WO2013018910A1 - パワーデバイス用のプローブカード - Google Patents

パワーデバイス用のプローブカード Download PDF

Info

Publication number
WO2013018910A1
WO2013018910A1 PCT/JP2012/069925 JP2012069925W WO2013018910A1 WO 2013018910 A1 WO2013018910 A1 WO 2013018910A1 JP 2012069925 W JP2012069925 W JP 2012069925W WO 2013018910 A1 WO2013018910 A1 WO 2013018910A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
probe card
power device
tester
electrical contact
Prior art date
Application number
PCT/JP2012/069925
Other languages
English (en)
French (fr)
Inventor
榮一 篠原
郁男 小笠原
健 田岡
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201280037370.1A priority Critical patent/CN103703381B/zh
Priority to KR1020147005362A priority patent/KR101835680B1/ko
Priority to EP12819684.7A priority patent/EP2762897A4/en
Priority to US14/234,679 priority patent/US9322844B2/en
Publication of WO2013018910A1 publication Critical patent/WO2013018910A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/263Circuits therefor for testing thyristors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06777High voltage probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes

Definitions

  • the present invention relates to a probe card used in a probe apparatus that can measure the electrical dynamic characteristics of a power device represented by, for example, an insulated gate bipolar transistor (IGBT) in a state where the power device is not cut out from a wafer.
  • a power device represented by, for example, an insulated gate bipolar transistor (IGBT) in a state where the power device is not cut out from a wafer.
  • IGBT insulated gate bipolar transistor
  • Power devices are becoming more versatile as they are used as switching elements for various power supplies and automotive electrical equipment, or as switching elements for electrical equipment in industrial equipment. Power devices have higher voltages, higher currents, higher speeds, and higher frequencies than ordinary semiconductor elements. Examples of the power device include an IGBT, a diode, a power transistor, a power MOS-FET, and a thyristor. These power devices are put on the market as electronic components according to their respective applications after their static characteristics and dynamic characteristics (for example, switching characteristics) are evaluated.
  • the diode is used as a switching element such as a motor in parallel connection with a power MOS-FET, for example.
  • the diode switching characteristics preferably have a short reverse recovery time. If the reverse recovery time is long, the diode may be destroyed depending on the use conditions. Further, the steep change of the reverse current (di / dt) increases the current, and the diode is easily destroyed.
  • the switching characteristics (dynamic characteristics) of a power device are measured by a dedicated measuring instrument for each power device package product, and the reliability of each power device is evaluated.
  • a probe apparatus used for power device evaluation includes a movable mounting table for mounting a semiconductor wafer, a probe card disposed above the mounting table, and a semiconductor wafer and a probe card in cooperation with the mounting table.
  • An alignment mechanism that performs alignment, and a tester that is disposed on the probe card and electrically connected to the probe card. Based on a signal from the tester, the electrode of the semiconductor wafer after alignment and the probe of the probe card It is configured to be able to evaluate a dynamic characteristic such as a switching characteristic by measuring a current change or the like of the power device by making electrical contact.
  • a gate electrode and an emitter electrode are formed on the upper surface of a semiconductor wafer on which a plurality of power devices are formed, and a collector electrode is formed on the lower surface.
  • a collector electrode film made of a conductor film in contact with the collector electrode of the power device is formed on the upper surface of the mounting table, and usually the collector electrode film and the tester are connected to the cable. Connected through.
  • the conventional probe device since the cable connecting the collector electrode film of the mounting table and the tester is long, the inductance in the cable increases, and for example, the inductance per 10 cm of the cable increases by about 100 nH. .
  • the current change (di / dt) is measured in microseconds using such a probe device, the current change for evaluating the dynamic characteristics becomes small, far from the ideal value, and the original current change (di / dt). It is difficult to measure accurately, and in some cases even damage occurs. For this reason, it has been found that the conventional probe apparatus cannot evaluate the dynamic characteristics such as the switching characteristics of the power device. Further, when the power device is turned off, an abnormal surge voltage is applied between the collector electrode and the emitter electrode, and the power device may be damaged.
  • this probe apparatus includes a mounting table 2, a probe card 3, and a conduction mechanism 4 in a prober chamber 1.
  • a conductive film made of a conductive metal such as gold is formed as a collector electrode on at least the upper surface of the mounting table 2.
  • a probe card 3 having a plurality of probes 3A is fixed to a head plate (not shown) of the prober chamber 1 via a card holder 5 (see FIG. 7B).
  • Terminal electrodes corresponding to the plurality of probes 3A are formed in a predetermined pattern on the upper surface of the probe card 3, and the plurality of probes 3A are electrically connected to a tester (not shown) via the respective terminal electrodes.
  • the left probe 3A is in contact with the gate electrode of the power device
  • the right probe 3A is in contact with the emitter electrode of the power device.
  • the mounting table 2, the probe card 3, and the card holder 5 are provided with a conduction mechanism 4 for electrically connecting the conductive film electrode of the mounting table 2 and the tester.
