JP4186831B2 - 質量流量制御装置 - Google Patents

質量流量制御装置 Download PDF

Info

Publication number
JP4186831B2
JP4186831B2 JP2004027306A JP2004027306A JP4186831B2 JP 4186831 B2 JP4186831 B2 JP 4186831B2 JP 2004027306 A JP2004027306 A JP 2004027306A JP 2004027306 A JP2004027306 A JP 2004027306A JP 4186831 B2 JP4186831 B2 JP 4186831B2
Authority
JP
Japan
Prior art keywords
flow rate
mass flow
pressure
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027306A
Other languages
English (en)
Other versions
JP2005222173A (ja
Inventor
泰一 徳久
崇夫 後藤
亨 松岡
茂洋 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004027306A priority Critical patent/JP4186831B2/ja
Priority to US10/572,046 priority patent/US8112182B2/en
Priority to PCT/JP2005/001622 priority patent/WO2005076095A1/ja
Priority to KR1020067002427A priority patent/KR100739520B1/ko
Publication of JP2005222173A publication Critical patent/JP2005222173A/ja
Application granted granted Critical
Publication of JP4186831B2 publication Critical patent/JP4186831B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0379By fluid pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、ガス等の比較的小流量の流体の質量流量を計測する質量流量制御装置に関する。
一般に、半導体集積回路等の半導体製品等を製造するためには、半導体ウエハ等に対して例えばCVD成膜やエッチング操作等が種々の半導体製造装置において繰り返し行われるが、この場合に微量の処理ガスの供給量を精度良く制御する必要から例えばマスフローコントローラのような質量流量制御装置が用いられている(例えば特許文献1、特許文献2、特許文献3等)。
ここで一般的な質量流量制御装置の構成について、図11及び図12を参照して説明する。図11はガス配管に介設された従来の質量流量制御装置の一例の概略構成図を示し、図12は質量流量制御装置の流量検出手段を示す回路図である。
図示するように、この質量流量制御装置2は、液体や気体等の流体を流す流体通路、例えばガス管4の途中に介設されて、この質量流量を制御するようになっている。尚、このガス管4の一端に接続される半導体製造装置内は例えば真空引きされている。この質量流量制御装置2は、例えばステンレススチール等により成形された流路6を有しており、この両端が上記ガス管4に接続される。この質量流量制御装置2は流路6の前段側に位置する質量流量検出手段8と後段側に位置する流量制御弁機構10とよりなる。
まず、上記質量流量検出手段8は、上記流路6のガス流体の流れ方向の上流側に設けられて複数のバイパス管を束ねてなるバイパス群12を有している。上記バイパス群12の両端側には、これを迂回するようにセンサ管14が接続されており、これにバイパス群12と比較して小量のガス流体を一定の比率で流し得るようになっている。すなわち、このセンサ管14には全ガス流量に対して一定の比率の一部のガスを常に流すようになっている。このセンサ管14には直列に接続された制御用の一対の抵抗線R1、R4が巻回されており、これに接続されたセンサ回路16により質量流量値を示す流量信号S1を出力するようになっている。
この流量信号S1は、例えばマイクロコンピュータ等よりなる制御手段18へ導入されて、上記流量信号S1に基づいて現在流れているガスの質量流量が求められると共に、その質量流量が外部より入力される流量設定信号S0で表される質量流量に一致するように、上記流量制御弁機構10を制御することになる。この流量制御弁機構10は、上記流路6の下流側に設けられた流量制御弁20を有しており、この流量制御弁20はガス流体の質量流量を直接的に制御するための弁体として例えば金属板製の屈曲可能になされたダイヤフラム22を有している。
そして、このダイヤフラム22を弁口24に向けて適宜屈曲変形させて移動させることによって、上記弁口24の弁開度を任意に制御し得るようになっている。そして、このダイヤフラム22の上面は、例えば積層圧電素子(ピエゾ素子)よりなるアクチュエータ26の下端部に接続されており、これにより、その弁開度が上記したように調整できるようになっている。またアクチュエータ26の全体はケース27によって全体が囲まれている。そして、このアクチュエータ26は、上記制御手段18からの駆動信号を受けてバルブ駆動回路28が出力するバルブ駆動電圧S4により動作する。尚、上記アクチュエータ26として積層圧電素子に替えて電磁式のアクチュエータを用いる場合もある。
上記抵抗線R1、R4とセンサ回路16との関係は、図12に示されている。すなわち、上記抵抗線R1、R4の直列接続に対して、2つの基準抵抗R2、R3の直列接続回路が並列に接続されて、いわゆるブリッジ回路を形成している。そして、このブリッジ回路に、一定の電流を流すための定電流源30が接続されている。また、上記抵抗線R1、R4同士の接続点と上記基準抵抗R2、R3同士の接続点とを入力側に接続して差動回路32が設けられており、上記両接続点の電位差を求めて、この電位差を流量信号S1として出力するようになっている。
