WO2014167990A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014167990A1
WO2014167990A1 PCT/JP2014/058107 JP2014058107W WO2014167990A1 WO 2014167990 A1 WO2014167990 A1 WO 2014167990A1 JP 2014058107 W JP2014058107 W JP 2014058107W WO 2014167990 A1 WO2014167990 A1 WO 2014167990A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tire
circumferential
region
lug
Prior art date
Application number
PCT/JP2014/058107
Other languages
English (en)
French (fr)
Inventor
有資 三戸
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2014513834A priority Critical patent/JPWO2014167990A1/ja
Publication of WO2014167990A1 publication Critical patent/WO2014167990A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves

Definitions

  • the present invention relates to a pneumatic tire provided with a tread pattern.
  • S tire As a high-performance tire that is mainly used for racing and expresses a high grip force, a tire called a “S tire”, which can be used on public roads, is known.
  • S tires for example, lug grooves that are relatively thick and slanted in the tire width direction are provided sparsely on the tread surface, thereby forming a large land block. Things are known.
  • the sound generated by large land blocks and the noise generated by adhesion to the road surface are likely to be loud, and generally no pitch variation is applied. The sound in the frequency band is amplified and the pattern noise is large.
  • the slug of the lug groove is sparse but the width of the lug groove is thick and inclined, so it tends to promote air pumping noise while having effective drainage characteristics, and problems when traveling on public roads It was.
  • the market needs for S tires with specifications that have become low flat (for example, 35% or less) accompanying the trend toward higher inches have increased. This type of S tire is said to be difficult to meet recent regulations regarding outside vehicle noise.
  • a shoulder lug groove extending in the tire width direction is provided in the area of one shoulder land portion of the tread surface, and the shoulder lug groove is adjacent to the shoulder land area. There is one connected to (patent document 1).
  • the present invention provides a pneumatic tire that can suppress vehicle passing noise and has excellent wet performance.
  • One aspect of the present invention is a pneumatic tire in which a tread pattern is formed in a tread portion, and the tread pattern is In a tread surface including a first region disposed on the first side with the tire center line as a boundary, and a second region disposed on the second side, Including three circumferential main grooves extending in the tire circumferential direction, and of the three circumferential main grooves, a first circumferential main groove is provided in the first region, and a second circumferential direction is provided.
  • a main groove is provided in a portion of the first region on the second side with respect to the first circumferential main groove or a region of a tire center line, and a third circumferential main groove is the second region.
  • the second region in the region of the second shoulder land portion provided on the second side with respect to the third circumferential main groove, one end opens at the ground contact end in the tire width direction, and the other.
  • a plurality of second shoulder lug grooves provided at intervals in the tire circumferential direction, the ends of which are closed in the region of the second shoulder land portion;
  • one end opens into the first circumferential main groove, and the other end is the first A plurality of first lug grooves that are closed in the tire circumferential direction and that are closed in the region of the land portion of
  • one end opens into the second circumferential main groove and the other end is the second A plurality of second lug grooves provided at intervals in the tire circumferential direction, which are closed in the region of the land portion of A ratio Wout / Win between an average groove width Win, which is an average of groove widths of the first circumferential main groove and the second circumferential main groove, and a groove width Wout of the third circumferential main groove is 0.
  • the first lug groove and the second lug groove are more greatly inclined in the tread surface with respect to the tire width direction than the first shoulder lug groove, and are inclined in the same direction in the tire circumferential direction.
  • the pneumatic tire is characterized in that the inclination angle of the second lug groove is larger than that of the first lug groove.
  • the groove depths of the circumferential main grooves are preferably 3.0 to 6.5 mm.
  • the groove area ratio Sin of the inner region of the tread pattern is 17 to 32%
  • the groove area ratio Sout of the outer region is 8 to 23%
  • the ground camber angle when the vehicle is stationary is in the range of -1.0 to -4.5 degrees and is attached to the vehicle inclined to the vehicle side,
  • the contact length in the tire circumferential direction of the edge on the tread surface of the circumferential main groove closer to the tire center line is 90 of the maximum contact length. % Or more is preferable.
  • the circumferential groove group is further provided on the second side of the third circumferential main groove, extends in the tire circumferential direction, and has a groove width that is greater than the groove width of the three circumferential main grooves. It is preferable to include at least one circumferential narrow groove having a narrow groove width of 3.0 mm or less.
  • the second lug groove is provided in the inner region;
  • the tread pattern further includes a plurality of third lug grooves that are connected to the circumferential narrow grooves and that are provided at intervals in the tire circumferential direction.
  • the maximum groove width Rin is equal to the third lug groove and the second shoulder lug. It is preferable that the groove width is greater than or equal to the maximum groove width Rout.
  • the tread pattern further includes a plurality of fourth lug grooves provided at intervals in the tire circumferential direction, intersecting the third circumferential main groove,
  • the fourth lug groove is preferably closed at both ends in the tire width direction without being connected to other adjacent circumferential grooves.
  • the tread pattern further includes a plurality of curved grooves provided at intervals in the tire circumferential direction that intersect one of the circumferential grooves provided in the outer region,
  • the curved groove is closed at both ends in the tire width direction without being connected to other adjacent circumferential grooves, and a portion connecting the both ends is convex toward one side in the tire circumferential direction. It is preferable to bend in the tread surface.
  • the tread pattern is further provided at intervals in the tire circumferential direction that intersects with another one of the circumferential grooves provided in the outer region.
  • a plurality of second curved grooves Each of the second curved grooves is closed at both ends in the tire width direction without being connected to other adjacent circumferential grooves, and a portion connecting the both ends is directed toward the other side in the tire circumferential direction. It is preferably convex and curved within the tread surface.
  • the curved groove is preferably convex in the same direction as one of the tire circumferential directions in which the second lug groove is inclined and curved in the tread surface.
  • the ratio of the groove depth to the groove width of the first circumferential main groove is 30 to 60%
  • the ratio of the groove depth to the groove width of the second circumferential main groove is 30 to 60%
  • the ratio of the groove depth to the groove width of the third circumferential main groove is preferably 60 to 90%.
  • the inclination angle of the first shoulder lug groove in the tread surface with respect to the tire width direction is 0 to 7 degrees,
  • the inclination angle of the first lug groove in the tread surface with respect to the tire width direction is preferably 15 to 50 degrees.
  • the inclination angle of the second lug groove in the tread surface with respect to the tire width direction is preferably 30 to 60 degrees.
  • the edge facing the edge where the first lug groove is opened is not opened, and extends linearly over the entire circumference in the tire circumferential direction
  • the edge facing the edge where the second lug groove is opened is not opened and may extend linearly over the entire circumference in the tire circumferential direction. Good.
  • FIG. 1 is an external view illustrating an entire tire according to an embodiment of the present invention. It is sectional drawing which shows a part of tire of FIG.
  • FIG. 2 is a diagram in which the tread pattern of the tire of FIG. It is a figure which shows the contact shape of the tread pattern of FIG.
  • a pneumatic tire (hereinafter referred to as a tire) 1 is a so-called S tire that can be used on public roads, and has a flatness ratio of 55% or less, and a rim diameter (tire inner diameter) of a rim to be mounted is 16 inches or more. Yes. Further, a numerical value (tire size) written on the tire as the tire width is 195 or more. Such a pneumatic tire has a tread rubber tan ⁇ (20 ° C.) of 0.30 or more.
  • the speed range of the tire 1 is the (Y) range. As long as the structure and rubber material of the tire 1 of the present invention are selected so as to be the S tire of the above-mentioned specification, a known one may be used, or a new one may be used. In the present invention, there is no particular limitation.
  • FIG. 2 shows a profile of the tire 1 when the tire 1 is cut at a cut surface including the tire rotation axis of the tire 1 of the present embodiment.
  • the tire 1 has a carcass ply layer 3, a belt layer 4, and a pair of bead cores 5 as a skeleton material, and a tread rubber 6, a side rubber 7, and a bead filler rubber 8 around these skeleton materials.
  • the inner liner rubber 9 and the belt cover layer 10 are mainly included.
  • the first shoulder lug groove 41, the first lug groove 45, the second lug groove 47, the curved groove 51, the third lug groove 49, and the second lug groove 49 are shown.
  • the cross section in the plane orthogonal to the tread surface containing the direction where each shoulder lug groove 43 (all are mentioned later) is extended is shown.
  • the carcass ply layer 3 includes a two-layer inner ply layer 3a and an outer ply layer 3b that are wound between a pair of annular bead cores 5 to form a toroidal shape and are coated with organic fibers with rubber.
  • the organic fibers disposed on the inner ply layer 3a and the outer ply layer 3b extend in a different direction with respect to the tire width direction, and the inclination angle of the organic fibers is set so as to intersect between the two layers. Yes.
  • the inner ply layer 3 a disposed on the tire radial direction inner side on the tire center line and the outer ply layer 3 b disposed on the outer side in the tire radial direction are wound around the bead core 5.
  • both end portions in the tire width direction extend to the outside in the tire radial direction.
  • the inner ply layer 3 a has an end portion at a tire radial direction position that is the same as the tire radial direction position of the tip of the bead filler rubber 8 on the outer side in the tire radial direction.
  • the outer ply layer 3 b extends to the outer side in the tire radial direction from the end of the inner ply layer 3 a and ends near the end of the belt layer 4.
  • a belt layer 4 composed of an inner belt layer 4a and an outer belt layer 4b is provided outside the carcass ply layer 3 in the tire radial direction.
  • the belt layer 4 is a member in which a rubber is coated on a steel cord disposed at a predetermined angle, for example, 20 to 30 degrees, in a plane in which the belt layer 4 extends with respect to the tire circumferential direction.
  • the width of the belt layer 4a in the tire width direction is longer than that of the outer belt layer 4b.
  • the inclination directions of the steel cords of the inner belt layer 4a and the outer belt layer 4b with respect to the tire circumferential direction are opposite to each other.
  • the inner side belt layer material 4a and the outer side belt layer 4b are crossing layers, and suppress the expansion of the carcass ply layer 3 due to the filled air pressure.
  • the inclination direction of the steel cord of the inner belt layer 4a with respect to the tire width direction is the same as the inclination direction of the organic fibers of the outer ply layer 3b adjacent to the inner belt layer 4a. .
  • a three-layer belt cover layer 10 covering the belt layer 4 from the outer side in the tire radial direction of the belt layer 4 and covering the organic fiber extending in the tire circumferential direction with rubber is disposed.
  • the two belt cover layers located on the inner side in the tire radial direction are provided so as to cover the entire width of the outer side belt layer 4b in the tire width direction.
  • the outermost layer located on the outer side in the tire radial direction is provided so as to cover the shoulder region including the end portion of the belt layer 4 in the tire width direction, and in the center region including the tire center line CL. Is not arranged.
  • a tread rubber 6 is provided on the outer side of the belt cover layer 10 in the tire radial direction.
  • Side rubber 7 is connected to both ends of the tread rubber 6 in the tire width direction to form side portions.
  • a rim cushion rubber member is provided at the inner end of the side rubber 7 in the tire radial direction and comes into contact with a rim on which the tire 1 is mounted.
  • a bead filler rubber 8 is provided so as to be sandwiched therebetween.
  • An inner liner rubber 9 is provided on the inner surface of the tire 1 facing the tire cavity region filled with air surrounded by the tire 1 and the rim.
  • the tire 1 includes an inner bead reinforcement member 11 a that sandwiches a portion of the carcass ply layer 3 wound around the bead core 5 between the bead filler rubber 8 and a carcass ply layer wound around the bead core 5.
  • 3 is provided with an outer bead reinforcement 11b.
  • the structure of the tire 1 shown in FIG. 2 is an example, Comprising: The structure of the tire 1 of this embodiment is not specifically limited.
  • a tread pattern 20 shown in FIG. FIG. 3 is a plan development view of the tread pattern 20 of the tire 1 of the present invention in an easy-to-understand manner.
  • the dimension about each element of the tire mentioned below is a numerical example in a race tire.
  • the tire width direction refers to the rotation center axis direction of the tire 1
  • the tire circumferential direction refers to the rotation direction of the rotation surface of the tread surface formed when the tire 1 is rotated around the tire rotation center axis.
  • FIG. 3 shows these directions.
  • the tire 1 of the present invention may be subjected to pitch variations.
  • the tread pattern 20 is designated by the tire width direction when the vehicle is mounted.
  • the portion of the tread pattern 20 arranged facing the first side (the direction indicated by IN in FIG. 3) that is the vehicle inner side when the vehicle is mounted with the tire center line CL as a boundary is referred to as the inner region (the first region).
  • the area of the tread pattern 20 that is arranged facing the second side (direction indicated by OUT in FIG. 3) outside the vehicle is referred to as an outer area (second area) 20b.
  • the first side is simply referred to as the inner side