  • the conduction mechanism 4 includes a pair of connecting terminals 4B provided at positions facing each other on the peripheral surface of the mounting table 2, and the mounting table 2 corresponding to the pair of connecting terminals 4B. And a pair of divided conductors (contact plates) 4C provided between the probe card 3 and the probe card 3.
  • the pair of connection terminals 4B elastically contacts with any one of the corresponding contact plates 4C regardless of where the mounting table 2 moves to the collector electrode film.
  • a tester (not shown) are electrically connected.
  • the probe device shown in FIGS. 7A and 7B is provided with the conduction mechanism 4 as described above, when evaluating dynamic characteristics such as switching characteristics of the power device, the line between the collector electrode film of the mounting table 2 and the tester Since the length is remarkably short and the inductance is small, the current change in the power device can be reliably measured.
  • the probe 3A has, for example, a wiring pattern 3B1, a via conductor 3B2, a connection plug 3C such as a banana terminal as shown in FIG. 8A. Therefore, the resistance on the measurement line is large, the resistance is not uniform, and the heat resistance is not sufficient. For this reason, even if such a probe card 3 is used in the actual device of the probe device, there is a possibility that sufficient performance cannot be exhibited. Further, for example, as shown in FIG.
  • the measurement line of the conduction mechanism 4 is also composed of the connection plug 3C, the wiring pattern 3B1, the via conductor 3B2, and the pogo pin 3D of the circuit board 3B, so that it is the same as the measurement line between the probe 3A and the tester.
  • the probe card 3 is connected to the tester via a plurality of connection plugs 3C, a large force is required to attach and detach the probe card 3, and for example, automatic replacement of the probe card 3 may be difficult.
  • the object of the present invention is to significantly reduce the resistance of the measurement line between the probe and the tester and the measurement line between the mounting table and the tester, so that sufficient reliability can be ensured even when used as an actual device of the probe device.
  • An object of the present invention is to provide a probe card for a power device that can be easily and automatically exchanged.
  • a probe card used when inspecting dynamic characteristics of a plurality of power devices formed on a semiconductor wafer, the emitter electrode of the power device being A first probe in electrical contact with the first probe, a block-like first connection terminal to which the first probe is connected, a second probe in electrical contact with the gate electrode of the power device, A block-like second connection terminal connected to the second probe, a contact plate that can be in electrical contact with the collector electrode side of the power device, and a block-like third connection fixed to the contact plate And the first, second, and third connection terminals are in direct electrical contact with the corresponding tester-side connection terminals. Bukado is provided.
  • the first and second connection terminals are fixed to the support substrate so as to penetrate the support substrate and be exposed from both surfaces of the support substrate, respectively, and the contact plate is the support substrate. It is preferable that the first and second probe side surfaces are fixed to each other, and the third connection terminal passes through a hole formed in the support substrate.
  • a plate spring portion whose center portion swells is formed on each of the tester side surfaces of the first, second, and third connection terminals.
  • the leaf spring portion is composed of a plurality of strip-shaped portions.
  • the first, second, and third connection terminals each have a connector.
  • a probe card used for inspecting dynamic characteristics of a plurality of power devices formed on a semiconductor wafer, wherein the emitter electrode of the power device is used.
  • a first probe that is in electrical contact with the power device, a second probe that is in electrical contact with the gate electrode of the power device, and a circuit board having a wiring pattern to which the first and second probes are respectively connected.
  • Probe card characterized in that it and a block-shaped third connecting terminal for electrical contact with the contact plate is provided through.
  • a leaf spring portion having a central portion swelled is formed on each surface of the first and second connection terminals that contacts the wiring pattern.
  • the leaf spring portion is composed of a plurality of belt-like portions.
  • first, second, and third connection terminals each have a connector.
  • the resistance of the measurement line between the probe and the tester and the measurement line between the mounting table and the tester can be greatly reduced, and sufficient reliability can be secured even when used as an actual device of the probe device. It is possible to provide a probe card for a power device that can be easily and automatically replaced.
  • FIG. 3 is a lateral cross-sectional view of first and second connection terminals of the probe card shown in FIGS. 2A and 2B.
  • FIG. 4 is a lateral cross-sectional view of a third connection terminal of the probe card shown in FIGS. 3A and 3B.
  • It is sectional drawing which shows the principal part of the probe card which concerns on the 2nd Embodiment of this invention. It is sectional drawing which shows the principal part of the probe card which concerns on the 2nd Embodiment of this invention.
  • It is a side view which shows the principal part of the probe apparatus which the present applicant previously proposed.
  • It is a top view which is the principal part of the probe apparatus which the present applicant proposed previously, and shows the lower surface of a probe card.