ここで、上記抵抗線R1、R4は、温度に応じてその抵抗値が変化する素材よりなっており、ガスの流れ方向の上流側に抵抗線R1が巻回され、下流側に抵抗線R4が巻回されている。また、基準抵抗R2、R3は略一定の温度に維持されているものとする。
このように構成された質量流量制御装置2において、センサ管14にガス流体が流れていない場合には、両抵抗線R1、R4の温度は同じになっていることから、ブリッジ回路は平衡して差動回路32の検出値である電位差は、例えばゼロである。
ここで、センサ管14にガス流体が質量流量Qで流れると仮定すると、このガス流体は上流側に位置する抵抗線R1の発熱によって温められてその状態で下流側の抵抗線R4が巻回されている位置まで流れることになり、この結果、熱の移動が生じて抵抗線R1、R4間に温度差、すなわち両抵抗線R1、R4間の抵抗値に差が生じて、この時発生する電位差はガスの質量流量に略比例することになる。従って、この流量信号S1に所定のゲインをかけることによってその時に流れているガスの質量流量を求めることができる。また、この検出されたガスの質量流量が、流量設定信号S0(実際は電圧値)で表される質量流量と一致するように、上記流量制御弁20の弁開度が制御されることになる。
ところで、一般的な半導体製造装置にあっては、ガス管4が他のガス種を流すために共通に使用される場合があり、このような場合には上記ガス管4は途中で分岐されて、他のガス種が途中で合流して流される。このような場合、他のガス種の供給の開始、或いは停止等の流量変動に応じて圧力変動が発生し、この発生した圧力変動がガス管4内を伝搬して上記質量流量制御装置2内に到達し、質量流量の制御に悪影響を与える場合があった。また上記したような圧力変動は、他の要因でも発生して質量流量の制御性を劣化させる場合があった。
そこで、特許文献4や特許文献5及び6のように、質量流量制御装置の流体出口側や下流側に音速ノズルを設けて、この質量流量制御装置の下流側で発生した圧力変動を上記音速ノズルで吸収できるようにした構造も提案されている。また特許文献7〜9に開示されているように、ガス流の圧力を検出する圧力センサを設けてガス圧に基づいて種々の処理を行っている点が示されている。
特開平1−227016号公報 特開平4−366725号公報 特開平4−366726号公報 実公平7−49525号公報 特開平10−268942号公報 特開2000−137527号公報 特表2003−504888号公報 特開平10−207554号公報 特開平11−259140号公報
しかしながら、特許文献4に示す質量流量制御器にあっては、下流側で発生して伝搬してくる圧力変動は、この流体出口側に設けた音速ノズルによって十分吸収することができるが、ガス源などが接続されている上流側で圧力変動が生じた場合には、この圧力変動が圧力損失がほとんどない質量流量センサ部へ直接的に到達し、質量流量の制御性に悪影響を与える場合があった。また特許文献5及び6に示す構造では、ノズルより上流側の圧力がその下流側の圧力の2倍以上という音速ノズル状態を満たす領域でのみ質量流量を制御できる、という特性を用いていることから、上述のように音速ノズル状態を満たす領域では、この下流側からの圧力変動を吸収できても、上記音速ノズル状態を満たさない領域では質量流量の制御すらできない、という問題があった。
また図11に示すように、圧力損失がほとんどない質量流量検出手段8を上流側に位置させた構造の質量流量制御装置2の場合には、この質量流量制御装置2を設けた位置よりも上流側のガス管4に圧力変動のないガス流を形成するレギュレータ(図示せず)を設けなければならず、その分だけ設備コストを上昇させるという問題もあった。また特許文献7〜9に開示された技術にあっては、検出されたガス圧値を具体的にどのように用いているか、十分に示されておらず、圧力変動に対する影響を十分に解消することができない、といった問題が依然としてあった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、圧力変動を吸収することができて質量流量の制御性が高い質量流量制御装置を提供することにある。
請求項1に係る発明は、流体を流す流路に、質量流量を検出して流量信号を出力する質量流量検出手段と、バルブ駆動信号により弁開度を変えることによって質量流量を制御する流量制御弁機構とを介設し、外部から入力される流量設定信号と前記流量信号とに基づいて前記流量制御弁機構を制御する制御手段を設けてなる質量流量制御装置において、前記流路に前記流体の圧力を検出して圧力検出信号を出力する圧力検出手段を介設し、前記制御手段は、前記流量信号と前記流量設定信号とに基づいて質量流量の制御を行う第1制御モードと、前記圧力変化量が前記所定の閾値以上変化する直前の質量流量値と、前記圧力変化量が前記所定の閾値以上変化する直前の圧力検出値と、現在の圧力検出値と、前記圧力変化量が前記所定の閾値以上変化する直前のバルブ駆動信号値と、予め求められたバルブ特性とに基づいて印加すべきバルブ駆動信号値を求めることにより質量流量の制御を行う第2制御モードとを、前記圧力検出信号から得られる圧力変化量に基づいて選択的に切り替えるように構成したことを特徴とする質量流量制御装置である。
この場合、例えば請求項2に規定するように、前記制御手段は、前記圧力変化量が所定の閾値以上になった時に前記第1制御モードから前記第2制御モードに切り替える。
また例えば請求項3に規定するように、前記制御手段は、前記第2制御モードでは、前記圧力変化量が前記所定の閾値以上変化する直前の質量流量値を、外部へ流量外部出力信号として出力する。
また例えば請求項4に規定するように、前記流体通路には、その上流側から下流側に向けて前記圧力検出手段、前記質量流量検出手段及び前記流量制御弁機構の順序で介設されている。
また例えば請求項5に規定するように、前記流体通路には、その上流側から下流側に向けて前記質量流量検出手段、前記圧力検出手段及び前記流量制御弁機構の順序で介設されている。
また例えば請求項6に規定するように、前記流量制御弁機構は、アクチュエータとして圧電素子を用いている。
また例えば請求項7に規定するように、前記流量制御弁機構は、アクチュエータとして圧電式のアクチュエータを用いている。
また例えば請求項8に規定するように、前記流体通路の最上流側には、オリフィスが設けられる。
また例えば請求項9に規定するように、前記流体通路の最下流側には、オリフィスが設けられる。

