrogen atom, an alkyl group, an aryl group, a hydroxyalkyl group, an alkyloxy group or an aryloxy group.
  • the present invention it is possible to provide a method for producing polydioxolane that can polymerize a 1,3-dioxolane compound in the presence of a cationic catalyst to obtain a high molecular weight polydioxolane.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Unless otherwise specified, “ppm” is based on mass.
  • the present invention relates to a process for producing polydioxolane which comprises cationically polymerizing a 1,3-dioxolane compound represented by the formula (1) as a monomer, wherein the 1,3-dioxolane compound, a cationic catalyst and a sterically hindered phenol are mixed. It is characterized by carrying out a polymerization reaction. That is, in the method for producing polydioxolane of the present invention, the 1,3-dioxolane compound represented by the formula (1) is converted into a cationic catalyst, 10 to 1500 ppm of sterically hindered phenol with respect to the 1,3-dioxolane compound. Polymerizing in the presence of.
  • the 1,3-dioxolane compound represented by the formula (1) used as a monomer typically represents an unsubstituted 1,3-dioxolane such as an alkyl group, an aryl group, a hydroxyalkyl group, an alkyloxy group, or an aryloxy group.
  • an organic group is substituted.
  • alkyl group examples include linear or branched alkyl groups having 1 to 6 carbon atoms, and linear or branched alkyl groups having 1 to 4 carbon atoms are preferable.
  • aryl group examples include aryl groups having 6 to 10 carbon atoms, and a phenyl group is preferable.
  • the alkyl group and aryl group may further have a substituent.
  • substituent examples include an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and a halogen atom such as fluorine, chlorine and bromine.
  • the number of substitutions is, for example, 1 to 4, and preferably 1 to 2.
  • hydroxyalkyl group examples include a linear or branched hydroxyalkyl group having 1 to 6 carbon atoms having at least one hydroxy group, and a linear chain having 1 to 4 carbon atoms having at least one hydroxy group. Or a branched alkyl group is preferable.
  • the alkyl group in the alkyloxy group is the same as described above.
  • the aryl group in the aryloxy group is the same as described above.
  • any two selected from R1 to R6 in the formula (1) may be bonded to each other to form a ring.
  • the formed ring is preferably a 3- to 6-membered aliphatic ring, and more preferably a 5- to 6-membered aliphatic ring.
  • At least one is preferably a hydrogen atom, and more preferably four or more are hydrogen atoms.
  • 1,3-dioxolane compound represented by the formula (1) include unsubstituted 1,3-dioxolane, 2-methyl-1,3-dioxolane, 2-ethyl-1,3-dioxolane, 2- Propyl-1,3-dioxolane, 2-butyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-phenyl-2-methyl-1,3-dioxolane, 4-methyl-1, 3-dioxolane, 2,4-dimethyl-1,3-dioxolane, 2-ethyl-4-methyl-1,3-dioxolane, 4,4-dimethyl-1,3-dioxolane, 4,5-dimethyl-1, 3-dioxolane, 2,2,4-trimethyl-1,3-dioxolane, 4-hydroxymethyl-1,3-dioxolane, 4-butyloxymethyl-1,3-dioxolane,
  • the 1,3-dioxolane compound represented by the formula (1) may be used alone or in combination of two or more.
  • two or more 1,3-dioxolane compounds it is preferable to combine an unsubstituted 1,3-dioxolane with another 1,3-dioxolane compound having a substituent.
  • the ratio is not particularly limited and can be appropriately selected depending on the purpose and the like.
  • other monomers other than the 1,3-dioxolane compound represented by the formula (1) may be used in combination.
  • examples of other monomers include trioxane, which is a cyclic trimer consisting only of formaldehyde, tetraoxocan, which is a cyclic tetramer, ethylene oxide, propylene oxide, butylene oxide, epichlorohydrin, styrene oxide, oxytane, oxetane, tetrahydrofuran, and oxepane. It is preferable to use at least one selected from the group consisting of these.
  • the proportion of monomers other than the 1,3-dioxolane compound represented by the formula (1) is preferably 100 with respect to 100 parts by mass of the 1,3-dioxolane compound represented by the formula (1). Less than part by mass, more preferably less than 20 parts by mass.
  • the 1,3-dioxolane compound represented by the formula (1) used in the method for producing polydioxolane may contain impurities. Impurities such as water, formic acid, methanol, formaldehyde and the like that can be contained in the 1,3-dioxolane compound represented by the formula (1) are inevitably generated during production.
  • the 1,3-dioxolane compound represented by 1) is preferably 100 ppm or less, more preferably 70 ppm or less, and most preferably 50 ppm or less.
  • the cationic catalyst is not particularly limited as long as it is a compound capable of cationic polymerization of a 1,3-dioxolane compound, and can be appropriately selected from commonly used cationic catalysts.
  • the cationic catalyst is preferably at least one selected from the group consisting of super strong acids such as heteropolyacids, isopolyacids, perfluoroalkylsulfonic acids and derivatives thereof.
  • heteropolyacids include phosphotungstic acid, phosphomolybdic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, silicomolybdic acid, silicotungstic acid, and xymoribed tungsten.
  • examples thereof include acid, and cinnamon-rib-tungstovanadic acid.
  • at least one selected from the group consisting of phosphomolybdic acid, phosphotungstic acid, silicomolybdic acid and silicotungstic acid is preferable.
  • heteropolyacids include these acidic salts.
  • heteropolyacids are generally known as ⁇ 0 type, ⁇ II type, and ⁇ IV type, but ⁇ 0 type and ⁇ IV type are preferable in terms of polymerization activity, and ⁇ 0 type is particularly preferable.
  • isopolyacids include a method of treating a salt solution such as isopolymolybdate, isopolytungstate, and isopolyvanadate with an ion exchange resin, or a method of adding a mineral acid to a concentrated solution and extracting with ether. And the like, and protonic acids prepared by various methods. These include, for example, isopolytungstic acid such as paratungstic acid and metatungstic acid, isopolymolybdic acid such as paramolybdic acid and metamolybdic acid, and isopolyvanadic acid such as metapolyvanadic acid. .
