WO2014010648A1 - 鞍乗型車両の吸気ダクト - Google Patents

鞍乗型車両の吸気ダクト Download PDF

Info

Publication number
WO2014010648A1
WO2014010648A1 PCT/JP2013/068911 JP2013068911W WO2014010648A1 WO 2014010648 A1 WO2014010648 A1 WO 2014010648A1 JP 2013068911 W JP2013068911 W JP 2013068911W WO 2014010648 A1 WO2014010648 A1 WO 2014010648A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
intake duct
duct
supercharger
saddle
Prior art date
Application number
PCT/JP2013/068911
Other languages
English (en)
French (fr)
Inventor
成岡翔平
有馬久豊
市聡顕
渡部寛之
荒井康三
田中義信
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201380036461.8A priority Critical patent/CN104520575B/zh
Priority to JP2014524851A priority patent/JP5985639B2/ja
Priority to EP13817464.4A priority patent/EP2878803B1/en
Publication of WO2014010648A1 publication Critical patent/WO2014010648A1/ja
Priority to US14/590,900 priority patent/US9638149B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/02Frames
    • B62K11/04Frames characterised by the engine being between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J37/00Arrangements of fuel supply lines, taps, or the like, on motor cycles or engine-assisted cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10013Means upstream of the air filter; Connection to the ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10111Substantially V-, C- or U-shaped ducts in direction of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10144Connections of intake ducts to each other or to another device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/14Combined air cleaners and silencers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/16Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines characterised by use in vehicles
    • F02M35/162Motorcycles; All-terrain vehicles, e.g. quads, snowmobiles; Small vehicles, e.g. forklifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake duct of a straddle-type vehicle that forms an intake passage for supplying intake air to a supercharger.
  • Patent Document 1 since the intake duct extends while repeating a sharp curve, the intake air inside the intake duct is biased by the centrifugal force at the curved portion. If the suction port of the supercharger is reached in a state where such a bias has occurred, the efficiency of the supercharger decreases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an intake duct for a saddle-ride type vehicle that can prevent the intake air from being biased and prevent the efficiency of the supercharger from decreasing.
  • an intake duct of the present invention is an intake duct of a saddle type vehicle that forms an intake passage for supplying intake air to a supercharger, and is connected to the supercharger while being curved.
  • the cross-sectional shape of the intake passage is formed such that the orthogonal dimension perpendicular to the radial direction of the curve gradually decreases from the center of the curve toward the radially outer side of the curve.
  • “gradually smaller” means that there may be a portion with a constant dimension on the way, and the size is smaller as a whole.
  • the radially outer passage of the curve inside the intake passage is narrower than the radially inner passage of the curve, so that the intake air is prevented from being biased radially outward by the centrifugal force.
  • the flow of intake air is made uniform inside the intake passage.
  • the efficiency of the supercharger can be prevented from being lowered by being connected to the suction port of the supercharger in a state where the flow of the intake air is made uniform.
  • the cross-sectional shape of the intake passage is set such that the maximum dimension in the orthogonal direction is larger than the maximum dimension in the radial direction of the curve. According to this configuration, it is easy to reduce the deviation of the flow velocity compared to the case where the maximum dimension in the radial direction is larger than the maximum dimension in the orthogonal direction.
  • the intake duct of the intake duct opens forward to take in the traveling wind as the intake air.
  • “incorporating the traveling wind” means that the traveling wind is directly introduced without any obstacle in front of the intake intake. When running wind is used, the flow speed is increased and high dynamic pressure is obtained, but it is susceptible to centrifugal force when passing through a curved intake passage, but this configuration suppresses the bias of intake air. Therefore, it can prevent that the efficiency of a supercharger falls.
  • the supercharger When the supercharger is disposed behind the cylinder block of the engine, it is connected to the supercharger through one side of the cylinder block while curving from the front of the cylinder block to one side of the vehicle body. Preferably it is. According to this configuration, since the intake duct is curved to the side, the vertical dimension of the vehicle can be made smaller than when passing above the cylinder block.
  • the intake intake at the front end is disposed on the one side of the vehicle body.
  • the outer side surface in the vehicle width direction of the intake port is located outside the inner side surface in the vehicle width direction of the outermost curved portion of the intake duct. According to this configuration, the curvature of the intake duct is small, and the vehicle width direction dimension of the vehicle can be reduced.
  • the suction port of the supercharger is disposed inside the side surface of the engine.
  • the turbocharger does not protrude outward from the side of the engine, so the assembly of the engine and turbocharger is compact, but the curvature of the intake duct is small and the centrifugal force is large.
  • this configuration since the bias of intake air is suppressed, it is possible to prevent the efficiency of the supercharger from being lowered.
  • the passage area of the intake passage is set so as to gradually decrease from upstream to downstream.
  • the flow velocity of the intake air gradually increases in the intake passage, and there is an advantage of improving the efficiency of the supercharger, but it is easily affected by centrifugal force in the vicinity of the suction port of the supercharger on the downstream side.
  • the intake duct of the present invention since the bias of intake air is suppressed, it is possible to prevent the efficiency of the supercharger from being lowered.
  • the “upstream portion” refers to a portion upstream of 1 ⁇ 2 of the length of the intake passage. According to this configuration, since the intake air passes through the element at a location where the flow velocity is low, the loss when passing through the element can be reduced.
  • a suppression member for suppressing a bias of intake air inside the intake passage is provided on the upstream side of the intake port of the supercharger in the intake passage. According to this configuration, it is possible to reduce the bias of the intake air led to the supercharger and further prevent the efficiency from decreasing.
  • FIG. 1 is a side view showing a motorcycle that is a kind of saddle riding type vehicle equipped with an intake duct according to a first embodiment of the present invention. It is the perspective view which looked at the principal part of the motorcycle from back diagonally upward.
  • Fig. 2 is a side view showing a main part of the motorcycle. It is a side view which shows the same intake duct.
  • FIG. 2 is a plan view showing the motorcycle. It is the VII-VII sectional view taken on the line of FIG. (A) is sectional drawing which shows another example of the same intake duct, (b) is an enlarged view of the VIIIb part of (a), (c) is a figure which shows another example of (b). It is a top view which shows the principal part of the motorcycle which is a kind of saddle riding type vehicle carrying the intake duct which concerns on 2nd Embodiment of this invention. It is a top view which shows the principal part of the motorcycle which is a kind of saddle riding type vehicle carrying the intake duct which concerns on 3rd Embodiment of this invention. It is the perspective view which looked at the principal part of the motorcycle from the diagonally upper front.
  • FIG. 5 is a cross-sectional view showing an intake duct of an example different from the first to third embodiments.
  • FIG. 1 is a side view of a motorcycle which is a kind of saddle riding type vehicle equipped with an intake duct according to a first embodiment of the present invention.
  • a body frame FR of the motorcycle has a main frame 1 that forms a front half portion, and a seat rail 2 that is attached to the rear portion of the main frame 1 and forms the rear half portion of the body frame FR.
  • a front fork 8 is rotatably supported on a head pipe 4 provided at the front end of the main frame 1 via a steering shaft (not shown), and a front wheel 10 is attached to the front fork 8.
  • a steering handle 6 is fixed to the upper end of the front fork 8.
  • a swing arm 12 is pivotally supported by a rear end portion of the main frame 1 at the center lower portion of the vehicle body frame FR via a pivot shaft 16 so that the swing arm 12 can swing up and down. Is supported rotatably.
  • An engine E is attached to the lower part of the main frame 1.
  • An engine coolant radiator 13 is disposed in front of the engine E. The rotation of the engine E is transmitted to a transmission mechanism (not shown) such as a chain, and the rear wheel 14 is driven through this transmission mechanism.
  • a side stand 17 is supported at the rear end of the main frame 1 so that it can be tilted up and down.
  • the fuel tank 15 is arranged on the upper part of the main frame 1, and the driver's seat 18 and the passenger seat 20 are supported on the rear frame 2.
  • a resin front cowl 22 that covers the front of the head pipe 4 is attached to the front of the vehicle body.
  • the front cowl 22 is formed with an intake port 24 for taking in intake air from the outside to the engine E.
  • the intake intake 24 opens toward the front of the vehicle body, the amount of intake air to the engine E can be increased using the wind pressure of the traveling wind A.
  • the intake port 24 is disposed on the front surface of the front cowl 22 and is disposed at the front end of the front cowl 22 where the traveling wind pressure is highest. As a result, the amount of protrusion from the front cowl 22 is suppressed compared to the case where the intake intake 24 is provided so as to protrude from the side of the front cowl 22, so that the intake intake 24 becomes inconspicuous and the appearance of the motorcycle is improved. To do.
  • Engine E is a 4-cylinder 4-cycle parallel multi-cylinder engine having an engine rotation shaft 26 extending in the vehicle width direction.
  • the form of the engine E is not limited to this.
  • the engine E is attached to a crankcase 28 that supports the engine rotation shaft 26, a cylinder block 30 that is connected to the top of the crankcase 28, a cylinder head 32 that is connected to the top, and an upper part of the cylinder head 32.
  • a head cover 32 a and an oil pan 34 attached to the lower part of the crankcase 28 are provided.
  • the cylinder block 30 and the cylinder head 32 are slightly inclined forward. More specifically, the piston axis of the engine E extends upward and inclined forward.
  • An intake port 47 is provided at the rear of the cylinder head 32.
  • Four exhaust pipes 36 connected to the exhaust port on the front surface of the cylinder head 32 are gathered below the engine E and connected to an exhaust muffler 38 disposed on the right side of the rear wheel 22.
  • a turbocharger 42 that takes in outside air and supplies it to the engine E as intake air is disposed behind the cylinder block 30 and above the crankcase 28.
  • the supercharger 42 compresses the outside air sucked from the suction port 46, increases its pressure, discharges it from the discharge port 48, and supplies it to the engine E. Thereby, the amount of intake air supplied to the engine E can be increased.
  • the supercharger 42 has a supercharger rotating shaft 44 extending in the vehicle width direction, a suction port 46 opened leftward is located above the rear part of the crankcase 28, and the center of the engine E in the vehicle width direction.
  • the discharge port 48 facing upward is located behind the supercharger rotation axis 44 in the section.
  • the supercharger 42 covers an impeller 50 that pressurizes intake air, an impeller housing 52 that covers the impeller 50, a transmission mechanism 54 that transmits the power of the engine E to the impeller 50, and a transmission mechanism 54. And a transmission mechanism housing 56.
  • the transmission mechanism 54 is, for example, a gear type speed increaser.
  • a transmission mechanism 54 and an air cleaner 40 are arranged in the vehicle width direction across the impeller housing 52.
  • the impeller housing 52 is connected to the transmission mechanism housing 56 and the air cleaner 40 by bolts (not shown).
  • the structure of the supercharger 42 is not limited to this embodiment.
  • the suction port 46 of the supercharger 42 is arranged on the inner side in the vehicle width direction than the left side surface of the cylinder block 30. Thereby, since the supercharger 42 does not protrude outward from the left side surface of the cylinder block 30, the assembly of the engine E and the supercharger 42 becomes compact.
  • a cleaner outlet 62 of the air cleaner 40 is connected to the suction port 46, and an intake duct 70 for introducing the traveling wind A (FIG. 1) flowing in front of the cylinder block 30 to the supercharger 42 is connected to the cleaner inlet 60 on the outer side in the vehicle width direction. Connected from.
  • the cleaner inlet 60 and the outlet port 70 b of the intake duct 70 are connected by connecting a plurality of bolts 55 to connecting flanges 63 and 64 provided on the outer periphery of each.
  • a cleaner element 69 for purifying the intake air I is built in the connecting flanges 63 and 64 forming the upstream end of the air cleaner 40.
  • the downstream side of the connecting flanges 63 and 64 is a cleaner body 65 that forms a clean chamber.
  • the intake air I that has passed through the cleaner element 69 is purified and rectified. That is, the cleaner element 69 also functions as a suppressing member that is disposed upstream of the suction port 46 of the supercharger 42 and suppresses the bias of the intake air I inside the intake passage 77 (FIG. 7).