本発明の質量流量制御装置によれば、次のように優れた作用効果を発揮することができる。
流路に流れる流体の圧力変化量に応じて質量流量の制御の態様を、第1制御モードと第2制御モードとを選択的に切り替えて行うようにしたので、圧力変動を吸収できて質量流量の制御性を高くすることができる。
以下に、本発明に係る質量流量制御装置の一実施例を添付図面に基づいて詳述する。
図1は本発明に係る質量流量制御装置の第1実施例を示す構成図、図2はアクチュエータとして積層圧電素子を用いた場合の流量制御弁機構のバルブ特性の一例を示すバルブ特性図、図3はバルブ特性の一部を示す図である。ここではアクチュエータとして積層圧電素子を用いた場合を例にとって説明する。尚、図11及び図12に示す構成部分と同一構成部分については同一符号を付してその説明を省略する。
図示するように、この質量流量制御装置40は、液体や気体等の流体を流す流体通路、例えばガス管4の途中に介設されて、この質量流量(以下、単に「流量」とも称す)を制御するようになっている。尚、このガス管4の一端に接続される半導体製造装置内は例えば真空引きされている。この質量流量制御装置40は、例えばステンレススチール等により成形された流路6を有しており、この流体入口6Aが上記ガス管6の上流側に接続され、流体出口6Bがガス管6の下流側に接続される。この質量流量制御装置40は、流体の質量流量を検出する質量流量検出手段8と、流体の流れを制御する流量制御弁機構10と、本発明の特徴とする圧力検出手段42と、この装置全体の動作を制御する例えばマイクロコンピュータ等よりなる制御手段44とを有している。
そして、上記制御手段44は、半導体製造装置の全体の動作を制御するホストコンピュータ46から、この質量流量制御装置において流すべきガス流量を表す流量設定信号S0を受けると共に、現在流しているガス流量を表す外部流量出力信号Soutを出力するようになっている。この図示例では、流路6の上流側から下流側に向けて、ガス流体の圧力を検出するための圧力検出手段42、ガス流量を検出する質量流量検出手段8及び流量制御弁機構10がこの順序で順次介設されている。上記圧力検出手段42は、例えば圧力トランスデューサよりなり、所定の時間間隔、例えば10msec毎にガス圧力をサンプリングして検出し、その検出された圧力値を圧力検出信号Svとして上記制御手段44に向けて出力するようになっている。
また、上記質量流量検出手段8は、上記流路6のガス流体の流れ方向の上流側に設けられて複数のバイパス管を束ねてなるバイパス群12を有している。上記バイパス群12の両端側には、これを迂回するようにセンサ管14が接続されており、これにバイパス群12と比較して小量のガス流体を一定の比率で流すようになっている。すなわち、このセンサ管14には全ガス流量に対して一定の比率の一部のガスを常に流すようになっている。このセンサ管14には直列に接続された制御用の一対の抵抗線R1、R4が巻回されており、これに接続されたセンサ回路16により質量流量値を示す流量信号S1を出力するようになっている。
この流量信号S1は、例えばマイクロコンピュータ等よりなる制御手段44へ導入されて、上記流量信号S1に基づいて現在流れているガスの質量流量が求められると共に、その質量流量が外部より入力される流量設定信号S0で表される質量流量に一致するように、上記流量制御弁機構10を制御することになる。尚、この際、後述するように必要に応じて圧力検出信号Svにより表される圧力値が流量制御に加味されることになる。この流量制御弁機構10は、上記流路6の下流側に設けられた流量制御弁20を有しており、この流量制御弁20はガス流体の質量流量を直接的に制御するための弁体として例えば金属板製の屈曲可能になされたダイヤフラム22を有している。
そして、このダイヤフラム22を弁口24に向けて適宜屈曲変形させて移動(進退)させることによって、上記弁口24の弁開度を任意に制御し得るようになっている。そして、このダイヤフラム22の上面は、例えば積層圧電素子(ピエゾ素子)よりなるアクチュエータ26の下端部に接続されており、これにより、その弁開度が上記したように調整できるようになっている。そして、このダイヤフラム22の上面は、例えば積層圧電素子(ピエゾ素子)よりなるアクチュエータ26の下端部に剛的に連結されており、これにより、その弁開度が上記したように調整できるようになっている。
具体的には、上記アクチュエータ26の下端部には、例えば金属製の押し台48が取り付けられ、他方、上記ダイヤフラム22の上面にも例えば金属製のベース台50が取り付けられている。そして、上記押し台48とベース台50との表面に浅い凹部をそれぞれ設けてこの凹部に例えば剛球52を介在させて全体を剛的に連続している。これにより、上記アクチュエータ26の機械的伸縮を直接的にダイヤフラム22に伝えることができると共に、ガス流体の圧力変動が生じてもダイヤフラム22の弁開度が変化しないようにしている。更には上記剛球52の作用により、上下方向に伝わる力が偏在しないようにしている。
ここで積層圧電素子とは、例えば多数のPZTセラミック板を電極を介在させて積層した構造よりなり、印加する電圧によってその長手方向に機械的に伸縮できるようになっている。またアクチュエータ26の全体はケース27によって全体が囲まれている。そして、このアクチュエータ26は、上記制御手段44からの駆動信号S3を受けてバルブ駆動回路28が出力するバルブ駆動信号としてのバルブ駆動電圧S4により動作する。尚、上記アクチュエータ26として積層圧電素子に替えて電磁式のアクチュエータを用いる場合もあり、この場合にはバルブ駆動信号としてバルブ駆動電流が出力される。上記抵抗線R1、R4とセンサ回路16との関係は、先に説明した図12に示されている構成と同じなので、ここではその説明を省略する。