  • a metal cation such as sodium, potassium, cesium or rubidium
  • a cation such as an ammonium ion which may have an aliphatic group or an aromatic group.
  • These isopolyacids also include these acidic salts.
  • the perfluoroalkylsulfonic acid include trifluoromethanesulfonic acid, pentafluoroethanesulfonic acid, heptafluoropropanesulfonic acid, nonafluorobutanesulfonic acid, undecanefluoropentanesulfonic acid, and perfluoroheptanesulfonic acid.
  • Perfluoroalkylsulfonic acid anhydrides can also be used. Specific examples of perfluoroalkyl sulfonic acid anhydrides include trifluoromethane sulfonic acid anhydride, pentafluoroethane sulfonic acid anhydride, heptafluoropropane sulfonic acid anhydride, etc. Furthermore, perfluoroalkyl sulfonic acid derivatives are also used. it can.
  • perfluoroalkyl sulfonic acid derivatives include perfluoroalkyl sulfonic acid esters such as methyl trifluoromethane sulfonate, ethyl trifluoromethane sulfonate, methyl pentafluoroethane sulfonate, and methyl heptafluoropropane sulfonate. .
  • perfluoroalkyl sulfonic acid esters such as methyl trifluoromethane sulfonate, ethyl trifluoromethane sulfonate, methyl pentafluoroethane sulfonate, and methyl heptafluoropropane sulfonate.
  • phosphotungstic acid which is one of heteropolyacids, is preferably used.
  • the cationic catalyst may be used alone or in combination of two or more.
  • the amount of the cationic catalyst used is preferably 10 to 1000 ppm, more preferably 20 to 500 ppm, still more preferably 20 to 300 ppm, and particularly preferably 20 to 100 ppm in terms of a mass ratio with respect to the total monomers.
  • the cationic catalyst is preferably added to the polymerization vessel alone or in the form of a solution.
  • the solvents are ethers, esters, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, which are inert organic solvents in which the polymerization is not adversely affected and the catalyst is soluble.
  • Halogenated hydrocarbons and the like can be mentioned, and at least one selected from the group consisting of these is preferable.
  • a 1,3-dioxolane compound represented by the formula (1) which is a raw material monomer may be used as a solvent.
  • the cationic catalyst is preferably added at the entrance of the polymerizer as the cationic catalyst alone or as a solution thereof.
  • sterically hindered phenol examples include dibutylhydroxytoluene, triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythrityl-tetrakis-3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate, hexamethylene bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2'-methylene bis (6-t- Butyl-4-methylphenol), 3,9-bis ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl] propionyloxy) -1,1-dimethylethyl ⁇ -2,4 , 8,10-Tetraoxaspiro [5.5] undecane, N, N′-hexane-1,6-diylbis [3- (3,5-di-t- Butyl-4-hydroxyphenyl)
  • dibutylhydroxytoluene triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythrityl-tetrakis-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate and 3,9-bis ⁇ 2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl] propionyloxy) -1,1-dimethylethyl ⁇ -2, More preferable is at least one selected from the group consisting of 4,8,10-tetraoxaspiro [5.5] undecane, and triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) propionate is most preferably used.
  • the sterically hindered phenol may be used alone or in combination of two or more.
  • the amount of the sterically hindered phenol used is 10 to 1500 ppm, preferably 10 to 1000 ppm, more preferably 50 to 1000 ppm on a mass basis with respect to the 1,3-dioxolane compound represented by the formula (1). More preferably, it is 100 to 1000 ppm, and particularly preferably 200 to 800 ppm. If the amount is less than this range, the effect of increasing the molecular weight due to the addition may not be sufficiently obtained. Conversely, if the amount is too large, the reaction rate may be lowered.
  • the effect of increasing the molecular weight by the addition of this sterically hindered phenol can be obtained higher in the system using the cationic catalyst in the range of 10 to 1000 ppm as described above. That is, the mass ratio of the sterically hindered phenol to the cationic catalyst (sterically hindered phenol / cationic catalyst) is preferably 0.1 to 100, more preferably 1 to 80, and still more preferably 10 to 50. .
  • the sterically hindered phenol is preferably added to the polymerization vessel alone or in the form of a solution.
  • the solvent include aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as methylene dichloride and ethylene dichloride. At least one selected from the group consisting of these is preferred. Further, a 1,3-dioxolane compound represented by the formula (1) which is a raw material monomer may be used as a solvent. In order to maintain the activity of the sterically hindered phenol during the polymerization reaction, it is desirable to add the sterically hindered phenol alone or a solution thereof at the inlet of the polymerization machine.
  • the polymerization step is not particularly limited as long as the raw materials such as the 1,3-dioxolane compound represented by the formula (1) can be sufficiently mixed and the conditions for ring-opening polymerization can be realized, and batch reaction and continuous reaction can be applied.
  • a continuous reaction it is preferable to carry out the polymerization in a kneader having at least two horizontal rotation shafts and having blades with screws or paddles incorporated in the rotation shafts, or in a static mixer.
  • the polymerization step is preferably performed under an inert atmosphere such as a nitrogen atmosphere.
  • Solution polymerization carried out in the presence of a solvent is also possible, but bulk polymerization under substantially no solvent is preferred because the cost of solvent recovery is unnecessary and the effect of sterically hindered phenol is greater.
  • aliphatic hydrocarbons such as hexane, heptane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; and halogenated hydrocarbons such as methylene dichloride and ethylene dichloride.
  • substantially solvent-free means that the addition amount of a solvent is 5 mass% or less with respect to a raw material monomer, and it is preferable that it is 1 mass% or less.
  • the polymerization time is usually 1 to 120 minutes, preferably 1 to 60 minutes, and more preferably 1 to 30 minutes. If the polymerization time is 120 minutes or less, the productivity is improved, and if it is 1 minute or more, the polymerization yield is improved. When the polymerization temperature is too high, the molecular weight may be lowered by depolymerization, and therefore 0 to 100 ° C. is preferable. If it is 0 degreeC or more, it will become a sufficient polymerization yield.