  • the second side is referred to as the outer side.
  • the tread pattern 20 does not specify the rotation direction of the tire 1 and corresponds to any rotation direction.
  • the tread pattern 20 includes a circumferential groove group, a first shoulder lug groove, a first shoulder lug groove 41, the second shoulder lug groove, a second shoulder lug groove 43, and a first land lug groove. Part, a plurality of first lug grooves 45, a second land part, and a plurality of second lug grooves 47.
  • the circumferential groove group includes three circumferential main grooves extending in the tire circumferential direction, that is, a first circumferential main groove 21, a second circumferential main groove 23, and a third circumferential main groove 25. Including. Hereinafter, these are also simply referred to as a main groove 21, a main groove 23, and a main groove 25.
  • the circumferential main groove refers to a groove having a groove width wider than 3.0 mm and a groove depth deeper than 3.5 mm.
  • the first circumferential main groove 21 is provided in the inner area 20a
  • the second circumferential main groove 23 is an area of the inner area 20a or the tire center line CL outside the first circumferential main groove 21.
  • the third circumferential main groove 25 is provided in the outer region 20b.
  • the number of the circumferential main grooves arranged in the outer region 20b is equal to or less than the number of the circumferential main grooves arranged in the inner region 20a, thereby suppressing the occurrence of outside-passing noise.
  • the edge facing the edge where the first lug groove described later is opened is not opened, and extends linearly over the entire circumference in the tire circumferential direction.
  • the edge facing the edge where the second lug groove described later is opened is not opened, and extends linearly over the entire circumference in the tire circumferential direction. It is preferable.
  • the second circumferential main grooves 23 are provided in the inner region 20a, and the number of circumferential main grooves in the outer region 20b is smaller than the number of circumferential main grooves in the inner region 20a.
  • region 20b is equal to the number of the circumferential direction main grooves of the inner side area
  • the second circumferential main groove 23 is provided in the region of the tire center line CL.
  • the tire center line CL includes an edge on the tread surface of the second circumferential main groove 23. It is arranged in the tire width direction region of the circumferential main groove 23.
  • the average groove width Win that is the average of the groove widths W 21 and W 23 of the first circumferential main groove 21 and the second circumferential main groove 23, and the groove width Wout of the third circumferential main groove 25.
  • the ratio Wout / Win is 0.45 to 0.75.
  • the groove width of the circumferential groove is the length on the tread surface in the direction orthogonal to the extending direction of the circumferential groove, and is the groove width when the tire is new.
  • Wout / Win is less than 0.45, the drainage performance in the outer wheel side area during wet turning, particularly the outer area 20b on the outer wheel side, is reduced, and the steering stability (wet steering stability) during wet road running is reduced. descend.
  • the outer wheel is a tire mounted on the right side of the vehicle when the vehicle turns left, for example.
  • Wout / Win exceeds 0.75, the vehicle outside noise becomes worse.
  • Wout / Win is preferably 0.5 to 0.7, and particularly preferably 0.6.
  • the groove width W21 of the main groove 21 and the groove width W23 of the main groove 23 may be the same or different from each other.
  • the groove depths of the main grooves 21, 23, and 25 are preferably 3.0 to 6.5 mm, respectively.
  • the groove depths of the main grooves 21, 23, and 25 are more preferably 3.5 to 5.0 mm, and examples of the groove depth are 4.2 mm, 4.5 mm, and 5.0 mm.
  • wet maneuvering stability or simply “wet performance” refers to the magnitude of acceleration in the range from the vertical direction to the horizontal direction when traveling on a wet road surface.
  • the ratio of the groove depth of the main grooves 21, 23, 25 to the groove widths W21, W23, W25 of the main grooves 21, 23, 25 (groove width groove depth ratio) is 30 to 60%, 30 to 30%, respectively. 60% and 60 to 90% are preferable.
  • the cross-sectional shape of the main groove is such a flat shape, vehicle outside noise can be suppressed.
  • the circumferential groove group further includes a circumferential narrow groove 27.
  • the circumferential narrow groove 27 is provided outside the third circumferential main groove 25 and extends in the tire circumferential direction.
  • the groove width W27 of the circumferential narrow groove 27 is narrower than the minimum value among the groove widths of the three circumferential main grooves 21, 23, 25, and is 3.0 mm or less.
  • the outer region may be designed such that the groove width of the circumferential groove is narrower than that of the inner region, the number of circumferential grooves is large, and the groove area ratio described later is small. For this reason, the block rigidity of the outer region may be relatively high.
  • the circumferential narrow groove 27 is provided in a region outside the third circumferential main groove 25, whereby the block rigidity of the outer region 20b is optimized, and the inner region 20a and the outer region 20b.
  • the difference in the block rigidity is kept small.
  • vehicle behavior (steering stability) is ensured when turning left and right.
  • the groove width of the circumferential narrow groove 27 is preferably 3.0 mm or less from the viewpoint of suppressing vehicle outside noise, and the groove width of the circumferential narrow groove 27 is different from the block rigidity of the inner region 20a.
  • the depth of the circumferential narrow groove 27 is preferably 1.0 to 5.5 mm from the viewpoint of reducing the difference in rigidity between the inner region 20a and the outer region 20b.
  • the groove depth of the circumferential narrow groove 27 is more preferably 2.0 to 4.0 mm, and a groove depth of 2.5 mm can be exemplified. In other embodiments, two or more circumferential narrow grooves may be provided in the outer region 20b.
  • the groove widths of the four circumferential grooves 21, 23, 25, and 27 included in the circumferential groove group are the main groove 21 or the main groove 23, the main groove 25, and the circumferential narrow groove 27 from the viewpoint of suppressing outside-passage noise. It is preferable that it is small in order.
  • the groove widths W21 and W23 are 7.0 to 12.0 mm
  • the groove width W25 is 3.8 to 8.0 mm
  • the groove width W27 is 2.0 to 3.0 mm.
  • the first shoulder land portion is provided inside the first circumferential main groove 21.
  • the region 31 of the first shoulder land portion is a region extending in the tire circumferential direction defined by the first circumferential main groove 21 and the ground contact end 22a in the tire width direction in the tread pattern 20.
  • the tread pattern 20 contacts the road surface in a tire width direction region between the ground contact end 22a and the ground contact end 22b in a state where the tire 1 is mounted on the vehicle.
  • the grounding terminals 22a and 22b are determined as follows.
  • the ground contact ends 22a and 22b are end portions in the tire width direction of the ground contact surface when the tire 1 is assembled to a regular rim, filled with a regular internal pressure, and grounded on a horizontal plane under the condition that 88% of the regular load is a load load.
  • the regular rim here refers to an “applied rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
  • the normal internal pressure means “maximum air pressure” defined by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO.
  • the normal load means “maximum load capacity” defined in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined in TRA, or “LOAD CAPACITY” defined in ETRTO.
  • the second shoulder land portion is provided outside the third circumferential main groove 25.
  • the region 33 of the second shoulder land portion is a region extending in the tire circumferential direction defined by the circumferential narrow groove 27 and the tire ground contact end 22b in the tire width direction in the tread pattern 20.
  • the plurality of first shoulder lug grooves 41 are provided at intervals in the tire circumferential direction.
  • the first shoulder lug groove 41 has one end 41a opened at the tire ground contact end 22a and the other end 41b in the first shoulder land portion region 31 in the first shoulder land portion region 31 in the inner region 20a. Plugged in. That is, the first shoulder lug groove 41 has an open end 41a and a closed end 41b, and extends outward from the open end 41a to the closed end 41b.
  • the plurality of second shoulder lug grooves 43 are provided at intervals in the tire circumferential direction.
  • the second shoulder lug groove 43 includes a second shoulder land portion region 33 in the outer region 20b.
  • One end 43a is open at the tire ground contact end 22b, and the other end 43b extends inward. Blocking is performed in the region 33 of the shoulder land portion. That is, the second shoulder lug groove 43 has an open end 43a and a closed end 43b, and extends inward from the open end 43a to the closed end 43b.
  • the shoulder lug grooves 41 and 43 are blocked in the first shoulder land portion region 31 and the second shoulder land portion region 33, respectively, thereby reducing sound emission when grounded. This can reduce the passing noise outside the vehicle.
  • the plurality of first lug grooves 45 are provided at intervals in the tire circumferential direction.
  • the lug groove has a groove width of 3.5 to 9.0 mm and a groove depth of 2 from the viewpoint of providing pitch variations or corresponding to various tire sizes.
  • the groove depth is, for example, 3.0 mm.
  • the first lug groove 45 has one end 45 a opened in the first circumferential main groove 21 and the other end 45 b closed in the first land portion region 25. . That is, the first lug groove 45 has an open end 45a and a closed end 45b, and extends outward from the open end 45a to the closed end 45b.
  • the plurality of second lug grooves 47 are provided at intervals in the tire circumferential direction.
  • the second lug groove 47 has one end 47 a at the second circumferential main groove 23 in the second land portion region 37 defined by the second circumferential main groove 23 and the third circumferential main groove 25. And the other end 47b is closed in the region 37 of the second land portion. That is, the second lug groove 47 has an open end 47a and a closed end 47b, and extends outward from the open end 47a to the closed end 47b.
  • the other ends (blocking ends) 45b and 47b of the lug grooves 45 and 47 are blocked in the adjacent first land portion region 35 and second land portion region 37, so that the first In the land area 35 and the second land area 37, a continuous land portion (rib) continuous in the tire circumferential direction is formed.
  • the lug grooves 45 and 47 are disconnected from the circumferential main grooves 23 and 25 without being connected to the circumferential main grooves 23 and 25, so that the lug grooves 45 and 47 are connected to the circumferential main grooves 23 and 25. This makes it difficult for the columnar resonance sound that may occur when the vehicle is to be resonated, thereby reducing the vehicle outside noise.
  • the lug grooves 45 and 47 may be provided only in the land portions 35 and 37 on one side of the main grooves 21 and 23 as described above. It may also be provided in the land areas 31 and 35 on the other side. That is, the lug grooves 45 and 47 may intersect the main grooves 21 and 23, respectively. The lug grooves 45 and 47 may be provided only in the land areas 31 and 35, respectively. Such a configuration may be different between the plurality of lug grooves 45 or between the plurality of lug grooves 47. For example, among the plurality of second lug grooves 47, one lug groove 47 is provided in the second land portion region 37, and the other lug groove 47 is provided in the first land portion region 35.
  • another lug groove 47 is provided so as to intersect with the second circumferential main groove 23 and to be closed at both ends by the first land portion region 35 and the second land portion region 37. Also good.
  • the lug grooves provided in the region of the land portion on the same side with respect to the circumferential main groove extend so as to incline in the same direction of the tire circumferential direction within the tread surface with respect to the tire width direction. It is preferable to be provided. Further, when the lug groove intersects with the circumferential main groove, the lug groove is preferably curved or bent on either side in the tire circumferential direction.
  • the degree of bending or bending is, for example, the length in the tire width direction in which the lug groove extends in the tread surface (the distance between one end and the other end of the lug groove in the tire circumferential direction). ) In the tire circumferential direction length of the lug groove extending in the tread surface (the distance between the end of one side of the lug groove in the tire width direction and the end of the other side) 25 to 50%.
  • the first lug groove 45 and the second lug groove 47 are inclined more greatly with respect to the tire width direction than the first shoulder lug groove 41 and inclined in the same direction with respect to the tire width direction.
  • the lug groove 47 has a larger inclination angle than the first lug groove 45.
  • the inclination angle of the first shoulder lug groove 41 is such that the extending direction of the first shoulder lug groove 41 intersects the ground contact end 22a and the end on the outer side (second side) of the first shoulder lug groove 41. It is an angle formed by a straight line connecting the portions and the tire width direction, and may or may not be inclined with respect to the tire width direction.
  • the inclination angle of the first lug groove 45 and the second lug groove 47 is an angle formed by a straight line connecting both ends in the extending direction of each groove and the tire width direction.
  • the inclination angle of each lug groove 41, 45, 47 is determined according to the size of the pitch length so as to increase as the distance (pitch length) between the lug grooves adjacent in the tire circumferential direction increases.
  • the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 may each be inclined clockwise or counterclockwise with respect to the tire width direction. . Race tires go straight and turn on a small rudder angle to a large rudder angle, and run on a circuit with high severity (load on the tire).
  • the two types of lug grooves arranged in the tire width direction are preferably formed to have different inclination angles.
  • a rudder angle that causes line contact with the road surface may occur.
  • the edge extending in the same direction as the line contact direction is simultaneously curled, so-called curled wear occurs, and the wear progresses starting from the portion where the curled wear has occurred, which may lead to early wear.
  • the inclination direction is the same between the first lug groove 45 and the second lug groove 47 arranged in the tire width direction.
  • the inclination angle of the first shoulder lug groove 41 is preferably 0 to 7 degrees with respect to the tire width direction, and the inclination angle of the first lug groove 45 is preferably 15 to 50 degrees, respectively.
