WO2013115298A1 - 流量制御装置及びプログラム - Google Patents

流量制御装置及びプログラム Download PDF

Info

Publication number
WO2013115298A1
WO2013115298A1 PCT/JP2013/052146 JP2013052146W WO2013115298A1 WO 2013115298 A1 WO2013115298 A1 WO 2013115298A1 JP 2013052146 W JP2013052146 W JP 2013052146W WO 2013115298 A1 WO2013115298 A1 WO 2013115298A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
signal
piezoelectric element
voltage
valve
Prior art date
Application number
PCT/JP2013/052146
Other languages
English (en)
French (fr)
Inventor
大槻 治明
真志 園田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2013556490A priority Critical patent/JP5867517B2/ja
Priority to US14/376,065 priority patent/US9797520B2/en
Priority to KR1020147024492A priority patent/KR101943684B1/ko
Priority to CN201380017191.6A priority patent/CN104220946B/zh
Publication of WO2013115298A1 publication Critical patent/WO2013115298A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/123Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm the seat being formed on the bottom of the fluid line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials

Definitions

  • the present invention relates to a flow control device and program for controlling the flow rate of fluid.
  • a high-speed flow response corresponding to a change in flow setting value is required for a flow control device used in the manufacturing process of semiconductors, liquid crystal panels, and the like. Therefore, there is a technique of changing the flow rate promptly with respect to the change of the flow rate setting value (see, for example, Patent Documents 1, 2, and 3).
  • the piezoelectric element has large electrical capacity. Therefore, the displacement response of the piezo actuator to the change of the flow rate setting value is slow, and as a result, the response of the flow rate change is also delayed.
  • the technique according to Patent Document 1 is a technique for adjusting a parameter for PI control of the flow rate, and can not shorten the flow rate response due to the displacement response delay of the piezoelectric actuator.
  • an initial voltage slightly lower than the voltage at which the fluid starts to flow is applied to the piezoelectric element, and thereafter, transition is made to velocity type PID control. Therefore, in order to speed up the response, it is conceivable to increase the initial voltage according to Patent Document 2. However, in such a case, an overshoot occurs and the product quality is degraded.
  • the flow control device according to Patent Document 3 compensates for the phase shift in the operation amount of the opening of the valve by digital calculation, but the response is not different from the response in the conventional flow control device.
  • An object of the present invention is to provide a flow control device and program capable of realizing high-speed response control without overshoot.
  • the flow rate control device is connected to a valve body that constitutes a flow rate adjustment valve, and by operating the valve body, a piezoelectric element that adjusts the flow rate and a voltage are applied to the piezoelectric element.
  • the output means corresponds to a voltage value different from a target voltage value corresponding to the changed target flow rate when the target flow rate received by the receiving means changes.
  • a signal is transiently output, and then a signal corresponding to a voltage change which converges to the target voltage value is output.
  • the drive circuit includes output means for outputting a signal corresponding to the voltage applied to the piezoelectric element to the drive circuit.
  • the output means transiently outputs a signal corresponding to a voltage value different from the target voltage value corresponding to the changed target flow rate when the received target flow rate changes.
  • the output means then outputs a signal corresponding to the voltage change which converges to the changed target voltage value.
  • the output means changes the target flow rate when the flow rate adjusting valve is not in the closed state.
  • a signal corresponding to a voltage change showing a larger amplitude with respect to a target voltage value corresponding to the changed target flow rate is output to the drive circuit than when the voltage V changes.
  • the output means when the target flow rate received when the flow rate adjustment valve is closed changes, the output means is more than when the target flow rate received when the flow rate adjustment valve is not closed changes A signal corresponding to a voltage change exhibiting a larger amplitude than the target voltage value corresponding to the changed target flow rate is output to the drive circuit.
  • the output means is a drive circuit that responds to a spike-like voltage change when the target flow rate received by the receiving means changes when the flow rate adjustment valve is in a closed state. It is characterized in that it is output to.
  • the output means outputs a signal corresponding to a spike-like voltage change to the drive circuit when the received target flow rate changes when the flow rate adjustment valve is in the closed state.
  • the output means when the target flow rate received by the receiving means changes when the flow rate adjustment valve is in the closed state, the output means has a target voltage value corresponding to the changed target flow rate. A signal corresponding to a voltage change which rises stepwise to a high voltage value is outputted, and then a signal corresponding to the voltage change converged to the target voltage value is outputted to the drive circuit.
  • the output means quickly rises in a step-like manner toward a voltage higher than the voltage corresponding to the target flow rate when the received target flow rate changes when the flow rate adjustment valve is closed.
  • a signal corresponding to the voltage change is output to the drive circuit.
  • the flow rate control device is connected to detection means for detecting the flow rate of fluid flowing through the flow path, and a valve body constituting a flow rate adjustment valve for opening and closing the flow path, and operating the valve body.
  • a control means for controlling the flow rate through the drive circuit and the piezoelectric element by outputting a signal corresponding to the voltage applied to the piezoelectric element to the drive circuit based on the deviation of the flow rate detected by the means;
  • the control means generates generation means for generating a signal corresponding to the deviation, a numerical value concerning the electrical characteristic of the piezoelectric element, and a constant according to the response characteristic of the piezoelectric element
  • the uncontrolled element, and a compensating means for compensating a signal the generating means has
  • control means In the flow rate control device according to the present application, the control means generates a signal corresponding to the deviation between the received target flow rate and the detected flow rate.
  • the compensation means included in the control means compensates the generated signal by the control element including a numerical value related to the electrical characteristics of the piezoelectric element and a constant according to the response characteristic of the piezoelectric element.
  • the control element includes a first transfer function including a gain relating to an electrical characteristic of the piezoelectric element, a second transfer function including a constant according to a response characteristic of the piezoelectric element, and the gain And.
  • the control element related to the compensation means has a first transfer function and a second transfer function.
  • the first transfer function includes a gain related to the electrical characteristics of the piezoelectric element.
  • the second transfer function includes a gain related to the electrical characteristic of the piezoelectric element and a constant corresponding to the response characteristic of the piezoelectric element.
  • the flow rate control device is characterized in that the first and second transfer functions include a gain related to an electrical characteristic of the drive circuit.
  • the first transfer function and the second transfer function include gains relating to the electrical characteristics of the drive circuit.
  • the flow rate control device is characterized in that the control element relates to a response from when a signal is inputted from the control means to the drive circuit until the piezoelectric element operates the valve body.
  • control element related to the compensation means relates to the response from when the control means inputs a signal to the drive circuit until the piezoelectric element operates the valve body.
  • a voltage to be applied to the piezoelectric element to the drive circuit is a voltage from which the valve opening degree of the flow rate adjustment valve becomes zero.
  • the flow control valve is further closed in the direction to close it by a predetermined voltage Vc, and the compensation means generates the target flow rate received by the reception means when the flow control valve is in a closed state.
  • a signal generated by superimposing the Vc on a signal generated by the means is compensated.
  • the control means causes the drive circuit to apply a voltage to be applied to the piezoelectric element when closing the flow rate control valve from a voltage at which the valve opening degree of the flow rate adjustment valve becomes zero. Furthermore, it is arranged to differ by a predetermined voltage Vc in the closing direction.
  • the compensating means superimposes a predetermined voltage Vc on the generated signal when the received target flow rate changes when the flow rate adjustment valve is closed.
  • the drive circuit includes an output unit that outputs a signal corresponding to a voltage applied to the piezoelectric element to the control unit, and the control unit is based on the signal output by the output unit.
  • the signal generation means for generating a feedback signal for adjusting the response characteristic of the piezoelectric element, and the compensation means is a signal obtained by superimposing the Vc on the signal generated by the generation means and the signal generation means It is characterized in that the generated feedback signal is compensated.
  • the drive circuit outputs a signal corresponding to the voltage applied to the piezoelectric element to the control means.
  • the control means generates a feedback signal for adjusting the response characteristic of the piezoelectric element based on the signal output from the drive circuit.
  • the compensation means compensates for a signal obtained by superimposing a predetermined voltage Vc on the generated signal and the generated feedback signal.
  • the flow rate control device comprises conversion means for converting a signal corresponding to the Vc based on the second transfer function, the signal generation means converting the signal output by the output means and the conversion means It is characterized in that the feedback signal is generated by compensating the signal which
  • the conversion means converts the signal corresponding to the predetermined voltage Vc based on the second transfer function.
  • the flow rate control device generates a feedback signal for adjusting the response characteristic of the piezoelectric element by compensating for the signal output from the drive circuit and the signal converted by the conversion means.
  • the flow rate control device comprises a relaxation means for alleviating a change in the Vc, and the compensation means is configured to change the target flow rate received by the reception means when the flow rate adjustment valve is in a closed state. It is characterized in that a signal generated by superimposing Vc relaxed by the relaxation means on a signal generated by the generation means is compensated.
  • the voltage applied to the piezoelectric element to the drive circuit is determined in the direction to further close the flow control valve from the voltage at which the valve opening of the flow control valve becomes zero. It differs only by the voltage Vc.
  • the flow control device mitigates this Vc.
  • the compensating means superposes the relaxed Vc on the generated signal when the received target flow rate changes when the flow rate adjustment valve is in the closed state.
  • the flow control device comprises a relaxation means for mitigating the change of the Vc
  • the conversion means is adapted to convert a signal corresponding to Vc relaxed by the relaxation means
  • the compensation means comprises the flow rate
  • the voltage applied to the piezoelectric element to the drive circuit is determined in the direction to further close the flow control valve from the voltage at which the valve opening of the flow control valve becomes zero. It differs only by the voltage Vc.
  • the flow control device mitigates this Vc.
  • the conversion means converts the signal corresponding to the relaxed Vc based on the second transfer function.
  • the flow rate control device generates a feedback signal for adjusting the response characteristic of the piezoelectric element by compensating the signal output from the drive circuit and the signal obtained by converting the signal corresponding to Vc reduced by the conversion means.
  • the compensation means compensates for the signal obtained by superposing the relaxed Vc on the generated signal and the generated feedback signal.
  • the flow rate control device is characterized in that the piezoelectric element is a laminated piezoelectric element.
  • the piezoelectric element is a laminated piezoelectric element.
  • the flow rate adjustment valve includes a valve port provided in the flow path, and the valve body is elastically deformed by pressure from the piezoelectric element, thereby surrounding the valve port It is characterized in that it is a plate-like diaphragm that can be seated on the seat.
  • the valve body is a plate-like diaphragm.
  • the diaphragm is elastically deformed by the pressure from the piezoelectric element, so that the diaphragm is seated around a valve port provided in the flow path through which the fluid flows.
  • a program according to the present invention is connected to detection means for detecting a flow rate, and a valve body constituting a flow rate adjustment valve, and a piezoelectric element for adjusting the flow rate by operating the valve body, and a voltage to the piezoelectric element
  • the target flow rate received by the receiving means and the deviation of the flow rate detected by the detecting means in a computer provided in the flow control device including the drive circuit for driving the piezoelectric element by applying Based on the deviation in the program for executing the process of controlling the flow rate through the drive circuit and the piezoelectric element by outputting a signal corresponding to the voltage applied to the piezoelectric element to the drive circuit based on To generate a signal to be output to the drive circuit, and based on a numerical value related to the electrical characteristic of the piezoelectric element and a constant according to the response characteristic of the piezoelectric element Characterized in that to execute a process for performing compensation calculation according to the generated signal to the computer.
  • the computer included in the flow control device is caused to execute the following processing.
  • a signal to be output to the drive circuit is generated based on the deviation between the target flow rate received by the flow rate control device and the detected flow rate.
  • the compensation calculation concerning the generated signal is executed based on the numerical value concerning the electrical characteristic of the piezoelectric element and the constant according to the response characteristic of the piezoelectric element.
  • the process of executing the compensation calculation includes: a first transfer function including a gain related to an electrical characteristic of the piezoelectric element; a constant corresponding to a response characteristic of the piezoelectric element; It is characterized in that the compensation calculation concerning the generated signal is executed by the transfer function consisting of the ratio of the functions.
  • the first transfer function includes the gain relating to the electrical characteristic of the piezoelectric element.
  • the second transfer function includes a gain related to the electrical characteristic of the piezoelectric element and a constant corresponding to the response characteristic of the piezoelectric element.
  • the program causes the computer to execute a compensation calculation for the generated signal by means of a transfer function consisting of the ratio of the first transfer function to the second transfer function.
  • the program according to the present invention is characterized in that, when the target flow rate received by the receiving means changes from less than a predetermined value to a predetermined value or more, a signal corresponding to a predetermined voltage is added to the signal generated by the process of generating the signal. I assume.
  • high-speed response control can be realized without overshoot.
  • the flow control device is a flow control device used in the manufacture of semiconductors, optical fibers, solar cells, liquid crystal panels, organic EL (Electro Luminescence) displays, LEDs (Light Emitting Diodes), foods, cosmetics, medicines, etc. It is.
  • the flow rate control device may be a device that controls the mass flow rate of fluid or a device that controls the volumetric flow rate of fluid. In the following, the embodiment will be described by taking a flow control device (mass flow controller) that controls the mass flow rate of the gas fluid as an example.
  • the present invention is not limited to the following embodiments.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of the flow control device 1.
  • the flow control device 1 is connected to an external host computer H that controls the entire manufacturing process of the product.
  • the flow rate control device 1 receives from the host computer H a flow rate setting signal Ssp indicating the flow rate of the gas to be supplied to the product manufacturing device by the flow rate control device 1.
  • the flow control device 1 outputs to the host computer H a flow rate output signal Sgout indicating the flow rate of the currently flowing gas.
  • the flow control device 1 includes a flow path unit (flow path) 2, a sensor unit (detection means) 3, a control unit (control means, computer) 4, a valve drive circuit (drive circuit, output means) 5 and a valve unit (flow rate adjustment Valve) 6 included.
  • the sensor unit 3 detects the flow rate of the gas taken in by the flow passage unit 2.
  • the control unit 4 compares the flow rate value of the gas detected by the sensor unit 3 with the flow rate setting value indicated by the flow rate setting signal Ssp, and the output signal Sout so that the actual flow rate value becomes the set flow rate value (target flow rate value). Are output to the valve drive circuit 5.
  • the valve drive circuit 5 receives the output signal Sout, and outputs a valve drive signal Spzt for driving the valve unit 6 to the valve unit 6 based on the input output signal Sout.
  • the valve unit 6 receives the valve drive signal Spzt, and adjusts the flow rate of the gas flowing through the flow passage unit 2 based on the input valve drive signal Spzt.
  • the control unit 4 controls the flow rate of the gas flowing through the flow path unit 2 by performing feedback control of the valve unit 6 based on the flow rate setting value and the flow rate detected by the sensor unit 3.
  • the flow passage portion 2 is a tubular gas passage formed of, for example, stainless steel.
  • a gas pipe G for supplying a gas to the flow passage 2 is connected to the upstream side of the flow passage 2.
  • a gas pipe G for supplying a gas to a product manufacturing apparatus is connected to the downstream side of the flow passage 2.
  • the sensor unit 3 includes a bypass group 31, a sensor tube 32, coils 31 R and 32 R, a sensor circuit 33, and a pressure detection unit 34.
  • the bypass group 31 includes a plurality of bundled bypass pipes, and is provided on the upstream side of the flow path unit 2.
  • the sensor tube 32 is a stainless steel capillary tube provided at both ends of the bypass group 31 so as to bypass the bypass group 31.
  • the sensor tube 32 is configured to flow a small amount of gas at a constant ratio to the gas flowing through the bypass group 31. As a result, the sensor tube 32 is supplied with gas at a constant ratio to the total gas flow rate flowing through the flow passage 2.
  • the coil 31R and the coil 32R are a pair of heating resistance wires wound around the upstream portion and the downstream portion of the sensor tube 32, respectively, and are connected in series.
  • the coil 31R and the coil 32R generate heat.
  • the temperatures of the coil 31R and the coil 32R both balance at the same temperature.
  • the coil 31R is deprived of heat by the gas, and the gas is heated by the coil 31R. Heat is given to the coil 32R from the gas heated upstream. Therefore, a temperature change or a temperature difference proportional to the flow rate of gas occurs in the coil 31R and the coil 32R.
  • the sensor circuit 33 has a bridge circuit that converts a temperature change or temperature difference of the coil 31R and the coil 32R into an electric signal, and an amplification circuit that amplifies the electric signal converted by the bridge circuit.
  • the sensor circuit 33 outputs an analog flow rate signal Sqc indicating the flow rate after amplification to the control unit 4.
  • the pressure detection unit 34 is, for example, a pressure transducer.
  • the pressure detection unit 34 samples the pressure value of the gas flowing through the flow passage unit 2 at predetermined time intervals, and converts the sampled pressure value of the gas into a pressure detection signal Sv.
  • the pressure detection unit 34 outputs the converted pressure detection signal Sv to the control unit 4.
  • the pressure detection signal Sv output from the pressure detection unit 34 is used when the control unit 4 determines a control constant or the like. When the control unit 4 does not use the pressure detection signal Sv for flow control, the pressure detection unit 34 may be omitted.
  • the control unit 4 includes a computer, and receives the analog flow rate signal Sqc and the pressure detection signal Sv from the sensor unit 3.
  • the control unit 4 also receives a flow rate setting signal Ssp from the host computer H.
  • the control unit 4 outputs the analog flow rate signal Sqc to the host computer H as a flow rate output signal Sgout indicating the flow rate currently flowing. Further, the control unit 4 outputs the output signal Sout to the valve drive circuit 5 so as to operate the valve unit 6 so that the flow rate indicated by the analog flow rate signal Sqc matches the flow rate indicated by the flow rate setting signal Ssp.
