WO2013147148A1 - Procédé de fabrication d'une composition de résine résistant à la chaleur, composition de résine résistant à la chaleur obtenue par le procédé de fabrication d'une composition de résine résistant à la chaleur et article moulé à l'aide de la composition de résine résistant à la chaleur - Google Patents

Procédé de fabrication d'une composition de résine résistant à la chaleur, composition de résine résistant à la chaleur obtenue par le procédé de fabrication d'une composition de résine résistant à la chaleur et article moulé à l'aide de la composition de résine résistant à la chaleur Download PDF

Info

Publication number
WO2013147148A1
WO2013147148A1 PCT/JP2013/059504 JP2013059504W WO2013147148A1 WO 2013147148 A1 WO2013147148 A1 WO 2013147148A1 JP 2013059504 W JP2013059504 W JP 2013059504W WO 2013147148 A1 WO2013147148 A1 WO 2013147148A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
parts
heat
coupling agent
Prior art date
Application number
PCT/JP2013/059504
Other languages
English (en)
Japanese (ja)
Inventor
西口 雅己
有史 松村
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2014508089A priority Critical patent/JP6219268B2/ja
Priority to CN201380018536.XA priority patent/CN104204048B/zh
Publication of WO2013147148A1 publication Critical patent/WO2013147148A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/241Preventing premature crosslinking by physical separation of components, e.g. encapsulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/34Waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane

Definitions

  • the present invention relates to a method for producing a heat-resistant resin composition, a heat-resistant resin composition produced by the production method, and a molded article using the heat-resistant resin composition.
  • a heat-resistant resin composition excellent in heat resistance a heat-resistant resin composition obtained by the method of producing the heat-resistant resin composition, and molding of an electric wire insulator or sheath using the heat-resistant resin composition It is about goods.
  • Insulated wires, cables, cords, optical fiber cores, and optical fiber cords used for internal and external wiring of electrical and electronic equipment are flame retardant, heat resistant, and mechanical properties (for example, tensile properties, wear resistance) Various characteristics are required.
  • a resin composition containing a large amount of an inorganic filler such as magnesium hydroxide or aluminum hydroxide is used.
  • wiring materials used in electrical and electronic equipment may be heated to 80 to 105 ° C., and further to about 125 ° C. in continuous use, and heat resistance may be required.
  • a method of crosslinking the coating material by an electron beam crosslinking method or a chemical crosslinking method is employed.
  • silane cross-linking method refers to cross-linking molding by reacting a silane coupling agent having an unsaturated group in the presence of an organic peroxide to obtain a silane graft polymer, and then contacting with moisture in the presence of a silanol condensation catalyst. A way to get a body.
  • the silane cross-linking method in particular does not require special equipment and can be used in a wide range of fields.
  • a method for producing a halogen-free heat-resistant silane crosslinked resin includes a silane master batch obtained by grafting a silane coupling agent having an unsaturated group to a polyolefin resin, and a heat-resistant master obtained by kneading a polyolefin and an inorganic filler. There is a method of melt-kneading a batch and a catalyst masterbatch containing a silanol condensation catalyst.
  • the silane masterbatch and the heat-resistant masterbatch are dry-mixed and uniformly in a single screw extruder or a twin screw extruder.
  • the ratio including the silane masterbatch is limited, it has been difficult to achieve higher flame resistance and higher heat resistance.
  • a silane coupling agent having an unsaturated group is generally highly volatile and volatilizes before the grafting reaction. It was very difficult to do.
  • a silane coupling agent having a hydrolyzable unsaturated group and an organic peroxide are added to the heat-resistant masterbatch obtained by melting and kneading a polyolefin resin and a flame retardant.
  • a method may be considered in which a product is added and graft polymerization is carried out using a single screw extruder.
  • the appearance of the molded product is deteriorated due to variations in reaction, the amount of inorganic filler in the master batch must be very large, the extrusion load becomes very large, and the production is very difficult. As a result, a desired material or molded body cannot be obtained.
  • Patent Document 1 an inorganic filler surface-treated with a silane coupling agent, a silane coupling agent, an organic peroxide, and a crosslinking catalyst are sufficiently melt-kneaded with a kneader and then molded with a single screw extruder. A method has been proposed.
  • Patent Documents 2 to 4 disclose a vinyl aromatic thermoplastic elastomer composition having a block copolymer or the like as a base resin and a non-aromatic rubber softener added as a softener. A technique of partially crosslinking using an organic peroxide through a filler has been proposed.
  • the present invention solves the above-mentioned problems, suppresses volatilization of the unsaturated group-containing silane coupling agent from the reaction system, and has excellent heat resistance, heat resistance, and mechanical properties, It is another object of the present invention to provide a molded product using the heat resistant resin composition.
  • the subject of this invention was achieved by the following means.
  • (1) (a) a resin composition containing a polyolefin resin, 0.01 to 0.6 parts by weight of an organic peroxide and 10 to 400 parts by weight of an inorganic filler with respect to 100 parts by weight of the resin composition; Melting and kneading 0.5 to 15.0 parts by mass of a silane coupling agent with respect to 100 parts by mass of the inorganic filler at a temperature equal to or higher than the decomposition temperature of the organic peroxide to prepare a silane masterbatch without mixing a silanol condensation catalyst.
  • a step of preparing (B) a step of molding after melt-kneading the silane masterbatch and the silanol condensation catalyst; (C) The manufacturing method of the heat resistant resin composition characterized by including the process of making the molded article of the said (b) process contact with a water
  • a silane masterbatch is prepared without mixing a silanol condensation catalyst by melting and kneading 0.5 to 15.0 parts by mass of a silane coupling agent with respect to 100 parts by mass of an inorganic filler at a temperature higher than the decomposition temperature of the organic peroxide.
  • (B-1) a step of mixing a silanol condensation catalyst and a carrier resin to produce a catalyst master batch;
  • (B-3) a step of melt-kneading the silane masterbatch and the catalyst masterbatch prepared in the steps (a) and (b-1), respectively, and then molding,
  • (C) The method for producing a heat-resistant resin composition according to (1), further comprising a step of bringing the molded product in the step (b-3) into contact with moisture to crosslink.
  • the resin composition contains at least one of an ethylene- ⁇ -olefin copolymer and a styrene elastomer and a paraffinic oil in a mass ratio of 4 to 70% by mass (1).
  • the method for producing a flame retardant crosslinking composition according to any one of items 1) to (7).
  • the inorganic filler is at least one selected from the group consisting of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc borate, zinc hydroxystannate and talc ( The method for producing a heat-resistant resin composition according to any one of 1) to 12).
  • the present invention is excellent in flame retardancy, heat resistance and mechanical properties, and at the time of kneading by mixing the inorganic filler and the silane coupling agent before and / or during kneading with the polyolefin resin.
  • the volatilization of the silane coupling agent can be suppressed, and a heat-resistant resin composition and a molded product of the heat-resistant resin composition can be obtained efficiently.
  • a highly heat-resistant crosslinked composition to which a large amount of an inorganic filler is added can be produced without using a special machine such as an electron beam crosslinking machine.
  • the method for producing a heat-resistant resin composition of the present invention comprises: (a) a resin composition containing a polyolefin-based resin; and 0.01 to 0.6 parts by mass of an organic peroxide with respect to 100 parts by mass of the resin composition. Then, 10 to 400 parts by mass of the inorganic filler and 0.5 to 15.0 parts by mass of the silane coupling agent with respect to 100 parts by mass of the inorganic filler are melt-kneaded at a temperature equal to or higher than the decomposition temperature of the organic peroxide, and silanol condensation is performed.
  • a step of preparing a silane master batch without mixing the catalyst (b) a step of melt-kneading the silane master batch and a silanol condensation catalyst, and (c) contacting the molded product of the step with moisture. And crosslinking.
  • the resin composition used in the present invention contains a polyolefin resin as an essential component, and optionally contains a styrene elastomer, paraffin oil, various additives, and the like. is doing.
  • an ethylene- ⁇ -olefin copolymer which will be described later, is used as one of the polyolefin resins, or when a styrene elastomer is used as one component of the resin composition (A), it contains paraffin oil. In view of excellent flexibility and appearance, it is preferable.
  • “resin” and “copolymer” are used to include rubber and elastomer.
  • the term “copolymer” is used to include various copolymers such as a random copolymer, a block copolymer, and an alternating copolymer.
  • the content rate of each component in a resin composition is not specifically limited,
  • the content rate of polyolefin resin may be 100 mass% independently, and may contain the other component in a suitable mass ratio.
  • the content of the polyolefin resin in the resin composition (A) is 100% by mass at the maximum, but is not limited to this, and the mechanical properties and heat resistance of the entire resin composition (A) are not limited to this. In this respect, it is preferably 30 to 100% by mass, and more preferably 30 to 92% by mass. Therefore, in this case, the content of components other than the polyolefin resin in the resin composition (A) is preferably 70 to 0% by mass, and preferably 70 to 8% by mass with respect to the entire resin composition (A).