  • the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are the same as those of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47. Smaller in order is preferred. That is, it is preferable that the inclination angle of the first shoulder lug groove 41 is the smallest and the inclination angle of the second lug groove 47 is the largest. In the case where the order of the inclination angles is reversed, since the inclination angle is steeper as the lug groove is closer to the ground contact end, the drainage performance is deteriorated.
  • the inclination angle of the second lug groove 47 is preferably 30 to 60 degrees.
  • the direction in which the first shoulder lug groove 41 is inclined may be different from the first lug groove 45 and the second lug groove 47.
  • the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are 5 degrees, 45 degrees, and 50 degrees, respectively, in the counterclockwise direction with respect to the tire width direction. .
  • the inclination angle of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is preferably a large angle in each of the angle ranges described above from the viewpoint of improving the wet performance. Even if the degree of freedom of arranging the lug grooves in the land area is not high, a sufficient groove length can be secured by the large inclination angle of each lug groove in this way, and thus the groove volume in the lug groove can be secured. Increases drainage performance.
  • the tread pattern 20 further includes a plurality of third lug grooves 49.
  • the plurality of third lug grooves 49 are connected to the circumferential narrow groove 27 and are provided at intervals in the tire circumferential direction.
  • the maximum groove width Rin among the groove widths R41, R45, and R47 of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 is the third lug groove 49.
  • the groove widths R41, R43, R45, R47, and R49 are the lengths on the tread surface in the direction orthogonal to the extending direction of the respective lug grooves 41, 43, 45, 47, and 49. Say things.
  • the groove widths R41, R45, and R47 may be equal to each other or different from each other.
  • the groove widths R49 and R43 may be equal to or different from each other.
  • Rin is greater than or equal to Rout, the occurrence of vehicle outside noise is suppressed.
  • the ratio Rout / Rin between Rout and Rin more preferably satisfies 0.65 to 1.
  • the third lug groove 49 intersects the circumferential narrow groove 27, and both ends 49a and 49b are closed in the third land portion region 39 and the second shoulder land portion region 33, respectively. . Since both ends 49a and 49b are blocked in this way, sound emission when grounded can be effectively reduced in the outer region where outside-passing sound tends to be louder than the inner region.
  • the third land region 39 is a region extending in the tire circumferential direction defined by the third circumferential main groove 25 and the circumferential narrow groove 27. More specifically, the third lug groove 49 is a curved groove in which a portion intersecting the circumferential narrow groove 27 is curved to one side in the tire circumferential direction from both ends 49a and 49b of the third lug groove 49. It has become.
  • the third lug groove 49 (hereinafter also referred to as the first curved groove 49) is curved so as to swell downward in FIG.
  • the groove depth of the third lug groove 49 may be different from or equal to the groove depth of the circumferential narrow groove 27, and the block rigidity of the outer region 20b with respect to the inner region 20a is optimized by reducing the block rigidity. Are equal to each other.
  • the length in the tire width direction of each of the first land portion region 35, the second land portion region 37, and the third land portion region 39 may be equal to or different from each other.
  • the tread pattern 20 further includes a plurality of second curved grooves 51 (fourth lug grooves).
  • the plurality of second curved grooves 51 are provided at intervals in the tire circumferential direction, intersect the third circumferential main groove 25, and both ends are the second land portion region 37 and the third land portion, respectively.
  • the region 39 is blocked. Since both ends are closed in this way, sound emission when grounded can be reduced in the outer region where outside-passing sound tends to be louder than the inner region.
  • the second curved groove 51 is curved to the tire circumferential side (the lower side in FIG. 3) different from the tire circumferential side (the upper side in FIG. 3) on which the third lug groove 49 is curved. Is preferred.
  • the second curved groove 51 is convex in the same direction as one of the tire circumferential directions in which the second lug groove 47 is inclined (upward in the drawing in FIG. 3) and is curved in the tread surface. Is preferred. Accordingly, when the first shoulder lug groove 41, the first lug groove 45, the second lug groove 47, the second curved groove 51, and the first curved groove 41 are viewed in order from the inner side in the tire width direction.
  • each groove forms a wave shape extending in the tire width direction while displacing in the tire circumferential direction, the effect of suppressing line contact and early wear can be enhanced.
  • only one of the first curved groove 49 and the second curved groove 51 may be curved, and the other may not be curved.
  • a bending point is formed at a portion where the curved groove 49 intersects the circumferential thin groove 27.
  • Both ends 49a, 49b of the first curved groove 49 and both ends 51a, 51b of the second curved groove 51 are closed without being connected to other adjacent circumferential grooves in that the passage noise outside the vehicle can be suppressed. It is preferable. Providing the curved grooves 49 and 51 makes it easy to adjust the groove area ratio and the size of the circumferential groove width.
  • the curved grooves 49 and 51 have the same groove depth as the third circumferential main groove 25 and the circumferential narrow groove 27, respectively.
  • the groove widths R49, R51 of the curved grooves 49, 51 are preferably wider than the groove widths W25, W27 of the third circumferential main groove 25 and the circumferential narrow groove 27, respectively.
  • the groove area ratio Sin of the inner region 20a of the tread pattern 20 is 17 to 32%, the groove area ratio Sout of the outer region 20b is 8 to 23%, and preferably Sin> Sout. Under these conditions, the groove area ratios Sout and Sin are expressed as an average considering the pitch length over the entire circumference of the tire.
  • the groove area ratio refers to the ratio of the area of all the grooves included in the inner region 20a or the outer region 20b in the area of the inner region 20a or the outer region 20b when the tire is new.
  • the groove here includes a circumferential groove, a shoulder lug groove, and a lug groove, and includes a plurality of holes (for example, a plurality of holes provided in an outer region in the tire width direction adjacent to the ground contact ends 22a and 22b, other than the groove). , Dimple-like dents)) are not included.
  • the first circumferential main groove 21 and the second circumferential main groove 23 may be chamfered at the edge to which the first lug groove 45 and the second lug groove 47 are connected, In the case of chamfering, the groove area ratios Sin and Sout are calculated by including the region of the main groove on the surface of the tread that is apparently widened by chamfering.
  • the groove area ratio Sout is smaller than the groove area ratio Sin, the generation of noise outside the vehicle is suppressed.
  • the groove area ratio Sin is less than 17% or the groove area ratio Sout is less than 8%, the wet performance is deteriorated and the hydroplaning performance is also deteriorated.
  • the groove area ratio Sin exceeds 32%, or when the groove area ratio Sout exceeds 23%, the vehicle behavior in the left and right turn on the dry road surface cannot be sufficiently improved. More preferably, the groove area ratio Sin is 20 to 29%, and the groove area ratio Sout is 11 to 20%.
  • the tire 1 according to this embodiment is attached to a vehicle while being inclined toward the vehicle side when the ground camber angle when the vehicle is stationary is in a range of ⁇ 1.0 to ⁇ 4.5 degrees.
  • the ground camber angle is not particularly limited, but can be -3 degrees.
  • the contact length in the tire circumferential direction of the edge on the tread surface of the circumferential main groove closer to the tire center line CL of the second circumferential main groove 23 and the third circumferential main groove 25 is: It is preferably 90% or more of the maximum contact length L.
  • the circumferential groove closer to the tire center line CL is the second circumferential main groove 23, and the ground contact length L 23 of the second circumferential main groove 23 is the maximum ground contact length L.
  • FIG. 4 is a diagram showing a ground contact shape of the tread pattern 20 of FIG.
  • the ground contact shape shown in FIG. 4 is a shape when the tire 1 is mounted with the ground camber angle inclined toward the vehicle in the above angle range, and the inner region in the tire width direction exceeds the ground contact end 22a. Yes.
  • the contact length L ⁇ b> 23 of the second circumferential main groove 23 is indicated by the inner edge in the tire width direction on the tread surface of the main groove 23.
  • the tire of the second circumferential main groove 23 having a high drainage property has a tire width direction position of the maximum contact length L in the width direction region.
  • the contact length L23 is more preferably 100% of the maximum contact length L. That is, the contact length L23 of the edge on the tread surface of the second circumferential main groove 23 is the maximum contact length L.
  • the edge may be an inner edge in the tire width direction or an outer edge.
  • the edge ground contact length on the tread surface of the third circumferential main groove 25 may be 90% or more of the maximum ground contact length L. .
  • the first shoulder lug groove 41 and the second shoulder lug groove 43 are the first shoulder land portion region 31 and the second shoulder land portion region 33, respectively.
  • Wout / Win is in the range of 0.45 to 0.75, and the inclination angles of the first shoulder lug groove 41, the first lug groove 45, and the second lug groove 47 are
  • the groove depths of the main grooves 21, 23, and 25 are in the range of 3.0 to 6.5 mm, the wet performance is improved and the vehicle outside noise is suppressed.
  • the groove area ratio Sin of the inner region 20a is 17 to 32%
  • the groove area ratio Sout of the outer region 20b is 8 to 23%
  • Sin> Sout so that it is possible to suppress outside-passing noise and wet performance. Can be secured.
  • the ground camber angle is in the range of ⁇ 1.0 to ⁇ 4.5 degrees, and the vehicle is inclined to the vehicle side.
  • the circumferential narrow groove 27 is provided in the outer region 20b, the block rigidity of the outer region 20b is optimized, and the difference in block rigidity between the inner region 20a and the outer region 20b is kept small. Steering stability at the time is ensured.
  • Rin is greater than or equal to Rout, the occurrence of vehicle outside noise is suppressed.
  • the fourth lug groove 51 that intersects the third circumferential main groove 25 and closes both ends in the tire width direction, the vehicle is grounded in the outer region where the passing sound outside the vehicle tends to be larger than the inner region. The sound emission at the time can be reduced.
  • the ratio of the groove depth to the groove width of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 is 30 to 60%, 30 to 60%, and 60 to By being 90%, generation
  • the inclination angle of the first shoulder lug groove 41 in the tread surface with respect to the tire width direction is 0 to 7 degrees, and the inclination angle of the first lug groove 45 in the tread surface with respect to the tire width direction is 15 to 50 degrees. As a result, drainage in the inner region can be promoted while suppressing early wear. Furthermore, the inclination angle of the second lug groove in the tread surface with respect to the tire width direction is 30 to 60 degrees, so that early drainage can be further suppressed and drainage performance in the inner region can be further promoted.
  • Example 2 In order to examine the effect of the tread pattern 20 of the tire 1 of the present invention, a tire was manufactured as a prototype.
  • the tire size was 325 / 30ZR20 (102Y).
  • the rim was 20 ⁇ 11.5JJ, and a tire provided with a tread pattern having the specifications shown in Tables 1 to 5 below was manufactured.
  • Specifications other than those shown in Tables 1 and 2 were the same as the tread pattern shown in FIG.
  • the specifications other than those shown in Tables 3 to 5 were the same as the tread pattern shown in FIG. 3 while adopting the specifications of Example 1 described later.
  • Vehicle exterior noise was measured according to the tire noise test method defined in ECE R117-02 (ECE Regulation No.117 Revision 2).
  • the maximum noise value (dB) in the noise measurement section when the test vehicle is run sufficiently before the noise measurement section, the engine is stopped before the section, and the coasting is made is ⁇
  • the speed range of 10 km / hour was measured at a plurality of speeds that were divided into eight or more at almost equal intervals, and the average was defined as vehicle outside noise.
  • the maximum noise value dB is the sound measured through the A characteristic frequency correction circuit using a stationary microphone installed at a height of 7.5 m laterally from the running center line and 1.2 m from the road surface at the midpoint in the noise measurement section.
  • the shoulder lug groove has a closed end
  • Wout / Win is in the range of 0.45 to 0.75
  • the inclination angle of the groove 45 and the second lug groove 47 was large in this order (Examples 1 to 9)
  • the vehicle outside noise was suppressed and the wet steering stability was excellent.
  • Wout / Win was smaller than 0.45 (Comparative Example 3)
  • wet steering stability deteriorated.
  • Wout / Win was larger than 0.75 (Comparative Example 4)
  • the vehicle outside noise increased.
  • the maximum groove width Rin among the groove widths of the first shoulder lug groove, the first lug groove, and the second lug groove is equal to that of the third lug groove and the second shoulder lug groove.
  • the ratio Rout / Rin is 0.65 to 1 (Examples 13 to 15) as an example of the case where the groove width is larger than or equal to the maximum groove width Rout (Examples 13 to 15)
  • the generation of vehicle outside noise can be further suppressed. It was.
  • the ratio of the groove depth to the groove width of the first circumferential main groove 21, the second circumferential main groove 23, and the third circumferential main groove 25 is 30 to 60%, In the case of 30% to 60% and 60% to 90% (Examples 16 to 21), it was possible to suppress the generation of outside-passage noise while maintaining wet steering stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 車外通過騒音を抑制でき、ウェット性能に優れた空気入りタイヤを提供する。トレッドパターンは、3本の周方向主溝のうち、第1の周方向主溝が第1の領域に設けられ、第2の周方向主溝が、前記第1の周方向主溝に対して第2の側の前記第1の領域に設けられ、第3の周方向主溝が前記第2の領域に設けられ、第1または第2のショルダーラグ溝の一端が第1または第2のショルダー陸部の領域内で閉塞し、前記第1の周方向主溝および前記第2の周方向主溝の溝幅の平均溝幅Winと、前記第3の周方向主溝の溝幅Woutとの比Wout/Winが0.45~0.75であり、第1のラグ溝および第2のラグ溝は、前記第1のショルダーラグ溝よりもタイヤ幅方向に対してトレッド表面内で大きく傾斜し、かつ、タイヤ周方向のうち同じ方向に傾斜するとともに、前記第2のラグ溝の傾斜角度は前記第1のラグ溝よりも傾斜角度が大きい。