  • the valve drive circuit 5 is a circuit that drives the valve of the valve unit 6.
  • the valve drive circuit 5 receives the output signal Sout from the control unit 4 and amplifies the output signal Sout to generate a valve drive voltage.
  • the valve drive circuit 5 applies the generated valve drive voltage to the valve unit 6.
  • the degree of opening of the valve unit 6 is adjusted by the level of the valve drive voltage.
  • the valve drive signal Spzt is a signal corresponding to the valve drive voltage.
  • the valve drive circuit 5 may or may not output the valve drive signal Spzt to the control unit 4.
  • the control unit 4 receives the valve drive signal Spzt from the valve drive circuit 5.
  • the control unit 4 uses the received valve drive signal Spzt for feedback control of the flow rate.
  • the valve portion 6 includes a case 60, an actuator (piezoelectric element) 61, a restricting member 62, a spring seat 63, a coil spring 64, a valve rod 65, a ball 66, a thrust button 67, a diaphragm 68, and a valve port 69.
  • the case 60 is a box that houses the components of the valve unit 6.
  • the case 60 is provided on the upper surface of the flow passage 2 downstream of the sensor unit 3, and the bottom of the case 60 is joined to the flow passage 2. At the bottom of the case 60, a space through which fluid can flow is provided.
  • Two openings are opened in the bottom of the case 60, and one opening is an opening through which the gas having passed through the bypass group 31 flows into the space at the bottom of the case 60. Another opening is an opening through which the gas flows out from the space at the bottom of the case 60 to the flow passage 2. The latter opening constitutes the valve port 69 of the valve portion 6.
  • the actuator 61 is, for example, a laminated piezoelectric element (piezo element).
  • the laminated piezoelectric element has a structure in which a large number of PZT ceramic disks are laminated.
  • the laminated piezoelectric element expands in the laminating direction when a high valve driving voltage is applied, and contracts in the laminating direction when a low valve driving voltage is applied. That is, the actuator 61 mechanically expands and contracts in the vertical direction by the applied valve drive voltage.
  • the regulating member 62 is a member that prevents the downward displacement of the actuator 61.
  • the spring seat 63 is attached to the restriction member 62 and holds the coil spring 64.
  • the valve rod 65 is a cylindrical member formed between the case 60 and the actuator 61.
  • the valve rod 65 is configured to move up and down along a guide provided on the inner surface of the case 60 by the expansion and contraction of the actuator 61.
  • the coil spring 64 is accommodated in a space between the upper restriction member 62 and the bottom surface of the lower valve rod 65.
  • the coil spring 64 is a helical spring that biases the valve rod 65 downward.
  • the outer surface of the bottom of the valve rod 65 is formed with a downward concave recess.
  • the thrust button 67 is a metal base having an upward shallow recess formed on its upper surface.
  • the ball 66 is a ball housed between the recess of the valve rod 65 and the recess of the thrust button 67.
  • the valve rod 65, the ball 66 and the thrust button 67 are rigidly continuous, and transmit the mechanical expansion and contraction force of the upper actuator 61 to the lower diaphragm 68.
  • the spherical body 66 has a function to prevent the vertical force transmitted to the diaphragm 68 from being unevenly distributed in one place.
  • the diaphragm 68 is a flat plate made of elastically deformable metal.
  • the peripheral end of the diaphragm 68 is loosely fitted to the inner wall of the case 60 and is configured to be flexibly movable.
  • a valve port 69 through which gas can flow is disposed.
  • the periphery of the valve port 69 corresponds to the valve seat of the valve unit 6.
  • the valve rod 65 When no voltage is applied to the laminated piezoelectric elements of the actuator 61, the valve rod 65 is pushed down by the pressure from the coil spring 64, and the diaphragm 68 elastically deforms so as to bend downward. The elastically deformed diaphragm 68 seats on the valve seat and closes the valve port 69. At that time, the spring load of the coil spring 64 is selected so that the closed state of the valve portion 6 is maintained.
  • the laminated piezoelectric element of the actuator 61 when a voltage is applied to the laminated piezoelectric element of the actuator 61, the laminated piezoelectric element expands in the laminating direction. Since the downward displacement of the extended laminated piezoelectric element is blocked by the restriction member 62, the laminated piezoelectric element extends upward.
  • valve rod 65 As a result, the upper end of the valve rod 65 is pushed upward by the laminated piezoelectric element, and the valve rod 65 is lifted, and the diaphragm 68 is released from the compression force of the coil spring 64 through the ball 66 and the thrust button 67. .
  • the diaphragm 68 released from the compression force of the coil spring 64 tries to return to its original shape by its own restoring force, a gap is created between the diaphragm 68 and the valve seat, and the valve port 69 is released.
  • the distance between the diaphragm 68 and the valve port 69 changes with the expansion and contraction of the actuator 61 and the elevation of the valve rod 65.
  • the actuator 61 contracts and the valve rod 65 descends.
  • interval of the diaphragm 68 and the valve port 69 becomes narrow, and the flow volume of the gas which flows through the flow-path part 2 reduces.
  • the valve drive voltage applied to the actuator 61 is increased, the actuator 61 is extended and the valve rod 65 is lifted. And the space
  • valve unit 6 described above is a normally closed valve that closes the valve when no voltage is applied to the laminated piezoelectric element.
  • valve unit 6 may be a normally open valve that opens when no voltage is applied to the laminated piezoelectric element.
  • the valve portion 6 is assumed to be normally closed.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the control unit 4.
  • the control unit 4 includes a central processing unit (CPU) (output means, compensation means, generation means, conversion means) 41, a random access memory (RAM) 42, and a read only memory (ROM) 43.
  • the control unit 4 also includes a timer 44, an input / output interface (accepting unit) 45, and an AD / DA converter 46.
  • the CPU 41, the RAM 42, the ROM 43, the timer 44, the input / output interface 45, and the AD / DA converter 46 are mutually connected by a bus 4b.
  • the CPU 41 controls each component of the flow control device 1.
  • the CPU 41 reads the program 1P stored in the ROM 43 and executes the program 1P.
  • CPU41 is an example of a processor with which control part 4 is provided, and MPU (Micro Processor Unit) may substitute CPU41.
  • the RAM 42 is, for example, a static RAM (SRAM), a dynamic RAM (DRAM), or the like, and temporarily records work variables, data, and the like necessary in the process of processing executed by the CPU 41.
  • the RAM 42 is an example of a main storage device, and a flash memory, a memory card or the like may be used instead of the RAM 42.
  • the ROM 43 is, for example, a read-only storage medium other than a nonvolatile semiconductor memory or a semiconductor memory.
  • the ROM 43 stores a program 1P that the CPU 11 executes.
  • the ROM 43 may be mounted inside the flow control device 1 or may be installed outside the flow control device 1.
  • the timer 44 clocks the date and time, and outputs the clocked result to the CPU 41.
  • the CPU 41 executes interrupt processing based on the program 1 P, for example, based on the date and time received from the timer 44.
  • the input / output interface 45 is an interface having a host computer H, the sensor unit 3 and the valve drive circuit 5 and digital input / output ports for transmitting and receiving signals or information.
  • the input / output interface 45 can also be connected to an external disk drive.
  • the input / output interface 45 also has a function of connecting to a network such as a local area network (LAN), a wide area network (WAN), or the Internet.
  • LAN local area network
  • WAN wide area network
  • Internet the Internet
  • the AD / DA conversion unit 46 converts an analog signal received from the sensor unit 3 and the valve drive circuit 5 into a digital signal, and outputs the converted digital signal to the input / output interface 45. Further, the AD / DA converter 46 converts the digital signal received from the input / output interface 45 into an analog signal, and outputs the converted analog signal (for example, the output signal Sout) to the valve drive circuit 5.
  • the program 1P for operating the flow control device 1 may be read from the optical disc 4a via the disc drive device.
  • the program 1P may be read from an external information processing apparatus or recording apparatus via the input / output interface 45 and the network.
  • a semiconductor memory 4 c such as a flash memory storing the program 1 P may be mounted in the control unit 4.
  • FIG. 3 is a block diagram showing an example of a flow rate control system.
  • the flow rate control system here is centered on the control unit 4 and includes components or control elements of the sensor unit 3, the valve drive circuit 5 and the valve unit 6.
  • the control unit 4 corresponds to an element group in a range surrounded by a broken line.
  • the control unit 4 of the flow control device 1 is the computer shown in FIG. 2, but FIG. 3 shows the case where the circuit substitutes for the function of the computer.
  • the flow rate Qmf shown in the upper right of FIG. 3 is detected by the coils 31R and 32R as a temperature change amount or a temperature difference.
  • the temperature change amount or temperature difference detected by the coils 31R, 32R is converted into an electrical signal by the bridge circuit included in the sensor circuit 33, and becomes the flow rate sensor signal Vfs amplified by the amplification circuit.
  • the signal is in correspondence with the voltage, and in the following, the signal is denoted V.
  • the flow rate sensor signal Vfs is subjected to predetermined analog processing by the analog input circuit 71 to become an analog flow rate signal Vqc.
  • the analog flow rate signal Vqc is a signal in which high frequency components are largely attenuated due to the frequency characteristic of the flow rate sensor signal Vfs, and this attenuation is compensated by the digital signal correction circuit 81 to become a digital flow rate signal Vqd.
  • the flow sensor signal Vfs has its frequency characteristics corrected by the analog input circuit 71 and the digital signal correction circuit 81. As a result, the response of the flow control can be accelerated.
  • the analog input circuit 71 may be included in the sensor unit 3 or may be included in the control unit 4.
  • the digital flow rate signal Vqd is compared with the flow rate setting signal Vsp at the addition point (generation means) A1 at the upper left of FIG. 3 and becomes the flow rate deviation signal Ve.
  • the flow rate deviation signal Ve is subjected to proportional integral compensation by the PI compensator 82 and becomes an input signal Vpi to the summing point A2.
  • valve drive voltage applied to the actuator 61 of the valve unit 6 is used for feedback control.
  • the addition point A2 corresponds to the comparison unit located on the input side of the feedback control system related to the valve drive voltage. Since the valve drive voltage is a voltage applied to the terminals of the laminated piezoelectric elements constituting the actuator 61, the valve drive voltage is hereinafter also referred to as a terminal voltage Vpzt.
  • the terminal voltage Vpzt is detected and reduced by an analog input circuit 72 having a gain Kmon, and converted to a terminal voltage signal Vmon.
  • the terminal voltage signal Vmon corresponds to the response of the laminated piezoelectric element related to the actuator 61.
  • the analog input circuit 72 may be included in the valve drive circuit 5 or may be included in the control unit 4. In addition, the analog input circuit 72 may include a filter that performs various analog processing.
  • the terminal voltage signal Vmon passes through a voltage feedback compensator 83 having a summing point A3 and a transfer function Gaf (s) (signal generation means) to become a voltage feedback signal. Then, the voltage feedback signal is input to the summing point A2.
  • the flow rate control system sets a signal obtained by subtracting the voltage feedback signal from the input signal Vpi as the operation amount signal Vu.
  • the flow rate control system sets a signal obtained by subtracting the voltage feedback signal from the sum of the dead zone compensation signal Vc and the input signal Vpi as the operation amount signal Vu.
  • the terminal voltage Vpzt has a voltage corresponding to the state in which the valve of the valve portion 6 is completely closed and a voltage corresponding to the state in which the valve in the valve portion 6 is in the open / close boundary state. Voltage is called a dead band compensation voltage.
  • the dead band compensation signal Vc is a signal corresponding to the dead band compensation voltage.
  • the flow control device 1 closes the valve of the valve unit 6. At this time, the flow control device 1 applies pressure to the valve in the closing direction in order to ensure that the valve of the valve unit 6 is closed. Therefore, when the flow rate set value is 0, the flow control device 1 offsets the terminal voltage Vpzt in the direction to close the valve further than the terminal voltage Vpzt at which the valve is in the open / close boundary state. However, if the flow rate setting value is not 0, the flow control device 1 jumps the open / close boundary state and needs to open the valve of the valve unit 6 to the valve opening degree corresponding to the flow rate setting value. A signal obtained by adding the dead zone compensation signal Vc to the difference from the signal becomes the operation amount signal Vu.
  • the flow rate control system inputs the correction signal Vrf obtained by processing the dead zone compensation signal Vc by the transfer function Grf (s) (conversion means) 84 to the summing point A3. Then, the flow rate control system inputs a signal obtained by subtracting the correction signal Vrf from the terminal voltage signal Vmon to the voltage feedback compensator 83.
  • the flow rate control system corrects the manipulated variable signal Vu obtained by the above-described processing with the transfer function Gff (s) (compensation means) 85 to generate a corrected manipulated variable signal Vff.
  • the flow control system causes the valve drive circuit 5 to apply the voltage signal Voutint corresponding to the voltage value input to the valve drive circuit 5 so that the voltage applied to the valve unit 6 becomes 0V.
  • the output signal Vout to be input to the drive circuit 5 is set.
  • the flow rate control system adds Voutint and the correction operation amount signal Vff at summing point A4 and sets the added signal as the output signal Vout to be input to the valve drive circuit 5.
  • the AD / DA conversion unit 46 (not shown in FIG. 3) is located on the input side of the valve drive circuit 5 and the output signal Vout is AD / DA converted.
  • the part 46 corresponds to the signal output to the valve drive circuit 5.
  • FIG. 4 is a block diagram showing another example of the flow rate control system.
  • the difference from FIG. 3 is that there is no signal loop related to voltage feedback from the terminal voltage Vpzt applied to the valve unit 6.
  • the flow rate control system of FIG. 4 corresponds to the flow rate control system when the transfer function Gaf (s) of the voltage feedback compensator 83 in the flow rate control system of FIG. 3 is zero.
  • the flow control system in the flow control device 1 may be the flow control system shown in FIG. 3 or the flow control system shown in FIG.
  • the response from the output signal Vout to the terminal voltage Vpzt is similar to the response of a first-order lag system.
  • the response in the valve drive circuit 5 can be approximated by a model obtained by superposing the responses of two first-order lag systems, unlike the response of a mere first-order lag system.
  • the transfer characteristic from the output signal Vout to the terminal voltage Vpzt is represented by a model obtained by superimposing two first-order lag systems, and the model is called a real model.
  • the transfer characteristic of the actual model is expressed by the following equation (1).
  • Vpzt (s) is a terminal voltage.
  • Vout (s) is an output voltage corresponding to the output signal Vout.
  • Kpzt is a voltage gain of the laminated piezoelectric element related to the valve drive circuit 5 and the actuator 61.
  • K1 # pzt and K2 # pzt are gains of two first-order lag transfer functions, respectively.
  • T1 # pzt and T2 # pzt are time constants of two first-order lag transfer functions, respectively. The following equation (2) holds between K1 # pzt and K2 # pzt.
  • the real-world model has higher accuracy of the model than the conventional single first-order lag term due to the two first-order lag terms in the right-hand bracket of the equation (1).
  • the transfer function (first transfer function) related to the response characteristic in the actual model of equation (1) is expressed by the following equation (3).
  • the response characteristic of equation (3) influences the response characteristic of the entire flow control system.
  • the response characteristic of equation (3) is slow, it becomes a factor that limits the response of the flow control system.
  • a model is provided in which a transfer function indicating a desired high-speed response of the laminated piezoelectric element according to the actuator 61 is represented as a first-order lag element.
  • this model is called a reference model.
  • the transfer function (second transfer function) of the reference model is expressed by the following equation (4).
  • the gain Kpzt is the same as the gain Kpzt of the actual model, and is a constant corresponding to the voltage gain of the laminated piezoelectric element related to the valve drive circuit 5 and the actuator 61.
  • the time constant Tpzt is a variable designated in accordance with the desired responsiveness of the laminated piezoelectric element according to the valve drive circuit 5 and the actuator 61. For example, by setting the time constant Tpzt to a short value, the response characteristic of Gpzts (s) becomes faster.
  • the gain Kpzt may be a constant corresponding to the voltage gain of only the laminated piezoelectric element related to the actuator 61, and the time constant Tpzt s may be a variable corresponding to the desired response of only the laminated piezoelectric element related to the actuator 61.
  • the component of the first term in the right side of the equation (7) follows the change in the flow rate set value to a value corresponding to the required valve opening degree Change.
  • the temporal waveform of the transient response corresponding to the component of the first term is a value of the valve opening degree corresponding to the flow rate setting value after change after overshooting in the direction of accelerating the response of the laminated piezoelectric element driving the diaphragm 68.
  • the time waveform of the transient response corresponding to the component of the second term in the right side of equation (7) generates a spike-like signal when the flow rate setting value changes from 0 to a value other than 0, and thereafter the flow rate The waveform converges to a constant value independent of the set value.
  • Gff (s) 85 of the equation (5) is the following equation (9).
  • the process of equation (7) can be discretized, and similar response characteristics can be realized by the following recurrence equation (10).
  • the value of the correction operation amount signal vff is represented as vff [t]. The same is true for other variables. Since the calculation of the recurrence formula (10) is performed at the sample period Ts, when the initial time is 0, the value of t is an integral multiple of Ts.
  • the sample period Ts is, for example, 2 ms.
  • Grf (s) 84 of equation (6) is equation (11) below.
  • equation (11) When implemented in a digital control system, the processing of equation (11) can realize similar response characteristics with the following recurrence equation (12).
  • control unit 4 switches the flow control depending on whether the flow setting value is 0 or a value other than 0 in order to apply a pressure to the diaphragm 68 for reliably closing the valve of the valve unit 6.
  • the controller 4 controls the voltage signal voutint or the voltage signal voutint such that the voltage applied to the laminated piezoelectric element is 0 V with respect to the output signal vout to the valve drive circuit 5 depending on whether the flow rate setting value is 0 or a value other than 0. Is set to a signal obtained by adding the corrected operation amount signal vff to.
  • vsp is a flow rate setting signal.
  • Voutthd is a signal whose voltage applied to the laminated piezoelectric element is a switching boundary voltage.
  • the transfer function given to the reference model is the first-order lag element represented by the equation (4).
  • the transfer function possessed by the reference model is not limited to the first-order lag element, and of course may be, for example, a second-order lag element. In such a case, in view of the large electric capacity of the laminated piezoelectric element, for example, a large value is set to the natural angular frequency ⁇ of the second-order lag element.
  • FIG.5 and FIG.6 is a flowchart which shows an example of the procedure of the process which the control part 4 performs.
  • 5 and 6 show interrupt routine processing when the control unit 4 including a computer executes the function of the circuit corresponding to the broken line range in FIG.
  • the CPU 41 generates interrupt processing at a constant cycle Ts based on the date and time received from the timer 44 and repeatedly executes the processing shown in FIGS. 5 and 6.
  • the CPU 41 receives a flow rate signal from the sensor unit 3 via the input / output interface 45 and the AD / DA converter 46 (step S101).
  • the flow rate signal is a signal obtained by digital conversion of the analog flow rate signal vqc.
  • the CPU 41 corrects the frequency characteristic of the received flow rate signal by digital filter processing to calculate a digital flow rate signal vqd (step S102).
  • the CPU 41 receives the flow rate setting signal vsp from the host computer H via the input / output interface 45 (step S103).