  • the pressure in the polymerization step is preferably in the range of normal pressure to increased pressure, and is usually in the range of normal pressure to 2 MPa.
  • a condenser is provided for internal reflux, or even at 100 ° C. It is preferable to advance the polymerization reaction efficiently by increasing the pressure to be maintained. According to the present invention, it is possible to easily increase the molecular weight as compared with the case where sterically hindered phenol is not added.
  • the inside of the system is preferably mixed.
  • a mixing method a mechanical stirring method using rotating blades, blades, paddles or the like, or a static mixing method such as a static mixer while continuously flowing can be used. If the system is not sufficiently mixed, the viscosity in the system increases as the molecular weight increases due to the progress of the polymerization reaction, the monomer supply to the reaction active site becomes insufficient due to diffusion rate control, and the reaction rate may decrease. is there. In addition, the reaction proceeds runaway due to heat storage, and the temperature in the system may become too high, resulting in a decrease in molecular weight.
  • polymerization process is stopped, for example, by bringing a polymerization terminator into contact with the reaction product.
  • the polymerization terminator can be used as it is or in the form of a solution or a suspension.
  • As the contact method it is preferable that a small amount of a polymerization terminator, a solution and a suspension of a polymerization terminator are continuously added to the reaction system and contacted. In the contact, it is preferable to increase the contact efficiency by stirring.
  • Examples of the polymerization terminator include trivalent organic phosphorus compounds, organic amine compounds, alkali metal and alkaline earth metal hydroxides, and at least one selected from the group consisting of these can be preferably used.
  • Examples of the organic amine compound used as the polymerization terminator include primary, secondary, and tertiary aliphatic amines, aromatic amines, and heterocyclic amines.
  • examples include morpholine, melamine, methylolmelamine, various hindered amines, and at least one selected from the group consisting of these can be preferably used.
  • trivalent organic phosphorus compound examples include trialkylphosphine such as tributylphosphine, tri-t-butylphosphine and tricyclohexylphosphine, and triarylphosphine such as triphenylphosphine and tris (4-methylphenyl) phosphine. At least one selected from the group consisting of these can be preferably used.
  • At least one selected from the group consisting of trivalent organic phosphorus compounds and tertiary amines is preferable.
  • a particularly preferred compound is triphenylphosphine, which is thermally stable and does not adversely affect the coloration of the molded product by heat.
  • tertiary amines particularly preferred compounds are triethylamine and N, N-dimethylbutylamine.
  • the amount of the polymerization terminator used is usually 0.01 to 500 times mol, preferably 0.05 to 100 times mol based on the number of moles of the catalyst used.
  • the solvent used is not particularly limited. Examples thereof include various aliphatic or aromatic organic solvents such as water, alcohol, raw material monomers, comonomers, acetone, methyl ethyl ketone, hexane, cyclohexane, heptane, benzene, toluene, xylene, methylene dichloride, and ethylene dichloride. These can also be used as a mixture.
  • thermoplastic resins and inorganic fillers may be added.