Description

空気入りタイヤ
 本発明は、トレッドパターンが設けられた空気入りタイヤに関する。
 主にレース用であり、高いグリップ力を発現するハイパフォーマンスタイヤとして、通称“Sタイヤ”と呼ばれる、公道走行も可能なタイヤが知られている。従来のSタイヤとして、例えば、トレッド表面に、比較的溝幅の太い、タイヤ幅方向に対し傾斜したラグ溝が最小限の量で、疎に設けられ、これにより大きな陸部ブロックが形成されたものが知られている。しかし、こうしたタイヤでは、接地したときに、大きな陸部ブロックに起因した打音や、路面に対する凝着により発生する音が大きくなりやすく、また、一般的にピッチバリエーションが施されていないため、特定の周波数帯の音が増幅され、パターンノイズが大きい。このように、ラグ溝が疎でありながらラグ溝の溝幅が太く傾斜しているために、有効な排水特性を持つ一方でエアポンピング音を助長する傾向にあり、公道を走行する際の問題となっていた。
 騒音の中でも特に車外通過騒音に関しては、近年、更なる抑制が求められている。
 一方で、昨今の車両トレンドを受け、ハイインチ化に伴う低扁平(例えば35%以下)化された仕様のSタイヤの市場ニーズも高まってきている。この種のSタイヤは、近年の車外通過騒音に関する規制を満たすことは難しいとされている。
 ところで、従来の乗用車用タイヤとして、トレッド表面の一方のショルダー陸部の領域に、タイヤ幅方向に延びるショルダーラグ溝が設けられるとともに、ショルダーラグ溝が、ショルダー陸部の領域に隣接する周方向溝に接続されたものがある(特許文献1)。
特開2010-215221号公報
 しかし、特許文献1のタイヤを、上記ハイインチ、低扁平であるタイヤに適用しても、車外通過騒音を十分に抑制できなかった。また、Sタイヤは、公道を走行する観点から、ウェット性能も十分に備えることが必須である。
 本発明は、車外通過騒音を抑制でき、ウェット性能に優れた空気入りタイヤを提供する。
 本発明の一態様は、トレッド部にトレッドパターンが形成された空気入りタイヤであって、 前記トレッドパターンは、
 タイヤセンターラインを境として第1の側に配される第1の領域と、第2の側に配される第2の領域と、を含むトレッド表面において、
 タイヤ周方向に延在する3本の周方向主溝を含み、前記3本の周方向主溝のうち、第1の周方向主溝が前記第1の領域に設けられ、第2の周方向主溝が、前記第1の周方向主溝に対して第2の側にある第1の領域の部分またはタイヤセンターラインの領域に設けられ、第3の周方向主溝が前記第2の領域に設けられた、周方向溝群と、
 前記第1の領域のうち、前記第1の周方向主溝に対して第1の側に位置する第1のショルダー陸部の領域において、一端がタイヤ幅方向の接地端において開口し、他端が前記第1のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のショルダーラグ溝と、
 前記第2の領域のうち、前記第3の周方向主溝に対して第2の側に設けられた第2のショルダー陸部の領域において、一端がタイヤ幅方向の接地端において開口し、他端が前記第2のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のショルダーラグ溝と、
 前記第1の周方向主溝および前記第2の周方向主溝によって画された第1の陸部の領域において、一端が前記第1の周方向主溝に開口し、他端が前記第1の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のラグ溝と、
 前記第2の周方向主溝および前記第3の周方向主溝によって画された第2の陸部の領域において、一端が前記第2の周方向主溝に開口し、他端が前記第2の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のラグ溝と、を有し、
 前記第1の周方向主溝および前記第2の周方向主溝の溝幅の平均である平均溝幅Winと、前記第3の周方向主溝の溝幅Woutとの比Wout/Winが0.45~0.75であり、
 前記第1のラグ溝および前記第2のラグ溝は、前記第1のショルダーラグ溝よりもタイヤ幅方向に対してトレッド表面内で大きく傾斜し、かつ、タイヤ周方向のうちの同じ方向に傾斜するとともに、前記第2のラグ溝の傾斜角度は前記第1のラグ溝よりも傾斜角度が大きいことを特徴とする空気入りタイヤ。
 前記周方向主溝の溝深さがそれぞれ3.0~6.5mmであることが好ましい。       
 前記トレッドパターンの内側領域の溝面積比Sinが17~32%であり、前記外側領域の溝面積比Soutが8~23%であり、Sin>Soutであることが好ましい。    
 車両静止時の対地キャンバー角が-1.0~-4.5度の範囲で車両側に傾斜して前記車両に装着され、
 前記第2の周方向主溝および前記第3の周方向主溝のうちタイヤセンターラインに近い方の周方向主溝のトレッド表面での縁のタイヤ周方向の接地長は、最大接地長の90%以上であることが好ましい。
 前記周方向溝群は、さらに、前記第3の周方向主溝よりも第2の側に設けられ、タイヤ周方向に延在し、前記3本の周方向主溝の溝幅より溝幅が狭い、溝幅が3.0mm以下である少なくとも1本の周方向細溝を含むことが好ましい。
 前記第2のラグ溝は前記内側領域に設けられ、
 前記トレッドパターンは、さらに、前記周方向細溝に接続される、タイヤ周方向に間隔をあけて設けられた複数の第3のラグ溝を有し、
 前記第1のショルダーラグ溝、前記第1のラグ溝、及び、前記第2のラグ溝の溝幅のうちの最大溝幅Rinが、前記第3のラグ溝、及び、前記第2のショルダーラグ溝の溝幅のうちの最大溝幅Routよりも大きい、または等しいことが好ましい。
 前記トレッドパターンは、さらに、前記第3の周方向主溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第4のラグ溝を有し、
 前記第4のラグ溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞することが好ましい。
 前記トレッドパターンは、さらに、前記外側領域に設けられた周方向溝のうちの1本と交差する、タイヤ周方向に間隔をあけて設けられた複数の湾曲溝を有し、
 前記湾曲溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞するとともに、前記両端を結ぶ部分がタイヤ周方向の一方の側に向かって凸となってトレッド表面内で湾曲することが好ましい。
 前記湾曲溝を第1の湾曲溝というとき、前記トレッドパターンは、さらに、前記外側領域に設けられた周方向溝のうちの他の1本と交差する、タイヤ周方向に間隔をあけて設けられた複数の第2の湾曲溝を有し、
 前記第2の湾曲溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞するとともに、前記両端を結ぶ部分がタイヤ周方向の他方の側に向かって凸となってトレッド表面内で湾曲することが好ましい。
 前記湾曲溝は、前記第2のラグ溝が傾斜するタイヤ周方向のうちの一方の方向と同じ方向に凸となってトレッド表面内で湾曲することが好ましい。
 前記第1の周方向主溝の溝幅に対する溝深さの比は30~60%であり、
 前記第2の周方向主溝の溝幅に対する溝深さの比は30~60%であり、
 前記第3の周方向主溝の溝幅に対する溝深さの比は60~90%であることが好ましい。
 前記第1のショルダーラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、0~7度であり、
 前記第1のラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、15~50度であることが好ましい。
 前記第2のラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、30~60度であることが好ましい。
 前記第1の周方向主溝の一対の縁のうち、前記第1のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延び、
 前記第2の周方向主溝の一対の縁のうち、前記第2のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延びていてもよい。
 車両装着時に前記第1の領域を車両内側に配し、前記第2の領域を車両外側に配するための情報がサイドウォールに表示されていることが好ましい。
 本発明のタイヤによれば、車外通過騒音が抑えられ、ウェット性能に優れる。
本発明の一実施形態のタイヤ全体を示す外観図である。 図1のタイヤの一部を示す断面図である。 図1のタイヤのトレッドパターンを判り易く平面展開視した図である。 図3のトレッドパターンの接地形状を示す図である。
 以下、本発明の空気入りタイヤを詳細に説明する。
 図1に、本発明の一実施形態である空気入りタイヤ1の外観を示す。
 空気入りタイヤ(以下、タイヤという)1は、公道走行も可能である通称Sタイヤであり、扁平率が55%以下で、装着すべきリムのリム径(タイヤ内径)が16インチ以上となっている。また、タイヤ幅としてタイヤ上に表記される数値(タイヤサイズ)は、195以上である。このような空気入りタイヤは、トレッドゴムのtanδ(20℃)が0.30以上である。また、このタイヤ1のスピードレンジは(Y)レンジである。
 本発明のタイヤ1の構造及びゴム材料は、上記した仕様のSタイヤとなるよう選択されたものであれば、公知のものが用いられてもよいし、新規なものが用いられてもよく、本発明において、特に限定されない。
(タイヤ構造)
 図2は、本実施形態のタイヤ1のタイヤ回転軸を含む切断面でタイヤ1を切断したときのタイヤ1のプロファイルを示す。タイヤ1は、骨格材として、カーカスプライ層3と、ベルト層4と、一対のビードコア5とを有し、これらの骨格材の周りに、トレッドゴム6と、サイドゴム7と、ビードフィラーゴム8と、インナーライナゴム9と、ベルトカバー層10と、を主に有する。なお、図2では、理解のしやすさのため、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47、湾曲溝51、第3のラグ溝49、第2のショルダーラグ溝43(いずれも後述)を、それぞれが延在する方向を含むトレッド表面と直交する平面における断面を示す。
 カーカスプライ層3は、一対の円環状のビードコア5の間を巻きまわしてトロイダル形状を成した、有機繊維をゴムで被覆した2層の内側プライ層3a及び外側プライ層3bで構成されている。内側プライ層3a及び外側プライ層3bに配される有機繊維は、タイヤ幅方向に対して互いに異なる方向に傾斜して延びており、2層間で交錯するように有機繊維の傾斜角度が設定されている。
 カーカスプライ層3のうち、タイヤセンターライン上でタイヤ径方向内側に配されている内側プライ層3a及びタイヤ径方向外側に配されている外側プライ層3bは、ビードコア5の周りに巻きまわされて、タイヤ幅方向の両端部がそれぞれタイヤ径方向外側まで延びている。このうち、内側プライ層3aは、ビードフィラーゴム8のタイヤ径方向外側の先端のタイヤ径方向位置と同程度のタイヤ径方向位置に端部を有する。一方、外側プライ層3bは、内側プライ層3aの上記端部よりもタイヤ径方向外側まで延び、ベルト層4の端の近傍で終了している。
 カーカスプライ層3のタイヤ径方向外側には、内側ベルト層4a及び外側ベルト層4bで構成されるベルト層4が設けられている。ベルト層4は、タイヤ周方向に対して前記ベルト層4の延在する面内で、所定の角度、例えば20~30度傾斜して配されたスチールコードにゴムを被覆した部材であり、内側ベルト層4aのタイヤ幅方向の幅は外側ベルト層4bに比べて長い。内側ベルト層4a及び外側ベルト層4bのスチールコードのタイヤ周方向に対する傾斜方向は互いに逆方向である。このため、内側ベルト層材4a及び外側ベルト層4bは、交錯層となっており、充填された空気圧によるカーカスプライ層3の膨張を抑制する。内側ベルト層4aのスチールコードのタイヤ幅方向に対する傾斜方向は、内側ベルト層4aと隣り合う外側プライ層3bの有機繊維の傾斜方向と同じである。     