  • the CPU 41 calculates a flow rate deviation signal ve from the flow rate setting signal vsp and the digital flow rate signal vqd (step S104).
  • the CPU 41 calculates an input signal vpi by executing calculation of proportional integral compensation on the calculated flow rate deviation signal ve (step S105).
  • the CPU 41 sets 0 to the dead band compensation signal vc (step S106).
  • the CPU 41 determines whether or not the flow rate setting value corresponding to the flow rate setting signal vsp is 0 (step S107).
  • step S107: YES the process proceeds to step S109.
  • step S107: NO the CPU 41 corrects the dead zone compensation signal vc to the difference between voutthd and voutint (step S108).
  • voutint is an output signal vout at which the voltage applied to the laminated piezoelectric element is 0V.
  • voutthd is an output signal vout where the voltage applied to the laminated piezoelectric element is the switching boundary voltage.
  • the CPU 41 generates a correction signal vrf by executing a digital filter calculation corresponding to the transfer function Grf (s) 84 based on the set or corrected dead band compensation signal vc (step S109).
  • the CPU 41 receives the terminal voltage signal vmon from the valve drive circuit 5 (step S110).
  • the CPU 41 subtracts the generated correction signal vfr from the received terminal voltage signal vmon (step S111).
  • the CPU 41 generates a voltage feedback signal by executing a calculation corresponding to the transfer function Gaf (s) of the voltage feedback compensator 83 based on the signal obtained by the subtraction in step S111 (step S112).
  • the CPU 41 calculates the operation amount signal vu by adding the dead zone compensation signal vc to the input signal vpi which is the proportional integral compensation output calculated in step S105 and subtracting the voltage feedback signal generated in step S112. (Step S113).
  • the CPU 41 executes a calculation corresponding to the transfer function Gff (s) 85 on the operation amount signal vu to calculate a corrected operation amount signal vff that compensates for the response delay (step S114).
  • the CPU 41 sets an output signal vout output from the AD / DA converter 46 and input to the valve drive circuit 5.
  • the CPU 41 sets a voltage signal voutint corresponding to the case where the terminal voltage vpzt is 0 V to the output signal vout (step S115).
  • the CPU 41 determines whether or not the flow rate setting value corresponding to the flow rate setting signal vsp is 0 (step S116). If the CPU 41 determines that the flow rate setting value corresponding to the flow rate setting signal vsp is 0 (step S116: YES), the process proceeds to step S118.
  • step S116 When it is determined that the flow rate setting value corresponding to the flow rate setting signal vsp is not 0 (step S116: NO), the CPU 41 adds the correction operation amount signal Vff to the output signal vout (step S117). The CPU 41 outputs the output signal vout from the AD / DA converter 46 (step S118), and ends the process.
  • step S109 When the terminal voltage vpzt is not used for feedback control of the flow control system, the processing from step S109 to step S112 in FIGS. 5 and 6 is deleted.
  • the CPU 41 adds the dead zone compensation signal vc to the input signal vpi, which is the calculated proportional-plus-integral compensation output, in step S113. Calculate the signal vu.
  • the CPU 41 determines whether or not the flow rate setting value corresponding to the flow rate setting signal vsp is zero. However, the CPU 41 may determine whether or not the flow rate setting value corresponding to the flow rate setting signal vsp is less than or equal to a predetermined value, and may execute subsequent processing based on the determination result.
  • FIGS. 7A, 7B, 7C, and 7D are explanatory diagrams showing an example of the time response waveform of the laminated piezoelectric element when a voltage corresponding to the stepped input waveform is applied to the input terminal of the valve drive circuit 5.
  • FIGS. 7A, 7B, 7C and 7D show the response waveforms of the laminated piezoelectric element when the flow rate setting value changes to 2%, 20%, 40% and 100% of the maximum value, respectively.
  • the solid line is the measured response waveform.
  • the broken line is the response waveform of the actual model.
  • the horizontal axis in FIGS. 7A, 7B, 7C and 7D is time, and the unit is second.
  • FIGS. 7A, 7B, 7C, and 7D are voltages obtained by multiplying the terminal voltage Vpzt, which is the output voltage from the valve drive circuit 5, by the gain Kmon, and the unit is volts.
  • Each constant value of the reality model in FIGS. 7A, 7B, 7C and 7D is, for example, as follows.
  • Kpzt 44.3
  • T1_pzt 0.158
  • T2_pzt 0.044 It can be understood from FIGS. 7A, 7B, 7C and 7D that the actual model reproduces the response characteristic of the measured actuator 61 well for each flow rate setting value.
  • FIG. 8 is an explanatory view showing an example of a time response waveform of the piezoelectric element in the case where a voltage according to the step-like input waveform is applied to the input terminal of the valve drive circuit 5 with respect to the actual model and the reference model.
  • the horizontal and vertical axes in FIG. 8 are the same as the horizontal and vertical axes in FIG. 7, respectively.
  • Tpzt 00.12
  • the solid line is the response waveform of the reference model.
  • the broken line is the response waveform of the actual model. It can be seen from FIG. 8 that the reference model shows much faster response than the actual model.
  • FIG. 9A, FIG. 9B, FIG. 10A, FIG. 10B, FIG. 11A and FIG. 11B are explanatory diagrams showing an example of the response waveform when the flow rate setting signal Vsp corresponding to the flow rate setting value rises stepwise from 0V to 2V. is there.
  • the horizontal axis in FIGS. 9A to 11B is time, and the unit is seconds.
  • the vertical axes of FIGS. 9A to 11B are signals, and the unit is volts.
  • thin solid lines are step waveforms of the flow rate setting signal Vsp.
  • the broken line is a response waveform of the terminal voltage signal Vmon which is proportional to the terminal voltage Vpzt.
  • a thick solid line is a response waveform of the digital flow rate signal Vqd.
  • the response waveform of the terminal voltage signal Vmon corresponds to the response of the laminated piezoelectric element according to the actuator 61.
  • the response waveform of the digital flow signal Vqd corresponds to the response of the flow actually flowing through the flow passage 2 as a result of control.
  • the thick solid line is the response waveform of the output signal Vout from the AD / DA converter 46, that is, the input signal to the valve drive circuit 5.
  • Vout1 on the vertical axis in FIG. 9B, FIG. 10B and FIG. 11B is a steady value of the output signal Vout input to the valve drive circuit 5 when the flow rate setting signal Vsp indicates 2V.
  • FIG. 9A, FIG. 9B, FIG. 10A, FIG. 10B, FIG. 11A and FIG. 11B show the difference of the response waveform by the difference of the component in the flow control system.
  • FIG. 9A and FIG. 9B show the response waveform by the flow rate control system consisting only of the components of proportional integral control.
  • FIGS. 10A and 10B show response waveforms by the flow rate control system in the case where a dead zone compensation voltage is applied to the valve unit 6 at the time of rising from the closed state of the valve unit 6, in addition to proportional integral control.
  • 11A and 11B show response waveforms when calculation for compensating for response delay with transfer function Gff (s) 85 is performed on the manipulated variable signal Vu, in addition to control by proportional integral control and dead band compensation voltage. ing. 11A and 11B show response waveforms by the flow control device 1 according to the first embodiment.
  • the non-reaction time is about 0.2 seconds in FIG. 9A, and it takes about 0.7 seconds to reach the flow rate setting value thereafter. It takes One of the reasons that the digital flow signal Vqd requires about 0.7 seconds to rise is that it takes time to remove the pressure applied to the valve 6 until the valve of the valve unit 6 is brought into the open / close boundary state. It is because
  • the non-reaction time of the digital flow signal Vqd is about 0.15 seconds, and it takes about 0.7 seconds to reach the flow set value thereafter.
  • the non-reaction time of FIG. 10A is somewhat shorter than the non-reaction time of FIG. 9A. It is considered that this is because the dead zone compensation voltage causes the valve of the valve unit 6 to open at once to the open / close boundary state. However, when the dead zone compensation voltage is increased to further reduce the non-responsive time, overshoot occurs. On the other hand, there is a dilemma that the response is delayed when the dead band compensation voltage is lowered to suppress the overshoot.
  • the non-reaction time of the digital flow signal Vqd is reduced to 0.1 second or less, and the time to reach the flow set value is reduced to about 0.2 seconds thereafter.
  • the valve of the valve unit 6 opens faster to the open / close boundary state.
  • the digital flow signal Vqd arrives faster than the value corresponding to the flow setting without overshoot.
  • FIG. 9B, FIG. 10B and FIG. 11B are compared, the time for the output signal Vout to reach the steady value Vout1 is about 0.25 seconds in FIG. 9B and FIG. 10B.
  • the waveform of FIG. 9B and the waveform of FIG. 10B are compared, the rising voltage immediately after 0 seconds is higher in FIG. 10B. This is considered to be because the effect of the dead zone compensation voltage appears as a waveform.
  • the second term on the right side of the equation (7) generates a spike-like signal which attenuates with a short time constant Tpzt s in the reference model.
  • the rising of the terminal voltage Vpzt is accelerated, and the non-reaction time spent for passing the dead zone is shortened. That is, the shortening of the non-reaction time of the digital flow signal Vqd in FIG. 11A relates to the action of the second term on the right side of the equation (7).
  • the spike-like signal in FIG. 11B indicates that a large current is supplied to the laminated piezoelectric element having a large electric capacity in a short time, and corresponds to the operation of the valve of the valve unit 6 that opens at once to the open / close boundary state. .
  • FIG. 11B a small shoulder-like peak is visible around 0.07 seconds after the spike-like response waveform is attenuated.
  • the first term on the right side of the equation (7) generates a signal that overshoots in the direction of promoting the response according to the change of the flow rate setting value.
  • the terminal voltage signal Vmon and the digital flow rate signal Vqd in FIG. 11A quickly reach the value corresponding to the new flow rate setting value. That is, the steep gradients seen in the waveforms of the terminal voltage signal Vmon and the digital flow rate signal Vqd at the rising time of FIG. 11A relate to the action of the first term on the right side of the equation (7).
  • FIG. 11B corresponds to the operation of the valve of the valve portion 6 that opens rapidly from the open / close boundary state to the desired opening degree by supplying a large but not excessive current to the laminated piezoelectric element.
  • the waveform in FIG. 11B rapidly converges to a constant value. Thereby, the flow control device 1 suppresses that the valve of the valve unit 6 is opened too much more than the desired valve opening degree.
  • the waveform of the current flowing through the laminated piezoelectric element is shaped or approximately similar to the waveform shown in FIG. 11B.
  • the large amount of current corresponding to the spiked response waveform of FIG. 11B flows into the laminated piezoelectric element, whereby the laminated piezoelectric element starts to respond at high speed. Further, when the current corresponding to the response waveform of the overshoot in FIG. 11B flows into the laminated piezoelectric element, the laminated piezoelectric element expands and contracts rapidly from the rising time.
  • the flow control device 1 also exhibits a response waveform similar to that of FIG. 11 even when the flow set value decreases stepwise. In such a case, the direction of fluctuation of the signal on the vertical axis is reversed, but the same effect as described above can be obtained.
  • the flow control device 1 controls the flow rate by digital control based on the program 1P, but the control unit 4 may be replaced by an analog circuit that constitutes a transfer function. Also in this case, the same effect as described above is obtained.
  • PI control is performed on the flow rate deviation signal Ve.
  • the flow rate deviation signal Ve may be processed by the PID control, the derivative precedent PID control, the I-PD control or the like.
  • the flow control device 1 high-speed response control can be realized without overshoot.
  • the flow control device 1 enables faster flow response control by reducing the response delay due to the large electrical capacity of the laminated piezoelectric element. Therefore, by using the flow control device 1, the production efficiency of the product can be improved.
  • Embodiment 2 relates to a mode in which a relaxation filter for mitigating a spike-like voltage change corresponding to a signal output from the control unit 4 to the valve drive circuit 5 is added to the flow rate control system.
  • a relaxation filter for mitigating a spike-like voltage change corresponding to a signal output from the control unit 4 to the valve drive circuit 5 is added to the flow rate control system.
  • the same components as in the first embodiment will be assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 12 is a block diagram showing another example of the flow rate control system.
  • FIG. 12 is a block diagram in which a transfer function Gss (s) (relaxation means) 86 is added to FIG.
  • the transfer function Gss (s) 86 is a function for adjusting the response characteristic of the flow control system when the valve unit 6 is opened from the closed state.
  • the control unit 4 corresponds to an element group in a range surrounded by a broken line. 12, an operation part different from that in FIG. 3 combines the signal obtained by selectively switching between 0 and the dead zone compensation voltage Vc with the transfer function Gss (s) 86 corresponding to the relaxation filter and adds the signal Vcf subjected to the relaxation process. It is a portion that is input to the point A2 and the transfer function Grf (s) 84.
  • FIG. 13 is a block diagram showing another example of the flow rate control system.
  • FIG. 13 is a block diagram in which the transfer function Gss (s) 86 is added to FIG.
  • the control unit 4 corresponds to an element group in a range surrounded by a broken line.
  • the operation part different from FIG. 4 combines the signal obtained by selectively switching between 0 and the dead zone compensation voltage Vc with the transfer function Gss (s) 86 corresponding to the relaxation filter and adds the signal Vcf subjected to the relaxation process. It is the part which is input to point A2.
  • the transfer function Gss (s) 86 included in the component of the second term in the right side of the equation (13) has a function of suppressing the peak voltage of the spiked signal generated in the case of the equation (7) in the first embodiment. doing.
  • the time waveform of the transient response corresponding to the component of the second term in the right side of the equation (13) is higher than the voltage corresponding to the flow rate setting value when the flow rate setting value changes from 0 to a value other than 0 And, it rises rapidly stepwise in a step-like manner toward a voltage lower than the above-mentioned peak voltage, and thereafter becomes a waveform which converges to a constant value independent of the flow rate setting value. That is, when the transfer function Gss (s) 86 suppresses the peak voltage corresponding to the spike-like protruding waveform, the time waveform is not in the spike shape but in the step shape.
  • the control unit 4 applies the valve of the valve unit 6 to the operation amount signal vu in consideration of the voltage feedback signal based on the terminal voltage vpzt.
  • a signal vc (voutthd-voutint) having a constant voltage value corresponding to a dead zone necessary for pressure was added.
  • the control unit 4 sets the relaxation filter so that the signal vc (voutthd-voutint) of a constant voltage value corresponding to the dead zone necessary for pressurization of the valve of the valve unit 6
  • the signal vc is subjected to a relaxation process with a transfer function Gss (s) 86 corresponding to the signal Vcf to generate a signal Vcf after the relaxation process.
  • the control unit 4 adds the generated signal Vcf to the operation amount signal Vu in consideration of the voltage feedback signal based on the terminal voltage vpzt.
  • the control unit 4 generates a voltage feedback signal in consideration of the terminal voltage vpzt and the correction signal Vrf obtained by correcting the signal Vcf with the transfer function Grf (s) 84.
  • the configuration of FIG. 3 considered the voltage feedback signal
  • the configuration of FIG. 4 did not consider the voltage feedback signal.
  • the configuration of FIG. 12 considers voltage feedback signals
  • the configuration of FIG. 13 does not consider voltage feedback signals. That is, in the case of the configuration of FIG. 13, the generated signal Vcf is added to the operation amount signal Vu not considering the voltage feedback signal.
  • Gss (s) 86 for example, a phase delay element of the following equation (15) can also be used.
  • equation (15) When implemented in a digital control system, the processing of equation (15) can realize similar response characteristics with the following recurrence equation (16).
  • FIG. 14A and FIG. 14B are explanatory diagrams showing an example of the response waveform when the flow rate setting signal Vsp corresponding to the flow rate setting value rises stepwise from 0V to 2V.
  • the horizontal axis in FIGS. 14A and 14B is time, and the unit is seconds.
  • the vertical axes in FIGS. 14A and 14B are signals, and the unit is volts.
  • Line types respectively showing the flow rate setting signal Vsp, the terminal voltage signal Vmon and the digital flow rate signal Vqd in FIG. 14A are the same as those in FIGS. 9A, 10A and 11A.
  • the thick solid line indicating the output signal Vout in FIG. 14B is the same as that in FIGS. 9B, 10B, and 11B.
  • Vout1 on the vertical axis in FIG. 14B is a steady-state value of the output signal Vout input to the valve drive circuit 5 when the flow rate setting signal Vsp indicates 2V.
  • 14A and 14B show differences in response waveforms due to component differences in the flow control system when compared with FIGS. 9A to 11B.
  • FIGS. 14A and 14B show the dead band compensation voltage Vc when the valve portion 6 closed in the pressurized state is opened, in addition to the proportional integral control, the control by the dead band compensation voltage Vc, and the control by the response delay compensation for the operation amount signal Vu. Shows the response waveform when the relaxation process is performed. That is, FIGS. 14A and 14B show the response waveforms by the flow control device 1 according to the second embodiment.
  • the non-reaction time of the response waveform of the digital flow rate signal Vqd in FIG. 14A is shortened to 0.1 second or less as in the case of FIG. 11A as compared with the case of FIGS. 9A and 10A, and then the flow rate setting value The time to reach is reduced to about 0.2 seconds.
  • FIG. 9B, FIG. 10B, FIG. 11B and FIG. 14B are compared, the process of the output signal Vout reaching the steady value Vout1 rises from a low value in FIG. 9B and FIG. 10B and converges to the steady value Vout1.
  • the value rapidly rises to a value higher than the steady value Vout1, and then falls and converges to the steady value Vout1.
  • the flow response tends to overshoot, but in the present invention, as described above, the flow rate generating the manipulated variable signal based on the transfer function design Since the control system is configured, the flow rate response converges to the set value at high speed in about 0.2 seconds without overshooting.
  • the response waveform immediately after the rise in FIG. 14B has a height of spike-like protrusion suppressed as compared with FIG. 11B due to the effect of the transfer function Gss (s) 86 corresponding to the relaxation filter, while 30 ms in the time direction
  • the spike which was about the width of the range, has a peak that has spread to about 60 ms. Due to the effect of the time duration of the spread peak, the flow control device 1 obtains a response time substantially equal to that in the case of using the output signal Vout corresponding to the spiked high voltage in FIG. 11B.
  • the output signal Vout from the control unit 4 to the valve drive circuit 5 is generated in a short time so that saturation does not occur in the valve drive circuit 5 in order to handle spiked high voltage signals. It is necessary to secure a wide voltage change range.
  • the voltage change width corresponding to the output signal Vout from the control unit 4 to the valve drive circuit 5 is that the output signal Vout higher than Vout1 is output for a longer time. A smaller value is acceptable.
  • the transfer function Gss (s) 86 corresponding to the relaxation filter of the flow control device 1 can reduce spike-like voltage change corresponding to the signal output from the control unit 4 to the valve drive circuit 5.
  • the valve drive circuit 5 is saturated when the applied voltage is higher than the power supply voltage of the valve drive circuit 5. Further, in such a case, in order to avoid the saturation, it is necessary to separately provide a power supply capable of supplying a high voltage, or to use a special device compatible with high voltage for the circuit element. Invite.
  • the transfer function Gss (s) 86 reduces the spike-like voltage change applied to the valve drive circuit 5 and changes it into a step-like voltage change, saturation of the valve drive circuit 5 can be suppressed.
  • the transfer function Gss (s) 86 enables speeding up of the response in the range of configurations using standard circuit elements and existing power supplies.
  • the transfer function Gss (s) 86 of the flow control device 1 supplies the valve drive circuit 5 and the actuator 61 by making the application time of the voltage applied to the valve drive circuit 5 and the actuator 61 longer. High-speed response control of the laminated piezoelectric element is realized without reducing the electrical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Flow Control (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Feedback Control In General (AREA)