  • the total content of the ethylene- ⁇ -olefin copolymer as the polyolefin resin, the styrene elastomer, and the paraffinic oil is 4 to 70% by mass. From the viewpoint of suppressing the occurrence of blisters when stopped and from the viewpoint of flexibility, it is preferably 8 to 70% by mass, more preferably 15 to 70% by mass. Therefore, in this case, the total content of components other than the ethylene- ⁇ -olefin copolymer, the styrene elastomer, and the paraffinic oil in the resin composition (A) is 30 to 96 mass based on the entire resin composition. %, More preferably 30 to 92% by mass, still more preferably 30 to 85% by mass.
  • polyolefin-based resin used in the present invention is not particularly limited, and known ones conventionally used in heat-resistant resin compositions can be used. Examples thereof include polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, polyolefin copolymer having an acid copolymerization component or an acid ester copolymerization component, and rubbers and elastomers thereof.
  • polyethylene an ethylene- ⁇ -olefin copolymer, and a copolymer having an acid copolymer component are preferable from the viewpoint of suppressing a decrease in withstand voltage characteristics at high temperatures.
  • polyolefin resins may be used alone or in combination of two or more.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • the ethylene- ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 to 12 carbon atoms.
  • Specific examples of the ⁇ -olefin include propylene, 1-butene, 1- Examples include hexene, 4-methyl-1-pentene, 1-octene, 1-decene, and 1-dodecene.
  • Specific examples of the ethylene- ⁇ -olefin copolymer include an ethylene-propylene copolymer (EPR), an ethylene-butylene copolymer (EBR), and an ethylene- ⁇ -olefin synthesized in the presence of a single site catalyst. There are copolymers and the like. An ethylene-propylene copolymer is preferable, and examples thereof include an ethylene-propylene-diene copolymer.
  • polyolefin copolymers having an acid copolymerization component or an acid ester copolymerization component examples include ethylene-vinyl acetate copolymer (EVA), ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid alkyl copolymer.
  • EVA ethylene-vinyl acetate copolymer
  • ethylene- (meth) acrylic acid copolymer ethylene- (meth) acrylic acid alkyl copolymer.
  • a polymer etc. are mentioned.
  • ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-butyl acrylate copolymer are preferable, and further, acceptability to inorganic filler and heat resistance. From this point, an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer are particularly preferable.
  • the content of the polyolefin resin (A-1) in the resin composition (A) is as described above.
  • the content of the ethylene- ⁇ -olefin copolymer is the polyolefin resin (A) in the resin composition (A).
  • the content of A-1) is appropriately set so as to be within the above range, and for example, it is preferably 30 to 100% by mass with respect to the resin composition (A).
  • the content of the ethylene- ⁇ -olefin copolymer is such that when the resin composition (A) contains a paraffinic oil (A-3) described later, the styrene elastomer (A-2) and the paraffinic oil It is appropriately set so that the total content with (A-3) falls within the above-mentioned range, and for example, it is preferably 4 to 70% by mass with respect to the resin composition (A).
  • the content of the ethylene- ⁇ -olefin copolymer is within the above range, the appearance of the electric wire is excellent when the flame-retardant crosslinked resin composition of the present invention is used for the electric wire.
  • styrene elastomer (A-2) Styrene Elastomer
  • A-2 Styrene Elastomer
  • the styrenic elastomer (A-2) refers to those having an aromatic vinyl compound such as styrene as a constituent component in the molecule. Therefore, in the present invention, even if an ethylene component is contained in the molecule, it is classified as a styrene elastomer (A-2) if it contains an aromatic vinyl compound component.
  • Examples of such a styrene elastomer (A-2) include a copolymer of a conjugated diene compound and an aromatic vinyl compound, or a hydrogenated product thereof.
  • Examples of the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • aromatic vinyl compound examples include styrene, p- (t-butyl) styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p- Aminoethylstyrene, vinyltoluene, p- (t-butyl) styrene and the like can be mentioned.
  • styrene elastomer examples include SEBS (styrene-ethylene-butylene-styrene block copolymer), SIS (styrene-isoprene-styrene block copolymer), hydrogenated SBS, SEEPS ( Styrene-ethylene-ethylene-propylene-styrene block copolymer), SEPS (styrene-ethylene-propylene-styrene block copolymer), hydrogenated SIS, HSBR (hydrogenated styrene-butadiene rubber), HNBR (hydrogenated acrylonitrile, Butadiene rubber).
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • hydrogenated SBS SEEPS ( Styrene-ethylene-ethylene-propylene-styrene block copolymer
  • SEPS styrene elastomer
  • SEEPS SEBS having a styrene content of 10 to 40% alone or in combination of two or more thereof.
  • the content of the styrene-based elastomer (A-2) is appropriately set so that the content of the polyolefin-based resin (A-1) in the resin composition (A) is within the above range.
  • the resin composition The content is preferably 2 to 50% by mass relative to (A).
  • the content of the styrene elastomer (A-2) is such that when the resin composition (A) contains a paraffinic oil (A-3) described later, an ethylene- ⁇ -olefin copolymer and a paraffinic oil. It is appropriately set so that the total content with (A-3) falls within the above-mentioned range, and for example, it is preferably 4 to 70% by mass with respect to the resin composition (A).
  • the appearance of the electric wire is excellent when the flame-retardant crosslinked resin composition of the present invention is used for the electric wire.
  • paraffinic oil (A-3) can also be used as a component of the resin composition (A).
  • the paraffinic oil (A-3) for example, a non-aromatic mineral oil softener or a liquid or low molecular weight synthetic softener can be used.
  • the mineral oil softener used for rubber is a mixture of an aromatic ring, a naphthene ring and a paraffin chain, and the paraffin chain carbon number accounts for 50% or more of the total carbon number.
  • Paraffinic oils having a naphthenic ring carbon number of 30 to 40% are called naphthenic oils, and those having an aromatic carbon number of 30% or more are called aromatic oils.
  • paraffinic oil can be used in the present invention. Examples of commercially available paraffinic oils include Dyna Process Oil (trade name, manufactured by Idemitsu Kosan Co., Ltd.).
  • the content of the paraffinic oil (A-3) is appropriately set so that the content of the polyolefin resin (A-1) in the resin composition (A) is within the above-mentioned range.
  • the resin composition The content is preferably 2 to 40% by mass relative to (A).
  • the content of the paraffinic oil (A-3) is such that when the resin composition (A) contains at least one of an ethylene- ⁇ -olefin copolymer and a styrene elastomer (A-2), The content is appropriately set so that the total content of the ethylene- ⁇ -olefin copolymer and the styrene-based elastomer is within the above-described range.
  • the resin composition (A) For example, 4 to 70% by mass with respect to the resin composition (A), More preferably, it is 8 to 70% by weight.
  • the content of the paraffinic oil (A-3) is within this range, the styrene elastomer can be well dispersed during melt-kneading to reduce the occurrence of kneading, and the flame-retardant crosslinked resin composition of the present invention
  • the wire is used for an electric wire, the electric wire can be prevented from bleeding at a high temperature.
  • the resin composition (A) contains at least one of an ethylene- ⁇ -olefin copolymer and a styrene elastomer (A-2), an ethylene- ⁇ -olefin copolymer, a styrene elastomer (A-2)
  • A-2 ethylene- ⁇ -olefin copolymer
  • A-2 styrene elastomer
  • the cross-linking reaction between the styrenic elastomers (A-2) forms a situation close to dynamic rubber cross-linking, and improves the viscosity. However, since it is difficult to generate blisters, the blisters can be greatly reduced. Furthermore, by adding paraffinic oil (A-3) to the styrene elastomer (A-2), the local reaction between the styrene elastomers (A-2) is further alleviated and the amount of waste is reduced. Can be considered. In addition, it is considered that the paraffinic oil (A-3) also has an effect of suppressing the cross-linking reaction between the polyolefin-based resins (A-1) by causing a crosslinking reaction. On the other hand, it is considered that the case where the ethylene- ⁇ -olefin copolymer coexists is basically the same as the case where the styrene elastomer coexists.
  • the resin composition (A) contains at least one of ethylene- ⁇ olefin rubber and styrene elastomer (A-2) as a polyolefin resin (A-1) and paraffin oil (A-3). As described above, it is preferable in that the appearance of the obtained molded product and the bleed of the electric wire at a high temperature can be prevented. More preferably, the resin composition (A) contains a styrene elastomer (A-2) and a paraffin oil (A-3). Among the above-mentioned ethylene- ⁇ -olefin rubbers, ethylene-propylene-diene rubber is preferable.
  • the organic peroxide used in the present invention generates radicals by thermal decomposition, and radicals of unsaturated groups of the silane coupling agent described later and polyolefin resin (A-1) or the like. It works to promote grafting reaction by reaction (including hydrogen radical abstraction reaction from polyolefin resin (A-1) and the like).
  • the organic peroxide (B) is not particularly limited as long as it generates radicals.
  • R 1 —OO—R 2 , R—OO—C ( ⁇ O) R 3 and R 3 C ( ⁇ O ) -OO (C ⁇ O) R 4 is preferred.