 ベルト層4のタイヤ径方向外側には、ベルト層4のタイヤ径方向外側からベルト層4を覆う、タイヤ周方向に延びる有機繊維をゴムで被覆した3層のベルトカバー層10が配されている。3層のベルトカバー層10のうち、タイヤ径方向内側にある2層のベルトカバー層は、外側ベルト層4bのタイヤ幅方向の幅全体を覆うように設けられている。3層のベルトカバー層10のうちタイヤ径方向外側に位置する最外層は、ベルト層4のタイヤ幅方向の端部を含むショルダー領域を覆うように設けられ、タイヤセンターラインCLを含むセンター領域には配されていない。ベルトカバー層10のタイヤ径方向外側には、トレッドゴム6が設けられている。トレッドゴム6のタイヤ幅方向の両端部には、サイドゴム7が接続されてサイド部を形成している。サイドゴム7のタイヤ径方向内側の端には、リムクッションゴム部材が設けられ、タイヤ1が装着されるリムと接触する。ビードコア5のタイヤ径方向外側には、ビードコア5の周りに巻きまわされる前のカーカスプライ層3の部分と、ビードコア5の周りに巻きまわされた後のカーカスプライ層3の巻きまわした部分との間に挟まれるようにビードフィラーゴム8が設けられている。タイヤ1とリムとで囲まれる空気を充填するタイヤ空洞領域に面するタイヤ1の内表面には、インナーライナゴム9が設けられている。
 この他に、タイヤ1は、ビードコア5の周りに巻きまわしたカーカスプライ層3の部分をビードフィラーゴム8との間に挟む内側ビード補強材11a、及びビードコア5の周りに巻きまわされるカーカスプライ層3を包む外側ビード補強材11bを備える。
 なお、図2に示すタイヤ1の構造は一例であって、本実施形態のタイヤ1の構造は、特に限定されない。
 本発明のタイヤ1は、トレッド部2に、本発明の特徴とする、図3に示すトレッドパターン20が形成されている。図3は、本発明のタイヤ1のトレッドパターン20を分かりやすく平面展開視した図である。後述するタイヤの各要素についての寸法は、レース用タイヤにおける数値例である。
 本発明においてタイヤ幅方向とは、タイヤ1の回転中心軸方向をいい、タイヤ周方向とは、タイヤ回転中心軸を中心にタイヤ1を回転させたときにできるトレッド表面の回転面の回転方向をいう。図3にこれらの方向を記している。
 本発明のタイヤ1は、ピッチバリエーションが施されてもよい。
 トレッドパターン20は、車両装着時のタイヤ幅方向の向きが指定される。本明細書において、タイヤセンターラインCLを境として車両装着時に車両内側である第1の側(図3においてINで示す方向)を向いて配されるトレッドパターン20の部分を内側領域(第1の領域)20aと呼び、車両外側である第2の側(図3においてOUTで示す方向)を向いて配されるトレッドパターン20の部分を外側領域(第2の領域)20bと呼ぶ。また、以下の説明では、簡単に、第1の側を内側と呼び、第2の側を外側と呼ぶ。
 車両装着時に内側領域を車両内側に配し、外側領域を車両外側に配するための装着の向きに関する情報は、例えば、タイヤ表面、サイドウォール表面に文字、記号等により表示されている。なお、車両に対してタイヤ1とは左右逆側に装着されたタイヤである場合は、タイヤの車両装着時の向きは、これとは逆である。
 また、トレッドパターン20は、タイヤ1の回転方向は指定されず、いずれの回転方向にも対応している。
 トレッドパターン20は、周方向溝群と、第1のショルダーラグ溝と、第1のショルダーラグ溝41と、前記第2のショルダーラグ溝と、第2のショルダーラグ溝43と、第1の陸部と、複数の第1のラグ溝45と、第2の陸部と、複数の第2のラグ溝47と、を有する。
(周方向溝群)
 周方向溝群は、タイヤ周方向に延在する3本の周方向主溝、すなわち、第1の周方向主溝21、第2の周方向主溝23、第3の周方向主溝25を含む。以下、これらを単に、主溝21、主溝23、主溝25ともいう。本明細書において、周方向主溝は、溝幅が3.0mmより広く、溝深さが3.5mmより深い溝をいう。第1の周方向主溝21は、内側領域20aに設けられ、第2の周方向主溝23は、第1の周方向主溝21よりも外側の、内側領域20aまたはタイヤセンターラインCLの領域に設けられ、さらに、第3の周方向主溝25は外側領域20bに設けられている。このように外側領域20bに配される周方向主溝の本数が、内側領域20aに配される周方向主溝の本数と等しいまたは少ないことによって、車外通過騒音の発生が抑制される。なお、第1の周方向主溝21の一対の縁のうち、後述する第1のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延びるとともに、第2の周方向主溝23の一対の縁のうち、後述する第2のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延びていることが好ましい。
 本実施形態では、第2の周方向主溝23は、内側領域20aに設けられており、外側領域20bの周方向主溝の本数は、内側領域20aの周方向主溝の本数より少ない。なお、第2の周方向主溝23がタイヤセンターラインCLの領域に設けられている場合は、外側領域20bの周方向主溝の本数が内側領域20aの周方向主溝の本数と等しい。第2の周方向主溝23がタイヤセンターラインCLの領域に設けられるとは、言い換えると、タイヤセンターラインCLが、第2の周方向主溝23のトレッド表面での縁を含む、第2の周方向主溝23のタイヤ幅方向領域に配されることをいう。
 トレッドパターン20において、第1の周方向主溝21および第2の周方向主溝23の溝幅W21,W23の平均である平均溝幅Winと、第3の周方向主溝25の溝幅Woutとの比Wout/Winは0.45~0.75である。なお、周方向溝の溝幅は、当該周方向溝の延在方向と直交する方向のトレッド表面での長さであり、タイヤ新品時の溝幅である。Wout/Winが0.45を下回ると、ウェット旋回時の外輪側の領域、特に外輪側の外側領域20bでの排水性能が低下し、ウェット路面走行時の操縦安定性(ウェット操縦安定性)が低下する。外輪とは、車両が例えば左旋回する際は車両右側に装着されたタイヤである。一方、Wout/Winが0.75を上回ると、車外通過騒音が悪化する。Wout/Winは好ましくは0.5~0.7であり、特に好ましくは0.6である。なお、主溝21の溝幅W21と、主溝23の溝幅W23は、互いに等しくてもよく、異なってもよい。
 トレッドパターン20において、主溝21、23、25の溝深さはそれぞれ3.0~6.5mmであることが好ましい。溝深さが3.0mm以上であることで、排水性が向上し、ウェット性能が向上するとともに、溝深さが6.5mm以下であることで、車外通過騒音が抑制される。主溝21、23、25の溝深さは、より好ましくは3.5~5.0mmであり、4.2mm、4.5mm、5.0mmの溝深さを例示できる。本明細書において、ウェット操縦安定性、または、単にウェット性能という場合は、ウェット路面走行時の縦方向から横方向にわたる方向の範囲での加速度の大きさをいう。
 また、主溝21,23,25の溝幅W21,W23,W25に対する、主溝21,23,25の溝深さの比(溝幅溝深さ比)はそれぞれ、30~60%、30~60%、60~90%であることが好ましい。主溝の断面形状がこのような扁平形状であることによって、車外通過騒音を抑えられる。
 周方向溝群は、さらに、周方向細溝27を含むことが好ましい。周方向細溝27は、第3の周方向主溝25よりも外側に設けられ、タイヤ周方向に延在する。周方向細溝27の溝幅W27は、3本の周方向主溝21,23,25の各溝幅のうちの最小値より狭く、3.0mm以下である。ここで、外側領域は、内側領域と比べ、周方向溝の溝幅が狭く、また、周方向溝の本数が多く、後述する溝面積比が小さくなるように設計される場合がある。このため、外側領域のブロック剛性が相対的に高くなる場合がある。このように外側領域と内側領域との間でブロック剛性の差が大きくなると、左右旋回等に於ける車両挙動(広義には操縦安定性)が悪化する。本実施形態では、周方向細溝27が第3の周方向主溝25よりも外側の領域に設けられていることで、外側領域20bのブロック剛性が適正化され、内側領域20aと外側領域20bとのブロック剛性の差が小さく抑えられている。これにより左右旋回等に於ける車両挙動(操縦安定性)が確保される。
 周方向細溝27の溝幅は、車外通過騒音を抑える観点から、3.0mm以下であることが好ましく、また、周方向細溝27の溝幅は、内側領域20aのブロック剛性との差を小さくする観点から、2.0mm以上であることが好ましく、例えば2.5mmである。また、周方向細溝27の溝深さは、内側領域20aと外側領域20bとの剛性差を小さくする観点から、1.0~5.5mmであることが好ましい。周方向細溝27の溝深さは、より好ましくは2.0~4.0mmであり、2.5mmの溝深さを例示できる。
 なお、周方向細溝は、他の実施形態において、外側領域20bに2本以上設けられてもよい。
 周方向溝群に含まれる4本の周方向溝21,23,25,27の溝幅は、車外通過騒音を抑える観点から、主溝21または主溝23、主溝25、周方向細溝27の順に小さいことが好ましい。例えば、溝幅W21,W23は7.0~12.0mm、溝幅W25は3.8~8.0mm、溝幅W27は2.0~3.0mmである。
(ショルダー陸部)
 第1のショルダー陸部は、第1の周方向主溝21よりも内側に設けられている。第1のショルダー陸部の領域31は、トレッドパターン20のうち、第1の周方向主溝21とタイヤ幅方向の接地端22aとにより画されるタイヤ周方向に延びる領域である。トレッドパターン20は、タイヤ1が車両に装着された状態で、接地端22aと接地端22bとの間のタイヤ幅方向領域において路面に接地する。
 ここで、接地端22a,22bは以下のように定められる。接地端22a,22bは、タイヤ1を正規リムに組み付け、正規内圧を充填し、正規荷重の88%を負荷荷重とした条件において水平面に接地させたときの接地面のタイヤ幅方向端部である。なお、ここでいう正規リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、正規内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、正規荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。     
 第2のショルダー陸部は、第3の周方向主溝25よりも外側に設けられている。第2のショルダー陸部の領域33は、トレッドパターン20のうち、周方向細溝27とタイヤ幅方向のタイヤ接地端22bとにより画されるタイヤ周方向に延びる領域である。 
(ショルダーラグ溝)
 複数の第1のショルダーラグ溝41は、タイヤ周方向に間隔をあけて設けられている。第1のショルダーラグ溝41は、内側領域20aのうち、第1のショルダー陸部の領域31において、一端41aがタイヤ接地端22aにおいて開口し、他端41bが第1のショルダー陸部の領域31内で閉塞する。つまり、第1のショルダーラグ溝41は、開口端41aと、閉塞端41bとを有しており、開口端41aから閉塞端41bまで外側に延びている。
 複数の第2のショルダーラグ溝43は、タイヤ周方向に間隔をあけて設けられている。第2のショルダーラグ溝43は、外側領域20bのうち、第2のショルダー陸部の領域33において、一端43aがタイヤ接地端22bにおいて開口し、他端43bが内側に向かって延びて第2のショルダー陸部の領域33内で閉塞する。つまり、第2のショルダーラグ溝43は、開口端43aと、閉塞端43bとを有しており、開口端43aから閉塞端43bまで内側に延びている。このようにショルダーラグ溝41、43がそれぞれ第1のショルダー陸部の領域31、第2のショルダー陸部の領域33内で閉塞していることで、接地した際の音の放射を減ずることができ、車外通過騒音が抑えられる。