Abstract

 オーバーシュート無しに高速な応答制御を実現することができる流量制御装置及びプログラムを提供する。 流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、目標流量を受け付ける受付手段と、流量を前記受付手段が受け付けた目標流量と一致するように変化させるべく、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力する出力手段とを備える流量制御装置において、前記出力手段は、前記受付手段が受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値と異なる電圧値に対応する信号を過渡的に出力し、その後該目標電圧値に収束する電圧変化に対応する信号を出力するようにしてある。

Description

流量制御装置及びプログラム
 本発明は、流体の流量を制御する流量制御装置及びプログラムに関する。
 半導体、液晶パネル等の製造工程で使用される流量制御装置には、流量設定値の変化に対応した高速な流量応答が求められる。そこで、流量設定値の変化に対して速やかに流量を変化させる技術がある(例えば、特許文献1、2、3参照)。
米国特許第7603186号公報 特開2001-147723号公報 特開2012-168822号公報
 ところで、流路のバルブを開閉するアクチュエータがピエゾアクチュエータである場合、その圧電素子は電気容量が大きい。そのため、流量設定値の変化に対するピエゾアクチュエータの変位応答は遅く、その結果流量変化の応答も遅れる。
 特許文献1に係る技術は、流量をPI制御するためのパラメータを調整する技術であり、ピエゾアクチュエータの変位応答遅れに起因する流量応答を短縮することはできない。特許文献2に係る流量制御方法は、流体が流れ始めるときの電圧よりも僅かに低い初期電圧を圧電素子に印加し、その後速度型PID制御に移行する。そこで、応答を速くするために、特許文献2に係る初期電圧を高くすることが考えられる。しかし、かかる場合、オーバーシュートが発生し、製品の品質が低下する。特許文献3に係る流量制御装置は、バルブの開度の操作量における位相ずれをデジタル演算により補償するものであるが、その応答性は従来の流量制御装置における応答性と変わらない。
 本願はかかる事情に鑑みてなされたものである。その目的は、オーバーシュート無しに高速な応答制御を実現することができる流量制御装置及びプログラムを提供することである。
 本願に係る流量制御装置は、流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、目標流量を受け付ける受付手段と、流量を前記受付手段が受け付けた目標流量と一致するように変化させるべく、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力する出力手段とを備える流量制御装置において、前記出力手段は、前記受付手段が受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値と異なる電圧値に対応する信号を過渡的に出力し、その後該目標電圧値に収束する電圧変化に対応する信号を出力するようにしてあることを特徴とする。
 本願に係る流量制御装置では、駆動回路が圧電素子に印加する電圧に対応する信号を駆動回路に出力する出力手段を備えている。出力手段は、受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値と異なる電圧値に対応する信号を過渡的に出力する。出力手段は、その後変化後の目標電圧値に収束する電圧変化に対応する信号を出力する。
 本願に係る流量制御装置は、前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、該流量調整弁が閉状態でない場合に該目標流量が変化したときよりも、変化後の目標流量に対応する目標電圧値に対してより大きな振幅を示す電圧変化に対応する信号を前記駆動回路に出力するようにしてあることを特徴とする。
 本願に係る流量制御装置では、流量調整弁が閉状態である場合に受け付けた目標流量が変化したとき、流量調整弁が閉状態でない場合に受け付けた目標流量が変化したときよりも、出力手段は変化後の目標流量に対応する目標電圧値に対してより大きな振幅を示す電圧変化に対応する信号を駆動回路に出力する。
 本願に係る流量制御装置は、前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、スパイク状の電圧変化に対応する信号を前記駆動回路に出力するようにしてあることを特徴とする。
 本願に係る流量制御装置では、出力手段は、流量調整弁が閉状態である場合に受け付けた目標流量が変化したとき、スパイク状の電圧変化に対応する信号を駆動回路に出力する。
 本願に係る流量制御装置は、前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値よりも高い電圧値までステップ状に立ち上がる電圧変化に対応する信号を出力し、その後該目標電圧値に収束する電圧変化に対応する信号を前記駆動回路に出力するようにしてあることを特徴とする。
 本願に係る流量制御装置では、出力手段は、流量調節弁が閉状態である場合に受け付けた目標流量が変化したとき、目標流量に対応する電圧よりも高い電圧に向けてステップ状に高速に立ち上がる電圧変化に対応する信号を駆動回路に出力する。
 本願に係る流量制御装置は、流路を流れる流体の流量を検出する検出手段と、前記流路を開閉する流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、流体の目標流量を受け付ける受付手段と、該受付手段が受け付けた目標流量及び前記検出手段が検出した流量の偏差に基づいて、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力することにより、該駆動回路及び該圧電素子を介して流量を制御する制御手段とを備える流量制御装置において、前記制御手段は、前記偏差に対応する信号を生成する生成手段と、前記圧電素子の電気的特性に係る数値及び該圧電素子の応答特性に応じた定数を含む制御要素により、前記生成手段が生成した信号を補償する補償手段とを有し、前記補償手段が補償した信号を前記駆動回路に出力するようにしてあることを特徴とする。
 本願に係る流量制御装置では、制御手段は、受け付けた目標流量と検出した流量との偏差に対応する信号を生成する。制御手段が有する補償手段は、圧電素子の電気的特性に係る数値及び圧電素子の応答特性に応じた定数を含む制御要素により、生成した信号を補償する。
 本願に係る流量制御装置は、前記制御要素は、前記圧電素子の電気的特性に係るゲインを含む第一伝達関数と、前記圧電素子の応答特性に応じた定数及び前記ゲインを含む第二伝達関数とを有することを特徴とする。
 本願に係る流量制御装置では、補償手段に係る制御要素は、第一伝達関数及び第二伝達関数を有する。第一伝達関数は、圧電素子の電気的特性に係るゲインを含む。第二伝達関数は、圧電素子の電気的特性に係るゲインと、圧電素子の応答特性に応じた定数を含む。
 本願に係る流量制御装置は、前記第一及び第二伝達関数は前記駆動回路の電気的特性に係るゲインを含むことを特徴とする。
 本願に係る流量制御装置では、第一伝達関数と第二伝達関数とは、駆動回路の電気的特性に係るゲインを含む。
 本願に係る流量制御装置は、前記制御要素は、前記制御手段から前記駆動回路へ信号を入力してから、前記圧電素子が前記弁体を作動させるまでの応答に係ることを特徴とする。
 本願に係る流量制御装置では、補償手段に係る制御要素は、制御手段が駆動回路へ信号を入力してから、圧電素子が弁体を作動させるまでの応答に係る。
 本願に係る流量制御装置は、前記制御手段は、前記流量調整弁を閉じる場合、前記駆動回路に対して前記圧電素子に印加させる電圧を、該流量調整弁の弁開度がゼロになる電圧から該流量調整弁を更に閉じる方向に所定電圧Vcだけ異なるようにしてあり、前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記Vcを重畳した信号を補償するようにしてあることを特徴とする。
 本願に係る流量制御装置では、制御手段は、流量制御弁を閉じる場合、駆動回路に対して、圧電素子に印加させる電圧を、流量調整弁の弁開度がゼロになる電圧から流量調整弁を更に閉じる方向へ所定電圧Vcだけ異なるようにしてある。補償手段は、流量調整弁が閉状態である場合に受け付けた目標流量が変化したとき、生成した信号に、所定電圧Vcを重畳する。
 本願に係る流量制御装置は、前記駆動回路は前記圧電素子に印加する電圧に対応する信号を前記制御手段に出力する出力手段を有し、前記制御手段は、前記出力手段が出力した信号に基づいて、前記圧電素子の応答特性を調整するためのフィードバック信号を生成する信号生成手段を有し、前記補償手段は、前記生成手段が生成した信号に前記Vcを重畳した信号及び前記信号生成手段が生成したフィードバック信号を補償するようにしてあることを特徴とする。
 本願に係る流量制御装置では、駆動回路は、圧電素子に印加する電圧に対応する信号を制御手段に出力する。制御手段は、駆動回路が出力した信号に基づいて、圧電素子の応答特性を調整するためのフィードバック信号を生成する。補償手段は、生成した信号に所定電圧Vcを重畳した信号及び生成したフィードバック信号を補償する。
 本願に係る流量制御装置は、前記第二伝達関数に基づいて、前記Vcに対応する信号を変換する変換手段を備え、前記信号生成手段は、前記出力手段が出力した信号及び前記変換手段が変換した信号を補償することにより、フィードバック信号を生成するようにしてあることを特徴とする。
 本願に係る流量制御装置では、変換手段は、所定電圧Vcに対応する信号を、第二伝達関数に基づいて変換する。流量制御装置は、駆動回路が出力した信号と、変換手段が変換した信号とを補償することにより、圧電素子の応答特性を調整するためのフィードバック信号を生成する。
 本願に係る流量制御装置は、前記Vcの変化を緩和する緩和手段を備え、前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記緩和手段が緩和したVcを重畳した信号を補償するようにしてあることを特徴とする。
 本願に係る流量制御装置では、流量制御弁を閉じる場合、駆動回路に対して圧電素子に印加させる電圧は、流量調整弁の弁開度がゼロになる電圧から流量調整弁を更に閉じる方向へ所定電圧Vcだけ異なる。流量制御装置は、このVcを緩和する。補償手段は、流量調整弁が閉状態である場合に受け付けた目標流量が変化したとき、生成した信号に、緩和したVcを重畳する。
 本願に係る流量制御装置は、前記Vcの変化を緩和する緩和手段を備え、前記変換手段は前記緩和手段が緩和したVcに対応する信号を変換するようにしてあり、前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記緩和手段が緩和したVcを重畳した信号及び前記信号生成手段が生成したフィードバック信号を補償するようにしてあることを特徴とする。
 本願に係る流量制御装置では、流量制御弁を閉じる場合、駆動回路に対して圧電素子に印加させる電圧は、流量調整弁の弁開度がゼロになる電圧から流量調整弁を更に閉じる方向へ所定電圧Vcだけ異なる。流量制御装置は、このVcを緩和する。変換手段は、緩和したVcに対応する信号を、第二伝達関数に基づいて変換する。流量制御装置は、駆動回路が出力した信号と、変換手段が緩和したVcに対応する信号を変換した信号とを補償することにより、圧電素子の応答特性を調整するためのフィードバック信号を生成する。補償手段は、生成した信号に緩和したVcを重畳した信号及び生成したフィードバック信号を補償する。
 本願に係る流量制御装置は、前記圧電素子は積層圧電素子であることを特徴とする。
 本願に係る流量制御装置では、圧電素子は積層圧電素子である。
 本願に係る流量制御装置は、前記流量調整弁は前記流路に設けられた弁口を含み、前記弁体は、前記圧電素子からの押圧で弾性的に変形することにより、前記弁口の周囲に着座可能な板状のダイヤフラムであることを特徴とする。
 本願に係る流量制御装置では、弁体は、板状のダイヤフラムである。ダイヤフラムは、圧電素子からの押圧で弾性的に変形することにより、流体が流れる流路に設けられた弁口の周囲に着座する。
 本願に係るプログラムは、流量を検出する検出手段と、流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、目標流量を受け付ける受付手段とを備える流量制御装置が有するコンピュータに、前記受付手段が受け付けた目標流量及び前記検出手段が検出した流量の偏差に基づいて、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力することにより、該駆動回路及び該圧電素子を介して流量を制御する処理を実行させるプログラムにおいて、前記偏差に基づいて、前記駆動回路に出力する信号を生成し、前記圧電素子の電気的特性に係る数値及び該圧電素子の応答特性に応じた定数に基づいて、生成した信号に係る補償計算を実行する処理をコンピュータに実行させることを特徴とする。
 本願に係るプログラムでは、流量制御装置が有するコンピュータに次の処理を実行させる。流量制御装置が受け付けた目標流量と検出した流量との偏差に基づいて、駆動回路に出力する信号を生成する。生成した信号に係る補償計算を、圧電素子の電気的特性に係る数値と圧電素子の応答特性に応じた定数に基づいて、実行する。
 本願に係るプログラムは、前記補償計算を実行する処理は、前記圧電素子の電気的特性に係るゲインを含む第一伝達関数並びに該圧電素子の応答特性に応じた定数及び該ゲインを含む第二伝達関数の比からなる伝達関数により、生成した信号に係る補償計算を実行することを特徴とする。
 本願に係るプログラムでは、第一伝達関数は、圧電素子の電気的特区性に係るゲインを含む。第二伝達関数は、圧電素子の電気的特区性に係るゲインと、圧電素子の応答特性に応じた定数とを含む。プログラムは、第一伝達関数と第二伝達関数との比からなる伝達関数により、生成した信号に係る補償計算をコンピュータに実行させる。
 本願に係るプログラムは、前記受付手段が受け付けた目標流量が所定値未満から所定値以上に変化した場合、前記信号を生成する処理が生成した信号に所定電圧に対応する信号を加算することを特徴とする。
 本願に係るプログラムでは、流量制御装置が受け付けた目標流量が所定値未満から所定値以上に変化した場合、駆動回路に出力する信号に所定電圧に対応する信号を加算する。
 本願による開示の一観点によれば、オーバーシュート無しに高速な応答制御を実現することができる。
流量制御装置のハードウェア構成例を示すブロック図である。 制御部のハードウェア構成例を示すブロック図である。 流量制御系の一例を示すブロック線図である。 流量制御系の他例を示すブロック線図である。 制御部が実行する処理の手順の一例を示すフローチャートである。 制御部が実行する処理の手順の一例を示すフローチャートである。 バルブ駆動回路の入力端子にステップ状の入力波形に応じた電圧を印加した場合におけるアクチュエータの時間応答波形の一例を示す説明図である。 バルブ駆動回路の入力端子にステップ状の入力波形に応じた電圧を印加した場合におけるアクチュエータの時間応答波形の一例を示す説明図である。 バルブ駆動回路の入力端子にステップ状の入力波形に応じた電圧を印加した場合におけるアクチュエータの時間応答波形の一例を示す説明図である。 バルブ駆動回路の入力端子にステップ状の入力波形に応じた電圧を印加した場合におけるアクチュエータの時間応答波形の一例を示す説明図である。 バルブ駆動回路の入力端子にステップ状の入力波形に応じた電圧を印加した場合におけるアクチュエータの時間応答波形の一例を実態モデルと規範モデルとについて示した説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量制御系の他例を示すブロック線図である。 流量制御系の他例を示すブロック線図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。 流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。
 以下、実施の形態をその図面に基づいて説明する。本実施の形態に係る流量制御装置は、半導体、光ファイバー、太陽電池、液晶パネル、有機EL(Electro Luminescence)ディスプレイ、LED(Light Emitting Diode)、食品、化粧品、薬品等の製造に用いられる流量制御装置である。また、本実施の形態に係る流量制御装置は、流体の質量流量を制御する装置でもよいし、流体の体積流量を制御する装置でもよい。以下では、ガス流体の質量流量を制御する流量制御装置(マスフローコントローラ)を例に挙げて、実施の形態を説明する。