  • the addition is preferably performed after the termination of the polymerization reaction, and the method may be a batch type or a continuous type.
  • Examples 1 to 5 Polymerization was carried out by batch polymerization using a desktop type biaxial kneader having an internal volume of 1 L having a jacket and two Z-shaped blades as a polymerization apparatus. 50 ° C. warm water was circulated through the jacket, and the interior was further heated and dried with high-temperature air, and then a lid was attached to replace the system with nitrogen.
  • the obtained polymer was recovered and vacuum dried at 40 ° C. for 1 day to obtain the yield.
  • the number average molecular weight was measured by gel permeation chromatography using polystyrene as a standard substance and tetrahydrofuran as a solvent. The results are also shown in Table 1.
  • Table 2 Abbreviations in Table 2 are as follows. a: triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate b: pentaerythrityl-tetrakis-3- (3,5-di-tert-butyl-4- Hydroxyphenyl) propionate c: dibutylhydroxytoluene d: phenol

Abstract

 本発明は、式(1)で示される1,3-ジオキソラン化合物を、カチオン性触媒と、1,3-ジオキソラン化合物に対して10~1500ppmの立体障害性フェノールとの存在下で重合する工程を含むポリジオキソランの製造方法を提供する。式中、R1~R6はそれぞれ独立に同一または異なって、水素原子、アルキル基、アリール基、ヒドロキシアルキル基、アルキルオキシ基又はアリールオキシ基を示す。

Description

ポリジオキソランの製造方法
 本発明は、ポリエーテル系重合体の製造方法に関する。更に詳しくは環状ホルマールを原料としてポリエーテル系重合体を得るための製造方法に関する。
 環状ホルマールをカチオン性触媒により重合させて得られる高分子量のポリエーテル系重合体は、一般的に温水に可溶であり、また高分子量でありながら比較的常温に近い温度で流動性を有し、柔軟なフィルムとしての加工も可能である。従って、この特徴を利用して包装材料や繊維処理剤、増粘剤、可塑剤、更には熱媒体、潤滑材など多くの用途が考えられる。
 これまで高分子量のポリエーテル系重合体の製造方法に関しては、1,3-ジオキソランをメインのモノマーとして、ヘテロポリ酸とカルボニル化合物とからなる複合重合触媒を用いる方法が開示されている(例えば、特開平7-41532号公報参照)。触媒としてヘテロポリ酸のみでは重合時間が長い上に数平均分子量が十分に上がらず、触媒量を増量した場合には重合系内の温度が急激に上昇して分子量が低下するため、複合重合触媒とすることが有効であるとしている。更に、重合中の温度が高くなり過ぎないように制御しながらトリオキサンと共重合することで高分子量体を得る方法(例えば、特開2003-246857号公報参照)や、1,3-ジオキセパンと共重合する方法が開示されている(例えば、米国特許第5166224号明細書、米国特許第5412042号明細書参照)。
特開平7-41532号公報 特開2003-246857号公報 米国特許第5166224号明細書 米国特許第5412042号明細書
 しかしながら、従来技術の製造方法では、高分子量化に対する効果は限定的であり、更なる改善が求められていた。したがって、本発明は、1,3-ジオキソラン化合物をカチオン性触媒の存在下で重合させて、高分子量のポリジオキソランを得ることができるポリジオキソランの製造方法を提供することを課題とする。
 本発明者らは、鋭意検討した結果、以下に示す方法が課題を解決する手段であることを見出し、本発明を完成した。
 すなわち本発明は、式(1)で示される1,3-ジオキソラン化合物を、カチオン性触媒と、1,3-ジオキソラン化合物に対して10~1500ppmの立体障害性フェノールとの存在下で、重合する工程を含むポリジオキソランの製造方法である。
Figure JPOXMLDOC01-appb-C000002
(式中、R1~R6はそれぞれ独立に同一または異なって、水素原子、アルキル基、アリール基、ヒドロキシアルキル基、アルキルオキシ基又はアリールオキシ基を示す。)
 本発明によれば、1,3-ジオキソラン化合物をカチオン性触媒の存在下で重合させて、高分子量のポリジオキソランを得ることができるポリジオキソランの製造方法を提供することができる。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 また、特に断らない限り、「ppm」は質量基準である。
 本発明は、式(1)で示される1,3-ジオキソラン化合物をモノマーとしてカチオン重合するポリジオキソランの製造方法であって、該1,3-ジオキソラン化合物、カチオン性触媒及び立体障害性フェノールを混合しながら重合反応することを特徴とする。
 すなわち、本発明のポリジオキソランの製造方法は、式(1)で示される1,3-ジオキソラン化合物を、カチオン性触媒と、1,3-ジオキソラン化合物に対して10~1500ppmの立体障害性フェノールとの存在下で重合する工程を含む。
 モノマーとして用いられる式(1)で示される1,3-ジオキソラン化合物は、無置換の1,3-ジオキソランを代表に、アルキル基、アリール基、ヒドロキシアルキル基、アルキルオキシ基又はアリールオキシ基などの有機基が置換した化合物である。
 アルキル基としては炭素数1~6の直鎖状又は分岐鎖状のアルキル基が挙げられ、炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましい。アリール基としては炭素数6~10のアリール基が挙げられ、フェニル基が好ましい。
 アルキル基及びアリール基は更に置換基を有していてもよい。置換基としては、炭素数1~20のアルコキシ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、フッ素、塩素、臭素等のハロゲン原子などが挙げられる。アルキル基及びアリール基が置換基を有する場合、その置換数は例えば1~4であり、好ましくは1~2である。
 ヒドロキシアルキル基としては、少なくとも1つのヒドキシ基を有する炭素数1~6の直鎖状又は分岐鎖状のヒドロキシアルキル基が挙げられ、少なくとも1つのヒドロキシ基を有する炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましい。
 アルキルオキシ基におけるアルキル基は上記と同様である。アリールオキシ基におけるアリール基は上記と同様である。
 式(1)におけるR1~R6から選択される任意の2つは互いに結合して環を形成してもよい。環を形成する場合、形成される環は3~6員の脂肪族環であることが好ましく、5~6員の脂肪族環であることがより好ましい。
 R1~R6のうち、少なくとも1個は水素原子であることが好ましく、4個以上が水素原子であることがより好ましい。