ここで本発明の特徴となる流量制御を行う上記制御手段44は、当然のこととして演算処理に必要な各種のデータ(情報)を記憶するために例えばRAMやROMを組み合わせてなる記憶部44Aを有しており、この記憶部44Aには予め測定した上記流量制御弁機構10のバルブ特性が記憶されている。このバルブ特性について説明すると、図2(A)に示すようにバルブ駆動電圧(バルブ駆動信号)S4(弁開度に対応)が増加すると、流量は曲線的に増加する傾向にあり、しかも、入口側のガス圧力を0.18〜0.4MPaまで変化させると、ガス圧力が大きくなる程、その密度が高くなるので流量も多くなっている。また、図2(B)は図2(A)に示すバルブ特性を、横軸に入口側ガス圧力をとって書き替えたバルブ特性であり、このバルブ特性より明らかなように、バルブ駆動電圧(バルブ駆動信号)S4が一定の場合には、入口側ガス圧力と流量との関係は比例して直線的に変形している。
上記流量制御弁機構10はこのようなバルブ特性を有しており、この実施例では例えば図3に示すように、入力側ガス圧力が0.4MPaの時のバルブ駆動電圧S4と流量との関係を示す特性が、制御手段44の記憶部44Aに予め記憶されている。
次に、以上のように構成された本発明の質量流量制御装置の動作について説明する。
本発明の特徴は、上記制御手段44が、上記圧力検出信号Svから得られる圧力変化量に基づいて、上記圧力検出信号Svを用いることなく上記流量信号S1と上記流量設定信号S0とに基づいて質量流量の制御を行う第1制御モードと、上記圧力検出信号Svと上記流量信号S1と上記流量設定信号S0とに基づいて質量流量の制御を行う第2制御モードとを選択的に切り替えるようにした点である。
まず、ガス管4を流れてきたガスは、流体入口6Aから質量流量制御装置40の流路6内に流れ込み、このガスはその圧力が圧力検出手段42により検出された後に質量流量検出手段8に至る。そしてこのガスの大部分はバイパス管群12を介して流れると共に、全ガス流量に対して一定の分流比となる一部のガスはセンサ管14内を流れ、各ガスはその下流側で合流した後に流量制御弁機構10の流量制御弁20の弁口24を流れ、その後は流体出口6Bを通過して図示しない半導体製造装置に向けて流れて行く。尚、半導体製造装置の処理チャンバは真空雰囲気、減圧雰囲気及び常圧程度の雰囲気等の種々の圧力状態で使用される。
ここで、センサ管14には抵抗線R1、R4が巻回されているので、前述したようにセンサ管14内を流れるガスによりガス管4内を流れる全体のガスの質量流量がセンサ回路16により検出され、この検出値が流量信号S1として制御手段44へ送られる。そして、制御手段44は、この流量信号S1で表される質量流量が外部より入力される流量設定信号S0で表される質量流量と一致するようにバルブ駆動回路28を介してバルブ駆動電圧S4を発生させて、これをアクチュエータ26に印加してアクチュエータ26を伸縮駆動してダイヤフラム22を屈曲変形することにより、流量制御弁20の弁開度を調整することになる。これにより、ガス流体を質量流量を制御しつつ下流側に向けて流すことができる。
ここで、この質量流量制御装置40よりも上流側のガス管4に何らかの理由で圧力変動が生じた場合には、この圧力変動が下流側に向かって伝搬してこの質量流量制御装置40内へ到達しようとする。
しかし、本発明ではこのガス圧の圧力変化量に応じて第1制御モードと第2制御モードとを選択的に切り替えて流量制御を行っているので、この圧力変動を吸収して悪影響が発生することを防止することができる。尚、ここで第1制御モードとは、流量信号S1の検出値と外部からの流量設定信号S0の設定値とが常に同一になるように制御する従来の制御方法を指す。
ここで具体的な制御方法について説明する。
図4は本発明の質量制御装置で行われる制御フローを示す図、図5は第1制御モードの制御フローを示す図、図6は第2制御モードの制御フローを示す図、図7は従来制御方法である第1制御モードのみを実行した時の各信号の変化を示すグラフ、図8は本発明装置により第1制御モードと第2制御モードを選択的に切り替えて実行した時の各信号の変化を示すグラフである。
まず、図4を参照して本発明装置による全体の動作について説明すると、圧力検出手段42により流体(ガス)圧力が検出されて、この検出値が圧力検出信号Svとして出力される(S1)。また質量流量検出手段8においても流体の質量流量が検出されて、この検出値が流量信号S1として出力される(S2)。これらの流質圧力や質量流量のサンプリング測定は、所定の間隔、例えば10msec毎に連続的に行われている。
上記流体圧力値(検出値)は、記憶されているその直前の検出値(ここでは例えば10msec前の検出値)と常時比較されてその圧力変化量が求められており(S3)、この圧力変化量が基準値である所定の閾値と比較される(S4)。この閾値は、流体であるガスの供給圧力にもよるが、例えば100Pa程度である。ここで圧力変化量が閾値である100Paよりも小さい場合には(S4のNO)、まず、最新のバルブ駆動電圧値(S4)、最新の圧力検出値(Sv)及び最新の質量流量値(S1)をそれぞれ記憶部44Aの専用のエリアに記憶する(S5)。ここで「最新の」とは今現在の値であり、直前の(10msec前の)値ではない。そして、第1制御モードを実行する(S6)。すなわち、この第1制御モードは上流側の流体の圧力変化が非常に少ない的の制御モードである。
これに対して、ステップS4においてYESの場合、すなわち圧力変化量が閾値以上になった場合には、第2制御モードを実行する(S7)。すなわち、この第2制御モードでは上流側の流体の圧力変化がある程度大きい時の制御モードである。そして、上記第1或いは第2制御モードを実行した後に、処理が完了していなければステップS1へ戻り、処理が完了したならば、ここで動作を終了する(S8)。
次に、上記第1制御モードの流れについて説明する。