 なお、本発明は以下の実施の形態に限定されない。
 実施の形態1
 図1は、流量制御装置1のハードウェア構成例を示すブロック図である。流量制御装置1は、製品の製造工程全体を制御する外部のホストコンピュータHと接続されている。流量制御装置1は、流量制御装置1が製品製造装置に供給すべきガスの流量を示す流量設定信号SspをホストコンピュータHから受け付ける。他方、流量制御装置1は、現在流しているガスの流量を示す流量出力信号SgoutをホストコンピュータHに出力する。
 流量制御装置1は、流路部(流路)2、センサ部(検出手段)3、制御部(制御手段、コンピュータ)4、バルブ駆動回路(駆動回路、出力手段)5及びバルブ部(流量調整弁)6を含む。
 センサ部3は、流路部2が取り込んだガスの流量を検出する。制御部4は、センサ部3が検出したガスの流量値と流量設定信号Sspが示す流量設定値とを比較し、実際の流量値が設定流量値(目標流量値)になるように出力信号Soutをバルブ駆動回路5に出力する。バルブ駆動回路5は、出力信号Soutを入力し、入力した出力信号Soutに基づいて、バルブ部6を駆動するバルブ駆動信号Spztをバルブ部6に出力する。バルブ部6は、バルブ駆動信号Spztを入力し、入力したバルブ駆動信号Spztに基づいて、流路部2を流れるガスの流量を調整する。
 流量制御装置1において、制御部4は、流量設定値及びセンサ部3が検出した流量に基づいて、バルブ部6をフィードバック制御することにより、流路部2を流れるガスの流量を制御する。
 流路部2は、例えばステンレススチールにより形成された管状のガス通路である。流路部2の上流側には、ガスを流路部2に供給するガス管Gが接続されている。流路部2の下流側には、ガスを製品製造装置に供給するガス管Gが接続されている。
 センサ部3は、バイパス群31、センサ管32、コイル31R、32R、センサ回路33及び圧力検出部34を含む。
 バイパス群31は、束ねられた複数のバイパス管からなり、流路部2の上流側に設けられている。センサ管32は、バイパス群31を迂回するように、バイパス群31の両端に設けられたステンレススチール製の毛細管である。センサ管32は、バイパス群31を流れるガスに対して少量の一定比率のガスを流すように構成されている。これにより、センサ管32には、流路部2を流れる全ガス流量に対して一定比率のガスが供給される。
 コイル31R及びコイル32Rは、夫々センサ管32の上流部分と下流部分とに巻回された一対の発熱抵抗線であり、直列に接続されている。コイル31R及びコイル32Rに電流を流した場合、コイル31R及びコイル32Rは発熱する。センサ管32にガスが流れていない場合、コイル31R及びコイル32Rの温度は、共に同じ温度でバランスする。一方、センサ管32にガスを流した場合、コイル31Rはガスにより熱を奪われ、ガスはコイル31Rにより加熱される。コイル32Rには、上流側で加熱されたガスから熱が与えられる。そのため、コイル31R及びコイル32Rには、ガスの流量に比例した温度変化又は温度差が生じる。
 センサ回路33は、コイル31R及びコイル32Rの温度変化又は温度差を電気信号に変換するブリッジ回路、当該ブリッジ回路が変換した電気信号を増幅する増幅回路等を有する。センサ回路33は、増幅後の流量を示すアナログ流量信号Sqcを制御部4に出力する。
 圧力検出部34は、例えば圧力トランスデューサである。圧力検出部34は、所定時間間隔で流路部2を流れるガスの圧力値をサンプリングし、サンプリングしたガスの圧力値を圧力検出信号Svに変換する。圧力検出部34は、変換した圧力検出信号Svを制御部4に出力する。圧力検出部34が出力する圧力検出信号Svは、制御部4が制御定数等を決定する際に、利用される。
 なお、制御部4が流量制御に圧力検出信号Svを利用しない場合、圧力検出部34はなくてもよい。
 制御部4は、コンピュータを含み、センサ部3からアナログ流量信号Sqc及び圧力検出信号Svを受け付ける。また、制御部4は、ホストコンピュータHから流量設定信号Sspを受け付ける。制御部4は、現在流れている流量を示す流量出力信号Sgoutとして、アナログ流量信号SqcをホストコンピュータHに出力する。また、制御部4は、アナログ流量信号Sqcが示す流量と流量設定信号Sspが示す流量とが一致するように、バルブ部6を操作すべく、バルブ駆動回路5に出力信号Soutを出力する。
 バルブ駆動回路5は、バルブ部6の弁を駆動する回路である。バルブ駆動回路5は、制御部4から出力信号Soutを入力し、入力した出力信号Soutを増幅することにより、バルブ駆動電圧を発生させる。バルブ駆動回路5は、発生させたバルブ駆動電圧をバルブ部6に印加する。バルブ駆動電圧の高低により、バルブ部6の弁開度は調整される。
 なお、バルブ駆動信号Spztは、バルブ駆動電圧に応じた信号である。
 バルブ駆動回路5は、バルブ駆動信号Spztを制御部4に出力してもよいし、出力しなくてもよい。
 バルブ駆動回路5がバルブ駆動信号Spztを制御部4に出力する場合、制御部4はバルブ駆動回路5からバルブ駆動信号Spztを受け付ける。制御部4は、受け付けたバルブ駆動信号Spztを流量のフィードバック制御に利用する。
 バルブ部6は、ケース60、アクチュエータ(圧電素子)61、規制部材62、ばね座63、コイルばね64、弁棒65、球体66、スラストボタン67、ダイヤフラム(弁体)68及び弁口69を含む。ただし、バルブ部6を組み立て可能とするための分割構造の図示は省略する。
 ケース60は、バルブ部6の各構成部を収納する箱である。ケース60は、センサ部3よりも下流側の流路部2上面に設けられており、ケース60の底部は流路部2と接合されている。ケース60の底部には、流体が流通可能な空間が設けられている。ケース60の底面には、2つの開口が開設されており、1つの開口は、バイパス群31を通過したガスがケース60底部の空間に流入する開口である。もう1つの開口は、ケース60底部の空間からガスが流路部2に流出する開口である。後者の開口は、バルブ部6の弁口69を構成している。
 弁口69と対向するケース60内には、上から下に向かって順にアクチュエータ61、規制部材62、ばね座63、コイルばね64、弁棒65、球体66、スラストボタン67及びダイヤフラム68が配設されている。
 アクチュエータ61は、例えば積層圧電素子(ピエゾ素子)である。積層圧電素子は、多数のPZTセラミック円板を積層した構造をなす。積層圧電素子は、高いバルブ駆動電圧が印加された場合、積層方向に伸長し、低いバルブ駆動電圧が印加された場合、積層方向に収縮する。すなわち、アクチュエータ61は、印加されるバルブ駆動電圧によって、上下方向に機械的に伸縮する。
 規制部材62は、アクチュエータ61の下向きの変位を阻止する部材である。ばね座63は、規制部材62に装着されており、コイルばね64を保持する。弁棒65は、ケース60とアクチュエータ61との間に形成された円筒状の部材である。弁棒65は、アクチュエータ61の伸縮により、ケース60の内面に設けられたガイドに沿って昇降するように構成されている。コイルばね64は、上側の規制部材62と下側の弁棒65の底面との間の空間に収容されている。コイルばね64は、弁棒65を下方に付勢するらせん状のばねである。
 弁棒65の底面の外面には、下向きの浅い凹部が形成されている。スラストボタン67は、その上面に上向きの浅い凹部が形成された金属製の台である。球体66は、弁棒65の凹部とスラストボタン67の凹部との間に収納される球である。弁棒65、球体66及びスラストボタン67は、剛的に連続し、上側のアクチュエータ61の機械的伸縮による力を下側のダイヤフラム68に伝達する。球体66は、ダイヤフラム68に伝達する上下方向の力が一箇所に偏在しないようにする機能を有している。
 ダイヤフラム68は、弾性変形可能な金属製の平板である。ダイヤフラム68の周端部は、ケース60の内壁に遊嵌されており、柔軟に移動可能に構成されている。ダイヤフラム68の直下には、ガスが流通可能な弁口69が配置されている。弁口69の周囲は、バルブ部6の弁座に該当する。
 アクチュエータ61の積層圧電素子に電圧を印加しない場合、弁棒65はコイルばね64からの押圧力により押し下げられ、ダイヤフラム68は下向きに撓むように弾性変形する。弾性変形したダイヤフラム68は、弁座に着座し、弁口69を閉じる。その際、バルブ部6の閉状態が維持されるように、コイルばね64のばね荷重は選定されている。一方、アクチュエータ61の積層圧電素子に電圧を印加した場合、積層圧電素子は積層方向に伸長する。伸長した積層圧電素子の下向きの変位は規制部材62に阻止されるため、積層圧電素子は上方に伸びる。これにより、弁棒65の上端部が積層圧電素子により上向き方向に押されるので、弁棒65が上昇し、ダイヤフラム68は球体66及びスラストボタン67を介してコイルばね64の圧縮力から解放される。コイルばね64の圧縮力から解放されたダイヤフラム68は、自身の復元力により元の形状に戻ろうとすることにより、ダイヤフラム68と弁座との間に隙間ができ、弁口69が解放される。
 つまり、ダイヤフラム68と弁口69との間隔は、アクチュエータ61の伸縮及び弁棒65の昇降に伴い変化する。アクチュエータ61に印加するバルブ駆動電圧を低くした場合、アクチュエータ61は収縮し、弁棒65は下降する。そして、ダイヤフラム68と弁口69との間隔は狭くなり、流路部2を流れるガスの流量は減少する。一方、アクチュエータ61に印加するバルブ駆動電圧を高くした場合、アクチュエータ61は伸長し、弁棒65は上昇する。そして、ダイヤフラム68と弁口69との間隔は広くなり、流路部2を流れるガスの流量は増大する。
 上述で説明したバルブ部6は、積層圧電素子に電圧を印加していない場合に弁を閉じるノーマリークローズである。しかし、バルブ部6は、積層圧電素子に電圧を印加していない場合に弁を開くノーマリーオープンであってもよい。以下では、バルブ部6は、ノーマリークローズであるものとする。
 図2は、制御部4のハードウェア構成例を示すブロック図である。制御部4は、CPU(Central Processing Unit)(出力手段、補償手段、生成手段、変換手段)41、RAM(Random Access Memory)42及びROM(Read Only Memory)43を含む。また、制御部4は、タイマ44、入出力インタフェース(受付手段)45及びAD/DA変換部46を含む。CPU41、RAM42、ROM43、タイマ44、入出力インタフェース45及びAD/DA変換部46は、相互にバス4bで接続されている。
 CPU41は、流量制御装置1の各構成部を制御する。CPU41は、ROM43に記録されたプログラム1Pを読み込み、当該プログラム1Pを実行する。なお、CPU41は、制御部4が備えるプロセッサの一例であり、MPU(Micro Processor Unit)がCPU41を代替してもよい。
 RAM42は、例えばSRAM(Static RAM)、DRAM(Dynamic RAM)等であり、CPU41が実行する処理の過程で必要な作業変数、データ等を一時的に記録する。なお、RAM42は主記憶装置の一例であり、RAM42の代わりにフラッシュメモリ、メモリカード等が用いられてもよい。
 ROM43は、例えば不揮発性の半導体メモリ又は半導体メモリ以外の読み出し専用記憶媒体である。ROM43は、CPU11が実行するプログラム1Pを記録している。ROM43は、流量制御装置1内部に取り付けられるものであっても、流量制御装置1外部に設置されるものであってもよい。
 タイマ44は、日時を計時し、計時した結果をCPU41に出力する。CPU41は、タイマ44から受け付けた日時に基づいて、例えばプログラム1Pに基づく割り込み処理を実行する。
 入出力インタフェース45は、ホストコンピュータH、センサ部3及びバルブ駆動回路5と信号又は情報を送受信するためのデジタル入出力ポートを有するインタフェースである。なお、入出力インタフェース45は、外部のディスクドライブ装置と接続することもできる。また、入出力インタフェース45は、LAN(Local Area Network)、WAN(Wide Area Network)、インターネット等のネットワークと接続する機能も有している。
 AD/DA変換部46は、センサ部3及びバルブ駆動回路5から受け付けたアナログ信号をデジタル信号に変換し、変換したデジタル信号を入出力インタフェース45に出力する。また、AD/DA変換部46は、入出力インタフェース45から受け付けたデジタル信号をアナログ信号に変換し、変換したアナログ信号(例えば、出力信号Sout)をバルブ駆動回路5に出力する。
 なお図2に示すように、流量制御装置1を動作させるためのプログラム1Pは、ディスクドライブ装置を介して光ディスク4aから読み込まれてもよい。あるいは、図2に示すように、プログラム1Pは、入出力インタフェース45及びネットワークを介して外部の情報処理装置又は記録装置から読み込まれてもよい。さらに、図2に示すように、プログラム1Pを記録したフラッシュメモリ等の半導体メモリ4cが、制御部4内に実装されていてもよい。
 図3は、流量制御系の一例を示すブロック線図である。ここでの流量制御系は、制御部4を中心とし、センサ部3、バルブ駆動回路5及びバルブ部6の構成要素又は制御要素を含む。なお、図3において、制御部4は破線で囲まれた範囲の要素群に対応する。流量制御装置1の制御部4は図2に示したコンピュータであるが、図3はコンピュータの機能を回路が代替した場合について示している。
 図3の右上に示す流量Qmfは、コイル31R、32Rにより温度変化量又は温度差として検出される。コイル31R、32Rが検出した温度変化量又は温度差は、センサ回路33に含まれるブリッジ回路で電気信号に変換され、かつ増幅回路で増幅された流量センサ信号Vfsとなる。信号は電圧と対応関係にあり、以下では信号をVで表す。
 流量センサ信号Vfsは、アナログ入力回路71で所定のアナログ処理が施され、アナログ流量信号Vqcとなる。アナログ流量信号Vqcは、流量センサ信号Vfsの周波数特性によって高い周波数の成分が大きく減衰した信号であり、デジタル信号補正回路81によりこの減衰分が補償されてデジタル流量信号Vqdとなる。
 なお、コイル31R、32Rの検出特性は秒単位の大きな時定数を有するため、流量センサ信号Vfsは、アナログ入力回路71及びデジタル信号補正回路81により周波数特性が補正される。これにより、流量制御の応答性が速くなる効果を奏する。
 アナログ入力回路71は、センサ部3に含まれてもよいし、制御部4に含まれてもよい。
 デジタル流量信号Vqdは、図3左上の加え合わせ点(生成手段)A1において、流量設定信号Vspと比較され、流量偏差信号Veとなる。流量偏差信号Veは、PI補償器82によって比例積分補償が施され、加え合わせ点A2への入力信号Vpiとなる。
 ところで、図3の流量制御系では、バルブ部6のアクチュエータ61に印加されるバルブ駆動電圧がフィードバック制御に用いられている。加え合わせ点A2は、バルブ駆動電圧に係るフィードバック制御系の入力側に位置する比較部に該当する。バルブ駆動電圧は、アクチュエータ61を構成する積層圧電素子の端子に印加される電圧であることから、以下ではバルブ駆動電圧を端子電圧Vpztとも呼ぶ。
 端子電圧Vpztは、ゲインKmonを有するアナログ入力回路72で検出かつ低減され、端子電圧信号Vmonに変換される。端子電圧信号Vmonは、アクチュエータ61に係る積層圧電素子の応答に対応する。
 なお、アナログ入力回路72は、バルブ駆動回路5に含まれてもよいし、制御部4に含まれてもよい。また、アナログ入力回路72は、各種アナログ処理を実行するフィルタを備えていてもよい。
 端子電圧信号Vmonは、加え合わせ点A3及び伝達関数Gaf(s)(信号生成手段)を有する電圧フィードバック補償器83を経て、電圧フィードバック信号となる。そして、電圧フィードバック信号は、加え合わせ点A2に入力される。
 流量制御系は、流量設定信号Vspが示す流量設定値が0である場合、入力信号Vpiから電圧フィードバック信号を減算した信号を操作量信号Vuとする。
 一方、流量制御系は、流量設定信号Vspが示す流量設定値が0でない場合、不感帯補償信号Vc及び入力信号Vpiの和から電圧フィードバック信号を減算した信号を操作量信号Vuとする。端子電圧Vpztには、完全にバルブ部6の弁が閉じた状態に対応する電圧と、バルブ部6の弁が開閉境界状態である場合に対応する電圧とがあり、これらの電圧の差に該当する電圧を不感帯補償電圧と呼ぶ。不感帯補償信号Vcは、不感帯補償電圧に対応する信号である。