  • a punching metal can be used in addition to the cleaner element 69 of the air cleaner 40.
  • An intake chamber 74 is disposed between the discharge port 48 of the supercharger 42 and the intake port 47 of the engine E in FIG.
  • the intake chamber 74 stores intake air supplied from the supercharger 42 to the intake port 47.
  • the intake chamber 74 is disposed behind the cylinder block 30 above the supercharger 42.
  • the discharge port 48 of the supercharger 42 is connected to the center of the intake chamber 74 in the vehicle width direction. As a result, the intake air from the supercharger 42 flows evenly into the plurality of intake ports 47 through the intake chamber 74.
  • a throttle body 76 is disposed between the intake chamber 74 and the cylinder head 32.
  • fuel is injected into the intake air to generate an air-fuel mixture, and this air-fuel mixture is supplied into the cylinder.
  • the fuel tank 15 is disposed above the intake chamber 74 and the throttle body 76.
  • the intake duct 70 forms an intake passage 77 (FIG. 7) for supplying intake air to the supercharger 42, and is arranged on the left side of the same vehicle body as the side stand 17.
  • the passage area of the intake passage 77 is set to gradually decrease from the front intake intake 24 toward the downstream portion 70c (FIG. 2) connected to the rear supercharger 42.
  • “gradually smaller” means that there may be a portion with a constant area in the middle, and it is smaller as a whole.
  • the change in the passage area of the intake passage 77 is set by changing so that at least one of the vertical dimension and the horizontal dimension of the cross section of the intake duct 70 gradually decreases toward the rear.
  • both the vertical dimension H and the horizontal dimension W are changed.
  • the cross-sectional area of the intake duct 70 gradually decreases rearward, the portion of the rear portion of the intake duct 70 shown in FIG. In other words, the portion close to the rider's leg at the rear portion of the intake duct 70 can be reduced. Thereby, interference with the intake duct 70 and a rider's leg can be prevented. As a result, the rider's driving posture is prevented from becoming cramped, and even if the rider's physique is large, driving becomes easier.
  • the air cleaner 40 constitutes a connecting portion 67 that is provided in the downstream portion 70c of the intake duct 70 to increase the passage area.
  • An upstream end portion of the connecting portion 67 is formed by the connecting flanges 63 and 64, and a connecting portion main body is formed by the cleaner main body 65.
  • the cleaner outlet 62 connected to the supercharger 42 in the cleaner main body 65 which is the connecting portion main body is set to have a smaller passage area than the cleaner inlet 60 where the cleaner element 69 is disposed.
  • the intake duct 70 has a lowermost portion 70 d at an intermediate portion in the flow direction of the intake air I.
  • the intake duct 70 can be formed in a V shape in a side view.
  • the shape of the intake duct 70 is not limited to such a V shape, and may be a straight shape.
  • the intake duct 70 ⁇ / b> L may extend so as to gradually incline backward and downward in a side view. Thereby, intake resistance can be suppressed.
  • the intake duct 70 has an upstream ram duct unit 80 and a downstream intake duct unit 82.
  • the ram duct unit 80 is supported by the main frame 1 with the front end opening 70a of FIG. 1 facing the intake intake 24 of the front cowl 22, and boosts the air introduced from the opening 70a by the ram effect.
  • a front end 82a of the suction duct unit 82 is connected to the rear end 80b of the ram duct unit 80 of FIG.
  • the outlet port 70b which is the rear end portion of the suction duct unit 82, is connected to the cleaner inlet 60 (FIG. 2) of the air cleaner 40.
  • the ram duct unit 80 is located in front of the head pipe 4 and is fixed to the front cowl 22 (FIG. 1), for example.
  • the inside of the head pipe 4 may be a part of the intake passage 77 (FIG. 7) in the ram duct unit 80.
  • the front end opening 70a of the ram duct unit 80 becomes the inlet 70a of the intake duct 70.
  • the inlet 70 a (the intake intake 24) of the intake duct 70 is formed in a horizontally long shape, and is disposed on the left side of the vehicle body in front of the head pipe 4. This makes it possible to shorten the distance from the introduction port 70a shown in FIG. 6 to the supercharger 42 and to increase the curvature of the intake duct 70 as compared with the case where the introduction port 70a is arranged at the center in the vehicle width direction.
  • the opening edge of the intake port 24 is inclined rearward in the vehicle width direction outside in a plan view.
  • the vehicle width direction outer side end 24 a of the intake air inlet 24 is located outside the vehicle width direction inner side surface 70 i of the outermost curved portion of the intake duct 70. Thereby, it is easy to guide intake air to the outside portion inside the intake duct 70 curved outward.
  • the inlet port 70a and the outlet port 70b of the intake duct 70 are located inside the vehicle body frame FR and the outer surface of the engine E.
  • the front-rear direction intermediate portion of the intake duct 70 is located outside the vehicle body frame FR and the outer surface of the engine E.
  • the introduction port 70a of the intake duct 70 only needs to be disposed at the front surface position, and is disposed, for example, in the vicinity of the front end portion located at the foremost position in the center portion in the vehicle width direction of the front cowl 22 in FIG. May be. In this case, the high-pressure traveling wind A can be guided to the supercharger 42.
  • the intake duct 70 is located outside the vehicle body from the main frame 1. Thereby, it can suppress that the dimension of the width direction of the main frame 1 becomes large, preventing interference with the main frame 1.
  • FIG. In the present embodiment, the main frame 1 is the outermost part of the vehicle body excluding the intake duct 70.
  • a knee grip portion 75 whose size in the vehicle width direction is reduced is formed in front of the driver's seat 18, and the intake duct 70 protrudes outward from the main frame 1 in front of the knee grip portion 75.
  • the knee grip portion 75 is formed at the rear portion of the tank side cover 79 that covers the outside of the lower portion of the fuel tank 15 of FIG.
  • the suction duct unit 82 is a pipe that smoothly connects the ram duct unit 80 and the supercharger 42.
  • the suction duct unit 82 is inclined downward and rearward from the ram duct unit 80 and bulges to the left and passes through the side of the cylinder block 30. That is, as shown in FIG. 6, the suction duct unit 82 is connected to the supercharger 42 while curving from the front to the outside of the vehicle body.
  • a part of the inner side surface 70 i of the intake duct 70, specifically, the inner side surface of the curved portion extends outward toward the rear. As described above, the inner surface of the curved portion is inclined toward the outside, so that it is possible to prevent the flow velocity from decreasing in the inner portion of the intake duct 70.
  • the intake duct 70 is curved in the vertical direction and the horizontal direction. That is, the intake duct 70 is curvedly extended downward and extended outwardly in the vehicle width direction.
  • the curved shape of the intake duct 70 is complicatedly curved due to various factors. Specifically, the vehicle is curved so as not to interfere with the rider's legs in FIG. 1, or the traveling wind A that has passed through the radiator 13 is curved so as not to be blocked by the intake duct 70. Or curved so that the flow of the intake air I passing through the intake duct 70 becomes smooth.
  • the intake duct 70 of FIG. 1 passes through the lower side of the front end portion of the handle 6, the upper side of the radiator 13, and the outer side of the front fork 8 in a side view. Specifically, the intake duct 70 passes below the rotation area of the handle 6. Thereby, interference with the intake duct 70 and the handle 6 can be prevented. Further, the intake duct 70 passes above the space behind the radiator 13. As a result, the space behind the radiator 13 can be opened in the vehicle width direction, and as a result, the traveling wind A that has passed through the radiator 13 is discharged smoothly.
  • the lower end of the intake duct 70 in the vicinity of the radiator 13 is preferably arranged above the rotational axis of the fan (not shown) of the radiator 13 and is arranged above the upper end of the fan (not shown). Is more preferable.
  • the intake duct 70 passes above the exhaust pipe 36 in front of the engine E.
  • the intake duct 70 extends in the front-rear direction on the outer side of the main frame 1 below the fuel tank 15. Thereby, the capacity of the fuel tank 15 can be gained, and interference between the intake duct 70 and the main frame 1 can be avoided.
  • the intake duct 70 can hide a harness, piping, and the like fixed to the main frame 1.
  • the intake duct 70 extends below the upper surface of the cylinder head 32 in the engine side region, the cleaner inlet 60 (see FIG. 2), it is not necessary to bend the intake duct 70 suddenly downward, and the radius of curvature of the intake duct 70 can be increased. Further, since the intake duct 70 passes below the throttle body 76 in the side region of the engine E, it interferes with components such as a throttle valve drive mechanism and sensors formed on both sides of the throttle body 76. The intake duct 70 can be extended as far as possible to the inside in the vehicle width direction. Further, since the intake duct 70 extends above the generator cover 29, interference between the intake duct 70 and the generator cover 29 is prevented.
  • the intake duct 70 is divided into left and right parts, and has an inner half 90 and an outer half 92.
  • the inner half 90 and the outer half 92 are each formed in a U-shaped cross section.
  • the outer half body 92 is formed in a U-shape in which a cross-sectional shape perpendicular to the front-rear direction opens to the inner side in the vehicle width direction.
  • the inner half 90 is formed in a U shape with a cross-sectional shape perpendicular to the front-rear direction opening outward in the vehicle width direction.
  • the cross-sectional shapes of the outer half body 92 and the inner half body 90 are not limited to a U shape.
  • the outer half 92 and the inner half 90 may be formed in an L-shaped cross section, and the inner half 90 may be formed in an I-shaped cross section.
  • the materials or surface treatments of the outer half 92 and the inner half 90 are different.
  • the outer half 92 is subjected to a material or surface treatment that requires improved aesthetics.
  • other conditions such as strength and production cost are given priority to the inner half 90 compared to aesthetics.
  • the conditions required for the outer half 92 and the inner half 90 can be met.
  • the outer half 92 is made of a material colored ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin)
  • the inner half 90 is made of polypropylene (PP).
  • PP polypropylene
  • the material of the outer half 92 and the inner half 90 is not limited to this.
  • a fixed portion 100 for attaching the intake duct 70 to the main frame 1 is formed on the surface (inner side surface) of the inner half 90.
  • the intake duct 70 is supported by the vehicle body by fixing the ram duct unit 80 of FIG. 6 to the front cowl 22, and the rear portion is connected to the air cleaner 40 by bolts 55 (FIG. 2). It is supported.
  • a plurality of fixed portions 100 in FIG. 7 are provided as necessary, and support the intermediate portion of the intake duct 70 to the vehicle body.
  • the outer half 92 and the inner half 90 are joined in a state where the inner end of the outer half 92 and the outer end of the inner half 90 are abutted.
  • the joining of the inner half 90 and the outer half 92 is performed by welding or adhesion, for example.
  • the inner end on the upper side of the outer half 92 is a joint 92a with which the outer end of the inner half 90 is abutted, and a protrusion that is formed above the joint 92a and protrudes further inside the vehicle body than the joint 92a.
  • Part 92b Part 92b.
  • the upper dividing surface 94 is disposed on the inner side of the vehicle body with respect to the center position of the intake duct 70 in the vehicle width direction.
  • the lower dividing surface 96 is located outside the vehicle body relative to the upper dividing surface 94.
  • the lower dividing surface 96 may be located outside the center of the intake duct 70 in the left-right direction. Further, the joint between the inner half 90 and the outer half 92 may have a shape in which the protrusion 93 fits into the recess 95 as shown in FIG. Thereby, the intensity
  • the cross-sectional shape of the suction duct unit 82 forming the intake passage 77 in FIG. 7 is a rectangle having a long axis in the substantially vertical direction.
  • the cross-sectional shape of the suction duct unit 82 is the vehicle width direction (right and left) that is the radial direction of the curve from the center side of the curve (inside the vehicle body) toward the vehicle width direction outside that is the radially outer side of the curve.
  • the vertical dimension (vertical dimension) D1 perpendicular to the direction) is formed so as to be gradually reduced.
  • “gradually smaller” means that there may be a portion with a constant dimension on the way, and the size is smaller as a whole.
  • the cross-sectional shape of the suction duct unit 82 may be a D-shape, a V-shape, a trapezoidal shape, or the like in which the outer edge bulges out in an arc shape toward the curved radial direction (the vehicle width direction outer side).
  • the diameter-reduced shape in which the orthogonal dimension D1 gradually decreases toward the outside may be formed in the entire duct, but is preferably formed at least in a region where the curvature is small, and the region where the curvature is small. Only a reduced diameter shape may be used.
  • the duct rear portion 70b in which the flow direction of the intake air I inside the intake duct 70 changes greatly from the front-rear direction to the left-right direction is preferably formed in a reduced diameter shape.
  • the intake duct 70 is curved in the left-right direction, but is not limited thereto.