図5に示すように、この第1制御モードは、前述したように従来の制御方法と同様であり、まず、外部より入力されている現在の流量設定信号S0の流量設定値と質量流量検出手段8からの現在の流量信号S1の質量流量値とが比較されて、これが一致するようにバルブ駆動電圧S4が求められる(S11)。これにより、実際の流体流量が、外部のホストコンピュータ46より流量設定信号S0で指示された流体流量と同じになるように制御される。
そして、上記操作と同時に、この制御手段44は、上記ホストコンピュータ46に向けて、検出された現在の質量流量値を外部流量出力信号Soutとして出力する(S12)。具体的には、この外部流量出力信号Soutの表す質量流量値は、上記流量信号S1の表す質量流量値と同じになる。この外部流量出力信号Soutは、ホストコンピュータ46において、例えばオペレータによりモニタされており、適正なガス流量が供給されているか否かの確認のために用いられることになる。そして、上記求められたバルブ駆動電圧S4でアクチュエータ26をバルブ駆動することになる(S13)。実際には、制御手段44は上記したように求めたバルブ駆動電圧S4を出力するようにバルブ駆動回路28へ駆動信号S3で指示を出すことになる。このようにバルブ駆動が終了したならば、図4に示すステップS8へ進むことになる。
次に、第2制御モードの流れについて説明する。
この第2制御モードは、前述したようにガス圧力の変化量が閾値以上になった時の制御モードであり、図6に示すように、まず、圧力変化量が閾値以上になる直前の質量流量値と、圧力変化量が閾値以上になる直前の圧力検出値と、圧力変化量が閾値以上になる直前のバルブ駆動電圧値と、現在の圧力検出値と、予め求められたバルブ特性とに基づいてバルブ駆動電圧を求める(S21)。上記圧力変化量が閾値以上になる直前の各値は、例えば10msec前に図4中のステップS5において記憶した各値であり、バルブ特性は図3に示したような予め記憶された特性である。
そして、これと同時に、現在、検出された質量流量値ではなく、例えば上記10msec前に記憶された質量流量値を外部流量出力信号Soutとしてホストコンピュータ46に向けて出力する(S22)。これにより、ホストコンピュータ46におけるオペレータは質量流量は変化していないものとして認識することになる。更に、これと同時に、上記求めたバルブ駆動電圧S4をバルブ駆動回路28より出力するように駆動信号S3で指示を出し、このバルブ駆動電圧S4でアクチュエータ26をバルブ駆動することになる(S23)。これにより、入力側のガス流に圧力変動が生じてもこの圧力変動を吸収して、質量流量を高い精度で制御性よく制御することができる。
このように、バルブ駆動が終了したならば、図4に示すステップ8へ進むことになる。尚、この全体のフローから明らかなように、通常のガス流では、一度大きな圧力変動が生ずると、数サンプリング期間〜数十サンプリング期間はこの圧力変動が生ずるので、この間、ホストコンピュータ46へは圧力変動が生ずる直前に記憶された質量流量値が外部流量出力信号Soutとして出力し続けられることになる。
次に、本発明の特徴である上記ステップS21におけるバルブ駆動電圧の算出過程について説明する。
印加すべき目標とするバルブ駆動電圧Vn(=S4)は以下の演算式(1)で求められる。
Vn=Vb+(1−Pb/Pn)/k … (1)
ここでk=(Q/Vmb)・(Pb/Pm)
Pb:閾値以上の圧力変化前の圧力検出値(記憶された最新の流体圧力値)
Pn:検出された現在の圧力検出値
Vb:閾値以上の圧力変化前のバルブ駆動電圧(記憶された最新のバルブ駆動電圧)
k :閾値以上の圧力変化前のバルブ駆動電圧での単位ボルト当たりの流量変化率
Q :閾値以上の圧力変化前の質量流量値(記憶された最新の質量流量値)
Vmb:閾値以上の圧力変化前のマスター電圧
Pm:バルブ特性マスターの取得ガス圧力
ここで”マスター”とは図3に示すように予め記憶されたバルブ特性を示し、ここでは例えばガス圧力が0.4MPaの時の特性を記憶している。具体的な数値例を用いて説明すると、流量設定信号S0が一定な場合において、例えば質量流量が60cc/分(=Q)、ガス流体の圧力が0.2MPa(=Pb)で安定して動作している時に、ガス流に閾値以上の圧力変化量が生じたと仮定する。尚、Pmは0.4MPaである。
その時の、閾値以上の圧力変化前のバルブ駆動電圧値での単位ボルト当たりの流量変化率kは次の計算式と図3に示すバルブ特性とから求まる。
k=(Q/Vmb)・(Pb/Pm)=(60/Vmb)・(0.2/0.4)=30/Vmb
故に、図3より30cc/分の時のバルブ駆動電圧Vmbを読むと”35ボルト”になり、この”35ボルト”における流量変化率kを求める。尚、流量変化率kは、バルブ駆動電圧が一定ならば、ガス流体の圧力変化に関係なく一定となる。具体的には、この流量変化率kは0.857(=30/35)%となる。そして、この流量変化率kを前記演算式(1)に代入することにより、アクチュエータに印加すべきバルブ駆動電圧Vnが求まる。そして、第2制御モードではこの求めたバルブ駆動電圧Vn(=S4)をアクチュエータに印加することになる。
尚、ここではバルブ駆動信号としてバルブ駆動電圧Vn(=S4)を求めているが、前述したようにアクチュエータとして電磁式のアクチュエータを用いた場合には、これは電流で駆動されることからバルブ駆動信号として上述したと同様な計算式及び電流対応のバルブ特性に基づいてバルブ駆動電流を求めることになる。
次に、図7及び図8も参照して実際の各種波形や流量の変化について説明する。