  • R 1 , R 2 , R 3 and R 4 each independently represents an alkyl group, an aryl group, or an acyl group. Among these, in the present invention, it is preferable that R 1 , R 2 , R 3 and R 4 are all alkyl groups, or any one is an alkyl group and the other is an acyl group.
  • organic peroxide examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, and 2,5-dimethyl-2.
  • tert- butyl cumyl peroxide and the like.
  • dicumyl peroxide 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2 are preferable in terms of odor, colorability, and scorch stability.
  • 5-di- (tert-butylperoxy) hexyne-3 is most preferred.
  • the decomposition temperature of the organic peroxide (B) is preferably 80 to 195 ° C, more preferably 125 to 180 ° C.
  • the decomposition temperature of an organic peroxide means that when a single composition organic peroxide (B) is heated, it decomposes itself into two or more compounds at a certain temperature or temperature range. It means the temperature at which heat is generated, and refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
  • the compounding amount of the organic peroxide is in the range of 0.01 to 0.6 parts by mass, preferably 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition (A).
  • the organic peroxide By setting the organic peroxide within this range, the polymerization can be carried out in an appropriate range, and a composition excellent in extrudability can be obtained without generating an agglomerate due to a crosslinked gel or the like.
  • the blending amount of the organic peroxide is less than 0.01 parts by mass, the crosslinking reaction of the polyolefin resin does not proceed via the silane coupling agent at the time of crosslinking, and the silane coupling agent may be polymerized.
  • the amount exceeds 0.6 parts by mass the silane coupling agent tends to volatilize or there is a risk that the side reaction may cause a flaw.
  • inorganic filler As the inorganic filler (C), a site capable of forming a hydrogen bond or the like with a reaction site such as a silanol group of a hydrolyzable silane coupling agent on the surface of the inorganic filler or a site capable of chemical bonding by a covalent bond If it has, it can use without a restriction
  • OH groups OH groups such as hydroxyl groups, water-containing or crystal water molecules, carboxyl groups
  • Such an inorganic filler (C) is not particularly limited, and examples thereof include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Metal hydroxide or metal such as aluminum oxide, aluminum nitride, aluminum borate, whisker, hydrated aluminum silicate, alumina, hydrated magnesium silicate, basic magnesium carbonate, hydrotalcite or other metal compounds having water or crystal water Hydrates, boron nitride, silica (crystalline silica, amorphous silica, etc.), carbon, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, antimony trioxide, silicone compounds, quartz, talc , Zinc borate, white carbo , It can be used zinc borate, hydroxy stannate, zinc stannate.
  • the inorganic filler (C) can be used by mixing with a silane coupling agent.
  • the method of mixing the inorganic filler and the silane coupling agent is not particularly limited, but the silane coupling is carried out in an inorganic filler that has not been treated or has been previously surface-treated with stearic acid, oleic acid, phosphate ester, or a part of the silane coupling agent.
  • There are a method of adding and mixing an agent without heating or heating a method of adding a silane coupling agent in a state where a filler is dispersed in a solvent such as water, and the details will be described later.
  • the inorganic filler (C) can be an inorganic filler surface-treated with a silane coupling agent.
  • silane coupling agent surface-treated magnesium hydroxide examples include magnesium hydroxide commercial products (Kisuma 5L, Kisuma 5P (both trade names, manufactured by Kyowa Chemical Co., Ltd.)), aluminum hydroxide, and the like.
  • One kind of these inorganic fillers (C) may be blended alone, or two or more kinds may be mixed and used.
  • these inorganic fillers at least one of silica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc borate, zinc hydroxystannate and talc is preferable.
  • the average particle size is preferably 0.2 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m, 0.4 to 5 ⁇ m, 0.4 to More preferably, it is 3 ⁇ m.
  • the inorganic filler (C) may cause secondary aggregation when mixed with the silane coupling agent in the silane masterbatch, resulting in a decrease in appearance and blisters on the molded body. There is.
  • the average particle size is determined by an optical particle size analyzer such as a laser diffraction / scattering particle size distribution measuring device after being dispersed with alcohol or water.
  • the compounding amount of the inorganic filler (C) is 10 to 400 parts by mass, preferably 30 to 280 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the resin composition (A).
  • the blending amount of the inorganic filler (C) is less than 10 parts by mass, the graft reaction of the silane coupling agent (D) becomes non-uniform and the desired heat resistance cannot be obtained, or the appearance deteriorates due to the non-uniform reaction. There is a risk.
  • it exceeds 400 parts by mass the load during molding or kneading becomes very large, and secondary molding may be difficult.
  • the silane coupling agent (D) is not particularly limited as long as it has a group that can be grafted to the polyolefin resin (A) in the presence of a radical and a group that can be hydrolyzed.
  • a silane coupling agent having an unsaturated group used for silane crosslinking can be used.
  • a compound represented by the following general formula (1) can be used.
  • R a11 represents a group containing an ethylenically unsaturated group
  • R b11 represents an aliphatic hydrocarbon group, a hydrogen atom, or Y 13.
  • Y 11 , Y 12 and Y 13 are each independently hydrolyzed. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
  • R a11 of the silane coupling agent represented by the general formula (1) is preferably a group containing an ethylenically unsaturated group, such as a vinyl group, an allyl group, a (meth) acryloyloxyalkylene group, or p-styryl. Group, etc. can be mentioned, More preferably, it is a vinyl group.
  • R b11 represents an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 described later, and the aliphatic hydrocarbon group is an aliphatic hydrocarbon group other than an aliphatic unsaturated hydrocarbon group, preferably having 1 to 8 monovalent aliphatic hydrocarbon groups.
  • R b11 is preferably Y 13 described later.
  • Y 11 , Y 12 and Y 13 represent an organic group to be hydrolyzed, and examples thereof include an alkoxy group having 1 to 4 carbon atoms, an aryloxy group having 6 to 8 carbon atoms, and an acyloxy group having 1 to 4 carbon atoms, Among them, an alkoxy group having 1 to 4 carbon atoms, preferably an acyloxy group having 1 carbon atom (OCOCH 3 ), and more preferably an alkoxy group having 1 to 2 carbon atoms.
  • Specific examples of the organic group to be hydrolyzed include a methoxy group, an ethoxy group, a butoxy group, an acetyloxy group, and a (meth) acrylooxy group. Among these, a methoxy group or an ethoxy group is preferable from the viewpoint of reactivity.
  • the silane coupling agent is preferably a silane coupling agent having an unsaturated group with a high hydrolysis rate, more preferably R b11 is Y 13 and Y 11 , Y 12 and Y 13 are the same. Silane coupling agent.
  • the silane coupling agent (D) is 0.5 to 15.0 parts by mass, preferably 1.0 to 12.0 parts by mass with respect to 100 parts by mass of the inorganic filler (C).
  • the silane coupling agent (D) itself may be used, or one diluted with a solvent may be used.
  • the amount of the silane coupling agent (D) used is less than 0.5 parts by mass, there is a possibility that crosslinking is not sufficient and desired heat resistance and mechanical properties cannot be obtained in the heat resistant resin composition.
  • the amount exceeds 15.0 parts by mass no more silane coupling agent is adsorbed on the surface of the inorganic filler (C) and volatilizes during kneading, which is not economical and condenses.
  • the body also referred to as a molded product
  • the silane coupling agent (D) satisfies 0.5 to 18.0 parts by mass with respect to 100 parts by mass of the resin composition (A) in the silane master batch, in addition to satisfying the above-mentioned usage amount. Is preferably contained in a proportion of 1.0 to 8.0 parts by mass, more preferably in a proportion of 3.0 to 8.0 parts by mass. Particularly preferred.
  • the amount of the silane coupling agent (D) used is less than 0.5 parts by mass, the crosslinking is not sufficiently performed, and the heat resistant resin composition may not be able to obtain desired heat resistance and mechanical properties.
  • the amount exceeds 18.0 parts by mass the silane coupling agents (D) are condensed with each other, and the molded article may be brittle or burnt in the crosslinked gel, resulting in a poor appearance.
  • the silane coupling agent (D) is more preferably contained in a proportion of more than 4 parts by mass and 15 parts by mass or less with respect to 100 parts by mass of the resin composition (A). More preferably, it is contained in a proportion of 5 to 12 parts by mass, and particularly preferably 6 to 10 parts by mass.
  • the silane coupling agent (D) in the silane master batch is set to be large, the occurrence of cross-linking flaws can be suppressed even if the extruder is stopped once, and the silane master batch remaining in the extruder If only this is poured out, a molded article having a good appearance can be obtained.
  • the grafting reaction due to the decomposition of the organic peroxide (B) during kneading causes the silane coupling agent (D) and the polyolefin resin (A) having a high reaction rate.
  • the reaction with -1) and the like and the reaction between the silane coupling agents (D) are dominant, and the crosslinking reaction between the polyolefin resins (A-1) and the like hardly occurs.
  • the polyolefin resin (A-1) and the like hardly react with each other, the appearance is improved.