  • the intake duct 70 passes above the engine E in the front-rear direction and curves in the up-down direction, the intake duct 70 is formed so that the left-right dimension at the curved portion decreases toward the upper side.
  • the maximum value D1max of the orthogonal dimension D1 is larger than the maximum value D2max of the radial dimension (lateral dimension) D2 along the radial direction of the curve. Is also set large (D1max> D2max).
  • the cross section of the suction duct unit 82 includes a duct inner side 84 on the center side of the curve, a duct outer side 86 on the radially outer side of the curve, and a duct connection that connects the duct inner side 84 and the duct outer side 86.
  • the duct outer side 86 is formed to have a smaller dimension in the orthogonal direction than the duct inner side 84.
  • the orthogonal dimension D1 and the radial dimension D2 correspond to the vertical dimension H and the horizontal dimension W of the cross section of the intake duct 70 shown in FIGS.
  • a chamfered portion 89 is formed at a corner portion on the upper outer side of the cross section of the substantially rectangular intake duct 70. Thereby, it can prevent that the flow velocity falls by a corner
  • the portion of the intake duct 70 that is exposed outward in the vehicle width direction passes outside in the vehicle width direction relative to the vehicle body frame FR and passes near the handle 6.
  • the part exposed to the outside extends long in the front-rear direction from the vicinity of the handle 6 to the vicinity of the rear part of the engine E.
  • the side surface of the intake duct 70 is easily visually recognized from the rider or the outside.
  • the dividing line is not formed on the side surface of the intake duct 70, it is difficult to visually recognize the dividing line from the rider and the outside. This improves the aesthetics of the motorcycle.
  • a part of the upper surface of the intake duct 70 is also exposed above the vehicle body.
  • the portion of the intake duct 70 exposed above the vehicle body passes outside in the vehicle width direction from the vehicle body frame FR and passes near the handle 6.
  • the portion exposed upward extends long in the front-rear direction from the vicinity of the handle 6 to the vicinity of the rear portion of the engine E.
  • the upper surface of the intake duct 70 is easily visually recognized from the rider or the outside.
  • the dividing line 94 on the upper surface of the intake duct 70 is disposed on the inner side, it is difficult to visually recognize the dividing line 94 from the rider and the outside. This improves the aesthetics of the motorcycle.
  • the dividing line is deflected so as to go outward in the vehicle width direction within a range hidden by the body frame or the cowl in the plan view. May be. This makes it easy to improve the strength while maintaining the beauty.
  • the dividing line may extend along a boundary hidden by the body frame or the cowl.
  • the power of the engine E is transmitted to the supercharger 42 via the transmission mechanism 54, and the supercharger 42 is started.
  • the traveling wind A passes through the ram duct unit 80 from the intake air inlet 24, passes through the suction duct unit 82, is purified by the air cleaner 40, and is then introduced into the supercharger 42.
  • the traveling wind A introduced into the supercharger 42 is pressurized by the supercharger 42 and introduced into the engine E through the intake chamber 74 and the throttle body 76. Due to the synergistic effect of the ram pressure and the pressurization by the supercharger 42, high-pressure intake air can be supplied to the engine E.
  • the radially outer passage of the curve inside the intake passage 77 shown in FIG. 7 is narrower than the radially inner passage of the curve, so that the intake air I is curved radially outside by the centrifugal force. And the flow of the intake air I is made uniform inside the intake passage 77.
  • the efficiency of the supercharger 42 can be prevented from being lowered by being connected to the suction port 46 of the supercharger 42 with the flow of the intake air I made uniform.
  • the cross-sectional shape of the intake passage is set such that the maximum dimension D1max in the orthogonal direction is larger than the maximum dimension D2max in the radial direction of the curve.
  • the intake duct 70 is curved from the front of the cylinder block 30 to the left side of the vehicle body, passing through the left side of the cylinder block 30 and the supercharger 42. It is connected to the.
  • the intake duct 70 is curved to the side, the vertical dimension of the motorcycle can be reduced as compared with the case where the intake duct 70 passes above the cylinder block 30.
  • the intake intake 24 of the intake duct 70 shown in FIG. 6 is arranged on the left side of the vehicle body, and the vehicle width direction outer side surface 24i of the intake duct 24 is curved to the outermost side in the vehicle width direction. Since the intake duct 70 is small in curvature, the amount of change of the intake air I in the vehicle width direction is reduced, and the vehicle width direction dimension of the motorcycle can be reduced.
  • the suction port 46 of the supercharger 42 in FIG. 2 is arranged inside the vehicle body from the left side of the engine E.
  • the suction port 46 When the suction port 46 is inside the engine E, the supercharger 42 does not protrude outward from the left side surface of the engine E, so the assembly of the engine E and the supercharger 42 becomes compact, but the curvature of the intake duct 70
  • the bias of the intake air I is suppressed as described above, it is possible to prevent the efficiency of the supercharger 42 from being lowered. Further, since the amount of change of the intake air I in the vehicle width direction from the intake air inlet 24 toward the supercharger 42 is reduced, the flow disturbance is suppressed and the intake efficiency is increased.
  • the passage area of the intake passage is set to gradually decrease from upstream to downstream.
  • the flow velocity of the intake air I gradually increases.
  • the flow rate does not decrease in the vicinity of the suction port 46 of the supercharger 42, and high efficiency of the supercharger 42 can be ensured.
  • the flow velocity of the intake air I gradually increases, the flow disturbance is reduced and the intake efficiency is high. In this case, although it becomes easy to be influenced by centrifugal force near the suction port 46 of the supercharger 42 having a high flow velocity, since the bias of the intake air I is suppressed as described above, the efficiency of the supercharger 42 is reduced. Can be prevented.
  • a cleaner element 69 is disposed on the upstream side of the suction port 46 of the supercharger 42.
  • the intake duct 70 has a structure that is split into left and right sides, the intake duct 70 can be formed by molding. As a result, the intake duct 70 can be easily formed even when it is curved in the vertical direction and the horizontal direction.
  • the upper dividing surface 94 of the intake duct 70 in FIG. 7 is disposed on the inner side of the vehicle body with respect to the center position in the vehicle width direction of the intake duct 70, a part of the upper surface of the intake duct 70 is exposed to the outside. Even when the inner half 90 is present, the inner half 90 is difficult to be exposed to the outside. As a result, only the outer half 92 can be formed as a design part to improve the appearance, and the inner side can be manufactured at a low cost.
  • the intake duct 70 passes above the radiator 13 or outside the front fork 8, the intake duct 70 can be easily seen by the rider. Since it is arranged on the inner side, the dividing line is hardly noticeable.
  • the inner peripheral surface of the intake duct 70 It is possible to suppress the formation of irregularities on the surface. As a result, the flow of the intake air I inside the intake duct 70 is not hindered.
  • the inner end on the upper side of the outer half 92 is a joint 92a with which the outer end of the inner half 90 is abutted, and a protrusion that is formed above the joint 92a and protrudes further inside the vehicle body than the joint 92a. Part 92b. Thereby, the upper joining portion 92a is hidden by the protruding portion 92b, and the appearance is further improved.
  • the fixed portion 100 for attaching the intake duct 70 to the main frame 1 is formed on the outer surface (inner side surface) of the inner half 90, the fixed portion 100 is prevented from appearing on the appearance of the vehicle body, and the appearance of the vehicle body is impaired. Can be prevented.
  • the intake duct 70 of FIG. 1 When the intake duct 70 of FIG. 1 is arranged on the same left side of the vehicle body as the side stand 17, the upper dividing surface 94 is easily visible when the vehicle is stopped, but the intake duct 70 is located on the lower side inclined when the vehicle is stopped. Is inconspicuous.
  • the intake air I is stored in the connecting portion 39, the intake air I can be stably supplied to the supercharger 42.
  • the cleaner element 69 is disposed in this connecting portion, and the cleaner outlet 62 connected to the supercharger 42 in the connecting portion 39 has a passage area smaller than the portion of the cleaner element 69.
  • the passage loss of the cleaner element 69 is small.
  • the passage area of the cleaner outlet 62 of the air cleaner 40 is set to be small, the intake air I is accelerated at the cleaner outlet 62, and the flow velocity of the intake air I decreases near the suction port 46 of the supercharger 42 to supercharge. The efficiency of the machine 42 is not reduced.
  • the opening edge of the intake port 24 in FIG. 6 is inclined rearward in the vehicle width direction outside in a plan view. Thereby, the opening area of the intake port 24 can be increased while maintaining the streamline shape of the vehicle body.
  • the intake duct 70 shown in FIG. 1 passes through the left side of the cylinder block 30, it is possible to secure a wide space above the engine E and improve the degree of freedom in design. In addition, since the intake duct 70 passes above the radiator 13 from the front of the handle 6, interference with the radiator 13 can be avoided. As a result, it is possible to prevent a decrease in radiator performance.
  • the intake duct 70 passes below the front end of the handle 6, it is possible to prevent the intake duct 70 from interfering with the rotating handle 6.
  • the intake duct 70 protrudes outward from the main frame 1 in front of the knee grip portion 75 shown in FIG. 6, and the rear end of the portion of the intake duct 70 protruding from the main frame 1 is as shown in FIG. In addition, when viewed from the side, it is located below the knee K of the rider in the riding state and is located forward of the lower knee portion KU. Thereby, it is possible to prevent the intake duct 70 from interfering with the rider's knee K.
  • the intake duct 70 has the lowermost portion 70d at the middle portion in the flow direction of the intake air I, water can be drained at the lowermost portion 70d.
  • FIG. 9 is a plan view showing a main part of a motorcycle which is a kind of saddle riding type vehicle equipped with an intake duct according to the second embodiment of the present invention.
  • the intake duct 70A of the second embodiment in addition to the left intake intake 24 that is one side of the vehicle body, an additional intake intake 25 is disposed on the right side that is the other side of the vehicle body.
  • a cleaner element 69A for purifying the intake air is built in the connecting portion between the ram duct unit 80A and the suction duct unit 82. Accordingly, no cleaner element (air cleaner) is provided in the downstream portion 70c of the intake duct 70A.
  • Other structures are the same as those in the first embodiment.
  • the intake amount of the traveling wind A increases. Further, since the cleaner element 69A is disposed upstream of the intake passage having a large passage area, the intake air I passes through the cleaner element 69A at a location where the flow velocity is low. Thereby, the loss at the time of passing the cleaner element 69A can be reduced.
  • FIG. 10 is a plan view showing a main part of a motorcycle which is a kind of saddle riding type vehicle equipped with an intake duct according to a third embodiment of the present invention
  • FIG. 11 is a perspective view thereof.
  • the introduction port 70a is arranged at the center position in the vehicle width direction at the front end of the vehicle body.
  • the suction duct unit 82 is formed of a cylindrical pipe and has a straight shape that smoothly extends downward toward the rear in a side view. Therefore, the air intake duct 70B of the third embodiment is not provided with the lowermost portion 70d of the middle portion in the front-rear direction as in the first embodiment, but rises upward toward the rear at the front portion of the air intake duct 70B. An inclined portion 70e is formed. Thereby, the moisture contained in the intake air I can be reduced.
  • Other structures are the same as those in the first embodiment.
  • This third embodiment also has the same effect as the first embodiment.
  • a guide member 150 that guides the intake air I to the intake port 46 of the supercharger 42 may be provided inside the intake ducts 70, 70A, and 70B.
  • the guide member 150 is, for example, a guide plate 152 integrally formed on the inner surface of the intake duct 70 as shown in FIG.
  • the intake duct 70 may be fixed to the vehicle body by flange portions formed at the front end portion and the rear end portion.
  • Each flange portion is formed with a bolt insertion hole through which a bolt is inserted from the outside.
  • Each flange portion may be formed on either the inner half or the outer half.
  • the rear flange portion may be formed on the inner half
  • the front flange portion may be formed on the outer half.
  • the flange portion formed in the outer half is disposed at a position that cannot be seen from the outside by the front cowl.
  • a flange part can be made not conspicuous by forming below.
  • the intake duct of the present invention can be applied to a straddle-type vehicle other than a motorcycle, and can also be applied to a tricycle and a four-wheel vehicle. Therefore, such a thing is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Supercharger (AREA)
  • Axle Suspensions And Sidecars For Cycles (AREA)