(ラグ溝)
 複数の第1のラグ溝45は、タイヤ周方向に間隔をあけて設けられている。本明細書において、ショルダーラグ溝を含め、ラグ溝は、ピッチバリエーションを施す、或いは、種々のタイヤサイズに対応する観点から、溝幅が3.5~9.0mmであり、溝深さが2.5~5.0mmである溝をいう。溝深さは、例えば3.0mmである。第1のラグ溝45は、第1の陸部の領域35において、一端45aが前記第1の周方向主溝21に開口し、他端45bが第1の陸部の領域25内で閉塞する。つまり、第1のラグ溝45は、開口端45aと、閉塞端45bとを有しており、開口端45aから閉塞端45bまで外側に延びている。
 複数の第2のラグ溝47は、タイヤ周方向に間隔をあけて設けられている。第2のラグ溝47は、第2の周方向主溝23および第3の周方向主溝25によって画された第2の陸部の領域37において、一端47aが第2の周方向主溝23に開口し、他端47bが第2の陸部の領域37内で閉塞する。つまり、第2のラグ溝47は、開口端47aと、閉塞端47bとを有しており、開口端47aから閉塞端47bまで外側に延びている。
 このようにラグ溝45,47の他端(閉塞端)45b,47bが、隣接する第1の陸部の領域35、第2の陸部の領域37内で閉塞していることで、第1の陸部の領域35、第2の陸部の領域37において、タイヤ周方向に連続する連続陸部(リブ)が形成される。このように、ラグ溝45,47が周方向主溝23,25に接続されずに周方向主溝23,25と分断される結果、ラグ溝45,47が周方向主溝23,25に接続されている場合に起こり得る気柱共鳴音が共鳴し難くなり、車外通過騒音が低減される。
 なお、ラグ溝45、47はそれぞれ、上述のように主溝21,23に対して一方の側の陸部の領域35,37にのみ設けられていてもよく、当該主溝21,23に対して他方の側の陸部の領域31,35にも設けられてもよい。すなわち、ラグ溝45,47はそれぞれ、主溝21,23と交差していてもよい。また、ラグ溝45,47はそれぞれ、陸部の領域31,35にのみ設けられていてもよい。そして、このような形態が、複数のラグ溝45の間で、または、複数のラグ溝47の間で異なっていてもよい。例えば、複数の第2のラグ溝47のうち、一のラグ溝47が第2の陸部の領域37に設けられるとともに、他のラグ溝47が第1の陸部の領域35に設けられてもよく、さらに別のラグ溝47が、第2の周方向主溝23と交差し、その両端が第1の陸部の領域35および第2の陸部の領域37で閉塞するよう設けられてもよい。この場合に、周方向主溝に対して同じ側の陸部の領域に設けられたラグ溝同士は、タイヤ幅方向に対しトレッド表面内でタイヤ周方向のうちの同じ方向に傾斜するよう延びて設けられることが好ましい。また、ラグ溝が周方向主溝と交差する場合は、当該ラグ溝が、タイヤ周方向のいずれかの側に湾曲または屈曲していることが好ましい。これにより、旋回時にラグ溝のエッジ全体が路面に対して同時に接触する線接触が起きないため、耐摩耗性を確保できるとともに、車外通過騒音を抑制できる。湾曲または屈曲の程度は、たとえば、ラグ溝がトレッド表面内で延在するタイヤ幅方向の長さ(当該ラグ溝のタイヤ周方向のうちの一方の側の端と他方の側の端との距離)に対するラグ溝がトレッド表面内で延在するタイヤ周方向長さ(当該ラグ溝のタイヤ幅方向のうちの一方の側の端と最も他方の側の端との距離)の比で表したとき、25~50%である。
 第1のラグ溝45および第2のラグ溝47は、第1のショルダーラグ溝41よりもタイヤ幅方向に対し大きく傾斜し、かつ、タイヤ幅方向に対し同じ方向に傾斜するとともに、第2のラグ溝47は第1のラグ溝45よりも傾斜角度が大きい。なお、第1のショルダーラグ溝41の傾斜角度は、第1のショルダーラグ溝41の延在方向が接地端22aと交わる点と第1のショルダーラグ溝41の外側(第2の側)の端部とを結ぶ直線と、タイヤ幅方向とがなす角の角度であり、タイヤ幅方向に対し傾斜していてもよく、傾斜していなくてもよい。また、第1のラグ溝45、第2のラグ溝47の傾斜角度は、それぞれの溝の延在方向の両端を結ぶ直線とタイヤ幅方向とのなす角の角度である。各ラグ溝41,45,47の傾斜角度は、タイヤ周方向に隣接するラグ溝間の距離(ピッチ長さ)が広いほど大きくなるよう、ピッチ長さの大きさに応じて定められる。第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47はそれぞれ、タイヤ幅方向に対し、時計回り方向に傾斜してもよく、反時計回り方向に傾斜してもよい。
 レース用タイヤは、直進、および、微小舵角~大舵角での旋回に加え、高いシビアリティ(タイヤに対する負荷)でのサーキット走行が行われるが、特に、微小舵角~大舵角での旋回が頻繁に行われることを考慮して、タイヤ幅方向に並ぶよう配される2種のラグ溝同士は、異なる傾斜角度を有するよう形成されることが好ましい。タイヤ幅方向に並ぶよう配される2種のラグ溝同士が同じ傾斜角度を有している場合は、路面に対して線接触となる舵角が生じる場合がある。この場合、線接触する方向と同じ方向に延びるエッジが同時に捲られる、いわゆる捲れ摩耗が発生し、捲れ摩耗が発生した部分を起点に摩耗が進展して、早期摩耗に至るおそれがある。また、後述するように車両静止時の対地キャンバー角が負の角度範囲にある(タイヤが車両側に傾斜する)ネガティブキャンバーである場合は、車両内側を向いて装着される内側領域20aでの排水性を促進するために、タイヤ幅方向に並ぶよう配される第1のラグ溝45と第2のラグ溝47の間で、傾斜する方向が同じであること、すなわち、タイヤ幅方向に対しいずれも時計回り方向、または、いずれも反時計回り方向であることが好ましい。
 このような観点から、第1のショルダーラグ溝41の傾斜角度は、タイヤ幅方向に対し0~7度であり、第1のラグ溝45の傾斜角度はそれぞれ15~50度であることが好ましい。さらに、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度は、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の順に小さいことが好ましい。すなわち、第1のショルダーラグ溝41の傾斜角度が最も小さく、第2のラグ溝47の傾斜角度が最も大きいことが好ましい。この傾斜角度の大きさの順が逆である場合は、接地端に近いラグ溝であるほど傾斜角度が急であるため、排水性が悪くなる。上記した順に傾斜角度が小さい場合、第2のラグ溝47の傾斜角度は、30~60度であることが好ましい。これにより、ウェット性能が向上する。なお、第1のショルダーラグ溝41の傾斜する方向は、第1のラグ溝45、第2のラグ溝47と異なる方向であってもよい。例えば、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度は、タイヤ幅方向に対し反時計回り方向に、それぞれ5度、45度、50度である。
 第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度は、ウェット性能を向上させる観点から、上記したそれぞれの角度範囲において大きい角度であることが好ましい。陸部の領域内にラグ溝を配する自由度が高くなくても、このように各ラグ溝の傾斜角度が大きいことによって十分な溝長さを確保でき、これにより、ラグ溝内の溝体積が増え、排水性が向上する。
 トレッドパターン20は、さらに、複数の第3のラグ溝49を有する。複数の第3のラグ溝49は、周方向細溝27に接続され、タイヤ周方向に間隔をあけて設けられている。この場合において、第1のショルダーラグ溝41、第1のラグ溝45、及び、第2のラグ溝47の溝幅R41,R45,R47のうちの最大溝幅Rinが、第3のラグ溝49、及び、第2のショルダーラグ溝の溝幅R49、R43のうちの最大溝幅Routよりも大きいまたは等しいことが好ましい。なお、溝幅R41,R43,R45,R47,R49は、それぞれのラグ溝41,43,45,47,49の延在方向と直交する方向のトレッド表面での長さであり、タイヤ新品時のものをいう。溝幅R41,R45,R47は、互いに等しくてもよく、異なってもよい。溝幅R49,R43は、互いに等しくてもよく、異なってもよい。RinがRoutよりも大きいまたは等しいことにより、車外通過騒音の発生が抑制される。RoutとRinとの比Rout/Rinは0.65~1を満たすことがより好ましい。
 第3のラグ溝49は、具体的には、周方向細溝27と交差し、両端49a,49bがそれぞれ第3の陸部の領域39、第2のショルダー陸部の領域33内で閉塞する。両端49a,49bがこのように閉塞していることで、車外通過音が内側領域に比べ大きくなりやすい外側領域において、接地した際の音の放射を効果的に減ずることができる。なお、第3の陸部の領域39は、第3の周方向主溝25と周方向細溝27とにより画されるタイヤ周方向に延びる領域である。第3のラグ溝49は、より具体的には、周方向細溝27と交差する部分が、第3のラグ溝49の両端49a,49bよりもタイヤ周方向の一方の側に湾曲した湾曲溝となっている。本実施形態では、第3のラグ溝49(以下、第1の湾曲溝49ともいう)は、図3の紙面下方に膨らむよう湾曲している。
 第3のラグ溝49の溝深さは、周方向細溝27の溝深さと異なってもよく、等しくてもよく、ブロック剛性を低減して、内側領域20aに対する外側領域20bのブロック剛性を最適化するためには、等しいことが好ましい。
 第1の陸部の領域35,第2の陸部の領域37,第3の陸部の領域39のそれぞれのタイヤ幅方向の長さは、等しくてもよく、異なっていてもよい。
 トレッドパターン20は、さらに、複数の第2の湾曲溝51(第4のラグ溝)を有している。複数の第2の湾曲溝51は、タイヤ周方向に間隔をあけて設けられ、第3の周方向主溝25と交差し、両端がそれぞれ第2の陸部の領域37、第3の陸部の領域39内で閉塞する。両端がこのように閉塞していることで、車外通過音が内側領域に比べ大きくなりやすい外側領域において、接地した際の音の放射を減ずることができる。第2の湾曲溝51は、第3のラグ溝49が湾曲するタイヤ周方向の側(図3の紙面上側)と異なるタイヤ周方向の側(図3の紙面下側)に湾曲していることが好ましい。これにより、外側領域において線接触をより抑制し、例えば左側旋回時の車両左側のタイヤの外側領域において、捲れ摩耗による早期摩耗を抑制することができる。さらに、第2の湾曲溝51は、第2のラグ溝47が傾斜するタイヤ周方向のうちの一方の方向(図3の紙面上方)と同じ方向に凸となってトレッド表面内で湾曲することが好ましい。これにより、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47、第2の湾曲溝51、第1の湾曲溝41を、タイヤ幅方向の内側から順に見たときに、各溝の傾斜がタイヤ周方向に変位しながらタイヤ幅方向に延びる波形状をなすため、線接触を抑制して早期摩耗を抑制する効果を高められる。
 なお、他の実施形態では、上記第1の湾曲溝49および第2の湾曲溝51のうち、いずれか一方のみが湾曲し、他方は湾曲していなくてもよい。湾曲していない態様としては、例えば、湾曲溝49の延在方向の一端49aから他端49bに向かって一直線状に延びる態様、湾曲溝49が周方向細溝27と交差する部分において屈曲点を有するよう屈曲するV字形状に延びる態様がある。
 第1の湾曲溝49の両端49a,49b、及び、第2の湾曲溝51の両端51a,51bは、車外通過騒音を抑制できる点で、隣接する他の周方向溝と接続されずに閉塞することが好ましい。湾曲溝49、51を設けることによって、溝面積比や周方向溝の溝幅の大きさを調節しやすくなる。
 湾曲溝49、51はそれぞれ、第3の周方向主溝25、周方向細溝27と溝深さが等しいことが好ましい。また、湾曲溝49,51の溝幅R49,R51はそれぞれ、第3の周方向主溝25、周方向細溝27の溝幅W25、W27より広いことが好ましい。  