  • the reaction between the silane coupling agents (D) is limited by the content of the inorganic filler (C), and most of the silane coupling agents (D) are bonded to the inorganic filler (C).
  • the reaction between the free silane coupling agents (D) hardly occurs. Therefore, as described above, it is considered that a molded article having a clean appearance free from gel spots can be obtained.
  • the carrier resin (E) is not particularly limited, and the same resin as the polyolefin resin (A-1) can be used, and preferably has good affinity with the silanol condensation catalyst (F). It is an ethylene-based resin in terms of heat resistance.
  • the ethylene-based resin include the above-mentioned polyethylene (PE) such as linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, and ultra high molecular weight polyethylene. Density polyethylene, low density polyethylene, ultra-low density polyethylene, and high density polyethylene are preferred, and linear low density polyethylene is particularly preferred.
  • the amount of the carrier resin (E) is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass, and further preferably 2 to 40 parts by mass with respect to 100 parts by mass of the resin composition (A). .
  • an inorganic filler may or may not be added to this carrier resin (E).
  • the amount of the inorganic filler at that time is not particularly limited, but is preferably 350 parts by mass or less with respect to 100 parts by mass of the resin component of the carrier resin (E). This is because if the amount of the inorganic filler is too large, the silanol condensation catalyst (F) is difficult to disperse and the crosslinking is difficult to proceed.
  • carrier resin (E) there exists a possibility that the crosslinking degree of a molded object may fall and appropriate heat resistance may not be obtained.
  • silanol condensation catalyst (F) in the present invention has a function of binding a silane coupling agent (D) having a grafted unsaturated group in the presence of moisture by a condensation reaction. Based on the action of the silanol condensation catalyst (F), the polyolefin resin (A-1) and the like are crosslinked through the silane coupling agent (D). As a result, a resin molded body excellent in heat resistance (also simply referred to as a molded body or a heat resistant resin composition) can be obtained.
  • silanol condensation catalyst (F) an organic tin compound, a metal soap, a platinum compound, or the like is used.
  • Common silanol condensation catalysts (F) include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, stearin Sodium acid, lead naphthenate, lead sulfate, zinc sulfate, organic platinum compounds, etc.
  • organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, dibutyltin diacetate, etc. is there.
  • the blending amount of the silanol condensation catalyst (F) is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the resin composition (A). .
  • the condensation reaction of the silane coupling agent (D) proceeds rapidly to form a uniform cross-linked structure, and the molded product has flame retardancy.
  • the heat-resistant resin composition includes various additives commonly used in electric wires, electric cables, electric cords, sheets, foams, tubes, and pipes, such as antioxidants, lubricants, metal additives, and the like.
  • An activator, a flame retardant (auxiliary) agent, other resins, and the like can be appropriately blended within a range not impairing the object of the present invention.
  • These additives should be added to the carrier resin.
  • the antioxidant and the metal deactivator are silane coupling agent (D) mixed with inorganic filler (C) and polyolefin resin (A-1). It is better to add to the carrier resin (E) so as not to hinder grafting onto the carrier resin.
  • a crosslinking adjuvant is not included substantially among them.
  • the crosslinking aid is not substantially contained in the step of preparing the master batch.
  • the cross-linking aid reacts with the organic peroxide (B) during kneading, resulting in cross-linking of the polyolefin resin (A-1) and the like, resulting in gelation and the appearance of the molded product.
  • the silane coupling agent (D) is not significantly grafted onto the polyolefin resin (A-1) or the like, the final molded article may not have sufficient heat resistance.
  • the additive can be introduced into the heat resistant resin composition as long as the object of the present invention is not impaired.
  • the crosslinking aid refers to a material that forms a partially crosslinked structure with the polyolefin resin (A-1) in the presence of an organic peroxide, such as polypropylene glycol diacrylate, trimethylolpropane triacrylate.
  • organic peroxide such as polypropylene glycol diacrylate, trimethylolpropane triacrylate.
  • polyfunctional compounds such as methacrylate compounds, allyl compounds such as triallyl cyanurate, maleimide compounds, and divinyl compounds.
  • antioxidants examples include amine-based oxidation such as a polymer of 4,4′-dioctyl diphenylamine, N, N′-diphenyl-p-phenylenediamine, and 2,2,4-trimethyl-1,2-dihydroquinoline.
  • Pentaerythrityl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl)
  • Phenol-based antioxidants such as propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (2-methyl-4- (3-n-alkylthiopropionyloxy) -5-tert-butylphenyl) sulfide, 2-mercaptoben ⁇ imidazole and its zinc salt, pentae Suritoru - tetrakis (3-lauryl - thiopropionate) and the like sulfur-based antioxidant such.
  • metal deactivators examples include N, N′-bis (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl) hydrazine, 3- (N-salicyloyl) amino-1,2,4. -Triazole, 2,2'-oxamidobis- (ethyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate) and the like.
  • the antioxidant can be added in an amount of preferably 0.1 to 15.0 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition (A).
  • Flame retardant (auxiliary) and filler include carbon, clay, zinc oxide, tin oxide, titanium oxide, magnesium oxide, molybdenum oxide, antimony trioxide, silicone compound, quartz, talc, calcium carbonate, magnesium carbonate, zinc borate And white carbon. These fillers may be used when a silane coupling agent is mixed as a filler, or may be added to a carrier resin.
  • lubricant examples include hydrocarbon, siloxane, fatty acid, fatty amide, ester, alcohol, and metal soap. These lubricants should be added to the carrier resin.
  • a resin composition (A), an organic peroxide (B), an inorganic filler (C) and a silane coupling agent (D) are mixed with a silanol condensation catalyst (F).
  • the step (a) of melt-mixing without mixing is carried out.
  • the silanol condensation catalyst (F) is not mixed with any component. “Not mixed” includes not only the case where the silanol condensation catalyst (F) is not completely used, but also the inevitable use as impurities and the use that can be melt-mixed in the step (b) described later. Meaning.
  • step (a) in the first step, the inorganic filler (C), the silane coupling agent (D) and the organic peroxide (B) are dried at a temperature below the decomposition temperature of the organic peroxide, preferably at room temperature. It is preferable to obtain a mixture by wet mixing (step (a-1)).
  • the addition of the silane coupling agent (D) to the inorganic filler (C) is performed by heating or non-heating and mixing (dry type), or in a state where the inorganic filler (C) is dispersed in a solvent such as water.
  • a process which adds a coupling agent (D).
  • the process which adds and mixes a silane coupling agent (D) in an inorganic filler (C), preferably the dried inorganic filler (C), with heating or non-heating, that is, a dry process is preferred.
  • the silane coupling agent (D) In the method of adding the silane coupling agent (D) in a state where the inorganic filler (C) is dispersed in a solvent such as water (wet mixing), the silane coupling agent (D) is strongly bonded to the inorganic filler (C). Therefore, the subsequent condensation reaction may be difficult to proceed.
  • the method of adding and mixing the silane coupling agent (D) in the inorganic filler (C) with heating or non-heating (dry mixing) is relatively binding of the inorganic filler (C) and the silane coupling agent (D). Since it is weak, the cross-linking easily proceeds efficiently.
  • the silane coupling agent (D) and the organic peroxide (B) may be mixed together and dispersed in the inorganic filler (C) or may be dispersed separately. It is better to mix together.
  • the silane coupling agent (D) added to the inorganic filler (C) exists so as to surround the surface of the inorganic filler (C), and part or all of the silane coupling agent (D) is adsorbed to the inorganic filler (C) or filled with the filler (C ) It may chemically bond with the surface.
  • volatilization of the silane coupling agent (D) when kneading and processing the material in a subsequent kneader or Banbury mixer is greatly reduced, and an organic peroxide ( By B), the unsaturated group of the silane coupling agent (D) is considered to undergo a crosslinking reaction with the polyolefin resin (A-1) and the like.
  • the silane coupling agent (D) undergoes a condensation reaction with the silanol condensation catalyst (F) during molding. Although the mechanism of this reaction is not clear, if the bond between the inorganic filler (C) and the silane coupling agent (D) is too strong during the condensation reaction, the inorganic filler (C) can be added even if the silanol condensation catalyst (F) is added. It is considered that the silane coupling agent (D) bonded to the silane coupling agent does not come off from the inorganic filler (C), and the silanol condensation reaction (crosslinking reaction) is difficult to proceed.
  • the silane coupling agent (D) may be mixed with the inorganic filler (C), and the organic peroxide (B) may be added in the next step of producing a silane master batch.
  • the organic peroxide (B) it may be dispersed in the resin composition (A), for example, the polyolefin resin (A-1), or may be added alone or dispersed in oil or the like. Although it may be added, it is preferable to be dispersed in the resin composition (A).
  • each of the mixture and the resin composition (A) is added to a mixer, and melt kneading while heating above the decomposition temperature of the organic peroxide (B) without mixing the silanol condensation catalyst (F).