Abstract

 自動二輪車の吸気ダクト(70)は、過給機(42)に吸気(I)を供給する吸気通路(77)を形成する。吸気ダクト(70)は、湾曲しながら過給機(42)に接続されている。吸気通路(77)の横断面形状は、湾曲の中心から湾曲の径方向外側に向かって、湾曲の径方向に直交する直交方向寸法(D1)が徐々に小さくなるように形成されている。

Description

鞍乗型車両の吸気ダクト 関連出願
 この出願は、2012年7月11日出願の特願2012-155462の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、過給機に吸気を供給する吸気通路を形成する鞍乗型車両の吸気ダクトに関するものである。
 自動二輪車のような鞍乗型車両に搭載されるエンジンにおいて、エンジンのシリンダブロックの後方に過給機を配置し、エンジンの上方から取り入れた空気を、吸気ダクトを介して吸気として過給機に導入するものがある(例えば、特許文献1)。
特開平2-070920号公報
 しかしながら、特許文献1では、吸気ダクトが急な湾曲を繰り返しながら延びるので、湾曲した部分で遠心力により、吸気ダクト内部の吸気に偏りが発生する。このような偏りが発生した状態で過給機の吸込口に達すると、過給機の効率が低下する。
 本発明は、前記課題に鑑みてなされたもので、吸気が偏るのを抑制して、過給機の効率が低下するのを防ぐことができる鞍乗型車両の吸気ダクトを提供することを目的とする。
 上記目的を達成するために、本発明の吸気ダクトは、過給機に吸気を供給する吸気通路を形成する鞍乗型車両の吸気ダクトであって、湾曲しながら前記過給機に接続されており、前記吸気通路の横断面形状が、湾曲の中心から湾曲の径方向外側に向かって、前記湾曲の径方向に直交する直交方向寸法が徐々に小さくなるように形成されている。ここで、「徐々に小さくなる」とは、途中で寸法一定の部分があってもよく、全体として小さくなっていることをいう。
 この構成によれば、吸気通路の内部における湾曲の径方向外側の通路が、湾曲の径方向内側の通路に比べて狭くなるので、遠心力で吸気が湾曲の径方向外側へ偏るのが抑制され、吸気通路の内部で吸気の流れが均一化される。このように、吸気の流れが均一化された状態で過給機の吸込口に接続されることで、過給機の効率が低下するのを防ぐことができる。
 本発明において、前記吸気通路の横断面形状は、前記直交方向の最大寸法が、前記湾曲の径方向の最大寸法よりも大きく設定されていることが好ましい。この構成によれば、径方向の最大寸法が、直交方向の最大寸法よりも大きい場合に比べて、流速の偏りを小さくしやすい。
 本発明において、吸気ダクトの吸気取入口が前方に開口して前記吸気として走行風を取り入れることが好ましい。ここで、「走行風を取り入れる」とは、吸気取入口の前方に障害物がなく、走行風を直接導入することをいう。走行風を用いる場合、流速が速くなって高い動圧が得られる反面、湾曲した吸気通路を通過する際に遠心力の影響を受けやすいが、この構成によれば、吸気の偏りが抑制されるので、過給機の効率が低下するのを防ぐことができる。
 前記過給機がエンジンのシリンダブロックの後方に配置される場合、前記シリンダブロックの前方から車体の一側方へ湾曲しながら前記シリンダブロックの一側方を通って前記過給機に接続されていることが好ましい。この構成によれば、吸気ダクトが側方に湾曲されているので、シリンダブロックの上方を通過する場合に比べて車両の上下方向寸法を小さくできる。
 吸気ダクトがシリンダブロックの側方を通過する場合、前端の吸気取入口が車体の前記一側方に配置されていることが好ましい。この場合、前記吸気取入口の車幅方向外側面は、吸気ダクトにおける最も外側に湾曲した部分の車幅方向内側面よりも外側に位置していることが好ましい。この構成によれば、吸気ダクトの湾曲が小さくて済み、車両の車幅方向寸法を小さくできる。
 吸気ダクトがシリンダブロックの側方を通過する場合、前記過給機の吸込口が、前記エンジンの側面よりも内側に配置されていることが好ましい。吸込口がエンジンの内側にある場合、過給機がエンジンの側面から外側方に突出しないから、エンジンと過給機のアセンブリがコンパクトになる反面、吸気ダクトの曲率が小さくなって遠心力が大きくなりやすいが、この構成によれば、吸気の偏りが抑制されるので、過給機の効率が低下するのを防ぐことができる。
 本発明において、前記吸気通路の通路面積は、上流から下流に向かって徐々に小さくなるように設定されていることが好ましい。この場合、吸気通路内で吸気の流速が徐々に大きくなり、過給機の効率を向上させる利点がある反面、下流側である過給機の吸込口付近で遠心力の影響を受けやすい。しかしながら、本発明の吸気ダクトによれば、吸気の偏りが抑制されるので、過給機の効率が低下するのを防ぐことができる。
 吸気通路の通路面積が上流から下流に向かって徐々に小さくなる場合、前記吸気通路における上流部に、吸気を浄化するクリーナエレメントが内蔵されていることが好ましい。ここで、「上流部」とは、吸気通路の長さの1/2よりも上流側の部分をいう。この構成によれば、流速が遅い箇所で吸気がエレメントを通過するので、エレメントを通過する際のロスを少なくできる。
 本発明において、前記吸気通路における前記過給機の吸込口の上流側に、前記吸気通路の内部の吸気の偏りを抑制する抑制部材が設けられていることが好ましい。この構成によれば、過給機へ導かれる吸気の偏りを小さくして、効率の低下を一層防ぐことができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本発明の第1実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車を示す側面図である。 同自動二輪車の要部を後方斜め上方から見た斜視図である。 同自動二輪車の要部を示す側面図である。 同吸気ダクトを示す側面図である。 同吸気ダクトを後方から見た背面図である。 同自動二輪車を示す平面図である。 図3のVII-VII線断面図である。 (a)は同吸気ダクトの別の例を示す断面図で、(b)は(a)のVIIIb部の拡大図で、(c)は(b)の別の例を示す図である。 本発明の第2実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図である。 本発明の第3実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図である。 同自動二輪車の要部を前方斜め上方から見た斜視図である。 第1~第3実施形態とは異なる例の吸気ダクトを示す断面図である。
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。本明細書において、「左側」および「右側」は、車両に乗車した運転者から見た左右側をいう。
 図1は本発明の第1実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の側面図である。この自動二輪車の車体フレームFRは、前半部を形成するメインフレーム1と、このメインフレーム1の後部に取り付けられて車体フレームFRの後半部を形成するシートレール2とを有している。メインフレーム1の前端に設けられたヘッドパイプ4に、図示しないステアリングシャフトを介してフロントフォーク8が回動自在に軸支されて、このフロントフォーク8に前輪10が取り付けられている。フロントフォーク8の上端部に操向用のハンドル6が固定されている。
 一方、車体フレームFRの中央下部であるメインフレーム1の後端部に、ピボット軸16を介してスイングアーム12が上下揺動自在に軸支され、このスイングアーム12の後端部に後輪14が回転自在に支持されている。メインフレーム1の下部にエンジンEが取り付けられている。エンジンEの前方にエンジン冷却水のラジエータ13が配置されている。エンジンEの回転がチェーンのような伝達機構(図示せず)に伝達され、この伝達機構を介して後輪14が駆動される。車体の左側で、メインフレーム1の後端に、サイドスタンド17が起倒自在に支持されている。
 メインフレーム1の上部に燃料タンク15が配置され、リヤフレーム2に操縦者用シート18および同乗車用シート20が支持されている。また、車体前部に、前記ヘッドパイプ4の前方を覆う樹脂製のフロントカウル22が装着されている。フロントカウル22には、外部からエンジンEへの吸気を取り入れる吸気取入口24が形成されている。
 吸気取入口24が、車体前方に向かって開口することで走行風Aの風圧を利用してエンジンEへの吸気量を増やすことができる。吸気取入口24は、フロントカウル22の前面に配置され、走行風圧が最も高い、フロントカウル22の前端部に配置されている。これにより、吸気取入口24をフロントカウル22の側部に突出して設けるのに比べて、フロントカウル22からの突出量が抑制されるので、吸気取入口24が目立たなくなり、自動二輪車の外観が向上する。
 エンジンEは、車幅方向に延びるエンジン回転軸26を有する4気筒4サイクルの並列多気筒エンジンである。エンジンEの形式はこれに限定されない。エンジンEは、エンジン回転軸26を支持するクランクケース28と、クランクケース28の上部に連結されたシリンダブロック30と、その上部に連結されたシリンダヘッド32と、シリンダヘッド32の上部に取り付けられたヘッドカバー32aと、クランクケース28の下部に取り付けられたオイルパン34とを有している。
 シリンダブロック30およびシリンダヘッド32は若干前傾している。具体的には、エンジンEのピストン軸線が上方に向かって前方に傾斜して延びている。シリンダヘッド32の後部に吸気ポート47が設けられている。シリンダヘッド32の前面の排気ポートに接続された4本の排気管36が、エンジンEの下方で集合され、後輪22の右側に配置された排気マフラ38に接続されている。シリンダブロック30の後方でクランクケース28の上方に、外気を取り込んで吸気としてエンジンEに供給する過給機42が配置されている。
 過給機42は、吸込口46から吸引した外気を圧縮して、その圧力を高めたのち吐出口48から吐出して、エンジンEに供給する。これにより、エンジンEに供給する吸気量を増大させることができる。過給機42は、車幅方向に延びる過給機回転軸心44を有し、クランクケース28の後部の上方に、左向きに開口した吸込口46が位置し、エンジンEの車幅方向の中央部で過給機回転軸心44よりも後方に、上方を向いた吐出口48が位置している。
 図2に示すように、過給機42は、吸気を加圧するインペラ50と、インペラ50を覆うインペラハウジング52と、エンジンEの動力をインペラ50に伝達する伝達機構54と、伝達機構54を覆う伝達機構ハウジング56とを有している。伝達機構54は、例えば、歯車式の増速機である。インペラハウジング52を挟んで車幅方向に伝達機構54とエアクリーナ40とが配置されている。インペラハウジング52は、図示しないボルトにより伝達機構ハウジング56およびエアクリーナ40と連結されている。ただし、過給機42の構造は、この実施形態に限定されない。
 過給機42の吸込口46はシリンダブロック30の左側面よりも車幅方向内側に配置されている。これにより、過給機42がシリンダブロック30の左側面から外側方に突出しないので、エンジンEと過給機42のアセンブリがコンパクトになる。この吸込口46にエアクリーナ40のクリーナ出口62が接続され、クリーナ入口60に、シリンダブロック30の前方を流れる走行風A(図1)を過給機42に導入する吸気ダクト70が車幅方向外側から接続されている。クリーナ入口60と吸気ダクト70の導出口70bとは、それぞれの外周に設けられた連結用フランジ63,64を複数のボルト55で連結することにより接続されている。
 エアクリーナ40の上流端部を形成する連結用フランジ63,64に、吸気Iを浄化するクリーナエレメント69が内蔵されている。連結用フランジ63,64の下流側が、クリーン室を形成するクリーナ本体65となっている。クリーナエレメント69を通過した吸気Iは、浄化されるとともに、整流される。つまり、クリーナエレメント69は、過給機42の吸込口46の上流側に配置された、吸気通路77(図7)の内部の吸気Iの偏りを抑制する抑制部材としても機能する。このような抑制部材として、エアクリーナ40のクリーナエレメント69のほかに、パンチングメタルを用いることができる。
 過給機42の吐出口48と図1のエンジンEの吸気ポート47との間に吸気チャンバ74が配置されている。吸気チャンバ74は、過給機42から吸気ポート47に供給される吸気を溜める。吸気チャンバ74は、過給機42の上方でシリンダブロック30の後方に配置されている。図2に示すように、過給機42の吐出口48は、吸気チャンバ74の車幅方向中心に接続されている。これにより、過給機42からの吸気が吸気チャンバ74を経て複数の吸気ポート47に均等に流入する。
 図1に示すように、吸気チャンバ74とシリンダヘッド32との間には、スロットルボディ76が配置されている。このスロットルボディ76において、吸入空気中に燃料が噴射されて混合気が生成され、この混合気がシリンダ内に供給される。これら吸気チャンバ74およびスロットルボディ76の上方に、前記燃料タンク15が配置されている。
 吸気ダクト70は、過給機42に吸気を供給する吸気通路77(図7)を形成し、サイドスタンド17と同じ車体の左側方に配置されている。吸気通路77の通路面積は、前方の吸気取入口24から後方の過給機42に接続される下流部70c(図2)に向かって徐々に小さくなるように設定されている。ここで、「徐々に小さくなる」とは、途中で面積一定の部分があってもよく、全体として小さくなっていることをいう。