 式(1)で示される1,3-ジオキソラン化合物として具体的には、無置換の1,3-ジオキソラン、2-メチル-1,3-ジオキソラン、2-エチル-1,3-ジオキソラン、2-プロピル-1,3-ジオキソラン、2-ブチル-1,3-ジオキソラン、2,2-ジメチル-1,3-ジオキソラン、2-フェニル-2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、2,4-ジメチル-1,3-ジオキソラン、2-エチル-4-メチル-1,3-ジオキソラン、4,4-ジメチル-1,3-ジオキソラン、4,5-ジメチル-1,3-ジオキソラン、2,2,4-トリメチル-1,3-ジオキソラン、4-ヒドロキシメチル-1,3-ジオキソラン、4-ブチルオキシメチル-1,3-ジオキソラン、4-フェノキシメチル-1,3-ジオキソラン、4-クロルメチル-1,3-ジオキソラン、1,3-ジオキサビシクロ[3.4.0]ノナン、が例示され、これらからなる群から選択される少なくとも1種が好ましい。
 これらの中でも、無置換の1,3-ジオキソランが好ましく、重合したポリジオキソランの分子量が十分高く、結晶性を低くできる利点が有る。
 ポリジオキソランの製造方法においては、式(1)で示される1,3-ジオキソラン化合物を1種単独でも、2種以上組合せて用いてもよい。1,3-ジオキソラン化合物を2種以上用いる場合、無置換の1,3-ジオキソランとそれとは異なり置換基を有する他の1,3-ジオキソラン化合物とを組合せることが好ましい。
 無置換の1,3-ジオキソランと他の1,3-ジオキソラン化合物とを組合せて用いる場合、その比率は特に制限されず、目的等に応じて適宜選択することができる。
 ポリジオキソランの製造方法においては、必要に応じて式(1)で示される1,3-ジオキソラン化合物以外のその他のモノマーを併用してもよい。その他のモノマーとしては、ホルムアルデヒドのみからなる環状三量体であるトリオキサン、環状四量体であるテトラオキソカン、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、エピクロルヒドリン、スチレンオキシド、オキシタン、オキセタン、テトラヒドロフラン、およびオキセパンなどを挙げることができ、これらからなる群から選択される少なくとも1種を用いることが好ましい。
 その他のモノマーを用いる場合、式(1)で示される1,3-ジオキソラン化合物以外のモノマーの割合は、式(1)で示される1,3-ジオキソラン化合物100質量部に対して、好ましくは100質量部未満、更に好ましくは20質量部未満である。
 ポリジオキソランの製造方法に用いる式(1)で示される1,3-ジオキソラン化合物は不純物を含んでいてもよい。式(1)で示される1,3-ジオキソラン化合物中に含まれ得る水、ギ酸、メタノール、ホルムアルデヒド等の不純物は、製造する際に不可避的に発生するものであり、不純物の総量は、式(1)で示される1,3-ジオキソラン化合物中100ppm以下であることが好ましく、より好ましくは70ppm以下、最も好ましくは50ppm以下である。
 カチオン性触媒は1,3-ジオキソラン化合物をカチオン重合可能な化合物であれば特に制限されず、通常用いられるカチオン性触媒から適宜選択して用いることができる。カチオン性触媒は、ヘテロポリ酸、イソポリ酸、パーフルオロアルキルスルホン酸及びこれらの誘導体などの超強酸からなる群から選ばれる少なくとも1種であることが好ましい。
 ヘテロポリ酸としては例えば、リンタングステン酸、リンモリブデン酸、リンモリブドタングステン酸、リンモリブドバナジン酸、リンモリブドタングストバナジン酸、リンタングストバナジン酸、ケイモリブデン酸、ケイタングステン酸、ケイモリブドタングステン酸、ケイモリブドタングストバナジン酸等が挙げられる。中でも好ましいのは、リンモリブデン酸、リンタングステン酸、ケイモリブデン酸及びケイタングステン酸からなる群から選択される少なくとも1種である。また、ヘテロポリ酸のプロトンの一部が、ナトリウム、カリウム、セシウムやルビジウムなどの金属カチオン;脂肪族基又は芳香族基を有していてもよいアンモニウムイオンなどのカチオンに置き換わった形の酸性塩も用いることができ、上記ヘテロポリ酸には、これらの酸性塩も含まれる。
 また、ヘテロポリ酸は、一般にα0型、βII型、βIV型が知られているが、重合活性の点でα0型、βIV型が好ましく、特に好ましくはα0型である。
 イソポリ酸としては例えば、イソポリモリブデン酸塩、イソポリタングステン酸塩、イソポリバナジン酸塩等の塩溶液をイオン交換樹脂で処理する方法や、濃縮した溶液に鉱酸を加えてエーテル抽出する方法等、各種の方法により調製されるプロトン酸等が挙げられる。これらとしては、例えばパラタングステン酸、メタタングステン酸等の如きイソポリタングステン酸、パラモリブデン酸、メタモリブデン酸等の如きイソポリモリブデン酸、メタポリバナジン酸等の如きイソポリバナジン酸などが挙げられる。更に、これらイソポリ酸のプロトンの一部が、ナトリウム、カリウム、セシウムやルビジウムなどの金属カチオン;脂肪族基又は芳香族基を有していてもよいアンモニウムイオンなどのカチオンに置き換わった形の酸性塩も用いることができ、上記イソポリ酸には、これらの酸性塩も含まれる。
 パーフルオロアルキルスルホン酸としては、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカンフルオロペンタンスルホン酸、パーフルオロヘプタンスルホン酸等が挙げられる。また、パーフルオロアルキルスルホン酸無水物も用いることができる。パーフルオロアルキルスルホン酸無水物の具体例としては、トリフルオロメタンスルホン酸無水物、ペンタフルオロエタンスルホン酸無水物、ヘプタフルオロプロパンスルホン酸無水物等が挙げられる、更に、パーフルオロアルキルスルホン酸誘導体も使用できる。パーフルオロアルキルスルホン酸誘導体の具体例としては、トリフルオロメタンスルホン酸メチル、トリフルオロメタンスルホン酸エチル、ペンタフルオロエタンスルホン酸メチル、ヘプタフルオロプロパンスルホン酸メチル等のパーフルオロアルキルスルホン酸エステルを挙げることができる。
 これらの中でもヘテロポリ酸の1つであるリンタングステン酸が好適に用いられる。
 カチオン性触媒は1種単独でも、2種以上を組合せて用いてもよい。
 カチオン性触媒の使用量としては全モノマーに対する質量比で10~1000ppmであることが好ましく、より好ましくは20~500ppmであり、さらに好ましくは20~300ppmであり、特に好ましくは20~100ppmである。
 カチオン性触媒は単独あるいは溶液の形で重合器に添加されることが好ましい。溶液で使用される場合、溶媒としては、それぞれ重合に悪影響がなく、触媒が可溶の不活性有機溶媒であるエーテル類、エステル類、ケトン類、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類などが挙げられ、これらからなる群から選択される少なくとも1種が好ましい。また原料モノマーである式(1)で示される1,3-ジオキソラン化合物を溶媒として用いてもよい。カチオン性触媒は重合機入口でカチオン性触媒単独あるいはその溶液として添加することが好ましい。
 立体障害性フェノールとしては、例えばジブチルヒドロキシトルエン、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ヘキサメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル〕プロピオニルオキシ)-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、N,N’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナミド〕、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロピオン酸1,6-ヘキサンジイルエステル等が挙げられ、これらからなる群から選択される少なくとも1種が好ましい。これらの中でもジブチルヒドロキシトルエン、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート及び3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル〕プロピオニルオキシ)-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンからなる群から選択される少なくとも1種がより好ましく、トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートが最も好適に使用される。