  • a silane master batch step (a-2)
  • the silane coupling agent (D) and the organic peroxide (B) are mixed with the inorganic filler (C)
  • the mixture and the resin composition (A) are added to the organic peroxide (B
  • a silane masterbatch (graftmer) is prepared by grafting the silane coupling agent (D) to the polyolefin resin (A-1) mainly at a decomposition temperature of
  • the kneading temperature is not less than the decomposition temperature of the organic peroxide (B), preferably the decomposition temperature of the organic peroxide (B) + 25 ° C. to 110 ° C.
  • This decomposition temperature is preferably set after the polyolefin resin (A-1) is melted.
  • kneading conditions such as kneading time can be set as appropriate.
  • the resin composition (A) for example, the polyolefin resin (A-1), is kneaded in a molten state without being kneaded without melting.
  • the kneading method can be satisfactorily used as long as it is a method usually used for rubber, plastics, etc., and as the apparatus, for example, a single-screw extruder, a twin-screw extruder, a roll, a Banbury, etc.
  • a mixer or various kneaders are used, but a closed mixer such as a Banbury mixer or various kneaders is preferable in terms of resin dispersion and crosslinking stability.
  • the silane coupling agent (D) is preferably not introduced into the silane masterbatch alone, but introduced by premixing with the inorganic filler (C). This is because the silane coupling agent (D) volatilizes during kneading and is not economical, and the non-adsorbing silane coupling agent (D) is condensed to make melting and kneading difficult, and is desirable during extrusion molding. This is because the shape may not be obtained.
  • generation of the above-mentioned mixture does not set it as a melt-kneading process, but a resin composition (A), an organic peroxide (B), a silane coupling agent (D), and an inorganic filler (C) together.
  • a silane master batch can be prepared by mixing at a decomposition temperature of the organic peroxide (step a).
  • step a since there exists a possibility that local bridge
  • the silane masterbatch prepared in the step (a) includes at least a decomposition product of the organic peroxide (B) and a silane coupling agent (D) to the extent that it can be molded by the step (b) described later.
  • step (b) of molding after melting and mixing the silane masterbatch and the silanol condensation catalyst (F) is carried out.
  • This step (b) is a step in which the silane master batch and the silanol condensation catalyst (F) are melt-mixed, and the step (b) is preferably the following mode. That is, the silanol condensation catalyst (F) and the carrier resin (E) are mixed to produce a catalyst master batch (b-1), and the silanes prepared in the steps (a-2) and (b-1), respectively.
  • the step (b-1) of obtaining the catalyst master batch by mixing the carrier resin (E) and the silanol condensation catalyst (F) is carried out.
  • the kneading temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C.
  • the kneading conditions such as kneading time can be set as appropriate.
  • the kneading method can be performed by the same method as the above kneading method.
  • the silanol condensation catalyst (F) is included in the catalyst master batch and not the silane master batch. This is because when the silanol condensation catalyst (F) is contained in the silane masterbatch, the silane coupling agent (D) is condensed and melt mixing becomes difficult, and the desired shape cannot be obtained during extrusion molding. Because there is.
  • the silane masterbatch and the catalyst masterbatch are melt-kneaded in a coating apparatus while being heated, and covered with, for example, an extruded wire or fiber and formed into a desired shape (step b-2).
  • the silane master batch to be used the one obtained in (Step a) can be used (Step (b-3)).
  • melt-kneading there are resins whose melting point cannot be measured by DSC or the like such as elastomer, but at least a temperature at which either the polyolefin resin (A-1) or the organic peroxide (B) melts.
  • the carrier resin (E) needs to be melted in order to disperse the silanol condensation catalyst (F).
  • the kneading conditions such as kneading time can be set as appropriate.
  • the kneading method can be performed by the same method as the above kneading method.
  • step (b) is performed.
  • the molded product obtained in the step (b) is a mixture (uncrosslinked product) of a silane masterbatch and a silanol condensation catalyst (F), and contains at least the above-mentioned silane graft polymer.
  • a step (c) is performed in which the molded product is brought into contact with moisture to be crosslinked.
  • the process itself of the step (c) of bringing the molded article into contact with moisture and crosslinking can be carried out by a usual method.
  • the silane coupling agent (D) is hydrolyzed, and the silane coupling agent (D) is condensed with the silanol condensation catalyst (F) to form a crosslinked structure.
  • the condition of contacting with moisture proceeds only by storing at room temperature, but in order to further accelerate the crosslinking, it may be immersed in warm water, placed in a moist heat bath, or exposed to high temperature steam. Moreover, you may apply a pressure in order to permeate
  • the manufacturing method of the heat resistant resin composition of this invention is implemented, and the heat resistant resin composition of this invention is manufactured.
  • the polyolefin resin (A-1) of the resin composition (A) is condensed with the organic groups Y 11 , Y 12 and Y 13 of the silane coupling agent (D) after hydrolysis.
  • the polyolefin resins (A-1) are cross-linked with each other through the silanol bond. It can be confirmed that the polyolefin resin (A-1) is cross-linked with the polyolefin resin (A-1) through a silanol bond, for example, by heat deformation or hot set.
  • the polyolefin resins (A-1) are crosslinked with each other by the method.
  • the polyolefin resin (A-1) is bonded to the inorganic filler (C) via a silanol bond, and the mechanical strength and wear resistance are greatly improved.
  • the details of the reaction mechanism are not yet clear, but are considered as follows. That is, the polyolefin resin (A-1) of the resin composition (A) is grafted in the presence of the organic peroxide (B) when heated and kneaded with the inorganic filler (C) and the silane coupling agent (D). It crosslinks with the inorganic filler (C) through the reacted silane coupling agent (D). Only when a specific amount of the silane coupling agent (D) is blended with the resin composition (A), it becomes possible to blend a large amount of the inorganic filler (C) without impairing the extrusion processability during molding. It has both heat resistance and mechanical properties while ensuring high flame retardancy.
  • the details of the mechanism by which the inorganic filler (C) mixed with the silane coupling agent (D) acts on the polyolefin resin (A-1) are not yet known, it is considered as follows. That is, by mixing the silane coupling agent (D) and the inorganic filler (C), the silane coupling agent (D) is bonded to the surface of the inorganic filler (C) with an alkoxy group, and vinyl existing at the other end. It is physically bonded to the hole or surface of the inorganic filler (C) without being bonded to an uncrosslinked portion of the polyolefin resin (A-1) with an ethylenically unsaturated group such as a group or to the inorganic filler (C).
  • the silane coupling agent (D) When kneading is performed by adding a peroxide in this state, the silane coupling agent (D) hardly volatilizes, and the ethylenically unsaturated group which is a reactive site of the silane coupling agent (D) is present. It reacts with the polyolefin resin (A-1) of the resin composition (A) and causes a graft reaction. Further, carrier resin (E) is added to this, and when it comes into contact with moisture, the silane coupling agent (D) bonded to an uncrosslinked portion such as polyolefin resin (A-1) is hydrolyzed and silanol condensed to form polyolefin.
  • the resin series resins (A-1) are bonded to each other through the silane coupling agent (D) and crosslinked.
  • the heat resistance of the resin composition (also referred to as a crosslinked composition) and molded product obtained by this reaction is extremely high, and it becomes possible to obtain a resin composition and molded product that do not melt even at high temperatures.
  • the silane coupling agent (D) strongly bonded to the surface of the inorganic filler (C) in advance does not cause this hydrolysis reaction, and the bond with the inorganic filler (C) is maintained.
  • the bond between the polyolefin resin (A-1) and the inorganic filler (C) occurs, and the polyolefin resin (A-1) and the like are cross-linked via the inorganic filler (C).
  • the adhesion between the polyolefin resin (A-1) and the like and the inorganic filler (C) becomes strong, and a heat-resistant resin composition having good mechanical strength and wear resistance and hardly scratching is obtained.
  • the production method of the present invention includes, for example, heat-resistant flame-retardant insulated wires / heat-resistant flame-retardant cable coating materials, other heat-resistant and flame-retardant electric wire parts, flame-resistant and heat-resistant sheets, flame-resistant and heat-resistant films, and other various molded products having heat resistance,
  • These shapes can be formed by coating while being melt kneaded in an extrusion coating apparatus.
  • Such a molded article is a highly heat resistant high temperature non-melting cross-linking composition added with a large amount of inorganic filler, using a general-purpose extrusion coating apparatus without using a special machine such as an electron beam cross-linking machine, It can be produced by extrusion coating around the periphery, or around a conductor that is longitudinally or twisted with tensile strength fibers.
  • any conductor such as an annealed copper single wire or stranded wire can be used as the conductor.
  • the conductor may be tin-plated or an enamel-covered insulating layer.
  • the thickness of the insulating layer (the coating layer made of the heat resistant resin composition of the present invention) formed around the conductor is not particularly limited, but is usually about 0.15 mm to 5 mm.
  • Examples 1 to 81 and Comparative Examples 1 to 17 were produced using the components shown in Tables 1 to 5 with various specifications changed.
  • EV180 (trade name) is an ethylene / vinyl acetate copolymer VA content 33 mass% manufactured by Mitsui DuPont Chemical Co., Ltd.