 吸気通路77の通路面積の変化は、吸気ダクト70の断面の上下方向寸法および左右方向寸法の少なくとも一方が後方に向かって徐々に小さくなるように変化することで設定される。本実施形態では、図4および図5に示すように、上下方向寸法Hおよび左右方向寸法Wの両方を変化させている。
 吸気ダクト70の断面積が後方に向かって徐々に小さくなるので、図1の吸気ダクト70の後部における車体本体から外側に露出する部分を小さくできる。換言すれば、吸気ダクト70の後部におけるライダーの脚と近接する部分を小さくできる。これにより、吸気ダクト70とライダーの脚との干渉を防ぐことができる。その結果、ライダーの運転姿勢が窮屈になるのを防いだり、ライダーの体格が大きくても運転しやすくなったりする。
 エアクリーナ40は、吸気ダクト70の下流部70cに設けられて通路面積が拡大する連結部67を構成している。この連結部67の上流端部が前記連結用フランジ63,64により形成され、連結部本体がクリーナ本体65により形成されている。連結部本体であるクリーナ本体65における過給機42に接続されるクリーナ出口62は、クリーナエレメント69が配置されるクリーナ入口60よりも通路面積が小さく設定されている。
 図1からわかるように、吸気ダクト70は、吸気Iの流れ方向の中間部で最下部70dを有している。このように、中間部に最下部70dを設けることで、吸気ダクト70を側面視でV字形状とすることができる。ただし、吸気ダクト70の形状は、このようなV字形に限定されず、ストレート形状であってもよい。具体的には、例えば、図4に2点鎖線で示すように、吸気ダクト70Lが側面視において、下方に向かって後方に徐々に傾斜するように延びるようにしてもよい。これにより、吸気抵抗を抑えることができる。
 吸気ダクト70は、図3に示すように、上流側のラムダクトユニット80と下流側の吸入ダクトユニット82とを有している。ラムダクトユニット80は、図1の前端開口70aをフロントカウル22の吸気取入口24に臨ませた配置でメインフレーム1に支持されており、開口70aから導入した空気をラム効果により昇圧させる。図3のラムダクトユニット80の後端部80bに、吸入ダクトユニット82の前端部82aが接続されている。吸入ダクトユニット82の後端部である導出口70bは、エアクリーナ40のクリーナ入口60(図2)に接続されている。
 ラムダクトユニット80は、ヘッドパイプ4よりも前方に位置し、例えば、フロントカウル22(図1)に固定される。ヘッドパイプ4内をラムダクトユニット80における吸気通路77(図7)の一部としてもよい。
 ラムダクトユニット80の前端開口70aが吸気ダクト70の導入口70aとなる。吸気ダクト70の導入口70a(吸気取入口24)は、図6に示すように、横長形状に形成され、ヘッドパイプ4の前方で車体左側部に配置されている。これによって車幅方向中心に導入口70aを配置する場合に比べて、図6に示す導入口70aから過給機42までの距離を短くするとともに、吸気ダクト70の曲率を大きくすることができる。
 吸気取入口24の開口縁は、平面視で、車幅方向外側に向かって後方に傾斜している。吸気取入口24の車幅方向外側端24aは、吸気ダクト70における最も外側に湾曲した部分の車幅方向内側面70iよりも外側に位置している。これにより、外側に湾曲した吸気ダクト70内部の外側部分にも吸気を導きやすい。
 本実施形態では、吸気ダクト70の導入口70aと導出口70bとは、車体フレームFRおよびエンジンEの外側面よりも内側に位置している。これに対し、吸気ダクト70の前後方向中間部は、車体フレームFRおよびエンジンEの外側面よりも外側に位置している。
 ただし、吸気ダクト70の導入口70aは、前面となる位置に配置されていればよく、例えば、図6のフロントカウル22における車幅方向の中心部で最も前方に位置する前端部の付近に配置してもよい。この場合、圧力の高い走行風Aを過給機42に導くことができる。
 吸気ダクト70は、メインフレーム1よりも車体の外側に位置している。これにより、メインフレーム1との干渉を防ぎつつ、メインフレーム1の幅方向寸法が大きくなるのを抑制できる。本実施形態では、メインフレーム1は吸気ダクト70を除いた車体の最外側部となる。操縦者用シート18の前方に車幅方向寸法が小さくなるニーグリップ部75が形成され、吸気ダクト70が、ニーグリップ部75よりも前方で、メインフレーム1から外側方に突出している。ニーグリップ部75は、図1の燃料タンク15の下部の外側を覆うタンクサイドカバー79の後部に形成されている。
 吸入ダクトユニット82は、ラムダクトユニット80と過給機42とを滑らかに接続する配管である。吸入ダクトユニット82は、ラムダクトユニット80から後方に向かって下方に傾斜するとともに左側に膨出し、シリンダブロック30の側方を通過している。つまり、図6に示すように、吸入ダクトユニット82は、前方から車体外側に湾曲しながら過給機42に接続されている。吸気ダクト70の内側面70iの一部、具体的には、湾曲する部分の内側面が後方に向かって外側に延びている。このように湾曲部分の内側面が外側に向かって傾斜することで、吸気ダクト70の内側部分で流速が低下するのを抑えることができる。
 詳細には、吸気ダクト70は、上下方向および左右方向に湾曲する。つまり、吸気ダクト70は、後方に向かって下方に湾曲して延びるとともに、車幅方向外側に湾曲して延びている。吸気ダクト70の湾曲形状は、様々な要因で複雑に湾曲する。具体的には、図1のライダーの脚と干渉しないように湾曲したり、ラジエータ13を通過した走行風Aが吸気ダクト70で遮られないように湾曲したり、操舵時のハンドル6、フロントフォーク8と干渉しないように湾曲したり、吸気ダクト70内を通過する吸気Iの流れが円滑となるように湾曲したりする。
 図1の吸気ダクト70は、エンジンEの前方領域では、側面視で、ハンドル6の先端部の下方およびラジエータ13の上方で、且つフロントフォーク8の外側方を通過している。詳細には、吸気ダクト70は、ハンドル6の回動領域の下方を通過している。これにより、吸気ダクト70とハンドル6との干渉を防ぐことができる。また、吸気ダクト70は、ラジエータ13の後方の空間の上方を通過している。これにより、ラジエータ13の後方の空間を車幅方向に開放した状態にでき、その結果、ラジエータ13通過した走行風Aが円滑に排出される。ラジエータ13近傍での吸気ダクト70の下端は、ラジエータ13のファン(図示せず)の回転軸よりも上方に配置されるのが好ましく、ファン(図示せず)の上端よりも上方に配置されるのがより好ましい。また、吸気ダクト70は、エンジンEの前方では、排気管36よりも上方を通過している。
 また、吸気ダクト70は、燃料タンク15の下方でメインフレーム1の外側方を前後方向に延びている。これにより、燃料タンク15の容量を稼ぐことができるうえに、吸気ダクト70とメインフレーム1との干渉を避けることができる。また、吸気ダクト70により、メインフレーム1に固定されるハーネス、配管等を隠すことができる。
 さらに、エンジンEの側方領域では、側面視で、クランク軸26の上方、詳細には、クランクケース28の左側部に取り付けられたジェネレータカバー29の上方で、且つ、シリンダヘッド32の上面およびスロットルボディ76よりも下方を通過する。吸入ダクトユニット82の側面の一部および上面の一部は外方に露出している。また、吸気ダクト70におけるメインフレーム1から突出した部分の後端は、乗車状態のライダーの膝Kよりも下方に位置し、膝下部分KUよりも前方に位置している。
 このように、吸気ダクト70が、エンジン側方領域で、シリンダヘッド32の上面よりも下方を延びているので、シリンダヘッド32の上面よりも上方を通過する場合に比べて、クリーナ入口60(図2)に接続するために吸気ダクト70を急激に下方向に曲げる必要がなくなり、吸気ダクト70の曲率半径を大きくできる。また、吸気ダクト70が、エンジンEの側方領域において、スロットルボディ76よりも下方を通過しているので、スロットルボディ76の両側部に形成されるスロットル弁駆動機構、センサ等の部品との干渉を防いで、可及的に車幅方向内側まで吸気ダクト70を延ばすことができる。さらに、吸気ダクト70がジェネレータカバー29の上方を延びているので、吸気ダクト70とジェネレータカバー29との干渉が防止される。
 図7に示すように、吸気ダクト70は、左右に2分割されており、内側半体90と外側半体92とを有している。内側半体90と外側半体92はそれぞれ断面U字状に形成されている。これにより、型成形しやすくかつ強度を確保できる。具体的には、外側半体92は、前後方向に垂直な断面形状が車幅方向内側に開放するU字状に形成されている。一方、内側半体90は、前後方向に垂直な断面形状が車幅方向外側に開放するU字状に形成されている。外側半体92および内側半体90の断面形状はU字形に限定されない。例えば、外側半体92および内側半体90を断面L字形に形成してもよく、また、内側半体90を断面I字形に形成してもよい。
 外側半体92と内側半体90とで、材料または表面処理が異なる。外側半体92は、美観向上が要求される材料または表面処理が行われる。一方、内側半体90は美観に比べて強度、生産コストなどの他の条件が優先される。材料または表面処理を異ならせることで、外側半体92と内側半体90とに要求される条件にそれぞれ適合することができる。この実施形態では、外側半体92は、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を着色した材料により形成され、内側半体90は、ポリプロピレン(PP)により形成されている。ただし、外側半体92および内側半体90の材質はこれに限定されない。
 内側半体90の表面(内側面)に、吸気ダクト70をメインフレーム1に取り付ける固定部分100が形成されている。吸気ダクト70は、図6のラムダクトユニット80がフロントカウル22に固定されることで前部が車体に支持され、後部は、エアクリーナ40にボルト55(図2)で連結されることにより車体に支持されている。図7の固定部分100は、必要に応じて複数個設けられ、吸気ダクト70の中間部を車体に支持する。
 外側半体92における内側端部と、内側半体90における外側端部とを突き合わされた状態で、外側半体92と内側半体90とが接合されている。内側半体90と外側半体92との接合は、例えば、溶着、接着によって行われる。外側半体92の上側の内側端部は、内側半体90の外側端部が突き合わされる接合部92aと、この接合部92aの上方に形成されて接合部92aよりも車体内側に突出する突出部92bとを有している。上側の分割面94は、吸気ダクト70の車体幅方向中央位置よりも車体の内側に配置されている。下側の分割面96は、上側の分割面94よりも車体の外側に位置している。
 図8(a)に示すように、下側の分割面96は、吸気ダクト70の左右方向中心部よりも外側に位置してもよい。また、内側半体90と外側半体92との接合部は、図8(b)に示すように、凸部93が凹部95に嵌まり込む形状としてもよい。これにより、接合部の強度が向上する。また、接合部に、図8(c)に示すように、左右方向に外れるのを防止する返し部97を設けてもよい。
 図7の吸気通路77を形成する吸入ダクトユニット82の断面形状は、ほぼ上下方向に長軸を有する矩形である。湾曲する部分では、吸入ダクトユニット82の横断面形状は、湾曲の中心側(車体内側)から湾曲の径方向外側である車幅方向外側に向かって、湾曲の径方向である車幅方向(左右方向)に直交する直交方向寸法(上下方向寸法)D1が徐々に小さくなるように形成されている。ここで、「徐々に小さくなる」とは、途中で寸法一定の部分があってもよく、全体として小さくなっていることをいう。吸入ダクトユニット82の断面形状は、外側縁が湾曲の径方向(車幅方向外側)へ向かって円弧状に膨出したD字形状、V字形形状、台形形状等であってもよい。
 このような直交方向寸法D1が外側に向かって徐々に小さくなる縮径形状は、ダクト全体に形成されてもよいが、少なくとも曲率が小さくなる領域に形成されることが好ましく、曲率が小さくなる領域だけ縮径形状であってもよい。具体的には、吸気ダクト70の内部の吸気Iの流れ方向が、前後方向から左右方向に大きく変わるダクト後部70bが縮径形状に形成されることが好ましい。
 本実施形態では、吸気ダクト70は左右方向に湾曲しているがこれに限らない。例えば、吸気ダクト70がエンジンEの上方を前後方向に通過して上下方向に湾曲する場合、湾曲部分での左右寸法が上方に向かって縮径するように吸気ダクト70が形成される。
 吸入ダクトユニット82内の吸気通路77の湾曲する部分の横断面形状は、直交方向寸法D1の最大値D1maxが、湾曲の径方向に沿った径方向寸法(左右方向寸法)D2の最大値D2maxよりも大きく設定されている(D1max>D2max)。換言すれば、吸入ダクトユニット82の横断面は、湾曲の中心側のダクト内側辺84、湾曲の径方向外側のダクト外側辺86、およびダクト内側辺84とダクト外側辺86とを連結するダクト連結辺88,88を有しており、ダクト外側辺86が、ダクト内側辺84よりも直交方向寸法が小さく形成されている。このように、車幅方向寸法に比べて上下方向寸法を大きくすることで、車幅方向に膨らむのを防ぎつつ、通路面積を大きくすることができる。なお、直交方向寸法D1および径方向寸法D2は、図4および図5に示した吸気ダクト70の断面の上下方向寸法Hおよび左右方向寸法Wに相当している。