 流量制御装置1は、流量設定値が0である場合、バルブ部6の弁を閉じる。その際、流量制御装置1は、バルブ部6の弁が閉じた状態を確実にするため、閉じる方向へ弁に対して圧力を加えている。そのため、流量制御装置1は、流量設定値が0である場合、弁が開閉境界状態となる端子電圧Vpztよりもさらに弁を閉じる方向に端子電圧Vpztをオフセットさせる。しかし、流量設定値が0でない場合、流量制御装置1は開閉境界状態を飛び越えて流量設定値に対応する弁開度まで、バルブ部6の弁を開く必要があるため、入力信号Vpiと電圧フィードバック信号との差に不感帯補償信号Vcが加えられた信号が操作量信号Vuとなる。
 流量制御系は、伝達関数Grf(s)(変換手段)84で不感帯補償信号Vcを処理した補正信号Vrfを加え合わせ点A3に入力する。そして、流量制御系は、端子電圧信号Vmonから補正信号Vrfを減算した信号を電圧フィードバック補償器83に入力する。
 流量制御系は、上述の処理で得た操作量信号Vuを伝達関数Gff(s)(補償手段)85により修正し、修正操作量信号Vffを生成する。
 流量制御系は、流量設定値が0である場合、バルブ駆動回路5がバルブ部6に印加する電圧が0Vになるようにバルブ駆動回路5へ入力する電圧値に対応する電圧信号Voutintを、バルブ駆動回路5へ入力する出力信号Voutに設定する。一方、流量制御系は、流量設定値が0でない場合、Voutintと修正操作量信号Vffとを加え合わせ点A4で加算し、加算した信号をバルブ駆動回路5へ入力する出力信号Voutに設定する。
 なお、制御部4がコンピュータを含んで構成される場合、図3には図示されていないAD/DA変換部46がバルブ駆動回路5の入力側に位置し、出力信号Voutは、AD/DA変換部46がバルブ駆動回路5に出力する信号に該当する。
 図4は、流量制御系の他例を示すブロック線図である。図4において、図3と異なる部分は、バルブ部6に印加される端子電圧Vpztからの電圧フィードバックに係る信号ループがないことである。図4の流量制御系は、図3の流量制御系における電圧フィードバック補償器83の伝達関数Gaf(s)を0とした場合の流量制御系に該当する。流量制御装置1における流量制御系は、図3の流量制御系でもよいし、図4の流量制御系でもよい。
 次に、制御部4における伝達関数モデルについて説明する。
 アクチュエータ61を駆動するバルブ駆動回路5において、出力信号Voutから端子電圧Vpztまでの応答は、1次遅れ系の応答に類似している。しかし、バルブ駆動回路5における応答は、単なる1次遅れ系の応答とは異なり、2つの1次遅れ系による応答を重ね合わせたモデルによって近似することができる。以下、出力信号Voutから端子電圧Vpztまでの伝達特性を、2つの1次遅れ系を重ね合わせたモデルで表し、当該モデルを実態モデルと呼ぶ。実態モデルの伝達特性は、次の(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 Vpzt(s)は、端子電圧である。Vout(s)は、出力信号Voutに対応する出力電圧である。Kpzt は、バルブ駆動回路5及びアクチュエータ61に係る積層圧電素子の電圧ゲインである。K1#pzt 、K2#pzt は、夫々2つの1次遅れ伝達関数のゲインである。T1#pzt 、T2#pzt は、夫々2つの1次遅れ伝達関数の時定数である。K1#pzt 及びK2#pzt の間には、次の(2)式の関係がある。
Figure JPOXMLDOC01-appb-M000002
 実態モデルは、(1)式の右辺かっこ内の2つの一次遅れ項により、従来の単一の一次遅れ項に比べてモデルの精度が高い。
 (1)式の実態モデルにおける応答特性に係る伝達関数(第一伝達関数)は、次の(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 (3)式の応答特性は、流量制御系全体の応答特性を左右する。(3)式の応答特性が遅い場合、流量制御系の応答を限界付ける要因となる。
 一方ここで、アクチュエータ61に係る積層圧電素子が望ましい高速応答性を示す伝達関数を、一次遅れ要素として表現するモデルを与える。以下、このモデルを規範モデルと呼ぶ。規範モデルの伝達関数(第二伝達関数)は、次の(4)式で表される。
Figure JPOXMLDOC01-appb-M000004
 ゲインKpzt は、実態モデルのゲインKpzt と同じであり、バルブ駆動回路5及びアクチュエータ61に係る積層圧電素子の電圧ゲインに応じた定数である。時定数Tpzt は、バルブ駆動回路5及びアクチュエータ61に係る積層圧電素子の望ましい応答性に応じて指定される変数である。例えば、時定数Tpzt に短い値を設定することにより、Gpzts(s)の応答特性は速くなる。
 なお、ゲインKpzt はアクチュエータ61に係る積層圧電素子のみの電圧ゲインに応じた定数でもよく、時定数Tpzt sはアクチュエータ61に係る積層圧電素子のみの望ましい応答性に応じた変数でもよい。
 次に、積層圧電素子の応答を向上させるために、実態モデル及び規範モデルに基づいて、図3における2つの伝達関数Gff(s)85、Grf(s)84を、夫々次の(5)式、(6)式で表す。
Figure JPOXMLDOC01-appb-M000005
 2つの伝達関数Gff(s)85、Grf(s)84を、夫々(5)式、(6)式のように設定することで、積層圧電素子の応答遅れを打消し、(4)式の望ましい応答を実現することができる。
 図3のブロック線図において、バルブ駆動回路5の伝達関数を(3)式、アナログ入力回路72のゲインをKmon、電圧フィードバック補償器83の伝達関数をGaf(s)とした場合、入力信号Vpi及び不感帯補償信号Vcから端子電圧Vpztまでの伝達特性は、次の(7)式で表される。なお、流量設定値が0である場合、アクチュエータ61の積層圧電素子に印加する電圧に対応する電圧信号Voutintは、流量制御系の動特性に影響しないため、(7)式を導出する計算から除いている。
Figure JPOXMLDOC01-appb-M000006
 ここで、Gaf(s)=0とした場合、(7)式は、次の(8)式で表される。
Figure JPOXMLDOC01-appb-M000007
 (8)式より、積層圧電素子は、印加電圧が0Vの初期状態からでも、規範モデルで定まる高速な応答特性をもって立ち上がることがわかる。
 また、(7)式において、Gaf(s)に0ではない適当な伝達関数を与えた場合、積層圧電素子の応答特性を調整することができることがわかる。
 なお、(7)式の右辺における第一項の成分は、流量設定値がある値から別の値へ変化した場合、流量設定値の変化に追従して所要の弁開度に対応する値へ変化する。この第一項の成分に対応する過渡応答の時間波形は、ダイヤフラム68を駆動する積層圧電素子の応答を加速する方向にオーバーシュートした後、変化後の流量設定値に対応した弁開度の値へと収束する波形となる。他方、(7)式の右辺における第二項の成分に対応する過渡応答の時間波形は、流量設定値が0から0以外の値へ変化した場合、スパイク状の信号を生成し、その後は流量設定値によらない一定値に収束する波形となる。
 次に、上述の制御方式をデジタル制御系に実装するための処理について説明する。
 (5)式のGff(s)85は、次の(9)式となる。
Figure JPOXMLDOC01-appb-M000008
 デジタル制御系への実装に際しては、(7)式の処理を離散化し、次の漸化式(10)で同様な応答特性を実現することができる。ただし、時間がtである場合、修正操作量信号vffの値をvff[t]と表す。他の変数についても同様である。漸化式(10)の演算はサンプル周期Tsで行われるため、初期時刻を0とした場合、tの値はTsの整数倍となる。サンプル周期Tsは、例えば2msである。
Figure JPOXMLDOC01-appb-M000009
 一方、(6)式のGrf(s)84については、次の(11)式となる。
Figure JPOXMLDOC01-appb-M000010
 デジタル制御系への実装に際しては、(11)式の処理は、次の漸化式(12)で同様な応答特性を実現することができる。
Figure JPOXMLDOC01-appb-M000011
 また、制御部4は、バルブ部6の弁を確実に閉じるための圧力をダイヤフラム68に与えるために、流量設定値が0か0以外の値かに応じて流量制御を切り替える。制御部4は、流量設定値が0か0以外の値かに応じて、バルブ駆動回路5に対する出力信号vout に対して、積層圧電素子への印加電圧が0Vとなる電圧信号voutint又は電圧信号voutintに修正操作量信号vffを加算した信号を設定する。
Figure JPOXMLDOC01-appb-M000012
 vspは、流量設定信号である。
 また、制御部4は、流量設定値が0以外の値である場合、端子電圧vpzt に基づく電圧フィードバック信号を考慮した操作量信号vu に対して、バルブ部6の弁の与圧に必要な不感帯に相当する一定電圧値の信号vc (=voutthd-voutint)を加算する。
Figure JPOXMLDOC01-appb-M000013
 voutthdは、積層圧電素子への印加電圧が開閉境界電圧となる信号である。これにより、制御部4における入出力信号間の線形性が保持され、小流量から大流量まで一様な流量制御特性が得られる。従って、Grf(s)は、制御部4における入出力信号間の線形性保持に有用である。
 以上では、規範モデルに持たせる伝達関数を(4)式で表した一次遅れ要素とした。しかし、規範モデルが有する伝達関数は、一次遅れ要素に限定されるものではなく、例えば2次遅れ要素であってもよいことは勿論である。かかる場合、積層圧電素子の大きな電気容量に鑑み、例えば2次遅れ要素の固有角周波数ωに大きな値を設定する。
 図5及び図6は、制御部4が実行する処理の手順の一例を示すフローチャートである。図5及び図6は、図3の破線範囲内に該当する回路の機能をコンピュータを含む制御部4が実行する場合の割り込みルーチン処理を示している。
 CPU41は、タイマ44から受け付けた日時に基づいて、一定周期Tsで割り込み処理を発生させ、図5及び図6に示す処理を繰り返し実行する。
 CPU41は、入出力インタフェース45及びAD/DA変換部46を介して、センサ部3から流量信号を受け付ける(ステップS101)。当該流量信号は、アナログ流量信号vqcをデジタル変換した信号である。CPU41は、受け付けた流量信号に対して、デジタルフィルタ処理により周波数特性を補正し、デジタル流量信号vqdを算出する(ステップS102)。
 CPU41は、入出力インタフェース45を介してホストコンピュータHから流量設定信号vspを受け付ける(ステップS103)。CPU41は、流量設定信号vspとデジタル流量信号vqdとから流量偏差信号ve を算出する(ステップS104)。CPU41は、算出した流量偏差信号ve に対して比例積分補償の計算を実行することにより、入力信号vpiを算出する(ステップS105)。
 CPU41は、不感帯補償信号vc に0を設定する(ステップS106)。CPU41は、流量設定信号vspに対応する流量設定値が0か否かを判定する(ステップS107)。CPU41は、流量設定信号vspに対応する流量設定値が0であると判定した場合(ステップS107:YES)、ステップS109に処理を進める。CPU41は、流量設定信号vspに対応する流量設定値が0でないと判定した場合(ステップS107:NO)、不感帯補償信号vc を、voutthdとvoutintとの差に修正する(ステップS108)。
 なお、voutintは、積層圧電素子への印加電圧が0Vとなる出力信号vout である。voutthdは、積層圧電素子への印加電圧が開閉境界電圧となる出力信号vout である。
 CPU41は、設定又は修正した不感帯補償信号vc に基づいて、伝達関数Grf(s)84に対応するデジタルフィルタ計算を実行することにより、補正信号vrfを生成する(ステップS109)。CPU41は、バルブ駆動回路5から端子電圧信号vmon を受け付ける(ステップS110)。CPU41は、受け付けた端子電圧信号vmon から、生成した補正信号vfrを減算する(ステップS111)。CPU41は、ステップS111で減算により求めた信号に基づいて、電圧フィードバック補償器83が有する伝達関数Gaf(s)に対応する計算を実行することにより、電圧フィードバック信号を生成する(ステップS112)。
 CPU41は、ステップS105で算出した比例積分補償出力である入力信号vpiに対して不感帯補償信号vc を加算し、かつステップS112で生成した電圧フィードバック信号を減算することにより、操作量信号vu を算出する(ステップS113)。CPU41は、操作量信号vu に対して、伝達関数Gff(s)85に対応する計算を実行することにより、応答遅れを補償する修正操作量信号vffを算出する(ステップS114)。
 次に、CPU41は、AD/DA変換部46から出力され、バルブ駆動回路5に入力される出力信号vout を設定する。まずCPU41は、出力信号vout に端子電圧vpzt が0Vとなる場合に相当する電圧信号voutintを設定する(ステップS115)。CPU41は、流量設定信号vspに対応する流量設定値が0か否かを判定する(ステップS116)。CPU41は、流量設定信号vspに対応する流量設定値が0であると判定した場合(ステップS116:YES)、ステップS118に処理を進める。CPU41は、流量設定信号vspに対応する流量設定値が0でないと判定した場合(ステップS116:NO)、出力信号vout に修正操作量信号Vffを加算する(ステップS117)。CPU41は、出力信号vout をAD/DA変換部46から出力し(ステップS118)、処理を終了する。
 なお、端子電圧vpzt を流量制御系のフィードバック制御に利用しない場合、図5及び図6におけるステップS109からステップS112までの処理は、削除される。また、端子電圧vpzt を流量制御系のフィードバック制御に利用しない場合、CPU41は、ステップS113において、算出した比例積分補償出力である入力信号vpiに対して不感帯補償信号vc を加算することにより、操作量信号vu を算出する。
 ステップS107及びステップS116において、CPU41は、流量設定信号vspに対応する流量設定値が0か否かを判定した。しかし、CPU41は、流量設定信号vspに対応する流量設定値が所定値以下か否かを判定し、その判定結果に基づいて、その後の処理を実行してもよい。
 次に、流量制御装置1の動作について説明する。
 図7A、図7B、図7C及び図7Dは、バルブ駆動回路5の入力端子にステップ状の入力波形に応じた電圧を印加した場合における積層圧電素子の時間応答波形の一例を示す説明図である。図7A、図7B、図7C及び図7Dは、夫々流量設定値がその最大値の2%、20%、40%及び100%に変化した場合における積層圧電素子の応答波形を示している。実線は、実測した応答波形である。破線は、実態モデルの応答波形である。図7A、図7B、図7C及び図7Dにおける横軸は時間であり、単位は秒である。図7A、図7B、図7C及び図7Dにおける縦軸は、バルブ駆動回路5からの出力電圧である端子電圧VpztにゲインKmonを乗じた電圧であり、単位はボルトである。図7A、図7B、図7C及び図7Dにおける実態モデルの各定数値は、例えば以下の通りである。
 Kpzt =44.3
 K1_pzt =2.15/3.6=0.694、T1_pzt =0.158
 K2_pzt =1.45/3.6=0.306、T2_pzt =0.044
 図7A、図7B、図7C及び図7Dより、実態モデルは各流量設定値に対して、実測されたアクチュエータ61の応答特性をよく再現していることがわかる。
 図8は、バルブ駆動回路5の入力端子にステップ状の入力波形に応じた電圧を印加した場合における圧電素子の時間応答波形の一例を実態モデルと規範モデルとについて示した説明図である。図8の横軸及び縦軸は、夫々図7の横軸及び縦軸と同じである。規範モデルのパラメータである時定数Tpzt については、
 Tpzt =00.12
としてある。実線は、規範モデルの応答波形である。破線は、実態モデルの応答波形である。実態モデルよりも規範モデルの方が格段に速い応答を示していることが図8からわかる。
 図9A、図9B、図10A、図10B、図11A及び図11Bは、流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。図9A~図11Bの横軸は、時間であり、単位は秒である。図9A~図11Bの縦軸は、信号であり、単位はボルトである。