  • V-9000 (trade name) is an ethylene-vinyl acetate copolymer manufactured by Mitsui DuPont Polychemical Co., Ltd.
  • VA content 41% by mass NUC6510 (trade name) is Dow ethylene ethyl acrylate resin
  • EA content 22% by mass KS240T (trade name) is a kernel (registered trademark) (low density polyethylene) manufactured by Nippon Polyethylene UE320 (trade name) is Novatec PE (linear low density polyethylene (PE)), Mitsubishi Oil Chemical PB222A (trade name) is Sun Allomer (trade name), Random Polypropylene, Sun Allomer Co., Ltd.
  • Evolution SP0540 (Product) Name) is metallocene LLDPE, manufactured by Prime Polymer Co., Ltd.
  • Septon 4077 (trade name) is a styrene-ethylene-ethylene-propylene-styrene copolymer (SEEPS, styrene elastomer), manufactured by Kuraray Co., Ltd., containing styrene components 30% Mitsui 3092EPM is ethylene-propylene-diene rubber (ethylene content 66%), Mitsui Chemicals Co., Ltd. EP11 is ethylene-propylene-diene rubber (EPDM), JSR Dyna Process Oil PW90 (trade name) is paraffinic oil, Idemitsu Kosan Co., Ltd. Admer XE070 (trade name) is maleic acid-modified polyethylene, manufactured by Mitsui Chemicals, Inc.
  • SEEPS styrene-ethylene-ethylene-propylene-styrene copolymer
  • Mitsui 3092EPM ethylene-propylene-diene rubber (ethylene content 66%)
  • Tokuseal U (trade name) is a wet silica (precipitated silica) manufactured by Tokuyama Corporation Crystallite 5X (trade name) is Tatsumori's crystalline silica Kisuma 5 (trade name) is Kyowa Chemical's untreated magnesium hydroxide Softon 1200 (trade name) is calcium carbonate made by Shiroishi Calcium GROMAX LL (trade name) is a calcined kaolin fire break 290 (trade name) manufactured by Takehara Chemical Industry Co., Ltd.
  • Zinc borate manufactured by Borax Corporation Alkanex ZHS (trade name) is zinc hydroxystannate manufactured by Mizusawa Chemical Co., Ltd.
  • Heidilite (registered trademark) H42M is an aluminum hydroxide MV talc (trade name) manufactured by Showa Denko Co., Ltd.
  • KBM1003 (trade name) is vinyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBE1003 (trade name) is vinyltriethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • Perhexa 25B (trade name) is 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (decomposition temperature 149 ° C.) manufactured by NOF Corporation.
  • ⁇ Silanol condensation catalyst (F)> ADK STAB OT-1 (trade name) is dioctyltin laurate ⁇ carrier resin (E)> manufactured by Asahi Denka Kogyo Co., Ltd. UE-320 and EV180
  • Irganox 1076 (trade name) is octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate manufactured by Nagase & Co.
  • Carrier resin (E) and silanol condensation catalyst (F) are separately mixed at a temperature of 180-190 ° C using a Banbury mixer in the mass part ratio shown in the column "III" in Tables 1 to 5.
  • a catalyst master batch was obtained by melt-kneading at a temperature of 180 to 190 ° C. (step (b-1)).
  • Heat deformation 1 was performed at a measurement temperature of 150 ° C. and a load of 3 N based on the conditions of JIS C 3005. In addition, 50% or less was set as the pass.
  • Heat deformation 2 was performed at a measurement temperature of 180 ° C. and a load of 3 N based on the conditions of UL1581. In addition, although 50% or less is preferable, this test was shown for reference.
  • Hot Set 1 After creating a tubular piece of electric wire and marking it with a length of 50 mm, attach a weight of 117 g in a constant temperature bath at 170 ° C., leave it for 15 minutes, and measure the length after leaving it. The elongation was determined. An elongation of 120% or less was accepted.
  • Hot Set 2 After creating a tubular piece of electric wire and marking it with a length of 50 mm, attach a 180 g weight in a constant temperature bath at 180 ° C., leave it for 15 minutes, and measure the length after leaving it. The elongation was determined. The elongation is preferably 120% or less, but this test is shown for reference.
  • Hot Set 3 After creating a tubular piece of electric wire and marking it with a length of 50 mm, attach a weight of 117 g in a constant temperature bath at 220 ° C., leave it for 15 minutes, and measure the length after leaving it. The elongation was determined. The elongation is preferably 120% or less, but this test is shown for reference.
  • Extrusion appearance 1 was observed when the electric wire was produced.
  • the appearance was good with a 25 mm extruder at a linear speed of 10 m, the appearance was good as “A”, the appearance was slightly bad as “B”, the appearance as remarkably bad as “C”, “ B ”or higher was regarded as acceptable at the product level.
  • Extrusion appearance 2 observed the extrusion appearance when manufacturing the electric wire. When the 65 mm extruder was used to produce a line speed of 80 m, the appearance was good as “A”, the appearance was slightly bad as “B”, and the appearance was acceptable but bad as “C”. . This test is shown for reference.
  • the elongation and tensile strength of the insulator were produced in the same manner as in Example 21 and Comparative Example 17, and a wire piece was produced and tested based on JIS C3005.
  • the tensile strength is 10 MPa or more and the elongation is 100% or more, but it is not always necessary to pass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une composition de résine résistant à la chaleur, qui est caractérisée en ce qu'il comprend (a) une étape dans laquelle un mélange maître à base de silane est préparé par fusion et malaxage d'une composition de résine qui contient une résine de polyoléfine, 0,01-0,6 partie en masse d'un peroxyde organique et 10-400 parties en masse d'une charge inorganique pour 100 parties en masse de la composition de résine, et 0,5-4,0 parties en masse d'un agent de couplage de type silane pour 100 parties en masse de la charge inorganique à une température non inférieure à la température de décomposition du peroxyde organique, sans y incorporer par mélange un catalyseur de condensation de silanol, (b) une étape dans laquelle le mélange maître à base de silane est fondu et malaxé avec un catalyseur de condensation de silanol, puis le mélange résultant est moulé et (c) une étape dans laquelle le produit moulé à l'étape (b) est réticulé en étant amené en contact avec une teneur d'eau. L'invention concerne également une composition de résine résistant à la chaleur qui est obtenue par ce procédé de fabrication d'une composition de résine résistant à la chaleur ; et un article moulé qui contient un produit moulé de cette composition de résine résistant à la chaleur.