 ほぼ矩形の吸気ダクト70の断面の上方外側の角部に、面取り部89が形成されている。これにより、角部で流速が低下するのを防ぐことができる。また、吸気ダクト70の断面について、内側半体90および外側半体90の内面同士が面一となるように形成されている。これによっても、流路抵抗を減らすことができる。
 図1の吸気ダクト70は、その外側面の一部が車幅方向外方に露出している。本実施形態では、吸気ダクト70のうち車幅方向外方に露出している部分が、車体フレームFRよりも車幅方向外側を通過し、ハンドル6付近を通過している。具体的には、外側に露出する部分は、ハンドル6付近からエンジンEの後部付近まで前後方向に長く延びている。これによって、ライダーまたは外部から吸気ダクト70の側面が視認されやすい。上述したように吸気ダクト70の側面には、分割線が形成されないので、ライダーおよび外部から分割線が視認しづらい。これにより、自動二輪車の美観が向上する。
 図6に示すように、吸気ダクト70の上面の一部も車体上方に露出している。本実施形態では、吸気ダクト70のうち車体上方に露出している部分が、車体フレームFRよりも車幅方向外側を通過し、ハンドル6付近を通過している。具体的には、上方に露出する部分は、ハンドル6付近からエンジンEの後部付近まで前後方向に長く延びている。これによって、ライダーまたは外部から吸気ダクト70の上面が視認されやすい。上述したように吸気ダクト70の上面の分割線94は内側に配置されるので、ライダーおよび外部から分割線94が視認しづらい。これにより、自動二輪車の美観が向上する。
 平面視において、吸気ダクト70が車体フレームまたはカウルによって車幅方向内側に部分的に隠れる場合には、平面視で車体フレームまたはカウルで隠れる範囲で分割線を車幅方向外側に向かうように偏向してもよい。これによって美観を維持しつつ、強度を向上させやすい。例えば、車体フレームまたはカウルで隠れる境界に沿って分割線が延びるようにしてもよい。
 図1に示すクランク軸26が回転すると、エンジンEの動力が伝達機構54を介して過給機42に伝達され、過給機42が始動する。自動二輪車が走行すると、走行風Aは、吸気取入口24からラムダクトユニット80を通り、吸入ダクトユニット82を通って、エアクリーナ40で清浄化されたのち過給機42に導入される。過給機42に導入された走行風Aは、過給機42により加圧されて、吸気チャンバ74およびスロットルボディ76を介してエンジンE内へ導入される。このようなラム圧と過給機42による加圧との相乗効果により、エンジンEに高圧の吸気を供給することができる。
 上記構成において、図7に示す吸気通路77の内部における湾曲の径方向外側の通路が、湾曲の径方向内側の通路に比べて狭くなっているので、遠心力で吸気Iが湾曲の径方向外側へ偏るのが抑制され、吸気通路77の内部で吸気Iの流れが均一化される。このように、吸気Iの流れが均一化された状態で過給機42の吸込口46に接続されることで、過給機42の効率が低下するのを防ぐことができる。
 また、吸気通路の横断面形状は、直交方向の最大寸法D1maxが、湾曲の径方向の最大寸法D2maxよりも大きく設定されている。これにより、径方向の最大寸法が、直交方向の最大寸法よりも大きい場合に比べて、流速の偏りを小さくしやすい。
 図1に示すように、前方に開口した吸気取入口24から走行風Aを取り入れているので、流速が速くなって高い動圧が得られる反面、遠心力の影響を受けやすいが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。
 図2の過給機42がエンジンEのシリンダブロック30の後方に配置され、吸気ダクト70が、シリンダブロック30の前方から車体の左側へ湾曲しながらシリンダブロック30の左側を通って過給機42に接続されている。このように、吸気ダクト70が側方に湾曲されているので、シリンダブロック30の上方を通過する場合に比べて自動二輪車の上下方向寸法を小さくできる。
 図6に示す吸気ダクト70の吸気取入口24が車体の左側に配置され、吸気取入口24の車幅方向外側面24aが、吸気ダクト70における最も外側に湾曲した部分の車幅方向内側面70iよりも外側に位置しているので、吸気ダクト70の湾曲が小さくて済み、吸気Iの車幅方向への変更量が少なくなるとともに、自動二輪車の車幅方向寸法を小さくできる。
 図2の過給機42の吸込口46が、エンジンEの左側面よりも車体内側に配置されている。吸込口46がエンジンEの内側にある場合、過給機42がエンジンEの左側面から外側方に突出しないから、エンジンEと過給機42のアセンブリがコンパクトになる反面、吸気ダクト70の曲率が小さくなって遠心力が大きくなりやすいが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。また、吸気取入口24から過給機42に向かって、吸気Iの車幅方向への変更量が少なくなるので、流れの乱れが抑制され、吸気効率が高くなる。
 また、吸気通路の通路面積は、上流から下流に向かって徐々に小さくなるように設定されている。これにより、吸気Iの流速が徐々に増大する。その結果、過給機42の吸込口46付近で流速が低下することがなく、過給機42の高い効率を確保できる。また、吸気Iの流速は徐々に増速するので、流れの乱れが少なくなり、吸気効率も高い。この場合、流速の大きい過給機42の吸込口46付近で遠心力の影響を受けやすくなるが、上述のように、吸気Iの偏りが抑制されるので、過給機42の効率が低下するのを防ぐことができる。
 図2に過給機42の吸込口46の上流側に、クリーナエレメント69が配置されている。クリーナエレメント69により吸気通路の内部の吸気Iの偏りが抑制される結果、過給機42へ導かれる吸気Iの偏りが小さくなり、効率の低下を一層防ぐことができる。
 図7に示すように、吸気ダクト70が左右2つ割れの構造となっているので、型成形により吸気ダクト70を成形できる。その結果、上下方向および左右方向に湾曲する場合でも、吸気ダクト70を容易に形成することができる。
 図6の示す吸気ダクト70の側面の一部が外方に露出しているが、側面に分割線が存在しないので、吸気ダクト70が露出しても美観を損なわない。
 図7の吸気ダクト70の上側の分割面94が、吸気ダクト70の車体幅方向中央位置よりも車体の内側に配置されているので、吸気ダクト70の上面の一部が外方に露出している場合でも、内側半体90は外部に露出しにくい。その結果、外側半体92のみ意匠部品として形成して美観向上させ、内側は安価に製造できる。
 図1に示すように、吸気ダクト70がラジエータ13の上方やフロントフォーク8の外側方を通過すると、ライダーから吸気ダクト70は見えやすくなるが、上述のように、上側の分割面94が車体の内側に配置されているので、分割線が目立ちにくい。
 図7に示す下側の分割面96が、上側の分割面94よりも車体の外側に位置しているので、内側半体90が扁平になるのを抑制して、吸気ダクト70の剛性を向上させることができる。
 外側半体92の内側端部と、内側半体90の外側端部とが、突き合わされた状態で外側半体92と内側半体90とが接合されているので、吸気ダクト70の内周面に凹凸が形成されるのを抑制できる。その結果、吸気ダクト70内部の吸気Iの流れが阻害されない。
 外側半体92の上側の内側端部は、内側半体90の外側端部が突き合わされる接合部92aと、この接合部92aの上方に形成されて接合部92aよりも車体内側に突出する突出部92bとを有している。これにより、上側の接合部92aが、突出部92bにより隠されて、外観が一層向上する。
 吸気ダクト70をメインフレーム1に取り付ける固定部分100が、内側半体90の外面(内側面)に形成されているので、固定部分100が車体の外観に現れるのを防いで、車体の外観が損なわれるのを防ぐことができる。
 図1の吸気ダクト70がサイドスタンド17と同じ車体左側に配置されている場合、停車時、上側の分割面94は見えやすいが、吸気ダクト70が停車時に傾斜した下側に位置するので、分割線が目立ちにくい。
 図2の吸気ダクト70の下流部70cに通路面積が拡大する連結部39が設けられている。この連結部39に吸気Iが貯留されるので、過給機42に安定して吸気Iを供給できる。
 また、この連結部にクリーナエレメント69が配置され、連結部39における過給機42に接続されるクリーナ出口62は、クリーナエレメント69の部分よりも通路面積が小さく設定されている。その結果、吸気Iが、エアクリーナ40で減速されるので、クリーナエレメント69の通過ロスが少ない。さらに、エアクリーナ40のクリーナ出口62の通路面積が小さく設定されているので、クリーナ出口62において吸気Iが増速され、過給機42の吸込口46付近で吸気Iの流速が低下して過給機42の効率を低下させることがない。
 図6の吸気取入口24の開口縁が、平面視で、車幅方向外側に向かって後方に傾斜している。これにより、車体の流線形状を保ちつつ、吸気取入口24の開口面積を大きくできる。
 図1に示す吸気ダクト70が、シリンダブロック30の左側を通過しているので、エンジンEの上方に広い空間を確保して、設計の自由度を向上させることができる。また、吸気ダクト70は、ハンドル6の前方からラジエータ13の上方を通過しているので、ラジエータ13との干渉を避けることができる。その結果、ラジエータ性能の低下を防ぐことができる。
 さらに、吸気ダクト70は、ハンドル6の先端部よりも下方を通過しているので、吸気ダクト70が、回動するハンドル6と干渉するのを防ぐことができる。
 吸気ダクト70が、図6に示すニーグリップ部75よりも前方で、メインフレーム1から外側方に突出しており、吸気ダクト70におけるメインフレーム1から突出した部分の後端は、図1に示すように、側面視において、乗車状態のライダーの膝Kよりも下方に位置し、膝下部分KUよりも前方に位置している。これにより、吸気ダクト70が、ライダーの膝Kと干渉するのを防ぐことができる。
 また、吸気ダクト70が、吸気Iの流れ方向の中間部で最下部70dを有しているので、最下部70dで水抜きを行うことができる。
 図9は、本発明の第2実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図である。第2実施形態の吸気ダクト70Aは、車体の一側方である左側の吸気取入口24に加え、車体の他側方である右側に、追加の吸気取入口25が配置されている。さらに、ラムダクトユニット80Aと吸入ダクトユニット82との接続部に、吸気を浄化するクリーナエレメント69Aが内蔵されている。したがって、吸気ダクト70Aの下流部70cには、クリーナエレメント(エアクリーナ)は設けられていない。その他の構造は、第1実施形態と同じである。
 第2実施形態によれば、追加の吸気取入口25があるので、走行風Aの吸入量が増加する。また、通路面積の大きい吸気通路の上流側にクリーナエレメント69Aが配置されているので、吸気Iは、流速が遅い箇所でクリーナエレメント69Aを通過する。これにより、クリーナエレメント69Aを通過する際のロスを少なくできる。
 図10は、本発明の第3実施形態に係る吸気ダクトを搭載した鞍乗型車両の一種である自動二輪車の要部を示す平面図で、図11はその斜視図である。第3実施形態の吸気ダクト70Bは、導入口70aが車体の前端の車幅方向中心位置に配置されている。さらに、吸入ダクトユニット82は、円筒状のパイプからなり、側面視で、後方に向かって下方に滑らかに延びるストレート形状である。したがって、第3実施形態の吸気ダクト70Bには、第1実施形態のような前後方向中間部の最下部70dは設けられていないが、吸気ダクト70Bの前部に、後方に向かって上方に立ち上がる傾斜部70eが形成されている。これにより、吸気Iに含まれる水分を減らすことができる。その他の構造は、第1実施形態と同じである。この第3実施形態においても、第1実施形態と同様の効果を奏する。
 上述の各実施形態において、吸気ダクト70,70A,70Bの内部に、過給機42の吸込口46に吸気Iを導く案内部材150を設けてもよい。案内部材150は、例えば、図12に示すように、吸気ダクト70の内面に一体形成されたガイド板152である。案内部材150を設けることで、過給機42に安定して吸気Iが導かれるので、過給機42の効率が向上する。
 また、吸気ダクト70は、前端部および後端部に形成されるフランジ部によって車体に固定されてもよい。各フランジ部には、外側方からボルトが挿通されるボルト挿通孔が形成される。各フランジ部は、内側半体、外側半体のどちらに形成されてもよい。また、例えば、後側フランジ部が内側半体に形成され、前側フランジ部が外側半体に形成されてもよい。この場合、外側半体に形成されるフランジ部は、フロントカウルによって外部から見えない位置に配置されることが好ましい。また外側半体にフランジ部が形成される場合、下方に形成されることで、フランジ部を目立ちにくくすることができる。内側半体および外側半体にそれぞれフランジ部を形成することで、内側半体と外側半体の接続部分で担う支持強度を抑えることができ、強度を高めることができる。
 本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、本発明の吸気ダクトは、自動二輪車以外の鞍乗型車両にも適用可能で、三輪車、四輪車にも適用できる。したがって、そのようなものも本発明の範囲内に含まれる。
24 吸気取入口
42 過給機
46 吸込口
30 シリンダブロック
69 クリーナエレメント(抑制部材)
70,70A 吸気ダクト
77 吸気通路
88 ダクト連結面
A 走行風
D1 直交方向寸法
D1max 直交方向寸法の最大寸法
D2 径方向寸法
D2max 径方向寸法の最大寸法
E エンジン
I 吸気