 立体障害性フェノールは1種単独でも、2種以上を組合せて用いてもよい。
 立体障害性フェノールの使用量としては、式(1)で示される1,3-ジオキソラン化合物に対して質量基準で、10~1500ppmであり、好ましくは10~1000ppmであり、より好ましくは50~1000ppmであり、さらに好ましくは100~1000ppmであり、特に好ましくは200~800ppmである。この範囲より少ないと添加による分子量増大の効果が充分に得られない場合があり、逆に多い場合には反応速度の低下を引き起こす場合がある。
 この立体障害性フェノールの添加による高分子量化の効果は、上述の通りカチオン性触媒を10~1000ppmの範囲で用いる系においてより高く得られる。すなわち、カチオン性触媒に対する立体障害性フェノールの質量比(立体障害性フェノール/カチオン性触媒)は、0.1~100が好ましく、より好ましくは1~80であり、さらに好ましくは10~50である。
 立体障害性フェノールは単独あるいは溶液の形で重合器に添加されることが好ましい。溶液で使用される場合、溶媒としては、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロライド、エチレンジクロライド等のハロゲン化炭化水素などが挙げられ、これらからなる群から選択される少なくとも1種が好ましい。また原料モノマーである式(1)で示される1,3-ジオキソラン化合物を溶媒として用いてもよい。重合反応中の立体障害性フェノールの活性を保つために、重合機入口で立体障害性フェノール単独あるいはその溶液を添加することが望ましい。
 重合工程は、式(1)で示される1,3-ジオキソラン化合物等の原料が十分混合でき、開環重合がおきる条件を実現できれば特段の制限は無く、バッチ反応、連続反応などが適用できる。連続反応の場合には少なくとも2本の水平回転軸を有し、それらの回転軸にはスクリュー又はパドルが組み込まれた翼を有する混練機や、スタティックミキサー内部で重合を行うことが好適である。
 重合工程は窒素雰囲気のような不活性雰囲気下で行うことが好ましい。また溶媒の存在下に行う溶液重合も可能であるが、溶媒の回収コストが不要で立体障害性フェノールの効果がより大きい実質的に無溶媒下における塊状重合が好ましい。溶媒を使用する場合、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;メチレンジクロライド、エチレンジクロライド等のハロゲン化炭化水素が挙げられる。なお、実質的に無溶媒とは、溶媒の添加量が原料モノマーに対して5質量%以下であることを意味し、1質量%以下であることが好ましい。
 重合時間は、通常1~120分であるが、好ましくは1~60分であり、より好ましくは1~30分である。重合時間が120分以下であれば生産性が向上し、1分以上であれば重合収率が向上する。
 重合温度が高すぎる場合には解重合により分子量の低下を来す可能性があることから、0~100℃が好ましい。0℃以上であれば十分な重合収率となる。
 重合工程における圧力は、常圧から加圧の範囲で行うのが好ましく、通常常圧~2MPaの範囲である。系内の温度が上昇し、ジオキソラン化合物の沸点を越えるとこれが蒸発してロスすることにあるため、常圧の場合にはコンデンサーを設けて内部還流させるか、100℃においてもジオキソラン化合物が液を保持する圧力まで加圧することで、効率的に重合反応を進めることが好ましい。
 本発明によれば、立体障害性フェノールを添加しない場合に比べて容易に高分子量化することが可能である。
 重合工程においては系内を混合することが好ましい。混合する方法としては回転する羽根、翼、パドルなども用いた機械的な撹拌や、スタティックミキサーのような連続的に流動しながら静的に混合する方法を用いることができる。系内が充分に混合されない場合、重合反応の進行による分子量の増大に伴い系内の粘度が上昇し、反応活性点へのモノマーの供給が拡散律速により不十分となり、反応速度が低下する場合がある。また蓄熱により暴走的に反応が進行し、系内の温度が高くなりすぎて逆に分子量の低下を来す場合がある。
 重合工程の後には重合反応を停止する工程を設けることが好ましい。
 重合反応の停止は、例えば、重合停止剤を反応生成物と接触させることにより行う。重合停止剤はそのまま、あるいは溶液、懸濁液の形態で使用できる。接触方法は連続的に少量の重合停止剤、重合停止剤の溶液、懸濁液を反応系中に添加し、接触させることが好ましい。接触に際しては撹拌により接触効率を高めることが好ましい。
 重合停止剤としては、3価の有機リン化合物、有機アミン化合物、アルカリ金属やアルカリ土類金属の水酸化物などが例示され、これらからなる群から選択される少なくとも1種を好ましく使用できる。重合停止剤として用いられる有機アミン化合物としては、一級、二級、三級の脂肪族アミンや芳香族アミン、ヘテロ環アミン等が挙げられる。具体的には、例えば、エチルアミン、ジエチルアミン、トリエチルアミン、モノ-n-ブチルアミン、ジ-n-ブチルアミン、トリプロピルアミン、トリ-n-ブチルアミン、N,N-ジメチルブチルアミン、アニリン、ジフェニルアミン、ピリジン、ピペリジン、モルホリン、メラミン、メチロールメラミン、各種ヒンダードアミン類等が挙げられ、これらからなる群から選択される少なくとも1種を好ましく用いることができる。
 3価の有機リン化合物としては、トリブチルホスフィン、トリ-t-ブチルホスフィン、トリシクロヘキシルホスフィン等のトリアルキルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン等のトリアリールホスフィンなどが挙げられ、これらからなる群から選択される少なくとも1種を好ましく用いることができる。
 これら例示される重合停止剤の中でも3価の有機リン化合物および三級アミンからなる群から選択される少なくとも1種が好ましい。3価の有機リン化合物の中で、特に好ましい化合物は熱的に安定でかつ熱による成形品の着色弊害を及ぼさないトリフェニルホスフィンである。3級アミンの中で、特に好ましい化合物はトリエチルアミンおよびN,N-ジメチルブチルアミンである。
 重合停止剤の使用量は、使用触媒のモル数に対して、通常0.01~500倍モル、好ましくは0.05~100倍モルである。
 重合停止剤を溶液、懸濁液の形態で使用する場合、使用される溶剤は特に限定されるものではない。例えば、水、アルコール、原料モノマー、コモノマー、アセトン、メチルエチルケトン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メチレンジクロライド、エチレンジクロライド等の脂肪族または芳香族の各種有機溶媒が挙げられる。これらは、混合して使用することも可能である。
 得られたポリジオキソランに対して、必要に応じて酸化防止剤、熱安定剤、着色剤、核剤、蛍光増白剤、又は滑剤、離型剤、帯電防止剤、紫外線吸収剤、光安定剤、他の熱可塑性樹脂、無機充填剤などを添加してもよい。その添加は、重合反応の停止以降で添加されることが好ましく、その方法はバッチ式、連続式を問わない。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下に示す実施例に制限されるものではない。
<実施例1~5、比較例1~5>
 重合装置としてジャケットと2枚のZ型翼を有する内容積1Lの卓上型二軸混練機を用い、バッチ式の重合により重合を実施した。ジャケットに50℃温水を循環させ、さらに内部を高温空気で加熱乾燥した後、蓋を取り付けて系内を窒素置換した。原料投入口より純度99.5%以上、水分が50ppm未満の1,3-ジオキソラン300g、立体障害性フェノールとしてトリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートを所定量仕込み、Z型翼によって撹拌しながら、所定量のリンタングステン酸(和光純薬工業社製試薬)を添加し重合を開始した。所定時間重合させたのち、使用した触媒量の10倍モル量に相当するトリエチルアミンを重合装置内に添加し、15分間混合して重合を停止した。得られた重合物を回収し、40℃で1日間真空燥して収率を求めた。数平均分子量はポリスチレンを標準物質とし、テトラヒドロフランを溶媒としてゲルパーミエーションクロマトグラフィーにて測定した。その結果を併せて表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、式(1)で示される1,3-ジオキソラン化合物を原料モノマーとし、立体障害性フェノールの存在下、カチオン性触媒を用いてポリジオキソランを製造することにより、同じ反応時間であっても高い数平均分子量のポリエーテル系重合体を得ることが可能となることが分かる。