図7は従来の制御方法(第1制御モードのみ)における各信号の波形及び流量を示している。図8は本発明装置による制御方法における各信号の波形及び流量を示している。図7(A)及び図8(A)は流量設定信号S0、図7(B)及び図8(B)は圧力検出信号Sv、図7(C)及び図8(C)は流量信号S1、図7(D)及び図8(D)は外部流量出力信号Sout、図7(E)及び図8(E)はバルブ駆動信号S4、図7(F)及び図8(F)は下流側のガス流量の実測値である。尚、図7及び図8において、流量の単位はcc/min、圧力の単位はkPa、バルブ駆動電圧の単位はボルトである。ここで従来の質量流量制御装置では圧力センサを設けていないので、圧力センサを設置し、図7(B)に示す波形を得ている。また質量流量制御装置の流体出口側に別途、質量流量計を設置して実際の質量流量を測定し、図7(F)に示す波形を得ている。この点は、図8(F)の場合も同じである。
図7に示すように、図7(A)に示す流量設定信号S0が一定値を維持している状態において、図7(B)に示すように何らかの原因で時間t1において閾値以上に圧力変動ΔPが生じて圧力が低下し、また、時間t2に元の圧力に復帰している。この圧力変動に対応して、図7(C)に示すように、時間t1においてガス流量が大きく変化しており、また、時間t2においてもガス流量が大きく変化している。
この流量信号S1の変動に対応して、流量変動を吸収すべく図7(E)に示すようにバルブ駆動信号S4も変化して弁開度を調整しているが、オーバシュート等が発生してしまい、結果的に、図7(F)に示すように実際のガス流量は、時間t1、t2においてある程度、すなわち振幅ΔVの大きさの脈動が発生してしまい、ガス流量の制御性を低下させてしまっている。この場合、図7(C)の流量信号S1が、そのままホストコンピュータ46(図1参照)へ外部流量出力信号Sout(図7(D)参照)として出力されるので、これをモニタしているオペレータは、時間t1、t2におけるガス流量の制御性の劣化を知るところとなる。
図8に示す本発明装置の場合には、図8(B)に示すように、同じく時間t1、t2においてガス流の閾値以上の圧力変動が生じており、この部分において閾値以上の変化量が続く間、第2制御モードに制御方法が切り替わる。すなわち、図8(C)に示すように時間t1、t2において流量信号S1の大きな変化が生ずるが、この時に、それぞれ第1制御モードから第2制御モードに切り替わり、先に説明したような演算によりバルブ駆動電圧が求められ、この求められたバルブ駆動電圧S4が図8(E)に示すような波形となってアクチュエータに印加されることになる。この結果、流量制御弁20(図1参照)の弁開度が適正に制御されることになるので、図8(F)に示すように、流体出口より流れ出るガス流量は、時間t1、t2において上流側のガス流に圧力変動が生じたにもかかわらず、一定の流量を保ち続けることができる。
従って、上流側のガス量の圧力変動を吸収して質量流量の制御性を高く維持することができる。この場合、流量信号S1の値を、そのまま外部流量出力信号Soutとして出力していた従来装置と異なり、本発明では、閾値以上の圧力変動が生ずる直前の流量信号S1の値を、外部流量出力信号Soutとして出力している(図6中のS22参照)。従って、ホストコンピュータ46側でモニタしているオペレータは、半導体製造装置に実際に流れ込んでいるガス流量(図8(F))は正常であると確認することができる。
<第2実施例>
次に第2実施例について説明する。
図9は本発明の第2実施例を示す構成図であり、ここでは図1で示した第1実施例の流体入口6A及び流体出口6Bにそれぞれオリフィス60、62を介設している。尚、これらのオリフィス60、62は、双方を設けてもよいし、いずれか一方のみを設けてもよい。このようにオリフィス60、62を設けることにより、上流側及び下流側からくるガス圧の圧力変動をこのオリフィス60、62の絞り効果で減衰させることができ、これにより急激な圧力変動を抑制することができる。従って、その分、ガス流量の制御性を一層向上させることができる。
<第3実施例>
次に第3実施例について説明する。
図10は本発明の第3実施例を示す構成図である。図1に示す第1実施例では、流路6の上流側から下流側に向けて、圧力検出手段42、質量流量検出手段8及び流量制御弁機構10の順序で配列したが、これに限定されず、図10に示すように、質量流量検出手段8、圧力検出手段42及び流量制御弁機構10の順序で配列するようにしてもよい。この場合、流量制御弁機構10の直前に圧力検出手段42を配置してこの部分のガス圧力を検知するようにしたので、ガス流(流体)の流量制御性を一層向上させることができる。尚、本実施例で説明したサンプリング間隔の10msec等の各数値は単なる一例を示したに過ぎず、これらに限定されないのは勿論である。
本発明に係る質量流量制御装置の第1実施例を示す構成図である。 アクチュエータとして積層圧電素子を用いた場合の流量制御弁機構のバルブ特性の一例を示すバルブ特性図である。 バルブ特性の一部を示す図である。 本発明の質量制御装置で行われる制御フローを示す図である。 第1制御モードの制御フローを示す図である。 第2制御モードの制御フローを示す図である。 従来制御方法である第1制御モードのみを実行した時の各信号の変化を示すグラフである。 本発明装置により第1制御モードと第2制御モードを選択的に切り替えて実行した時の各信号の変化を示すグラフである。 本発明の第2実施例を示す構成図である。 本発明の第3実施例を示す構成図である。 ガス配管に介設された従来の質量流量制御装置の一例を示す概略構成図である。 質量流量制御装置の流量検出手段を示す回路図である。
符号の説明
4 ガス管(流体通路)
6 流路
8 質量流量検出手段
10 流量制御弁機構
12 バイパス管群
14 センサ管
20 流量制御弁
22 ダイヤフラム
26 アクチュエータ
40 質量流量制御装置
42 圧力検出手段
44 制御手段
S0 流量設定手段
S1 流量信号
Sout 外部流量出力信号
S4 バルブ駆動電圧(バルブ駆動信号)