(溝面積比)
 トレッドパターン20の内側領域20aの溝面積比Sinは17~32%であり、外側領域20bの溝面積比Soutは8~23%であり、Sin>Soutであることが好ましい。この条件において、溝面積比Sout、Sinは、タイヤ全周にわたるピッチ長さを考慮した平均で表される。本明細書において溝面積比は、タイヤ新品時における、内側領域20aまたは外側領域20bの面積に占める、内側領域20aまたは外側領域20bに含まれる全ての溝の面積の割合をいう。ここでいう溝は、周方向溝、ショルダーラグ溝、ラグ溝を含み、溝以外の凹部領域(例えば、接地端22a,22bに隣接するタイヤ幅方向外側の領域に設けられた複数の孔(例えば、ディンプル状の複数の凹み))は含まない。また、第1の周方向主溝21、第2の周方向主溝23には、第1のラグ溝45、第2のラグ溝47が接続される側のエッジが面取りされていてもよく、面取りされている場合は、面取りされることで見掛け上広がったトレッド表面での主溝の領域も上記溝に含めて上記溝面積比Sin、Soutは算出される。
 溝面積比Soutが溝面積比Sinより小さいと、車外通過騒音の発生が抑制される。溝面積比Sinが17%未満、または、溝面積比Soutが8%未満である場合は、ウェット性能が悪化し、ハイドロプレーニング性能も悪化する。一方、溝面積比Sinが32%を超える場合、または、溝面積比Soutが23%を超える場合は、ドライ路面での左右旋回等に於ける車両挙動を十分に改良できない。より好ましくは、溝面積比Sinは20~29%であり、溝面積比Soutは11~20%である。
(接地長)
 本実施形態のタイヤ1は、車両静止時の対地キャンバー角が-1.0~-4.5度の範囲で車両側に傾斜して車両に装着される。対地キャンバー角としては、特に制限されないが、-3度を例示できる。この場合において、第2の周方向主溝23および第3の周方向主溝25のうちタイヤセンターラインCLに近い方の周方向主溝のトレッド表面での縁のタイヤ周方向の接地長は、最大接地長Lの90%以上であることが好ましい。上記タイヤセンターラインCLに近い方の周方向溝は、図4に示すように、第2の周方向主溝23であり、第2の周方向主溝23の接地長L23が最大接地長Lの90%以上である。図4は、図3のトレッドパターン20の接地形状を示す図である。なお、図4に示す接地形状は、タイヤ1が、対地キャンバー角が上記角度範囲で車両側に傾斜して装着された場合の形状であり、タイヤ幅方向内側の領域が接地端22aを超えている。図4において、主溝23のトレッド表面でのタイヤ幅方向内側の縁によって、第2の周方向主溝23の接地長L23を示す。対地キャンバー角が上記角度範囲にある場合、接地面のうちタイヤ周方向の接地長が最大となるタイヤ幅方向位置は内側領域20aに存在する。このとき、接地長L23が最大接地長Lの90%以上であることで、排水性の高い第2の周方向主溝23のタイヤが幅方向領域内に最大接地長Lのタイヤ幅方向位置が含まれることとなり、ウェット性能が向上する。接地長L23は、より好ましくは最大接地長Lの100%である。すなわち、第2の周方向主溝23のトレッド表面での縁の接地長L23が最大接地長Lである。当該縁は、タイヤ幅方向の内側の縁であってもよく、外側の縁であってもよい。なお、他の実施形態では、第2の周方向主溝23の代わりに第3の周方向主溝25のトレッド表面での縁の接地長が最大接地長Lの90%以上であってもよい。
 本実施形態の空気入りタイヤ1による効果をまとめると、第1のショルダーラグ溝41、第2のショルダーラグ溝43がそれぞれ第1のショルダー陸部の領域31、第2のショルダー陸部の領域33内で閉塞するとともに、Wout/Winが0.45~0.75の範囲内にあり、さらに、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の傾斜角度が上述した関係にあることで、車外通過騒音が抑えられるとともに、ウェット性能も向上する。
 主溝21,23,25の溝深さが3.0~6.5mmの範囲にあることで、ウェット性能が向上するとともに、車外通過騒音が抑制される。
 内側領域20aの溝面積比Sinが17~32%であり、外側領域20bの溝面積比Soutが8~23%であり、Sin>Soutであることによって、車外通過騒音を抑制できるとともに、ウェット性能を確保できる。
 車両静止時の対地キャンバー角が-1.0~-4.5度の範囲で車両側に傾斜して車両に装着され、第2の周方向主溝23および第3の周方向主溝25のうちタイヤセンターラインCLに近い方の周方向主溝のタイヤ周方向の接地長は、最大接地長Lの90%以上であることによって、ウェット性能が向上する。
 外側領域20bに周方向細溝27が設けられていることで、外側領域20bのブロック剛性が適正化され、内側領域20aと外側領域20bとのブロック剛性の差が小さく抑えられ、これにより左右旋回時の操縦安定性が確保される。
 RinがRoutよりも大きいまたは等しいことにより、車外通過騒音の発生が抑制される。 さらに、第3の周方向主溝25と交差し、タイヤ幅方向の両端が閉塞する第4のラグ溝51を有することで、車外通過音が内側領域に比べ大きくなりやすい外側領域において、接地した際の音の放射を減ずることができる。
 また、外側領域20bに湾曲溝49,51が設けられていることで、車外通過騒音の発生が抑制され、ウェット性能が向上する。 第1の周方向主溝21,第2の周方向主溝23、第3の周方向主溝25の溝幅に対する溝深さの比がそれぞれ、30~60%、30~60%、60~90%であることで、車外通過騒音の発生を抑制できる。
 第1のショルダーラグ溝41のタイヤ幅方向に対するトレッド表面内での傾斜角度が0~7度であり、第1のラグ溝45のタイヤ幅方向に対するトレッド表面内での傾斜角度は15~50度であることで、早期摩耗を抑制しつつ、内側領域での排水性を促進できる。
 さらに、第2のラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、30~60度であることで、早期摩耗をより抑制しつつ、内側領域での排水性をより促進できる。
(実施例)
 本発明のタイヤ1のトレッドパターン20の効果を調べるために、タイヤを試作した。
 タイヤサイズは、325/30ZR20(102Y)とした。リムは20×11.5JJとして、以下の表1~表5に示す仕様のトレッドパターンを設けたタイヤを作製した。なお、表1、表2に示す以外の仕様は図3に示すトレッドパターンと同様とした。表3~表5に示す仕様に関して、表3~表5に示す以外の仕様は、後述する実施例1の仕様を採用しつつ、図3に示すトレッドパターンと同様とした。
 タイヤ性能を調べるために、公道を走行可能な高ロードインデックスの車両に試作したタイヤを装着して試験を行った。タイヤ性能は、車外通過騒音、ウェット操縦安定性を下記要領で測定ないし評価した。
 なお、表中、左方向を指す矢印は、当該矢印が記載された欄の内容が、左隣の欄と同様であることを示す。また、「各ラグ溝の傾斜角度」の欄では、左から順に、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47の各傾斜角度を、「/」で区切って左方から順に示す。「溝面積比」の欄では、「/」の左側にSinを示し、「/」の右側にSoutを示す。
(車外通過騒音)
 車外通過騒音は、ECE R117-02(ECE Regulation No.117 Revision 2)に定めるタイヤ騒音試験法に従って測定した。この試験では、試験車両を騒音測定区間の十分前から走行させ、当該区間の手前でエンジンを停止し、惰行走行させた時の騒音測定区間における最大騒音値(dB)を、基準速度に対し±10km/時の速度範囲をほぼ等間隔に8以上に区切った複数の速度で測定し、平均を車外通過騒音とした。最大騒音値dBは、騒音測定区間内の中間点において走行中心線から側方に7.5mかつ路面から1.2mの高さに設置した定置マイクロフォンを用いてA特性周波数補正回路を通して測定した音圧〔dB(A)〕である。なお、下記表1、表2において、比較例1の通過音との差(dB)で示す。比較例1よりも通過音が小さい場合はその差(dB)の前に「-」を付した。その結果、通過音が比較例1よりも小さい場合は、車外通過騒音が抑えられていると評価した。
(ウェット操縦安定性)
 屋外のタイヤ試験場の水深約1mmであるウェット路面において、半径30mの旋回路を限界速度で5周走行し、その時の平均横加速度をドライバーの官能評価により表した。評価は、比較例1のタイヤの評価値を基準値として表した。指数値が大きいほどウェット操縦安定性が優れていることを意味する。その結果、102以上である場合を、ウェット操縦安定性に優れると評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,表2に示されるように、ショルダーラグ溝が閉塞する端を有し、Wout/Winが0.45~0.75の範囲にあり、第1のショルダーラグ溝41、第1のラグ溝45、第2のラグ溝47がこの順に傾斜角度が大きい場合は(実施例1~9)、車外通過騒音が抑えられ、ウェット操縦安定性に優れていた。
 これに対し、Wout/Winが0.45より小さい場合は(比較例3)、ウェット操縦安定性が悪化した。また、Wout/Winが0.75より大きい場合は(比較例4)、車外通過騒音が増大した。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、対地キャンバー角が-1.0~-4.5度の範囲で車両側に傾斜して車両に装着された場合において、第2の周方向主溝23の接地長L23の最大接地長に対する比が90以上である場合は(実施例10~12)、車外通過騒音の発生を抑制しつつ、ウェット操縦安定性をより向上できた。
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、第1のショルダーラグ溝、第1のラグ溝、第2のラグ溝の溝幅のうちの最大溝幅Rinが、第3のラグ溝、第2のショルダーラグ溝の溝幅のうちの最大溝幅Routよりも大きいまたは等しい場合の例として、比Rout/Rinが0.65~1である場合は(実施例13~15)、車外通過騒音の発生をより抑制できた。
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、第1の周方向主溝21、第2の周方向主溝23、第3の周方向主溝25の溝幅に対する溝深さの比がそれぞれ、30~60%、30~60%、60~90%である場合は(実施例16~21)、ウェット操縦安定性を維持しつつ、車外通過騒音の発生を抑制できた。
 以上、本発明の空気入りタイヤについて詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
1 空気入りタイヤ
2 トレッド部
20 トレッドパターン
20a 内側領域
20b 外側領域
22a,22b タイヤ接地端
21 第1の周方向主溝
23 第2の周方向主溝
25 第3の周方向主溝
27 周方向細溝
31 第1のショルダー陸部の領域
33 第2のショルダー陸部の領域
35 第1の陸部の領域
37 第2の陸部の領域
41 第1のショルダーラグ溝
41a 一端
41b 他端
43 第2のショルダーラグ溝
43a 一端
43b 他端
45 第1のラグ溝
45a 一端
45b 他端
47 第2のラグ溝
47a 一端
47b 他端
49 第3のラグ溝(第1の湾曲溝)
49a,49b 両端
51 第2の湾曲溝
CL タイヤセンターライン
Win 平均溝幅
Wout 第3の周方向主溝の溝幅
Sin 内側領域の溝面積比
Sout 外側領域の溝面積比
L 最大接地長
L23 第2の周方向主溝の接地長
W21,W23,W25,W27 周方向溝の溝幅
R41,R43 ショルダーラグ溝の溝幅
R45,R47,R49 ラグ溝の溝幅
Rin 最大溝幅
Rout 最大溝幅