<実施例6~10、比較例6~7>
 カチオン性触媒の添加量をほぼ一定とし、立体障害性フェノールの種類及び添加量を下表に記載したように変更した以外は、同様にしてポリジオキソランを製造した。反応条件と結果を、実施例2と比較例2の結果と併せて表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2中の略号は以下のとおりである。
 a:トリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート
 b:ペンタエリスリチル-テトラキス-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート
 c:ジブチルヒドロキシトルエン
 d:フェノール     
 表2から、式(1)で示される1,3-ジオキソラン化合物を原料モノマーとし、所定量の立体障害性フェノールの存在下、カチオン性触媒を用いてポリジオキソランを製造することにより、高い数平均分子量のポリエーテル系重合体を得ることが可能となることが分かる。また、立体障害性フェノールの代わりに単純なフェノールを用いた場合には、本発明の効果が得られないことが分かる。
 日本国特許出願2013-146635号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (5)

  1.  式(1)で示される1,3-ジオキソラン化合物を、カチオン性触媒と、1,3-ジオキソラン化合物に対して10~1500ppmの立体障害性フェノールとの存在下で、重合する工程を含むポリジオキソランの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1~R6はそれぞれ独立に同一または異なって、水素原子、アルキル基、アリール基、ヒドロキシアルキル基、アルキルオキシ基又はアリールオキシ基を示す。)
  2.  前記立体障害性フェノールの存在量が、1,3-ジオキソラン化合物に対して200~800ppmである請求項1に記載のポリジオキソランの製造方法。
  3.  前記式(1)におけるR1~R6がすべて水素原子である請求項1又は2に記載のポリジオキソランの製造方法。
  4.  前記立体障害性フェノールがトリエチレングリコール-ビス-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネートである請求項1~3のいずれか1項に記載のポリジオキソランの製造方法。
  5.  カチオン性触媒がヘテロポリ酸、イソポリ酸、パーフルオロアルキルスルホン酸及びこれらの誘導体からなる群から選ばれる少なくとも1種であり、カチオン性触媒の存在量が全モノマーに対する質量比で10~1000ppmである請求項1~4のいずれか1項に記載のポリジオキソランの製造方法。
PCT/JP2014/067744 2013-07-12 2014-07-03 ポリジオキソランの製造方法 WO2015005206A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015526290A JP6241478B2 (ja) 2013-07-12 2014-07-03 ポリジオキソランの製造方法
EP14822990.9A EP3020741B1 (en) 2013-07-12 2014-07-03 Method for producing polydioxolane
KR1020167001012A KR102282549B1 (ko) 2013-07-12 2014-07-03 폴리다이옥솔레인의 제조 방법
US14/903,366 US9868819B2 (en) 2013-07-12 2014-07-03 Method for producing a polydioxolane
CN201480038061.5A CN105358597B (zh) 2013-07-12 2014-07-03 聚二氧杂环戊烷的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013146635 2013-07-12
JP2013-146635 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015005206A1 true WO2015005206A1 (ja) 2015-01-15

Family

ID=52279891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067744 WO2015005206A1 (ja) 2013-07-12 2014-07-03 ポリジオキソランの製造方法

Country Status (7)

Country Link
US (1) US9868819B2 (ja)
EP (1) EP3020741B1 (ja)
JP (1) JP6241478B2 (ja)
KR (1) KR102282549B1 (ja)
CN (1) CN105358597B (ja)
TW (1) TWI632173B (ja)
WO (1) WO2015005206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018172A1 (zh) 2019-07-30 2021-02-04 杭州阿诺生物医药科技有限公司 腺苷受体拮抗剂
WO2021018173A1 (zh) 2019-07-30 2021-02-04 杭州阿诺生物医药科技有限公司 腺苷受体拮抗剂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4294851A1 (de) 2021-02-17 2023-12-27 Wacker Chemie AG Flüssige 1,3-dioxolan copolymere
DE102021206774A1 (de) * 2021-06-29 2022-12-29 Wacker Chemie Ag Organyloxysilylterminierte Polymere auf Basis von 1,3-Dioxolan Copolymerbausteinen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166224A (en) 1991-01-02 1992-11-24 Hoechst Celanese Corp. Vulcanizable non-crystalline acetal elastomers
JPH0741532A (ja) 1993-07-29 1995-02-10 Nippon Shokubai Co Ltd 高分子量ポリジオキソランの製造法
US5412042A (en) 1991-07-25 1995-05-02 Hoechst Celanese Corp. Crosslinked elastomeric acetal polymers
JPH0827266A (ja) * 1994-07-15 1996-01-30 Nippon Shokubai Co Ltd 親水性熱可塑性樹脂の製造装置及び製造方法
JP2000119356A (ja) * 1998-10-20 2000-04-25 Polyplastics Co 安定化ポリオキシメチレン共重合体製造用原料とそれを使用する該共重合体の製造方法
JP2001192427A (ja) * 1999-10-25 2001-07-17 Asahi Kasei Corp 変性オキシメチレン重合体