PCT/JP2013/059504 2012-03-30 2013-03-29 Procédé de fabrication d'une composition de résine résistant à la chaleur, composition de résine résistant à la chaleur obtenue par le procédé de fabrication d'une composition de résine résistant à la chaleur et article moulé à l'aide de la composition de résine résistant à la chaleur WO2013147148A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014508089A JP6219268B2 (ja) 2012-03-30 2013-03-29 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品
CN201380018536.XA CN104204048B (zh) 2012-03-30 2013-03-29 耐热性树脂组合物的制造方法、以及通过该制造方法所制造的耐热性树脂组合物和使用了该耐热性树脂组合物的成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081354 2012-03-30
JP2012-081354 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147148A1 true WO2013147148A1 (fr) 2013-10-03

Family

ID=49260390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059504 WO2013147148A1 (fr) 2012-03-30 2013-03-29 Procédé de fabrication d'une composition de résine résistant à la chaleur, composition de résine résistant à la chaleur obtenue par le procédé de fabrication d'une composition de résine résistant à la chaleur et article moulé à l'aide de la composition de résine résistant à la chaleur

Country Status (3)

Country Link
JP (1) JP6219268B2 (fr)
CN (1) CN104204048B (fr)
WO (1) WO2013147148A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084048A1 (fr) * 2012-11-30 2014-06-05 古河電気工業株式会社 Procédé de production d'un corps moulé à l'aide d'une composition de résine thermorésistante, réticulable par silane
WO2014084047A1 (fr) * 2012-11-30 2014-06-05 古河電気工業株式会社 Procédé de production d'un corps moulé à l'aide d'une composition de résine réticulable par un silane résistante à la chaleur
WO2014188925A1 (fr) * 2013-05-20 2014-11-27 古河電気工業株式会社 Article moule en resine reticulable par silane resistant a la chaleur, composition de resine reticulable par silane resistante a la chaleur et procede de fabrication s'y rapportant, produit resistant a la chaleur utilisant un article moule en resine reticulable par silane resistant a la chaleur, ainsi que matiere charge premelangee a base d'agent de couplage silane et matiere de charge la contenant
WO2015002263A1 (fr) * 2013-07-03 2015-01-08 古河電気工業株式会社 Article moulé en résine silane réticulée résistant à la chaleur et son procédé de fabrication, et produit résistant à la chaleur équipé de l'article moulé en résine silane réticulée résistant à la chaleur
WO2015046476A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Corps moulé de résine réticulable au silane thermorésistant et son procédé de fabrication, composition de résine réticulable au silane thermorésistante et son procédé de fabrication, mélange maître de silane ainsi qu'article thermorésistant mettant en oeuvre une résine réticulable au silane thermorésistante
WO2015046478A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Article moulé en résine réticulée de silane résistant à la chaleur et son procédé de production, composition de résine réticulée de silane résistante à la chaleur et son procédé de production, mélange maître de silane, et produit résistant à la chaleur utilisant l'article moulé en résine réticulée de silane résistant à la chaleur
WO2015046477A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Article moulé en résine réticulée par silane, résistant à la chaleur et son procédé de production, composition de résine réticulable par silane, résistante à la chaleur et son procédé de production, mélange maître de silane, et produit résistant à la chaleur utilisant l'article moulé en résine réticulée par silane, résistant à la chaleur
CN105006286A (zh) * 2015-07-15 2015-10-28 安徽鸿海电缆有限公司 一种高阻燃耐电耐老化电缆
CN105175934A (zh) * 2015-07-15 2015-12-23 安徽鸿海电缆有限公司 一种高强度耐磨防水电缆
WO2016056635A1 (fr) * 2014-10-08 2016-04-14 古河電気工業株式会社 Corps moulé en résine réticulée ainsi que composition de résine réticulable, procédé de fabrication de ceux-ci, mélange monté de silane, et article moulé
WO2016056634A1 (fr) * 2014-10-08 2016-04-14 古河電気工業株式会社 Corps moulé en résine réticulée incombustible ainsi que composition de résine réticulable incombustible, procédé de fabrication de ceux-ci, mélange monté de silane incombustible, et article moulé
JP2016074853A (ja) * 2014-10-08 2016-05-12 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2016121203A (ja) * 2014-12-24 2016-07-07 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体、架橋性樹脂成形体、耐熱性シラン架橋性樹脂組成物及びそれらの製造方法、シランマスターバッチ、並びに耐熱性製品
JP2016148002A (ja) * 2015-02-13 2016-08-18 古河電気工業株式会社 ポリオレフィン架橋発泡成形体及びポリオレフィン架橋性発泡成形体とそれらの製造方法、並びに、ポリオレフィン架橋発泡製品
JP2016160380A (ja) * 2015-03-03 2016-09-05 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2016166349A (ja) * 2015-03-03 2016-09-15 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2016188307A (ja) * 2015-03-30 2016-11-04 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JPWO2015030055A1 (ja) * 2013-08-27 2017-03-02 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2017138641A1 (fr) * 2016-02-12 2017-08-17 古河電気工業株式会社 Corps moulé en résine réticulée résistant à la chaleur contenant du chlore, son procédé de production, mélange maître ded silane, mélange maître, corps moulé composé de celui-ci et produit résistant à la chaleur
JP2017141384A (ja) * 2016-02-12 2017-08-17 古河電気工業株式会社 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP2017141383A (ja) * 2016-02-12 2017-08-17 古河電気工業株式会社 耐熱性架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
WO2017154585A1 (fr) * 2016-03-07 2017-09-14 株式会社フジクラ Composition de résine réticulable au silane et procédé de production de câble la comprenant
JP2017179236A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP2017179235A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、難燃性成形品
WO2018070491A1 (fr) * 2016-10-12 2018-04-19 リケンテクノス株式会社 Composition élastomère, composition élastomère réticulable à l'eau, et procédé de production de composition élastomère
JP2018083937A (ja) * 2016-11-14 2018-05-31 Mcppイノベーション合同会社 シラン架橋ポリ塩化ビニル樹脂及びその成形品の製造方法
JP2018111834A (ja) * 2018-04-10 2018-07-19 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2020143184A (ja) * 2019-03-04 2020-09-10 古河電気工業株式会社 シラン架橋樹脂成形体の製造方法及びシラン架橋樹脂成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269763B1 (fr) * 2016-07-12 2020-09-09 Hitachi-GE Nuclear Energy, Ltd. Composition de résine de polyéthylène et matériau de tuyau, tuyau et joint comprenant la composition
WO2019240475A1 (fr) 2018-06-12 2019-12-19 주식회사 엘지화학 Séparateur de polyoléfine réticulée et son procédé de fabrication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108462A (en) * 1976-03-09 1977-09-10 Showa Electric Wire & Cable Co Method of producing bridged polyolefin formed article
JPS55129441A (en) * 1979-03-28 1980-10-07 Furukawa Electric Co Ltd:The Method of crosslinking poly-alpha-olefin resin
JPS57172925A (en) * 1981-04-16 1982-10-25 Shin Etsu Chem Co Ltd High-filling of organic polymer with inorganic filler
JPS61204245A (ja) * 1985-03-07 1986-09-10 Toa Nenryo Kogyo Kk ポリオレフイン組成物
US5589526A (en) * 1994-10-19 1996-12-31 Peroxid-Chemie Gmbh Master batch compositions containing organic peroxides
JP2000133048A (ja) * 1998-10-30 2000-05-12 Yazaki Corp 耐トラッキング性絶縁電線、及び耐トラッキング性絶縁ケーブル
JP2010180260A (ja) * 2009-02-03 2010-08-19 Nok Corp Epdm組成物
JP2012177028A (ja) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp 難燃性ポリオレフィン樹脂組成物およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129551A (en) * 1979-03-28 1980-10-07 Taku Yamada Bed for wall
JPS5749109A (en) * 1980-09-09 1982-03-20 Fujikura Ltd Method of producing crosslinked polyolefin rubber insulated wire
JPS58129044A (ja) * 1982-01-28 1983-08-01 Showa Electric Wire & Cable Co Ltd 難燃架橋ポリオレフイン組成物の製造方法
JPH02185549A (ja) * 1989-01-12 1990-07-19 Showa Electric Wire & Cable Co Ltd シラン架橋ポリオレフィンの製造方法
JP3486105B2 (ja) * 1998-06-17 2004-01-13 矢崎総業株式会社 難燃架橋オレフィン系樹脂組成物、及び難燃架橋オレフィン系樹脂の製造方法
JP2001101928A (ja) * 1999-09-29 2001-04-13 Yazaki Corp 難燃性樹脂組成物
JP4050570B2 (ja) * 2001-08-13 2008-02-20 リケンテクノス株式会社 難燃性熱可塑性エラストマー組成物
JP3989306B2 (ja) * 2002-06-11 2007-10-10 日本ユニカー株式会社 耐トラッキング性と耐候性に優れた水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブル
CN100513466C (zh) * 2006-09-19 2009-07-15 上海电缆研究所 硅烷交联低烟无卤阻燃聚烯烃电缆料及其生产工艺
JP5343327B2 (ja) * 2007-05-31 2013-11-13 株式会社オートネットワーク技術研究所 難燃性シラン架橋オレフィン系樹脂の製造方法および絶縁電線ならびに絶縁電線の製造方法
WO2009008537A1 (fr) * 2007-07-12 2009-01-15 Autonetworks Technologies, Ltd. Composition de résine d'oléfine réticulée par silane, retardatrice de flamme, fil conducteur isolé, et procédé de fabrication d'une résine d'oléfine réticulée par un silane, retardatrice de flamme
CN101633754B (zh) * 2009-05-22 2013-03-20 上海凯波特种电缆料厂有限公司 耐油型硅烷自然交联低烟无卤阻燃聚烯烃电缆料及其制备方法
JP5598843B2 (ja) * 2010-03-17 2014-10-01 古河電気工業株式会社 多層電線およびその製造方法
JP5896626B2 (ja) * 2011-06-08 2016-03-30 リケンテクノス株式会社 シラン架橋性難燃ポリオレフィンとシラノール触媒樹脂組成物からなる電線成形体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108462A (en) * 1976-03-09 1977-09-10 Showa Electric Wire & Cable Co Method of producing bridged polyolefin formed article
JPS55129441A (en) * 1979-03-28 1980-10-07 Furukawa Electric Co Ltd:The Method of crosslinking poly-alpha-olefin resin
JPS57172925A (en) * 1981-04-16 1982-10-25 Shin Etsu Chem Co Ltd High-filling of organic polymer with inorganic filler
JPS61204245A (ja) * 1985-03-07 1986-09-10 Toa Nenryo Kogyo Kk ポリオレフイン組成物
US5589526A (en) * 1994-10-19 1996-12-31 Peroxid-Chemie Gmbh Master batch compositions containing organic peroxides