Claims (15)

  1.  トレッド部にトレッドパターンが形成された空気入りタイヤであって、
     前記トレッドパターンは、
     タイヤセンターラインを境として第1の側に配される第1の領域と、第2の側に配される第2の領域と、を含むトレッド表面において、
     タイヤ周方向に延在する3本の周方向主溝を含み、前記3本の周方向主溝のうち、第1の周方向主溝が前記第1の領域に設けられ、第2の周方向主溝が、前記第1の周方向主溝に対して第2の側にある第1の領域の部分またはタイヤセンターラインの領域に設けられ、第3の周方向主溝が前記第2の領域に設けられた、周方向溝群と、
     前記第1の領域のうち、前記第1の周方向主溝に対して第1の側に位置する第1のショルダー陸部の領域において、一端がタイヤ幅方向の接地端において開口し、他端が前記第1のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のショルダーラグ溝と、
     前記第2の領域のうち、前記第3の周方向主溝に対して第2の側に設けられた第2のショルダー陸部の領域において、一端がタイヤ幅方向の接地端において開口し、他端が前記第2のショルダー陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のショルダーラグ溝と、
     前記第1の周方向主溝および前記第2の周方向主溝によって画された第1の陸部の領域において、一端が前記第1の周方向主溝に開口し、他端が前記第1の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第1のラグ溝と、
     前記第2の周方向主溝および前記第3の周方向主溝によって画された第2の陸部の領域において、一端が前記第2の周方向主溝に開口し、他端が前記第2の陸部の領域内で閉塞する、タイヤ周方向に間隔をあけて設けられた複数の第2のラグ溝と、を有し、
     前記第1の周方向主溝および前記第2の周方向主溝の溝幅の平均である平均溝幅Winと、前記第3の周方向主溝の溝幅Woutとの比Wout/Winが0.45~0.75であり、
     前記第1のラグ溝および前記第2のラグ溝は、前記第1のショルダーラグ溝よりもタイヤ幅方向に対してトレッド表面内で大きく傾斜し、かつ、タイヤ周方向のうちの同じ方向に傾斜するとともに、前記第2のラグ溝の傾斜角度は前記第1のラグ溝よりも傾斜角度が大きいことを特徴とする空気入りタイヤ。
  2.  前記周方向主溝の溝深さがそれぞれ3.0~6.5mmである、請求項1に記載の空気入りタイヤ。
  3.  前記トレッドパターンの前記第1の領域の溝面積比Sinが17~32%であり、前記第2の領域の溝面積比Soutが8~23%であり、Sin>Soutである、請求項1または2に記載の空気入りタイヤ。
  4.  車両静止時の対地キャンバー角が-1.0~-4.5度の範囲で車両側に傾斜して前記車両に装着され、
     前記第2の周方向主溝および前記第3の周方向主溝のうちタイヤセンターラインに近い方の周方向主溝のトレッド表面での縁のタイヤ周方向の接地長は、最大接地長の90%以上である、請求項1から3のいずれかに記載の空気入りタイヤ。
  5.  前記周方向溝群は、さらに、前記第3の周方向主溝よりも第2の側に設けられ、タイヤ周方向に延在し、前記3本の周方向主溝の溝幅より溝幅が狭い、溝幅が3.0mm以下である少なくとも1本の周方向細溝を含む、請求項1から4のいずれかに記載の空気入りタイヤ。
  6.  前記第2のラグ溝は前記第1の領域に設けられ、
     前記トレッドパターンは、さらに、前記周方向細溝に接続される、タイヤ周方向に間隔をあけて設けられた複数の第3のラグ溝を有し、
     前記第1のショルダーラグ溝、前記第1のラグ溝、及び、前記第2のラグ溝の溝幅のうちの最大溝幅Rinが、前記第3のラグ溝、及び、前記第2のショルダーラグ溝の溝幅のうちの最大溝幅Routよりも大きいまたは等しい、請求項5に記載の空気入りタイヤ。
  7.  前記トレッドパターンは、さらに、前記第3の周方向主溝と交差する、タイヤ周方向に間隔をあけて設けられた複数の第4のラグ溝を有し、
     前記第4のラグ溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞する、請求項1から6のいずれかに記載の空気入りタイヤ。
  8.  前記トレッドパターンは、さらに、前記第2の領域に設けられた周方向溝のうちの1本と交差する、タイヤ周方向に間隔をあけて設けられた複数の湾曲溝を有し、
     前記湾曲溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞するとともに、前記両端を結ぶ部分がタイヤ周方向の一方の側に向かって凸となってトレッド表面内で湾曲する、請求項1から5のいずれかに記載の空気入りタイヤ。
  9.  前記湾曲溝を第1の湾曲溝というとき、前記トレッドパターンは、さらに、前記第2の領域に設けられた周方向溝のうちの他の1本と交差する、タイヤ周方向に間隔をあけて設けられた複数の第2の湾曲溝を有し、
     前記第2の湾曲溝は、タイヤ幅方向の両端のそれぞれが、隣接する他の前記周方向溝と接続されずに閉塞するとともに、前記両端を結ぶ部分がタイヤ周方向の他方の側に向かって凸となってトレッド表面内で湾曲する、請求項8に記載の空気入りタイヤ。
  10.  前記第2の湾曲溝は、前記第2のラグ溝が傾斜するタイヤ周方向のうちの一方の方向と同じ方向に凸となってトレッド表面内で湾曲する、請求項9に記載の空気入りタイヤ。
  11.  前記第1の周方向主溝の溝幅に対する溝深さの比は30~60%であり、
     前記第2の周方向主溝の溝幅に対する溝深さの比は30~60%であり、
     前記第3の周方向主溝の溝幅に対する溝深さの比は60~90%である、請求項1~10のいずれかに記載の空気入りタイヤ。
  12.  前記第1のショルダーラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、0~7度であり、
     前記第1のラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、15~50度である、請求項1から11のいずれかに記載の空気入りタイヤ。
  13.  前記第2のラグ溝のタイヤ幅方向に対するトレッド表面内での傾斜角度は、30~60度である、請求項12に記載の空気入りタイヤ。
  14.  前記第1の周方向主溝の一対の縁のうち、前記第1のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延び、
     前記第2の周方向主溝の一対の縁のうち、前記第2のラグ溝が開口した縁と対向する縁は開口されておらず、タイヤ周方向の全周にわたって直線状に延び、請求項1から13のいずれかに記載の空気入りタイヤ。
  15.  車両装着時に前記第1の領域を車両内側に配し、前記第2の領域を車両外側に配するための情報がサイドウォールに表示された、請求項1から14のいずれかに記載の空気入りタイヤ。
PCT/JP2014/058107 2013-04-11 2014-03-24 空気入りタイヤ WO2014167990A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014513834A JPWO2014167990A1 (ja) 2013-04-11 2014-03-24 空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-082804 2013-04-11
JP2013082804 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014167990A1 true WO2014167990A1 (ja) 2014-10-16

Family

ID=51689402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058107 WO2014167990A1 (ja) 2013-04-11 2014-03-24 空気入りタイヤ

Country Status (2)

Country Link
JP (1) JPWO2014167990A1 (ja)
WO (1) WO2014167990A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056505A1 (ja) * 2014-10-09 2016-04-14 横浜ゴム株式会社 空気入りタイヤ
WO2016056506A1 (ja) * 2014-10-09 2016-04-14 横浜ゴム株式会社 空気入りタイヤ
JP2016088165A (ja) * 2014-10-30 2016-05-23 住友ゴム工業株式会社 空気入りタイヤ
JP2016155395A (ja) * 2015-02-23 2016-09-01 住友ゴム工業株式会社 空気入りタイヤ
US20170036487A1 (en) * 2015-08-03 2017-02-09 Sumitomo Rubber Industries, Ltd. Pneumatic tire
KR20170016783A (ko) * 2015-08-04 2017-02-14 스미토모 고무 고교 가부시키가이샤 공기 타이어
US20180056725A1 (en) * 2016-09-01 2018-03-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire
WO2019159564A1 (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
JP2020121642A (ja) * 2019-01-30 2020-08-13 横浜ゴム株式会社 空気入りタイヤ
US20210276370A1 (en) * 2018-07-03 2021-09-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
EP3936350A1 (en) * 2020-07-10 2022-01-12 Sumitomo Rubber Industries, Ltd. Tire, vehicle and tire design method
US11654725B2 (en) * 2018-01-30 2023-05-23 The Yokohama Rubber Co., Ltd. Pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523422A (ja) * 2001-03-30 2004-08-05 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 車のタイヤのためのトレッドパターン
JP2011230699A (ja) * 2010-04-28 2011-11-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523422A (ja) * 2001-03-30 2004-08-05 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 車のタイヤのためのトレッドパターン
JP2011230699A (ja) * 2010-04-28 2011-11-17 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056506A1 (ja) * 2014-10-09 2016-04-14 横浜ゴム株式会社 空気入りタイヤ
WO2016056505A1 (ja) * 2014-10-09 2016-04-14 横浜ゴム株式会社 空気入りタイヤ
JP2016088165A (ja) * 2014-10-30 2016-05-23 住友ゴム工業株式会社 空気入りタイヤ
JP2016155395A (ja) * 2015-02-23 2016-09-01 住友ゴム工業株式会社 空気入りタイヤ
US10427465B2 (en) * 2015-08-03 2019-10-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US20170036487A1 (en) * 2015-08-03 2017-02-09 Sumitomo Rubber Industries, Ltd. Pneumatic tire
KR20170016783A (ko) * 2015-08-04 2017-02-14 스미토모 고무 고교 가부시키가이샤 공기 타이어
KR102554146B1 (ko) 2015-08-04 2023-07-10 스미토모 고무 코교 카부시키카이샤 공기 타이어
US10894445B2 (en) * 2016-09-01 2021-01-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN107791752A (zh) * 2016-09-01 2018-03-13 住友橡胶工业株式会社 充气轮胎
US20180056725A1 (en) * 2016-09-01 2018-03-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US11654725B2 (en) * 2018-01-30 2023-05-23 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP6992573B2 (ja) 2018-02-14 2022-01-13 横浜ゴム株式会社 空気入りタイヤ
JP2019137338A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
WO2019159564A1 (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
US11872848B2 (en) 2018-02-14 2024-01-16 The Yokohama Rubber Co., Ltd. Pneumatic tire
US20210276370A1 (en) * 2018-07-03 2021-09-09 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11945263B2 (en) * 2018-07-03 2024-04-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2020121642A (ja) * 2019-01-30 2020-08-13 横浜ゴム株式会社 空気入りタイヤ
EP3936350A1 (en) * 2020-07-10 2022-01-12 Sumitomo Rubber Industries, Ltd. Tire, vehicle and tire design method

Also Published As

Publication number Publication date
JPWO2014167990A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014167990A1 (ja) 空気入りタイヤ
JP6292117B2 (ja) 空気入りタイヤ
JP5667614B2 (ja) 空気入りタイヤ
JP6358030B2 (ja) 空気入りタイヤ
WO2018016302A1 (ja) 空気入りタイヤ
WO2013141261A1 (ja) 空気入りタイヤ
JP6327100B2 (ja) 空気入りタイヤ
JP6375851B2 (ja) 空気入りタイヤ
JP4992951B2 (ja) 空気入りタイヤ
JP6375850B2 (ja) 空気入りタイヤ
JP6287554B2 (ja) 空気入りタイヤ
JP6446979B2 (ja) 空気入りタイヤ
JP6610717B1 (ja) 空気入りタイヤ
JP2018203152A (ja) タイヤ
WO2019098307A1 (ja) 空気入りタイヤ
WO2015151421A1 (ja) タイヤ
WO2016143477A1 (ja) 空気入りタイヤ
JP6344088B2 (ja) 空気入りタイヤ
JP5890192B2 (ja) 自動二輪車用空気入りタイヤ
JP2011255845A (ja) 空気入りタイヤ
JP6446980B2 (ja) 空気入りタイヤ
JP2013139241A (ja) 空気入りタイヤ
WO2016093069A1 (ja) 空気入りタイヤ
JP2019209731A (ja) タイヤ
JP6158594B2 (ja) タイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014513834

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783287

Country of ref document: EP

Kind code of ref document: A1