 図9A、図10A及び図11Aにおいて、細い実線は、流量設定信号Vspのステップ波形である。破線は、端子電圧Vpztに比例する端子電圧信号Vmonの応答波形である。太い実線は、デジタル流量信号Vqdの応答波形である。端子電圧信号Vmonの応答波形は、アクチュエータ61に係る積層圧電素子の応答に対応する。デジタル流量信号Vqdの応答波形は、制御の結果、実際に流路部2を流れる流量の応答に対応する。
 図9B、図10B及び図11Bにおける太い実線は、AD/DA変換部46からの出力信号Voutすなわちバルブ駆動回路5への入力信号の応答波形である。なお、図9B、図10B及び図11Bにおける縦軸のVout1は、流量設定信号Vspが2Vを示す場合にバルブ駆動回路5へ入力される出力信号Voutの定常値である。
 図9A、図9B、図10A、図10B、図11A及び図11Bは、流量制御系における構成要素の差による応答波形の差異を示している。図9A及び図9Bは、比例積分制御の構成要素のみからなる流量制御系による応答波形を示している。図10A及び図10Bは、比例積分制御に加えて、バルブ部6の弁が閉じた状態からの立ち上がり時に不感帯補償電圧をバルブ部6に印加する場合の流量制御系による応答波形を示している。図11A及び図11Bは、比例積分制御及び不感帯補償電圧による制御に加えて、操作量信号Vuに対して伝達関数Gff(s)85により応答遅れを補償する計算を実行した場合の応答波形を示している。すなわち、図11A及び図11Bは、実施の形態1に係る流量制御装置1による応答波形を示している。
 図9A、図10A及び図11Aにおけるデジタル流量信号Vqdの応答波形に注目した場合、図9Aでは無反応時間は0.2秒程度であり、その後流量設定値に到達するのに0.7秒程度を要している。デジタル流量信号Vqdが立ち上がりに0.7秒程度を要している理由の一つは、バルブ部6の弁を開閉境界状態にするまでに、弁に加えた与圧を取り除くのに時間がかかっているためである。
 図10Aでは、デジタル流量信号Vqdの無反応時間は0.15秒程度であり、その後流量設定値に到達するのに0.7秒程度を要している。図10Aの無反応時間は、図9Aの無反応時間よりも多少短縮されている。これは、不感帯補償電圧によりバルブ部6の弁を開閉境界状態まで一気に開いたためと考えられる。しかし、更に無反応時間を短縮するため、不感帯補償電圧を高くした場合、オーバーシュートが発生する。他方、オーバーシュートを抑えるために、不感帯補償電圧を低くした場合、応答が遅くなるというジレンマがある。
 図11Aでは、デジタル流量信号Vqdの無反応時間は0.1秒以下に短縮され、その後流量設定値に到達する時間は0.2秒程度に短縮されている。図11Aに対応する流量制御装置1において、バルブ部6の弁は、開閉境界状態までより高速に開いている。それと同時に、デジタル流量信号Vqdは、オーバーシュート無しに流量設定値に対応する値により高速に到達している。
 図9B、図10B及び図11Bを比較した場合、出力信号Voutが定常値のVout1に到達する時間は、図9B及び図10Bでは0.25秒程度である。図9Bの波形と図10Bとの波形を比較した場合、図10Bの方が、0秒直後の立ち上がり電圧は高い。これは、不感帯補償電圧の効果が波形となって表れているためと考えられる。
 一方、図11Bの場合、出力信号Voutが定常値のVout1に到達する時間はたいへん短く、出力信号Voutは立ち上がりから0.2秒乃至0.25秒後にはVout1に収束している。この出力信号Voutの変化が図11Aに見られる高速応答を実現している。
 図11Bにおける立ち上がり直後の応答波形は、流量設定値がステップ状に増加した場合、スパイク状に突出している。これは、(7)式の右辺第二項が規範モデルにおける短い時定数Tpzt sで減衰するスパイク状の信号を生成するためである。これにより、端子電圧Vpztの立ち上がりが加速され、不感帯の通過に費やされる無反応時間が短縮される。すなわち、図11Aにおけるデジタル流量信号Vqdの無反応時間の短縮は、(7)式の右辺第二項の作用に係る。
 図11Bにおけるスパイク状の信号は、電気容量が大きい積層圧電素子に対して短時間に大きな電流が供給されることを示しており、開閉境界状態まで一気に開くバルブ部6の弁の動作に対応する。
 図11Bにおいて、スパイク状の応答波形が減衰した後の0.07秒付近に、肩状の小さなピークが見える。これは、(7)式の右辺第一項が流量設定値の変化に応じて応答を促進する方向にオーバーシュートする信号を生成するためである。これにより、図11Aにおける端子電圧信号Vmon及びデジタル流量信号Vqdは、新たな流量設定値に対応する値にすばやく到達する。すなわち、図11Aの立ち上がり時における端子電圧信号Vmon及びデジタル流量信号Vqdの波形に見られる急な勾配は、(7)式の右辺第一項の作用に係る。
 図11Bにおける小さなオーバーシュートは、積層圧電素子に対して大きいが、過剰でない電流を供給することにより、開閉境界状態から所望の弁開度まで急速に開くバルブ部6の弁の動作に対応する。図11Bにおける波形は、急速に一定値に収束する。これにより、流量制御装置1は、バルブ部6の弁が所望の弁開度よりも開きすぎることを抑制している。
 積層圧電素子に流れる電流の波形は、図11Bの波形と相関する形状又は略相似形である。図11Bのスパイク状の応答波形に対応する大量の電流が積層圧電素子に流れ込むことにより、積層圧電素子は高速に応答を開始する。また、図11Bのオーバーシュートの応答波形に対応する電流が積層圧電素子に流れ込むことにより、積層圧電素子は立ち上がり時から急速に伸縮する。
 なお、流量制御装置1は、流量設定値がステップ状に減少した場合にも図11と類似の応答波形を示す。かかる場合、縦軸の信号における変動方向が逆になるが、上述と同様の効果を奏する。
 流量制御装置1はプログラム1Pに基づくデジタル制御により流量を制御するが、伝達関数を構成するアナログ回路で制御部4を置き換えてもよい。かかる場合も、上述と同様の効果を奏する。
 実施の形態1では、流量偏差信号Veに対してPI制御を行なった。しかし、流量偏差信号Veは、PID制御、微分先行型PID制御、I-PD制御等によって処理されてもよい。
 流量制御装置1によれば、オーバーシュート無しに高速な応答制御を実現することができる。
 流量制御装置1は、積層圧電素子が有する大きな電気的容量に起因する応答遅れを短縮することにより、より高速な流量の応答制御を可能にする。従って、流量制御装置1を用いることにより、製品の生産効率を向上させることができる。
 実施の形態2
 実施の形態2は、制御部4からバルブ駆動回路5に出力される信号に対応するスパイク状の電圧変化を緩和する緩和フィルタを流量制御系に追加する形態に関する。
 なお、実施の形態2において、実施の形態1と同様の構成部分には、同一の参照番号を付してその詳細な説明を省略する。
 図12は、流量制御系の他の例を示すブロック線図である。図12は、図3に伝達関数Gss(s)(緩和手段)86を追加したブロック線図である。伝達関数Gss(s)86は、バルブ部6を閉じた状態から開く際、流量制御系の応答特性を調整するための関数である。なお、図12において、制御部4は破線で囲まれた範囲の要素群に対応する。
 図12において、図3と異なる動作部分は、0及び不感帯補償電圧Vcを選択切り替えした信号を、緩和フィルタに対応する伝達関数Gss(s)86で緩和処理し、緩和処理した信号Vcfを加え合わせ点A2及び伝達関数Grf(s)84に入力している部分である。
 図13は、流量制御系の他の例を示すブロック線図である。図13は、図4に伝達関数Gss(s)86を追加したブロック線図である。なお、図13において、制御部4は破線で囲まれた範囲の要素群に対応する。
 図13において、図4と異なる動作部分は、0及び不感帯補償電圧Vcを選択切り替えした信号を、緩和フィルタに対応する伝達関数Gss(s)86で緩和処理し、緩和処理した信号Vcfを加え合わせ点A2に入力している部分である。
 次に、制御部4における伝達関数モデルについて説明する。
 入力信号Vpi及び不感帯補償信号Vcから端子電圧Vpztまでの伝達特性は、次の(13)式で表される。
Figure JPOXMLDOC01-appb-M000014
 ここで、Gaf(s)=0とした場合、(13)式は、次の(14)式で表される。
Figure JPOXMLDOC01-appb-M000015
 (13)式の右辺における第二項の成分に含まれる伝達関数Gss(s)86は、実施の形態1における(7)式の場合に生じるスパイク状の信号のピーク電圧を抑制する機能を有している。これにより、(13)式の右辺における第二項の成分に対応する過渡応答の時間波形は、流量設定値が0から0以外の値へと変化した場合、流量設定値に対応する電圧より高く、かつ上記ピーク電圧よりも低い電圧に向けてステップ状に高速に立ち上がり、その後は流量設定値によらない一定値に収束する波形となる。すなわち、伝達関数Gss(s)86がスパイク状の突出した波形に対応するピーク電圧を抑制することにより、上記時間波形はスパイク状ではなく、ステップ状になる。
 図3の構成の場合、制御部4は、流量設定値が0以外の値である場合、端子電圧vpztに基づく電圧フィードバック信号を考慮した操作量信号vuに対して、バルブ部6の弁の与圧に必要な不感帯に相当する一定電圧値の信号vc(voutthd-voutint)を加算した。
 他方、図12の構成の場合、制御部4は、バルブ部6の弁の与圧に必要な不感帯に相当する一定電圧値の信号vc(voutthd-voutint)がステップ状に立ち上がるように、緩和フィルタに対応する伝達関数Gss(s)86で信号vcを緩和処理し、緩和処理後の信号Vcfを生成する。そして、制御部4は、流量設定値が0以外の値である場合、端子電圧vpztに基づく電圧フィードバック信号を考慮した操作量信号Vuに対して、生成した信号Vcfを加算する。その際、制御部4は、端子電圧vpztと、信号Vcfを伝達関数Grf(s)84により補正した補正信号Vrfとを考慮して電圧フィードバック信号を生成する。
 図3の構成が電圧フィードバック信号を考慮したのに対し、図4の構成は電圧フィードバック信号を考慮しなかった。同様に、図12の構成が電圧フィードバック信号を考慮しているのに対し、図13の構成は電圧フィードバック信号を考慮していない。すなわち、図13の構成の場合、電圧フィードバック信号を考慮しない操作量信号Vuに対して、生成した信号Vcfを加算する。
 Gss(s)86としては、例えば次の(15)式の位相遅れ要素を用いることもできる。
Figure JPOXMLDOC01-appb-M000016
 デジタル制御系に実装する場合、(15)式の処理は、次の漸化式(16)で同様な応答特性を実現することができる。
Figure JPOXMLDOC01-appb-M000017
 図14A及び図14Bは、流量設定値に対応する流量設定信号Vspが0Vから2Vにステップ状に立ち上がった場合の応答波形の一例を示す説明図である。図14A及び図14Bの横軸は、時間であり、単位は秒である。図14A及び図14Bの縦軸は、信号であり、単位はボルトである。図14Aにおいて流量設定信号Vsp、端子電圧信号Vmon及びデジタル流量信号Vqdを夫々示す線種は、図9A、図10A及び図11Aにおけるものと同じである。また、図14Bにおいて出力信号Voutを示す太い実線は、図9B、図10B及び図11Bにおけるものと同じである。更に、図14Bにおける縦軸のVout1は、流量設定信号Vspが2Vを示す場合にバルブ駆動回路5へ入力される出力信号Voutの定常値である。図9A~図11Bと比較した場合、図14A及び図14Bは、流量制御系における構成要素の差による応答波形の差異を示している。
 図14A及び図14Bは、比例積分制御、不感帯補償電圧Vcによる制御及び操作量信号Vuに対する応答遅れ補償による制御に加えて、与圧状態で閉じているバルブ部6を開く際の不感帯補償電圧Vcを緩和処理した場合の応答波形を示している。すなわち、図14A及び図14Bは、実施の形態2に係る流量制御装置1による応答波形を示している。
 図14Aにおけるデジタル流量信号Vqdの応答波形に係る無反応時間は、図9A及び図10Aの場合に比較して、図11Aの場合と同様に、0.1秒以下に短縮され、その後流量設定値に到達する時間は0.2秒程度に短縮されている。
 図9B、図10B、図11B及び図14Bを比較した場合、出力信号Voutが定常値のVout1に到達する過程は、図9B及び図10Bでは低い値から上昇して定常値Vout1に収束するのに対し、図11B及び図14Bでは一気に定常値Vout1よりも高い値に上昇し、その後下降して定常値Vout1に収束する。従来、このようなオーバーシュートする信号でバルブ部6を駆動すると流量応答もオーバーシュートを生じがちであったが、本発明では、前述のように伝達関数設計に基づいて操作量信号を生成する流量制御系を構成しているので、流量応答はオーバーシュートすることなく0.2秒程度で高速に設定値に収束する。
 図14Bにおける立ち上がり直後の応答波形は、緩和フィルタに対応する伝達関数Gss(s)86の効果により、図11Bに比べてスパイク状に突出した高さが抑制されている一方、時間方向には30ms程度の幅であったスパイクが、60ms程度に広がったピークとなっている。この広がったピークの時間的持続の効果によって、流量制御装置1は、図11Bにおけるスパイク状の高い電圧に対応する出力信号Voutを用いた場合とほぼ同等の応答時間を得ている。図11Bの場合には、スパイク状の高い電圧信号を扱うために、バルブ駆動回路5で飽和が生じることがないように、制御部4からバルブ駆動回路5への出力信号Voutは、短時間で広い電圧変化幅を確保する必要がある。しかし、図14Bの波形であれば、制御部4からバルブ駆動回路5への出力信号Voutに対応する電圧変化幅は、Vout1よりも高い出力信号Voutがより長時間に亘って出力されるので、より小さい値でよい。
 実施の形態2に係る流量制御装置1によれば、実施の形態1と同様にオーバーシュート無しに高速な応答制御を実現することができる。
 流量制御装置1の緩和フィルタに対応する伝達関数Gss(s)86は、制御部4からバルブ駆動回路5に出力される信号に対応するスパイク状の電圧変化を緩和することができる。バルブ駆動回路5は、印加される電圧がバルブ駆動回路5の電源電圧よりも高い場合、飽和してしまう。また、このような場合に飽和を回避するには、高い電圧を供給できる電源を別途設けたり、回路素子に高電圧対応の特殊な素子を用いたりする必要があり、装置サイズやコストの増大を招く。しかし、伝達関数Gss(s)86は、バルブ駆動回路5に印加されるスパイク状の電圧変化を低減し、ステップ状の電圧変化に変えるので、バルブ駆動回路5の飽和を抑制することができる。また、伝達関数Gss(s)86は、標準的な回路素子と既存の電源による構成の範囲での応答高速化を可能とする。その一方で、流量制御装置1の伝達関数Gss(s)86は、バルブ駆動回路5及びアクチュエータ61に印加される電圧の印加時間をより長くすることで、バルブ駆動回路5及びアクチュエータ61に供給する電気エネルギーを減少させることなく、積層圧電素子の高速応答制御を実現している。
 なお、開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 また、各実施の形態で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 1   流量制御装置
 2   流路部(流路)
 3   センサ部(検出手段)
 31  バイパス群
 32  センサ管
 31R コイル
 32R コイル
 33  センサ回路
 34  圧力検出部
 4   制御部(制御手段、コンピュータ)
 41  CPU(出力手段、補償手段、生成手段、信号生成手段、変換手段)
 42  RAM
 43  ROM
 44  タイマ
 45  入出力インタフェース(受付手段)
 46  AD/DA変換部
 5   バルブ駆動回路(駆動回路、出力手段)
 6   バルブ部(流量調整弁)
 60  ケース
 61  アクチュエータ(圧電素子)
 62  規制部材
 63  ばね座
 64  コイルばね
 65  弁棒
 66  球体
 67  スラストボタン
 68  ダイヤフラム(弁体)
 69  弁口
 72  アナログ入力回路
 83  Gaf(s)(信号生成手段)
 84  Grf(s)(変換手段)
 85  Gff(s)(補償手段)
 86  Gss(s)(緩和手段)
 H   ホストコンピュータ
 G   ガス管
 A1  加え合わせ点(生成手段)