Claims (10)

  1.  過給機に吸気を供給する吸気通路を形成する鞍乗型車両の吸気ダクトであって、
     湾曲しながら前記過給機に接続されており、
     前記吸気通路の横断面形状が、湾曲の中心から湾曲の径方向外側に向かって、前記湾曲の径方向に直交する直交方向寸法が徐々に小さくなるように形成されている鞍乗型車両の吸気ダクト。
  2.  請求項1に記載の鞍乗型車両の吸気ダクトにおいて、前記吸気通路の横断面形状は、前記直交方向の最大寸法が、前記湾曲の径方向の最大寸法よりも大きく設定されている鞍乗型車両の吸気ダクト。
  3.  請求項1または2に記載の鞍乗型車両の吸気ダクトにおいて、前方に開口して前記吸気として走行風を取り入れる吸気取入口を有している鞍乗型車両の吸気ダクト。
  4.  請求項1,2または3に記載の鞍乗型車両の吸気ダクトにおいて、前記過給機がエンジンのシリンダブロックの後方に配置され、
     前記シリンダブロックの前方から車体の一側方へ湾曲しながら前記シリンダブロックの一側方を通って前記過給機に接続されている鞍乗型車両の吸気ダクト。
  5.  請求項4に記載の鞍乗型車両の吸気ダクトにおいて、前端の吸気取入口が車体の前記一側方に配置されている鞍乗型車両の吸気ダクト。
  6.  請求項5に記載の鞍乗型車両の吸気ダクトにおいて、前記吸気取入口の車幅方向外側面は、吸気ダクトにおける最も外側に湾曲した部分の車幅方向内側面よりも外側に位置している鞍乗型車両の吸気ダクト。
  7.  請求項4から6のいずれか一項に記載の鞍乗型車両の吸気ダクトにおいて、前記過給機の吸込口が、前記エンジンの側面よりも内側に配置されている鞍乗型車両の吸気ダクト。
  8.  請求項1から7のいずれか一項に記載の鞍乗型車両の吸気ダクトにおいて、前記吸気通路の通路面積は、上流から下流に向かって徐々に小さくなるように設定されている鞍乗型車両の吸気ダクト。
  9.  請求項8に記載の鞍乗型車両の吸気ダクトにおいて、前記吸気通路における上流部に、吸気を浄化するクリーナエレメントが内蔵されている鞍乗型車両の吸気ダクト。
  10.  請求項1から9のいずれか一項に記載の鞍乗型車両の吸気ダクトにおいて、前記吸気通路における前記過給機の吸込口の上流側に、前記吸気通路の内部の吸気の偏りを抑制する抑制部材が設けられている鞍乗型車両の吸気ダクト。
PCT/JP2013/068911 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト WO2014010648A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380036461.8A CN104520575B (zh) 2012-07-11 2013-07-10 骑乘式车辆的进气管
JP2014524851A JP5985639B2 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト
EP13817464.4A EP2878803B1 (en) 2012-07-11 2013-07-10 Motorcycle with air intake duct
US14/590,900 US9638149B2 (en) 2012-07-11 2015-01-06 Air intake duct of saddle-ridden vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155462 2012-07-11
JP2012-155462 2012-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/590,900 Continuation US9638149B2 (en) 2012-07-11 2015-01-06 Air intake duct of saddle-ridden vehicle

Publications (1)

Publication Number Publication Date
WO2014010648A1 true WO2014010648A1 (ja) 2014-01-16

Family

ID=49916095

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2013/068911 WO2014010648A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト
PCT/JP2013/068910 WO2014010647A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両のエンジン
PCT/JP2013/068912 WO2014010649A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト
PCT/JP2013/068914 WO2014010651A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両のエンジン
PCT/JP2013/068913 WO2014010650A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/JP2013/068910 WO2014010647A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両のエンジン
PCT/JP2013/068912 WO2014010649A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト
PCT/JP2013/068914 WO2014010651A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両のエンジン
PCT/JP2013/068913 WO2014010650A1 (ja) 2012-07-11 2013-07-10 鞍乗型車両の吸気ダクト

Country Status (5)

Country Link
US (5) US9850863B2 (ja)
EP (5) EP2873847B1 (ja)
JP (5) JP6078538B2 (ja)
CN (5) CN104520574A (ja)
WO (5) WO2014010648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015193954A1 (ja) * 2014-06-16 2017-04-20 川崎重工業株式会社 自動二輪車の吸気ダクト

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873847B1 (en) 2012-07-11 2018-09-19 Kawasaki Jukogyo Kabushiki Kaisha Saddle-ridden-vehicle
EP2873833B1 (en) * 2012-07-11 2018-08-29 Kawasaki Jukogyo Kabushiki Kaisha Engine with supercharger
WO2014097773A1 (ja) * 2012-12-17 2014-06-26 川崎重工業株式会社 鞍乗型車両
EP2998568A4 (en) * 2013-05-17 2016-12-28 Kawasaki Heavy Ind Ltd AIR INTAKE CHAMBER FOR A VEHICLE COMPRISING A SADDLE
US9222405B2 (en) * 2013-07-08 2015-12-29 Massachusetts Institute Of Technology Turbocharged single cylinder internal combustion engine using an air capacitor
JP5968348B2 (ja) * 2013-07-31 2016-08-10 本田技研工業株式会社 車両のエアクリーナ装置
JP6408343B2 (ja) * 2014-06-16 2018-10-17 川崎重工業株式会社 自動二輪車のエンジンの吸気ダクト
JP6366141B2 (ja) * 2015-05-29 2018-08-01 本田技研工業株式会社 鞍乗り型車両
CN106704050B (zh) * 2015-07-27 2019-03-29 长城汽车股份有限公司 空气滤清器进气管路
US10167767B2 (en) 2015-10-27 2019-01-01 Suzuki Motor Corporation Motorcycle and saddle-ridden type vehicle
US10618404B2 (en) 2016-01-29 2020-04-14 Bombardier Recreational Products Inc. Vehicle having dual air intake systems
JP6235634B2 (ja) * 2016-02-22 2017-11-22 本田技研工業株式会社 鞍乗り型車両におけるエアクリーナ構造
ITUA20161485A1 (it) * 2016-03-09 2017-09-09 Madex S R L S Sistema di sovralimentazione per motori endotermici
US10352281B2 (en) * 2016-07-08 2019-07-16 Kawasaki Jukogyo Kabushiki Kaisha Manufacturing method of head box of motorcycle, and air-intake device of motorcycle
JP6315045B2 (ja) * 2016-09-06 2018-04-25 マツダ株式会社 車両用エンジンの被水低減構造
JP6490643B2 (ja) * 2016-09-30 2019-03-27 本田技研工業株式会社 鞍乗り型車両の電装品支持構造
DE102016220301B3 (de) * 2016-10-18 2017-06-29 Bayerische Motoren Werke Aktiengesellschaft Motorradansaugluftführung für einen Motorradmotor
JP6879711B2 (ja) * 2016-11-02 2021-06-02 川崎重工業株式会社 吸気チャンバ構造
DE102016221793B3 (de) * 2016-11-08 2017-12-28 Bayerische Motoren Werke Aktiengesellschaft Motorrad mit einer Einrichtung zum Ansaugen von Ladeluft für einen Motorradmotor
IT201700060987A1 (it) * 2017-06-05 2018-12-05 Vins S R L Motocicletta con motore raffreddato a liquido
JP6924109B2 (ja) * 2017-09-28 2021-08-25 本田技研工業株式会社 鞍乗り型車両のシート構造
AU201811306S (en) * 2018-03-06 2018-03-28 Safari R&D Pty Ltd Air intake snorkel for a vehicle
JP7089407B2 (ja) * 2018-06-07 2022-06-22 カワサキモータース株式会社 鞍乗型車両
CN112739900B (zh) * 2018-09-25 2023-05-02 本田技研工业株式会社 鞍乘型车辆的动力单元
JP6816080B2 (ja) * 2018-09-28 2021-01-20 本田技研工業株式会社 車両の前部構造
JP7046783B2 (ja) * 2018-11-16 2022-04-04 本田技研工業株式会社 鞍乗り型車両
JP6865728B2 (ja) * 2018-12-21 2021-04-28 川崎重工業株式会社 鞍乗型車両
JP2020131839A (ja) * 2019-02-15 2020-08-31 本田技研工業株式会社 車両の吸気ダクト構造
USD883331S1 (en) * 2019-03-24 2020-05-05 Safari R&D Pty Ltd Air intake snorkel for a vehicle
JP6906562B2 (ja) * 2019-04-12 2021-07-21 本田技研工業株式会社 車両用バッテリユニットの排気構造
JP7153606B2 (ja) * 2019-05-14 2022-10-14 カワサキモータース株式会社 鞍乗型車両の吸気ダクト
USD896844S1 (en) * 2019-05-20 2020-09-22 Safari R&D Pty Ltd Air intake snorkel for a vehicle
USD882637S1 (en) * 2019-07-24 2020-04-28 Safari R&D Pty Ltd Air intake snorkel for a vehicle
JP7287261B2 (ja) * 2019-12-18 2023-06-06 トヨタ紡織株式会社 吸気ダクト

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270920A (ja) * 1988-09-02 1990-03-09 Yamaha Motor Co Ltd 過給機付きエンジンを備えた自動二輪車
JPH07247928A (ja) * 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd エンジンの吸気マニホールド
WO2011080974A1 (ja) * 2009-12-29 2011-07-07 川崎重工業株式会社 過給機の吸入ダクト