Claims (9)

  1. 流体を流す流路に、質量流量を検出して流量信号を出力する質量流量検出手段と、バルブ駆動信号により弁開度を変えることによって質量流量を制御する流量制御弁機構とを介設し、外部から入力される流量設定信号と前記流量信号とに基づいて前記流量制御弁機構を制御する制御手段を設けてなる質量流量制御装置において、
    前記流路に前記流体の圧力を検出して圧力検出信号を出力する圧力検出手段を介設し、
    前記制御手段は、
    前記流量信号と前記流量設定信号とに基づいて質量流量の制御を行う第1制御モードと、
    前記圧力変化量が前記所定の閾値以上変化する直前の質量流量値と、前記圧力変化量が前記所定の閾値以上変化する直前の圧力検出値と、現在の圧力検出値と、前記圧力変化量が前記所定の閾値以上変化する直前のバルブ駆動信号値と、予め求められたバルブ特性とに基づいて印加すべきバルブ駆動信号値を求めることにより質量流量の制御を行う第2制御モードとを、
    前記圧力検出信号から得られる圧力変化量に基づいて選択的に切り替えるように構成したことを特徴とする質量流量制御装置。
  2. 前記制御手段は、前記圧力変化量が所定の閾値以上になった時に前記第1制御モードから前記第2制御モードに切り替えることを特徴とする請求項1記載の質量流量制御装置。
  3. 前記制御手段は、前記第2制御モードでは、
    前記圧力変化量が前記所定の閾値以上変化する直前の質量流量値を、外部へ流量外部出力信号として出力するようにしたことを特徴とする請求項1又は2に記載の質量流量制御装置。
  4. 前記流体通路には、その上流側から下流側に向けて前記圧力検出手段、前記質量流量検出手段及び前記流量制御弁機構の順序で介設されていることを特徴とする請求項1乃至3のいずれか一項に記載の質量流量制御装置。
  5. 前記流体通路には、その上流側から下流側に向けて前記質量流量検出手段、前記圧力検出手段及び前記流量制御弁機構の順序で介設されていることを特徴とする請求項1乃至3のいずれか一項に記載の質量流量制御装置。
  6. 前記流量制御弁機構は、アクチュエータとして圧電素子を用いていることを特徴とする請求項1乃至5のいずれか一項に記載の質量流量制御装置。
  7. 前記流量制御弁機構は、アクチュエータとして電磁式のアクチュエータを用いていることを特徴とする請求項1乃至5のいずれか一項に記載の質量流量制御装置。
  8. 前記流体通路の最上流側には、オリフィスが設けられることを特徴とする請求項1乃至7のいずれか一項に記載の質量流量制御装置。
  9. 前記流体通路の最下流側には、オリフィスが設けられることを特徴とする請求項1乃至8のいずれか一項に記載の質量流量制御装置。
JP2004027306A 2004-02-03 2004-02-03 質量流量制御装置 Expired - Lifetime JP4186831B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004027306A JP4186831B2 (ja) 2004-02-03 2004-02-03 質量流量制御装置
US10/572,046 US8112182B2 (en) 2004-02-03 2005-02-03 Mass flow rate-controlling apparatus
PCT/JP2005/001622 WO2005076095A1 (ja) 2004-02-03 2005-02-03 質量流量制御装置
KR1020067002427A KR100739520B1 (ko) 2004-02-03 2005-02-03 질량 유량 제어 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027306A JP4186831B2 (ja) 2004-02-03 2004-02-03 質量流量制御装置