Claims (18)

  1.  流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、
     該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、
     目標流量を受け付ける受付手段と、
     流量を前記受付手段が受け付けた目標流量と一致するように変化させるべく、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力する出力手段と
     を備える流量制御装置において、
     前記出力手段は、前記受付手段が受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値と異なる電圧値に対応する信号を過渡的に出力し、その後該目標電圧値に収束する電圧変化に対応する信号を出力するようにしてある
     ことを特徴とする流量制御装置。
  2.  前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、該流量調整弁が閉状態でない場合に該目標流量が変化したときよりも、変化後の目標流量に対応する目標電圧値に対してより大きな振幅を示す電圧変化に対応する信号を前記駆動回路に出力するようにしてある
     ことを特徴とする請求項1に記載の流量制御装置。
  3.  前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、スパイク状の電圧変化に対応する信号を前記駆動回路に出力するようにしてある
     ことを特徴とする請求項1又は請求項2に記載の流量制御装置。
  4.  前記出力手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、変化後の目標流量に対応する目標電圧値よりも高い電圧値までステップ状に立ち上がる電圧変化に対応する信号を出力し、その後該目標電圧値に収束する電圧変化に対応する信号を前記駆動回路に出力するようにしてある
     ことを特徴とする請求項1又は請求項2に記載の流量制御装置。
  5.  流路を流れる流体の流量を検出する検出手段と、
     前記流路を開閉する流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、
     該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、
     流体の目標流量を受け付ける受付手段と、
     該受付手段が受け付けた目標流量及び前記検出手段が検出した流量の偏差に基づいて、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力することにより、該駆動回路及び該圧電素子を介して流量を制御する制御手段と
     を備える流量制御装置において、
     前記制御手段は、
     前記偏差に対応する信号を生成する生成手段と、
     前記圧電素子の電気的特性に係る数値及び該圧電素子の応答特性に応じた定数を含む制御要素により、前記生成手段が生成した信号を補償する補償手段と
     を有し、
     前記補償手段が補償した信号を前記駆動回路に出力するようにしてある
     ことを特徴とする流量制御装置。
  6.  前記制御要素は、
     前記圧電素子の電気的特性に係るゲインを含む第一伝達関数と、
     前記圧電素子の応答特性に応じた定数及び前記ゲインを含む第二伝達関数と
     を有する
     ことを特徴とする請求項5に記載の流量制御装置。
  7.  前記第一及び第二伝達関数は前記駆動回路の電気的特性に係るゲインを含む
     ことを特徴とする請求項6に記載の流量制御装置。
  8.  前記制御要素は、前記制御手段から前記駆動回路へ信号を入力してから、前記圧電素子が前記弁体を作動させるまでの応答に係る
     ことを特徴とする請求項6又は請求項7に記載の流量制御装置。
  9.  前記制御手段は、前記流量調整弁を閉じる場合、前記駆動回路に対して前記圧電素子に印加させる電圧を、該流量調整弁の弁開度がゼロになる電圧から該流量調整弁を更に閉じる方向に所定電圧Vcだけ異なるようにしてあり、
     前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記Vcを重畳した信号を補償するようにしてある
     ことを特徴とする請求項6から請求項8までのいずれか一項に記載の流量制御装置。
  10.  前記駆動回路は前記圧電素子に印加する電圧に対応する信号を前記制御手段に出力する出力手段を有し、
     前記制御手段は、前記出力手段が出力した信号に基づいて、前記圧電素子の応答特性を調整するためのフィードバック信号を生成する信号生成手段を有し、
     前記補償手段は、前記生成手段が生成した信号に前記Vcを重畳した信号及び前記信号生成手段が生成したフィードバック信号を補償するようにしてある
     ことを特徴とする請求項9に記載の流量制御装置。
  11.  前記第二伝達関数に基づいて、前記Vcに対応する信号を変換する変換手段を備え、
     前記信号生成手段は、前記出力手段が出力した信号及び前記変換手段が変換した信号を補償することにより、フィードバック信号を生成するようにしてある
     ことを特徴とする請求項10に記載の流量制御装置。
  12.  前記Vcの変化を緩和する緩和手段を備え、
     前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記緩和手段が緩和したVcを重畳した信号を補償するようにしてある
     ことを特徴とする請求項9又は請求項10に記載の流量制御装置。
  13.  前記Vcの変化を緩和する緩和手段を備え、
     前記変換手段は前記緩和手段が緩和したVcに対応する信号を変換するようにしてあり、
     前記補償手段は、前記流量調整弁が閉状態である場合に前記受付手段が受け付けた目標流量が変化したとき、前記生成手段が生成した信号に前記緩和手段が緩和したVcを重畳した信号及び前記信号生成手段が生成したフィードバック信号を補償するようにしてある
     ことを特徴とする請求項11に記載の流量制御装置。
  14.  前記圧電素子は積層圧電素子である
     ことを特徴とする請求項5から請求項13までのいずれか一項に記載の流量制御装置。
  15.  前記流量調整弁は前記流路に設けられた弁口を含み、
     前記弁体は、前記圧電素子からの押圧で弾性的に変形することにより、前記弁口の周囲に着座可能な板状のダイヤフラムである
     ことを特徴とする請求項5から請求項14までのいずれか一項に記載の流量制御装置。
  16.  流量を検出する検出手段と、
     流量調整弁を構成する弁体に連結されており、該弁体を作動させることにより、流量を調整する圧電素子と、
     該圧電素子に電圧を印加することにより該圧電素子を駆動する駆動回路と、
     目標流量を受け付ける受付手段と
     を備える流量制御装置が有するコンピュータに、前記受付手段が受け付けた目標流量及び前記検出手段が検出した流量の偏差に基づいて、前記圧電素子に印加する電圧に対応する信号を前記駆動回路に出力することにより、該駆動回路及び該圧電素子を介して流量を制御する処理を実行させるプログラムにおいて、
     前記偏差に基づいて、前記駆動回路に出力する信号を生成し、
     前記圧電素子の電気的特性に係る数値及び該圧電素子の応答特性に応じた定数に基づいて、生成した信号に係る補償計算を実行する
     処理をコンピュータに実行させることを特徴とするプログラム。
  17.  前記補償計算を実行する処理は、前記圧電素子の電気的特性に係るゲインを含む第一伝達関数並びに該圧電素子の応答特性に応じた定数及び該ゲインを含む第二伝達関数の比からなる伝達関数により、生成した信号に係る補償計算を実行する
     ことを特徴とする請求項16に記載のプログラム。
  18.  前記受付手段が受け付けた目標流量が所定値未満から所定値以上に変化した場合、前記信号を生成する処理が生成した信号に所定電圧に対応する信号を加算する
     ことを特徴とする請求項16又は請求項17に記載のプログラム。
PCT/JP2013/052146 2012-02-03 2013-01-31 流量制御装置及びプログラム WO2013115298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013556490A JP5867517B2 (ja) 2012-02-03 2013-01-31 流量制御装置及びプログラム
US14/376,065 US9797520B2 (en) 2012-02-03 2013-01-31 Flow control apparatus and program
KR1020147024492A KR101943684B1 (ko) 2012-02-03 2013-01-31 유량 제어 장치 및 기록 매체
CN201380017191.6A CN104220946B (zh) 2012-02-03 2013-01-31 流量控制装置以及流量控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-022318 2012-02-03
JP2012022318 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115298A1 true WO2013115298A1 (ja) 2013-08-08

Family

ID=48905330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052146 WO2013115298A1 (ja) 2012-02-03 2013-01-31 流量制御装置及びプログラム

Country Status (5)

Country Link
US (1) US9797520B2 (ja)
JP (1) JP5867517B2 (ja)
KR (1) KR101943684B1 (ja)
CN (1) CN104220946B (ja)
WO (1) WO2013115298A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033859A (ko) 2014-07-15 2017-03-27 히타치 긴조쿠 가부시키가이샤 유체의 유량을 제어하는 방법, 당해 방법을 실행하는 질량 유량 제어 장치 및 당해 질량 유량 제어 장치를 사용한 질량 유량 제어 시스템
WO2020230574A1 (ja) * 2019-05-14 2020-11-19 株式会社フジキン 流量制御装置、流量制御方法、流量制御装置の制御プログラム
JPWO2021176864A1 (ja) * 2020-03-05 2021-09-10
JP7144126B1 (ja) 2022-05-16 2022-09-29 東フロコーポレーション株式会社 流量制御装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625048B2 (en) * 2013-09-04 2017-04-18 Horiba Stec, Co., Ltd. Interlace lifting mechanism
CN105593587B (zh) * 2013-09-30 2017-10-10 日立金属株式会社 流量控制阀和使用该流量控制阀的质量流量控制装置
GB201509228D0 (en) * 2015-05-29 2015-07-15 Norgren Ltd C A Active cancellation of a pulsating flow with a flow signal noise reference
DE112016002024B4 (de) * 2015-06-25 2023-11-09 Illinois Tool Works Inc. Piezoaktortyp-ventil
GB201511982D0 (en) * 2015-07-08 2015-08-19 Norgren Ltd C A Active cancellation of a pulsating flow with a source noise reference
JP6775288B2 (ja) * 2015-10-08 2020-10-28 株式会社堀場エステック 流体制御弁及びその制御プログラム
CN105525697B (zh) * 2016-01-26 2018-12-07 广州大学 叠层压电驱动器调节的智能旁路式黏滞阻尼器
US10386864B2 (en) * 2016-04-12 2019-08-20 Hitachi Metals, Ltd. Mass flow controller and a method for controlling a mass flow rate
JP7164938B2 (ja) * 2017-07-31 2022-11-02 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
US11512993B2 (en) * 2017-09-25 2022-11-29 Fujikin Incorporated Valve device, adjustment information generating method, flow rate adjusting method, fluid control system, flow rate control method, semiconductor manufacturing system and semiconductor manufacturing method
JP7008499B2 (ja) * 2017-12-27 2022-01-25 株式会社堀場エステック 校正データ作成装置及び校正データ作成方法、並びに、流量制御装置
KR102592722B1 (ko) * 2018-03-19 2023-10-24 가부시키가이샤 프로테리아루 다이어프램 밸브 및 그것을 사용한 질량 유량 제어 장치
JP2020089037A (ja) * 2018-11-22 2020-06-04 株式会社堀場エステック ピエゾアクチュエータ、流体制御バルブ、及び、流体制御装置
KR102542263B1 (ko) * 2019-01-31 2023-06-13 가부시키가이샤 후지킨 밸브장치, 이 밸브장치를 사용한 유량 제어방법, 유체 제어장치, 반도체 제조방법, 및 반도체 제조장치
JP7390544B2 (ja) * 2019-05-17 2023-12-04 パナソニックIpマネジメント株式会社 ガス保安装置
TWI774227B (zh) 2020-02-21 2022-08-11 日商富士金股份有限公司 流量控制裝置、流量控制裝置的控制方法、流量控制裝置的控制程式
DE102020115057A1 (de) * 2020-06-05 2021-12-09 Bürkert Werke GmbH & Co. KG Ventillinearantrieb sowie Ventil
CN112906875B (zh) * 2021-04-29 2021-07-27 常州高凯电子有限公司 一种用于精密气体流量阀的控制***及方法
CN114087413B (zh) * 2021-11-26 2023-12-22 中广核工程有限公司 比例阀调节方法、装置、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147723A (ja) * 2000-09-07 2001-05-29 Hitachi Metals Ltd 流量制御方法
JP2003504750A (ja) * 1999-07-10 2003-02-04 ミリポール・コーポレイシヨン 可変ゲイン比例積分(pi)制御器のためのシステムおよび方法
JP2007200318A (ja) * 2006-01-17 2007-08-09 Fisher Controls Internatl Llc 電空制御ループに対する初期条件が調整可能なリード・ラグ入力フィルタ装置
JP2010015580A (ja) * 2001-04-24 2010-01-21 Celerity Inc 質量流量コントローラのシステムおよび方法
JP2011090405A (ja) * 2009-10-20 2011-05-06 Hitachi Metals Ltd 流量制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171411A (ja) * 1995-12-20 1997-06-30 Harman Co Ltd 流量制御装置
JPH11353033A (ja) * 1998-06-05 1999-12-24 Japan Organo Co Ltd 間接加熱方式の温度制御システム
JP2000250633A (ja) * 1999-02-26 2000-09-14 Hirai:Kk 流体質量流量コントローラ
JP2001142541A (ja) * 1999-11-12 2001-05-25 Hitachi Metals Ltd マスフローコントローラ
US6837221B2 (en) * 2001-12-11 2005-01-04 Cummins Inc. Fuel injector with feedback control
US7934665B2 (en) * 2003-03-28 2011-05-03 Ultrasonic Systems Inc. Ultrasonic spray coating system
WO2004087336A2 (en) * 2003-03-28 2004-10-14 Ultrasonic Systems Inc. Ultrasonic spray coating system
US20060169202A1 (en) * 2003-03-28 2006-08-03 Erickson Stuart J Coating system
US7004150B2 (en) * 2003-08-12 2006-02-28 Siemens Diesel Systems Technology Vdo Control valve for fuel injector and method of use
JP4186831B2 (ja) * 2004-02-03 2008-11-26 日立金属株式会社 質量流量制御装置
CN100449190C (zh) * 2004-06-07 2009-01-07 矢崎总业株式会社 电磁阀的驱动方法、电磁阀驱动装置以及电线着色装置
WO2005122189A1 (ja) * 2004-06-07 2005-12-22 Yazaki Corporation 電線着色装置及び電線着色方法
US8141844B2 (en) * 2005-10-26 2012-03-27 Codman NeuroSciences Sàrl Flow rate accuracy of a fluidic delivery system
US8240635B2 (en) * 2005-10-26 2012-08-14 Codman Neuro Sciences Sárl Flow rate accuracy of a fluidic delivery system
US7603186B2 (en) 2006-04-28 2009-10-13 Advanced Energy Industries, Inc. Adaptive response time closed loop control algorithm
DE102007019099B4 (de) * 2007-04-23 2016-12-15 Continental Automotive Gmbh Verfahren und Vorrichtung zur Kalibrierung von Kraftstoffinjektoren
JP5027729B2 (ja) * 2008-04-25 2012-09-19 株式会社フジキン 流量自己診断機能を備えた圧力式流量制御装置の圧力制御弁用駆動回路
WO2011057164A1 (en) * 2009-11-06 2011-05-12 Rutgers, The State University Of New Jersey Pharmaceutical preparations having individualized dosage and structure
CN102644787A (zh) 2011-02-15 2012-08-22 株式会社堀场Stec 流体控制装置和压力控制装置
JP2012168822A (ja) 2011-02-15 2012-09-06 Horiba Stec Co Ltd 流体制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504750A (ja) * 1999-07-10 2003-02-04 ミリポール・コーポレイシヨン 可変ゲイン比例積分(pi)制御器のためのシステムおよび方法
JP2001147723A (ja) * 2000-09-07 2001-05-29 Hitachi Metals Ltd 流量制御方法
JP2010015580A (ja) * 2001-04-24 2010-01-21 Celerity Inc 質量流量コントローラのシステムおよび方法
JP2007200318A (ja) * 2006-01-17 2007-08-09 Fisher Controls Internatl Llc 電空制御ループに対する初期条件が調整可能なリード・ラグ入力フィルタ装置
JP2011090405A (ja) * 2009-10-20 2011-05-06 Hitachi Metals Ltd 流量制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033859A (ko) 2014-07-15 2017-03-27 히타치 긴조쿠 가부시키가이샤 유체의 유량을 제어하는 방법, 당해 방법을 실행하는 질량 유량 제어 장치 및 당해 질량 유량 제어 장치를 사용한 질량 유량 제어 시스템
US10248137B2 (en) 2014-07-15 2019-04-02 Hitachi Metals, Ltd. Method for controlling flow rate of fluid, mass flow rate control device for executing method, and mass flow rate control system utilizing mass flow rate control device
WO2020230574A1 (ja) * 2019-05-14 2020-11-19 株式会社フジキン 流量制御装置、流量制御方法、流量制御装置の制御プログラム
KR20210124364A (ko) * 2019-05-14 2021-10-14 가부시키가이샤 후지킨 유량 제어 장치, 유량 제어 방법, 유량 제어 장치의 제어 프로그램
TWI755704B (zh) * 2019-05-14 2022-02-21 日商富士金股份有限公司 流量控制裝置、流量控制方法、流量控制裝置的控制程式
KR102608260B1 (ko) * 2019-05-14 2023-11-30 가부시키가이샤 후지킨 유량 제어 장치, 유량 제어 방법, 기록 매체
JPWO2021176864A1 (ja) * 2020-03-05 2021-09-10
WO2021176864A1 (ja) * 2020-03-05 2021-09-10 株式会社フジキン 流量制御装置および流量制御方法
JP7169034B2 (ja) 2020-03-05 2022-11-10 株式会社フジキン 流量制御装置および流量制御方法
JP7144126B1 (ja) 2022-05-16 2022-09-29 東フロコーポレーション株式会社 流量制御装置
JP2023168989A (ja) * 2022-05-16 2023-11-29 東フロコーポレーション株式会社 流量制御装置
US12001231B2 (en) 2022-05-16 2024-06-04 Toflo Corporation Flow rate control device

Also Published As

Publication number Publication date
US9797520B2 (en) 2017-10-24
KR101943684B1 (ko) 2019-01-29
US20140374634A1 (en) 2014-12-25
JPWO2013115298A1 (ja) 2015-05-11
CN104220946B (zh) 2017-03-08
CN104220946A (zh) 2014-12-17
JP5867517B2 (ja) 2016-02-24
KR20140122743A (ko) 2014-10-20

Similar Documents

Publication Publication Date Title
WO2013115298A1 (ja) 流量制御装置及びプログラム
Liu et al. Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams
KR102092853B1 (ko) 유량 제어 장치 및 유량 제어 장치용 프로그램을 기록한 기록 매체
KR102384043B1 (ko) 유체 제어 장치 및 유체 제어 장치용 프로그램 기록 매체
US11733721B2 (en) Flow rate control device and flow rate control method
CN109298735B (zh) 差示扫描量热仪恒速升温过程的前馈-反馈复合控制方法
US20090141756A1 (en) Adaptive Thermal Feedback System for a Laser Diode
KR20200010482A (ko) 제어계 설계 장치 및 제어 시스템
JP2001147723A (ja) 流量制御方法
TW202221441A (zh) 流體控制裝置、流體控制裝置的控制方法和儲存有流體控制裝置用程序的程序儲存媒體
JP6010354B2 (ja) ポジショナ
JP2020013269A (ja) 流量制御装置
US20170060106A1 (en) Auto-tuning
JP2016192243A (ja) 流体制御装置
JP6518470B2 (ja) 温度制御装置、温度制御方法、および荷電粒子線装置
KR102171610B1 (ko) 피드-포워드 밸브 테스트 보상을 위한 시스템
Kim et al. Control and hysteresis reduction in prestressed curved unimorph actuators using model predictive control
Ohnishi et al. Trajectory tracking control for pneumatic actuated scan stage with time delay compensation
JP7169034B2 (ja) 流量制御装置および流量制御方法
Beschi et al. Control strategies for disturbance rejection in a solar furnace
US11873916B2 (en) Fluid control device, fluid supply system, and fluid supply method
KR20110115797A (ko) 비례적분미분제어기 및 그 제어 방법
JPH0769723B2 (ja) プロセス制御装置
JP2019105338A (ja) 流体制御装置及び流体制御装置用プログラム
CN112983726B (zh) 调速器比例阀振荡电流大小整定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556490

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376065

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024492

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13743313

Country of ref document: EP

Kind code of ref document: A1