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1305174A (en) 1919-05-27 sutsh
US1974110A (en) 1932-12-21 1934-09-18 Frank R Higley Curved conduit
GB510738A (en) * 1938-03-22 1939-08-08 James Reginald Ferriday Improvements in and relating to saddles and pillion seats for motor cycles
GB688738A (en) * 1951-04-07 1953-03-11 Feridax Ltd Improvements relating to combined saddles and pillion seats for motor cycles
DE1528691A1 (de) * 1966-03-05 1969-07-10 Neyrpic Ets Kreiselpumpensaugkruemmer
JPS51131513U (ja) * 1975-04-14 1976-10-23
JPS5713231A (en) * 1980-06-26 1982-01-23 Honda Motor Co Ltd Super charger in motorcycle
JPS5749020A (en) * 1980-09-05 1982-03-20 Honda Motor Co Ltd Turbo supercharger in internal combustion engine
JPS5755223A (en) * 1980-09-16 1982-04-02 Yamaha Motor Co Ltd Intake device for engine in motorcycle
US4427087A (en) 1981-01-14 1984-01-24 Honda Giken Kogyo Kabushiki Kaisha Motorcycle provided with an engine having a supercharger
US4550794A (en) 1981-01-14 1985-11-05 Honda Giken Kogyo Kabushiki Kaisha Motorcycle having an engine with a supercharger
JPS57124027A (en) 1981-01-24 1982-08-02 Honda Motor Co Ltd Motorcycle with engine with turbo-supercharger
JPS57137531A (en) * 1981-02-20 1982-08-25 Kokusai Denshin Denwa Co Ltd <Kdd> Excavating method and device for ditch in bottom of water
JPS6338151Y2 (ja) * 1981-02-21 1988-10-07
US4433751A (en) * 1981-12-09 1984-02-28 Pratt & Whitney Aircraft Of Canada Limited Sound suppressor liner
US4705463A (en) 1983-04-21 1987-11-10 The Garrett Corporation Compressor wheel assembly for turbochargers
GB8318604D0 (en) * 1983-07-08 1983-08-10 Newsome Air Conditioning Cooling apparatus
JPS6055526U (ja) * 1983-09-26 1985-04-18 本田技研工業株式会社 自動二輪車
DE3531782A1 (de) 1985-09-06 1987-03-19 Teves Gmbh Alfred Hydraulische bremsanlage mit schlupfregelung
JPH0674250B2 (ja) 1985-09-12 1994-09-21 住友精化株式会社 チオカルバメ−ト誘導体の製法
JPH0213739Y2 (ja) * 1985-10-08 1990-04-16
JPS6291967A (ja) 1985-10-18 1987-04-27 Fuji Xerox Co Ltd 複写機の制御装置
JPS63121769A (ja) 1986-11-10 1988-05-25 Japan Radio Co Ltd レ−ダ指示機におけるppiスイ−ブ方位誤差補正回路
JPS63121769U (ja) * 1987-01-30 1988-08-08
JPS6447975A (en) 1987-08-19 1989-02-22 Nec Corp Testing of integrated circuit
JPS6447975U (ja) * 1987-09-21 1989-03-24
JPS6488059A (en) 1987-09-29 1989-04-03 Matsushita Electric Ind Co Ltd Hot water storage type hot water heater
JPH089413Y2 (ja) * 1987-12-04 1996-03-21 大豊工業株式会社 インテークエアコネクタ
JPH022935A (ja) * 1988-06-20 1990-01-08 Tosoh Corp アンジオテンシンの測定法
JPH0252935A (ja) 1988-08-12 1990-02-22 Noritz Corp 風呂用給湯装置
JPH0734176Y2 (ja) * 1988-10-07 1995-08-02 日野自動車工業株式会社 ターボチヤージヤの吸気装置
JPH02175489A (ja) * 1988-12-28 1990-07-06 Yamaha Motor Co Ltd 自動二輪車の吸気装置
JP2986849B2 (ja) * 1990-06-09 1999-12-06 ヤマハ発動機株式会社 自動二輪車のエンジン用吸気装置
US5188510A (en) * 1990-11-21 1993-02-23 Thomas R. Norris Method and apparatus for enhancing gas turbo machinery flow
JP3200770B2 (ja) * 1991-10-24 2001-08-20 ヤマハ発動機株式会社 自動二輪車
JP2799930B2 (ja) * 1992-10-29 1998-09-21 本田技研工業株式会社 自動2輪車の吸気装置
JPH0769265A (ja) * 1993-06-30 1995-03-14 Yamaha Motor Co Ltd 自動二輪車の吸気装置
JPH0738067A (ja) 1993-07-19 1995-02-07 Toshiba Corp 半導体装置の製造方法
JP3815519B2 (ja) * 1997-03-31 2006-08-30 豊田合成株式会社 インテークエアダクト
JPH10331733A (ja) * 1997-05-28 1998-12-15 Yamaha Motor Co Ltd 自動二輪車の吸気装置
JP2000233782A (ja) * 1999-02-15 2000-08-29 Honda Motor Co Ltd 小型車両における吸気構造
US6190432B1 (en) 1999-02-26 2001-02-20 Donaldson Company, Inc. Filter arrangement; sealing system; and methods
CN1201845C (zh) 1999-02-26 2005-05-18 唐纳森公司 用于过滤器的密封***
JP3122437B1 (ja) * 1999-09-21 2001-01-09 川崎重工業株式会社 車両用エンジンの吸気装置
JP3811590B2 (ja) 2000-03-30 2006-08-23 本田技研工業株式会社 車輌用エアクリーナ装置
JP4367878B2 (ja) * 2000-07-31 2009-11-18 本田技研工業株式会社 自動二輪車の吸気ダクト
JP2002122097A (ja) 2000-10-17 2002-04-26 Shigeru Nagano ターボ形送風機の吸込口部構造
GB2391265A (en) 2002-07-13 2004-02-04 Imra Europ S A Uk Res Ct Compressor inlet with swirl vanes, inner sleeve and shut-off valve
US6929081B2 (en) 2002-08-13 2005-08-16 Brp-Rotax Gmbh & Co. Kg Engine arrangement for a four cycle engine
JP4474111B2 (ja) 2003-03-31 2010-06-02 本田技研工業株式会社 自動二輪車
US7032563B2 (en) 2003-03-31 2006-04-25 Honda Motor Co., Ltd. Intake apparatus for engine
JP4340500B2 (ja) 2003-09-09 2009-10-07 川崎重工業株式会社 自動二輪車の吸気装置
JP2005138820A (ja) 2003-10-16 2005-06-02 Yamaha Motor Co Ltd 鞍乗り型車両
DE10350133A1 (de) 2003-10-28 2005-06-23 International Engine Intellectual Property Company, LLC., Warrenville Verbrennungsmotor mit wenigstens zwei Zylinderblöcken
JP2006017090A (ja) 2004-07-05 2006-01-19 Yamaha Motor Co Ltd エンジン
JP4607640B2 (ja) 2005-03-29 2011-01-05 本田技研工業株式会社 船艇の吸気装置
JP2006282143A (ja) * 2005-04-05 2006-10-19 Toyoda Gosei Co Ltd 吸気部材
US7407031B2 (en) * 2005-06-01 2008-08-05 Yamaha Hatsudoki Kabushiki Kaisha All terrain vehicle
JP4684041B2 (ja) * 2005-08-03 2011-05-18 川崎重工業株式会社 自動二輪車
JP4431531B2 (ja) * 2005-09-13 2010-03-17 日産ディーゼル工業株式会社 過給機の気流音低減装置
FR2895463B1 (fr) * 2005-12-23 2013-08-16 Renault Conduit d'admission d'air d'une culasse d'un moteur a combustion interne et culasse correspondante
US7549493B1 (en) * 2006-02-28 2009-06-23 Jones Daniel W Wet belt supercharger drive for a motorcycle
JP2008207694A (ja) * 2007-02-27 2008-09-11 Honda Motor Co Ltd 車両の吸気通路構造
BRPI0816535B1 (pt) * 2007-10-19 2019-08-06 Borgwarner Inc. Conduto de alteração de direção para alterar uma direção de fluxo de um líquido e conduto de entrada de compressor do turbocompressor
JP5236401B2 (ja) * 2008-09-05 2013-07-17 ヤマハ発動機株式会社 自動二輪車
JP5129712B2 (ja) 2008-09-30 2013-01-30 本田技研工業株式会社 自動二輪車のラジエータ取付け構造
CN102549250B (zh) * 2009-10-14 2014-12-03 川崎重工业株式会社 发动机的增压器驱动装置
EP2489849B1 (en) * 2009-10-14 2015-12-23 Kawasaki Jukogyo Kabushiki Kaisha Engine supercharging device
CN102656082B (zh) 2009-12-24 2015-08-19 川崎重工业株式会社 带有增压器的摩托车
JP5419758B2 (ja) * 2010-03-10 2014-02-19 本田技研工業株式会社 自動二輪車の吸気装置
JP5292512B2 (ja) * 2010-03-24 2013-09-18 本田技研工業株式会社 鞍乗り型車両の吸気系の配置構造
JP2011202595A (ja) * 2010-03-25 2011-10-13 Honda Motor Co Ltd 鞍乗型車両の吸気構造
JP5604960B2 (ja) * 2010-04-27 2014-10-15 スズキ株式会社 自動二輪車の吸気ダクト構造
DE102010038634A1 (de) * 2010-07-29 2012-02-02 Poroson Gmbh Luftfilter
JP5747483B2 (ja) * 2010-11-16 2015-07-15 株式会社Ihi 低圧ループegr装置
JP5930376B2 (ja) * 2012-02-16 2016-06-08 本田技研工業株式会社 鞍乗型車両
JP5787790B2 (ja) 2012-02-29 2015-09-30 三菱重工業株式会社 遠心流体機械の吸気管構造
EP2873847B1 (en) * 2012-07-11 2018-09-19 Kawasaki Jukogyo Kabushiki Kaisha Saddle-ridden-vehicle
JP6122820B2 (ja) * 2014-09-30 2017-04-26 本田技研工業株式会社 鞍乗り型車両
JP5997307B2 (ja) * 2015-02-25 2016-09-28 本田技研工業株式会社 鞍乗り型車両の排気構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270920A (ja) * 1988-09-02 1990-03-09 Yamaha Motor Co Ltd 過給機付きエンジンを備えた自動二輪車
JPH07247928A (ja) * 1994-03-11 1995-09-26 Nissan Diesel Motor Co Ltd エンジンの吸気マニホールド
WO2011080974A1 (ja) * 2009-12-29 2011-07-07 川崎重工業株式会社 過給機の吸入ダクト

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015193954A1 (ja) * 2014-06-16 2017-04-20 川崎重工業株式会社 自動二輪車の吸気ダクト
US10113518B2 (en) 2014-06-16 2018-10-30 Kawasaki Jukogyo Kabushiki Kaisha Air intake duct for motorcycle

Also Published As

Publication number Publication date
US20150107563A1 (en) 2015-04-23
JPWO2014010650A1 (ja) 2016-06-23
US20150122232A1 (en) 2015-05-07
EP2873847A1 (en) 2015-05-20
JP6078538B2 (ja) 2017-02-08
WO2014010650A1 (ja) 2014-01-16
US9677516B2 (en) 2017-06-13
US9638149B2 (en) 2017-05-02
EP2878802A1 (en) 2015-06-03
JP5985639B2 (ja) 2016-09-06
EP2878800A4 (en) 2016-06-08
EP2878803A1 (en) 2015-06-03
US20150114745A1 (en) 2015-04-30
WO2014010649A1 (ja) 2014-01-16
EP2878801A1 (en) 2015-06-03
CN104428525A (zh) 2015-03-18
EP2878802B1 (en) 2020-04-29
CN104520554A (zh) 2015-04-15
EP2878800A1 (en) 2015-06-03
CN104520573B (zh) 2018-03-06
CN104428525B (zh) 2017-09-05
EP2878801A4 (en) 2016-07-13
US9651005B2 (en) 2017-05-16
EP2878801B1 (en) 2018-02-07
CN104520573A (zh) 2015-04-15
JP6043353B2 (ja) 2016-12-14
EP2878802A4 (en) 2016-06-15
EP2878803B1 (en) 2018-05-16
WO2014010647A1 (ja) 2014-01-16
JP5993949B2 (ja) 2016-09-21
CN104520575B (zh) 2017-07-25
US9850863B2 (en) 2017-12-26
US9303603B2 (en) 2016-04-05
US20150114744A1 (en) 2015-04-30
US20150114599A1 (en) 2015-04-30
CN104520575A (zh) 2015-04-15
CN104520554B (zh) 2017-07-28
EP2873847A4 (en) 2016-05-18
CN104520574A (zh) 2015-04-15
JPWO2014010651A1 (ja) 2016-06-23
JPWO2014010648A1 (ja) 2016-06-23
EP2878800B1 (en) 2019-04-10
WO2014010651A1 (ja) 2014-01-16
EP2878803A4 (en) 2016-07-13
JPWO2014010647A1 (ja) 2016-06-23
EP2873847B1 (en) 2018-09-19
JPWO2014010649A1 (ja) 2016-06-23
JP5997273B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5985639B2 (ja) 鞍乗型車両の吸気ダクト
JP6062961B2 (ja) 鞍乗型車両
US9669704B2 (en) Air intake structure for saddle-ride type vehicle
JP2017074862A (ja) 鞍乗り型車両のエアクリーナ構造
EP1921285B1 (en) Motorcycle exhaust system and motorcycle provided with exhaust system
JP6693793B2 (ja) エアクリーナ
JP6408343B2 (ja) 自動二輪車のエンジンの吸気ダクト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013817464

Country of ref document: EP