JP2003246857A (ja) 2002-02-26 2003-09-05 Polyplastics Co ポリエーテル系共重合体の製造法
JP2013146635A (ja) 2013-05-09 2013-08-01 Newgin Co Ltd 遊技機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004099A1 (fr) * 1993-07-29 1995-02-09 Nippon Shokubai Co., Ltd. Polydioxolane a poids moleculaire eleve et son procede de production
JP3134699B2 (ja) * 1994-01-27 2001-02-13 旭化成工業株式会社 アセタール共重合体の製造方法
JP3230554B2 (ja) * 1994-02-23 2001-11-19 旭化成株式会社 色調と熱安定性に優れたポリオキシメチレンの製法
MY115341A (en) * 1994-02-28 2003-05-31 Asahi Chemical Ind Method for producing an acetal copolymer
JPH0820714A (ja) * 1994-07-07 1996-01-23 Nippon Shokubai Co Ltd ポリジオキソランの安定化方法
JP3137896B2 (ja) * 1996-03-12 2001-02-26 旭化成株式会社 ポリオキシメチレンコポリマーの製造方法
JP2001011144A (ja) * 1999-06-30 2001-01-16 Polyplastics Co ポリオキシメチレン共重合体及びその製造方法
SG87906A1 (en) * 1999-10-25 2002-04-16 Asahi Chemical Ind Modified oxymethylene polymers
DE10006037A1 (de) * 2000-02-10 2001-08-16 Basf Ag Verfahren zur Herstellung von Polyoxymethylenen
WO2002077049A1 (fr) * 2001-03-27 2002-10-03 Mitsubishi Gas Chemical Company, Inc. Copolymere polyoxymethylene et article moule correspondant
JP5085061B2 (ja) 2006-06-30 2012-11-28 ポリプラスチックス株式会社 ポリアセタール樹脂組成物
JP2009215340A (ja) * 2008-03-07 2009-09-24 Polyplastics Co 安定化ポリアセタール共重合体の製造方法
JP5747911B2 (ja) 2010-03-12 2015-07-15 三菱瓦斯化学株式会社 ポリアセタール樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166224A (en) 1991-01-02 1992-11-24 Hoechst Celanese Corp. Vulcanizable non-crystalline acetal elastomers
US5412042A (en) 1991-07-25 1995-05-02 Hoechst Celanese Corp. Crosslinked elastomeric acetal polymers
JPH0741532A (ja) 1993-07-29 1995-02-10 Nippon Shokubai Co Ltd 高分子量ポリジオキソランの製造法
JPH0827266A (ja) * 1994-07-15 1996-01-30 Nippon Shokubai Co Ltd 親水性熱可塑性樹脂の製造装置及び製造方法
JP2000119356A (ja) * 1998-10-20 2000-04-25 Polyplastics Co 安定化ポリオキシメチレン共重合体製造用原料とそれを使用する該共重合体の製造方法
JP2001192427A (ja) * 1999-10-25 2001-07-17 Asahi Kasei Corp 変性オキシメチレン重合体
JP2003246857A (ja) 2002-02-26 2003-09-05 Polyplastics Co ポリエーテル系共重合体の製造法
JP2013146635A (ja) 2013-05-09 2013-08-01 Newgin Co Ltd 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3020741A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018172A1 (zh) 2019-07-30 2021-02-04 杭州阿诺生物医药科技有限公司 腺苷受体拮抗剂
WO2021018173A1 (zh) 2019-07-30 2021-02-04 杭州阿诺生物医药科技有限公司 腺苷受体拮抗剂

Also Published As

Publication number Publication date
CN105358597B (zh) 2018-04-17
CN105358597A (zh) 2016-02-24
US20160145383A1 (en) 2016-05-26
US9868819B2 (en) 2018-01-16
TWI632173B (zh) 2018-08-11
KR20160030180A (ko) 2016-03-16
KR102282549B1 (ko) 2021-07-27
JPWO2015005206A1 (ja) 2017-03-02
EP3020741B1 (en) 2020-11-25
TW201512243A (zh) 2015-04-01
EP3020741A1 (en) 2016-05-18
JP6241478B2 (ja) 2017-12-06
EP3020741A4 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6241478B2 (ja) ポリジオキソランの製造方法
JP6518691B2 (ja) ポリオキシメチレンブロック共重合体の製造方法
EP3018159B1 (en) Method of producing oxymethylene copolymer
JP2013028804A (ja) オキシメチレンポリマーの製造方法
JP6696434B2 (ja) オキシメチレン共重合体の製造方法
JP7036025B2 (ja) オキシメチレン共重合体の製造方法
JP2005272707A (ja) ポリオキシメチレン共重合体の製造方法
JP2014095000A (ja) ポリアセタール共重合体の製造方法
KR102156029B1 (ko) 옥시메틸렌 공중합체의 제조 방법
JP2008266372A (ja) オキシメチレン共重合体の製造方法
JP2014094999A (ja) ポリアセタール共重合体の製造方法
JP2005527663A (ja) ポリオキシメチレンの製造及びそのために適当な触媒(ii)
JP2023132432A (ja) ポリアセタール共重合体およびその重合方法
JP2020105251A (ja) ポリアセタール共重合体およびその製造方法
JP2017002178A (ja) オキシメチレン共重合体の製造方法
JP2005320394A (ja) ポリアセタールカーボナート共重合体及びその製造方法
JP2005232394A (ja) ポリオキシメチレン共重合体の製造方法
JP2005314479A (ja) オキシメチレン共重合体の製造方法
JP2014095001A (ja) ポリアセタール共重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038061.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526290

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014822990

Country of ref document: EP