JP2000133048A (ja) * 1998-10-30 2000-05-12 Yazaki Corp 耐トラッキング性絶縁電線、及び耐トラッキング性絶縁ケーブル
JP2010180260A (ja) * 2009-02-03 2010-08-19 Nok Corp Epdm組成物
JP2012177028A (ja) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp 難燃性ポリオレフィン樹脂組成物およびその製造方法

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084047A1 (fr) * 2012-11-30 2014-06-05 古河電気工業株式会社 Procédé de production d'un corps moulé à l'aide d'une composition de résine réticulable par un silane résistante à la chaleur
WO2014084048A1 (fr) * 2012-11-30 2014-06-05 古河電気工業株式会社 Procédé de production d'un corps moulé à l'aide d'une composition de résine thermorésistante, réticulable par silane
WO2014188925A1 (fr) * 2013-05-20 2014-11-27 古河電気工業株式会社 Article moule en resine reticulable par silane resistant a la chaleur, composition de resine reticulable par silane resistante a la chaleur et procede de fabrication s'y rapportant, produit resistant a la chaleur utilisant un article moule en resine reticulable par silane resistant a la chaleur, ainsi que matiere charge premelangee a base d'agent de couplage silane et matiere de charge la contenant
WO2015002263A1 (fr) * 2013-07-03 2015-01-08 古河電気工業株式会社 Article moulé en résine silane réticulée résistant à la chaleur et son procédé de fabrication, et produit résistant à la chaleur équipé de l'article moulé en résine silane réticulée résistant à la chaleur
JPWO2015030055A1 (ja) * 2013-08-27 2017-03-02 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015046477A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Article moulé en résine réticulée par silane, résistant à la chaleur et son procédé de production, composition de résine réticulable par silane, résistante à la chaleur et son procédé de production, mélange maître de silane, et produit résistant à la chaleur utilisant l'article moulé en résine réticulée par silane, résistant à la chaleur
WO2015046478A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Article moulé en résine réticulée de silane résistant à la chaleur et son procédé de production, composition de résine réticulée de silane résistante à la chaleur et son procédé de production, mélange maître de silane, et produit résistant à la chaleur utilisant l'article moulé en résine réticulée de silane résistant à la chaleur
US10438718B2 (en) 2013-09-27 2019-10-08 Furukawa Electric Co., Ltd. Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
US10304584B2 (en) 2013-09-27 2019-05-28 Furukawa Electric Co., Ltd. Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
US10155854B2 (en) 2013-09-27 2018-12-18 Furukawa Electric Co., Ltd. Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
US10083776B2 (en) 2013-09-27 2018-09-25 Furukawa Electric Co., Ltd. Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
WO2015046476A1 (fr) * 2013-09-27 2015-04-02 古河電気工業株式会社 Corps moulé de résine réticulable au silane thermorésistant et son procédé de fabrication, composition de résine réticulable au silane thermorésistante et son procédé de fabrication, mélange maître de silane ainsi qu'article thermorésistant mettant en oeuvre une résine réticulable au silane thermorésistante
JPWO2015046477A1 (ja) * 2013-09-27 2017-03-09 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JPWO2015046476A1 (ja) * 2013-09-27 2017-03-09 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
US20170210862A1 (en) * 2014-10-08 2017-07-27 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
US10287405B2 (en) 2014-10-08 2019-05-14 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
WO2016056634A1 (fr) * 2014-10-08 2016-04-14 古河電気工業株式会社 Corps moulé en résine réticulée incombustible ainsi que composition de résine réticulable incombustible, procédé de fabrication de ceux-ci, mélange monté de silane incombustible, et article moulé
WO2016056635A1 (fr) * 2014-10-08 2016-04-14 古河電気工業株式会社 Corps moulé en résine réticulée ainsi que composition de résine réticulable, procédé de fabrication de ceux-ci, mélange monté de silane, et article moulé
US10040913B2 (en) 2014-10-08 2018-08-07 Furukawa Electric Co., Ltd. Crosslinked resin molded body, crosslinkable resin composition, method of producing these, silane master batch, and molded article
JPWO2016056634A1 (ja) * 2014-10-08 2017-07-27 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
US20170210863A1 (en) * 2014-10-08 2017-07-27 Furukawa Electric Co., Ltd. Flame-retardant crosslinked resin molded body, flame-retardant crosslinkable resin composition, method of producing these, flame-retardant silane master batch, and molded article
JP2016074853A (ja) * 2014-10-08 2016-05-12 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JPWO2016056635A1 (ja) * 2014-10-08 2017-09-07 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2016121203A (ja) * 2014-12-24 2016-07-07 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体、架橋性樹脂成形体、耐熱性シラン架橋性樹脂組成物及びそれらの製造方法、シランマスターバッチ、並びに耐熱性製品
JP2016148002A (ja) * 2015-02-13 2016-08-18 古河電気工業株式会社 ポリオレフィン架橋発泡成形体及びポリオレフィン架橋性発泡成形体とそれらの製造方法、並びに、ポリオレフィン架橋発泡製品
JP2016166349A (ja) * 2015-03-03 2016-09-15 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2016160380A (ja) * 2015-03-03 2016-09-05 古河電気工業株式会社 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP2016188307A (ja) * 2015-03-30 2016-11-04 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
CN105175934A (zh) * 2015-07-15 2015-12-23 安徽鸿海电缆有限公司 一种高强度耐磨防水电缆
CN105006286A (zh) * 2015-07-15 2015-10-28 安徽鸿海电缆有限公司 一种高阻燃耐电耐老化电缆
WO2017138641A1 (fr) * 2016-02-12 2017-08-17 古河電気工業株式会社 Corps moulé en résine réticulée résistant à la chaleur contenant du chlore, son procédé de production, mélange maître ded silane, mélange maître, corps moulé composé de celui-ci et produit résistant à la chaleur
WO2017138640A1 (fr) * 2016-02-12 2017-08-17 古河電気工業株式会社 Corps moulé thermorésistant en résine réticulée, son procédé de production, mélange maître de silane, mélange de mélange maître, corps moulé à base de celui-ci et produit résistant à la chaleur
US11242453B2 (en) 2016-02-12 2022-02-08 Furukawa Electric Co., Ltd. Heat-resistant chlorine-containing crosslinked resin formed body and method for producing the same, silane master batch, master batch mixture and formed body thereof, and heat-resistant product
US10703894B2 (en) 2016-02-12 2020-07-07 Furukawa Electric Co., Ltd. Heat-resistant crosslinked resin formed body and method for producing the same, silane master batch, master batch mixture and formed body thereof, and heat-resistant product
JP2017141384A (ja) * 2016-02-12 2017-08-17 古河電気工業株式会社 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP2017141383A (ja) * 2016-02-12 2017-08-17 古河電気工業株式会社 耐熱性架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP6204632B1 (ja) * 2016-03-07 2017-09-27 株式会社フジクラ シラン架橋性樹脂組成物、及び、これを用いたケーブルの製造方法
WO2017154585A1 (fr) * 2016-03-07 2017-09-14 株式会社フジクラ Composition de résine réticulable au silane et procédé de production de câble la comprenant
JP2017179236A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 耐熱性塩素含有架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP2017179235A (ja) * 2016-03-31 2017-10-05 古河電気工業株式会社 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、難燃性成形品
JPWO2018070491A1 (ja) * 2016-10-12 2019-07-25 リケンテクノス株式会社 エラストマー組成物、水架橋性エラストマー組成物、及びその製造方法
WO2018070491A1 (fr) * 2016-10-12 2018-04-19 リケンテクノス株式会社 Composition élastomère, composition élastomère réticulable à l'eau, et procédé de production de composition élastomère
JP7499006B2 (ja) 2016-10-12 2024-06-13 リケンテクノス株式会社 エラストマー組成物、水架橋性エラストマー組成物、及びその製造方法
JP2018083937A (ja) * 2016-11-14 2018-05-31 Mcppイノベーション合同会社 シラン架橋ポリ塩化ビニル樹脂及びその成形品の製造方法
JP2018111834A (ja) * 2018-04-10 2018-07-19 古河電気工業株式会社 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2020143184A (ja) * 2019-03-04 2020-09-10 古河電気工業株式会社 シラン架橋樹脂成形体の製造方法及びシラン架橋樹脂成形体
JP7097318B2 (ja) 2019-03-04 2022-07-07 古河電気工業株式会社 シラン架橋樹脂成形体の製造方法

Also Published As

Publication number Publication date
CN104204048B (zh) 2018-03-16
JPWO2013147148A1 (ja) 2015-12-14
JP6219268B2 (ja) 2017-10-25
CN104204048A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6219268B2 (ja) 耐熱性樹脂組成物の製造方法、並びに、その製造方法で製造された耐熱性樹脂組成物及び該耐熱性樹脂組成物を用いた成形品
JP6767438B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
US10155854B2 (en) Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body
JP6265875B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6329948B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6523405B2 (ja) 耐熱性シラン架橋性樹脂組成物及びその製造方法、耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6452610B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6265876B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015046478A1 (fr) Article moulé en résine réticulée de silane résistant à la chaleur et son procédé de production, composition de résine réticulée de silane résistante à la chaleur et son procédé de production, mélange maître de silane, et produit résistant à la chaleur utilisant l'article moulé en résine réticulée de silane résistant à la chaleur
JP2019019327A (ja) シランカップリング剤予備混合フィラー及びそれを含むフィラー
JP2022113710A (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6339720B2 (ja) 難燃性架橋組成物
JPWO2014084048A1 (ja) 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
JP6462606B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JP6567311B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JP2023107031A (ja) 耐熱性シラン架橋樹脂成形体、シラン架橋性樹脂組成物及びそれらの製造方法、並びに配線材
JP2016188306A (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769194

Country of ref document: EP

Kind code of ref document: A1