Publications (2)

Publication Number Publication Date
JP2005222173A JP2005222173A (ja) 2005-08-18
JP4186831B2 true JP4186831B2 (ja) 2008-11-26

Family

ID=34835885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027306A Expired - Lifetime JP4186831B2 (ja) 2004-02-03 2004-02-03 質量流量制御装置

Country Status (4)

Country Link
US (1) US8112182B2 (ja)
JP (1) JP4186831B2 (ja)
KR (1) KR100739520B1 (ja)
WO (1) WO2005076095A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308082B1 (ko) * 2011-06-28 2013-09-12 엠케이프리시젼 주식회사 질량유량계

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640078B2 (en) * 2006-07-05 2009-12-29 Advanced Energy Industries, Inc. Multi-mode control algorithm
JP4986125B2 (ja) * 2006-11-09 2012-07-25 日立金属株式会社 質量流量制御装置及びガス供給ユニット
CN101568375B (zh) * 2006-11-13 2012-10-10 东京毅力科创株式会社 供应处理气体的方法和***
JP2008129765A (ja) * 2006-11-20 2008-06-05 Hitachi Metals Ltd 流量制御装置
US8387657B2 (en) * 2007-06-15 2013-03-05 Fisher Controls International, Llc Methods and apparatus to determine a position of a valve
US8265794B2 (en) * 2007-10-01 2012-09-11 Westlock Controls Corporation Knowledge based valve control method
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
JP5803552B2 (ja) 2011-10-14 2015-11-04 東京エレクトロン株式会社 処理装置
JP5867517B2 (ja) * 2012-02-03 2016-02-24 日立金属株式会社 流量制御装置及びプログラム
WO2014015049A2 (en) 2012-07-17 2014-01-23 Idex Health & Science Llc Liquid sampling valve
US9004107B2 (en) * 2012-08-21 2015-04-14 Applied Materials, Inc. Methods and apparatus for enhanced gas flow rate control
GB2544135B (en) 2014-02-12 2021-03-10 Idex Health & Science Llc Volumetric flow regulation in multi-dimensional liquid analysis systems
GB2549286B (en) * 2016-04-11 2019-07-24 Perkins Engines Co Ltd EGR valve with integrated sensor
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US11073845B2 (en) 2019-08-26 2021-07-27 Hitachi Metals, Ltd. Parasitic flow correction method and apparatus
JP2021152786A (ja) * 2020-03-24 2021-09-30 株式会社フジキン 流量制御システム、流量制御システムの制御方法、流量制御システムの制御プログラム
KR20230150309A (ko) 2021-03-03 2023-10-30 아이커 시스템즈, 인크. 매니폴드 조립체를 포함하는 유체 유동 제어 시스템

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314010A (ja) * 1989-06-12 1991-01-22 Nec Corp マスフローコントローラ
JPH05134764A (ja) * 1991-11-12 1993-06-01 Nec Kyushu Ltd マスフローコントローラー
JPH0749525A (ja) 1993-08-04 1995-02-21 Seiko Epson Corp カメラ用データ写し込み装置
US6114216A (en) * 1996-11-13 2000-09-05 Applied Materials, Inc. Methods for shallow trench isolation
JPH10207554A (ja) 1997-01-27 1998-08-07 Sony Corp 流体の流量制御装置、及び半導体装置の製造方法
JPH10268942A (ja) 1997-03-27 1998-10-09 Nippon Aera Kk 音速ノズルを用いた流量制御弁
JPH11259140A (ja) * 1998-03-13 1999-09-24 Kokusai Electric Co Ltd 流量制御装置
JP4109360B2 (ja) 1998-10-30 2008-07-02 株式会社堀場エステック 流量制御バルブとこれを用いたマスフローコントローラ
JP2000306884A (ja) * 1999-04-22 2000-11-02 Mitsubishi Electric Corp プラズマ処理装置およびプラズマ処理方法
US6363958B1 (en) * 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
AU5930900A (en) 1999-07-12 2001-01-30 Unit Instruments, Inc. Pressure insensitive gas control system
US6779569B1 (en) * 2003-12-18 2004-08-24 The United States Of America As Represented By The Secretary Of The Navy Liquid filling control method for multiple tanks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308082B1 (ko) * 2011-06-28 2013-09-12 엠케이프리시젼 주식회사 질량유량계

Also Published As

Publication number Publication date
US20070198131A1 (en) 2007-08-23
KR20060037425A (ko) 2006-05-03
JP2005222173A (ja) 2005-08-18
WO2005076095A1 (ja) 2005-08-18
KR100739520B1 (ko) 2007-07-13
US8112182B2 (en) 2012-02-07

Similar Documents

Publication Publication Date Title
JP4186831B2 (ja) 質量流量制御装置
US10503179B2 (en) Flow rate control apparatus and program recording medium having recorded therein program for flow rate control apparatus
JP7049684B2 (ja) 圧力式流量制御装置および流量制御方法
JP5174032B2 (ja) 質量流量コントローラのコントローラ利得スケジューリング
KR101209762B1 (ko) 유량 센서 및 이것을 사용한 질량 유량 제어 장치
JP4788920B2 (ja) 質量流量制御装置、その検定方法及び半導体製造装置
JPWO2019107215A1 (ja) 流量制御装置
KR20010052885A (ko) 병렬분류형 유체공급장치와, 이것에 사용하는 유체가변형압력식 유량제어방법 및 유체가변형 압력식 유량제어장치
CN102224397A (zh) 使用热流传感器的压力验证的质量流控制器
JP2006038832A (ja) 質量流量制御装置及びこの検定方法
JP2015509250A (ja) 質量流量コントローラを通る流量を実時間で監視するシステムおよび方法
KR20020000867A (ko) 실시간 유동 측정 및 수정용 광범위 가스 유동 시스템
JP2008039513A (ja) 質量流量制御装置の流量制御補正方法
JP2013156801A (ja) 半導体製造装置のガス分流供給装置
JPH11212653A (ja) 流体供給装置
JP2019028747A (ja) 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
JPWO2019107216A1 (ja) 流量制御装置の自己診断方法
KR102250969B1 (ko) 유체 제어 시스템 및 유량 측정 방법
JP5874193B2 (ja) 流量制御装置および流量センサユニット
JP2008129765A (ja) 流量制御装置
JP7244940B2 (ja) 流量制御システム及び流量測定方法
JPWO2018147354A1 (ja) 流量測定方法および流量測定装置
JP3893115B2 (ja) マスフローコントローラ
JPH05233068A (ja) マスフローコントローラー
JPH0887335A (ja) 質量流量制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term