  • It is sectional drawing which shows the principal part of the probe card shown to FIG. 7A and 7B.
  • It is sectional drawing which shows the principal part of the probe card shown to FIG. 7A and 7B.
  • FIG. 1 is a conceptual diagram showing an example of a probe device to which the probe card of the present invention is applied.
  • the probe card 10 is disposed above a movable mounting table 20 as shown in FIG. 1, for example, and is in electrical contact with a semiconductor wafer W on the mounting table 20 to be a power device D.
  • the switching characteristics (dynamic characteristics) are evaluated.
  • the probe card 10 of the present embodiment includes a first probe 11 that contacts the emitter electrode of the power device D, and a block-shaped first connection terminal to which the first probe 11 is connected. 12, a second probe 13 in contact with the gate electrode of the power device D, a block-like second connection terminal 14 to which the second probe 13 is connected, and a collector electrode side of the power device D A contact plate 15, a block-like third connection terminal 16 fixed to the upper surface of the contact plate 15, and a probe support body 17 that cantilever-supports the first and second probes 11 and 13. It is attached to the probe device via the card holder 30 (see FIGS. 2A and 3A), and is connected to the tester 50 via the first, second, and third connection terminals 12, 14, and 16. It is continued.
  • the base end of the first probe 11 is connected to the lower surface of the first connection terminal 12, the tip extends obliquely downward, and is cantilevered by the probe support 17, and the tip is
  • the power device D is configured to come into contact with the emitter electrode.
  • the first connection terminal 12 is attached to the support substrate 18 in a state of passing through the first hole 18 ⁇ / b> A formed in the support substrate 18, and the upper end surface is directly connected to the emitter terminal 51 of the tester 50. It is comprised so that it may contact.
  • the second probe 13 and the second connection terminal 14 are both configured similarly to the first probe 11 and the first connection terminal 12 as shown in FIG. 2B. That is, the second probe 13 has a proximal end connected to the lower surface of the second connection terminal 14 as shown in FIGS. 1 and 2B, a distal end extending obliquely downward, and cantilevered by the probe support body 17, The tip is configured to contact the gate electrode of the power device D.
  • the second connection terminal 14 is attached to the support substrate 18 through the second hole 18 ⁇ / b> B formed in the support substrate 18, and the upper end surface is the gate terminal 52 of the tester 50. It is comprised so that it may contact directly.
  • the contact plate 15 is connected to a conductor film electrode (collector electrode) (not shown) formed on the surface of the mounting table 20 through a contact block 21 attached to the side surface of the mounting table 20 as shown in FIG. It is comprised so that.
  • the contact block 21 is configured such that the tip end portion thereof elastically swings in the vertical direction. Therefore, the contact block 21 is elastically brought into contact with the contact plate 15 when the mounting table 20 is moved during the evaluation of the power device D, so that the collector electrode of the power device D and the tester are connected. A large current flows between the 50 collector terminals 53.
  • the contact plate 15 is formed in a hexagonal shape as shown in FIG. 2A, and is fixed to the card holder 30 at a plurality of locations so as to cover the opposite side edges of the support substrate 18.
  • the contact plate 15 is fixed to the card holder 30 via screw members at a plurality of locations, and a spacer (not shown) is interposed between the fixing portions of the both 15 and 30, and a gap is formed between the both 15 and 30. ing.
  • a third connection terminal 16 is fixed to the contact plate 15 at a portion covering the support substrate 18.
  • the third connection terminal 16 penetrates the third hole 18 ⁇ / b> C formed in the support substrate 18 and is configured to directly contact the collector terminal 53 of the tester 50. .
  • the first, second, and third connection terminals 12, 14, and 16 are formed in a block shape, and all of them are directly connected to the emitter terminal 51, the gate terminal 52, and the collector terminal 53 of the tester 50.
  • the resistance of the measurement line is much smaller than the probe card of FIGS. 8A and 8B connected to each terminal of the tester via a plurality of conductors, and even if a large current flows, there is little heat generation. Even if a large current flows, the heat resistance does not become a problem, and the reliability of the evaluation of the power device D can be remarkably improved.
  • the first, second, and third connection terminals 12, 14, and 16 have connectors (terminal blocks) 12A, 14A, and 16A as shown in FIGS. 4A, 4B, 5A, and 5B, respectively.
  • the large current is surely passed through the connectors 12A, 14A, and 16A.
  • the first, second, and third connection terminals 12, 14, and 16 are formed of a good conductor such as copper, for example, and the connectors 12A, 14A, and 16A are the first, second, and third connection terminals 12, 14 respectively.
  • , 16 is formed of a good conductor such as copper.
  • leaf spring portions 12B, 14B, and 16B are formed on the upper surfaces of the first, second, and third connection terminals 12, 14, and 16, respectively. , 16 are elastically in contact with the emitter terminal 51, the gate terminal 52, and the collector terminal 53 of the tester 50 by the leaf spring portions 12B, 14B, 16B. Therefore, the first, second, and third connection terminals 12, 14, and 16 are electrically and reliably connected to the emitter terminal 51, the gate terminal 52, and the collector terminal 53 of the tester 50, so that a large current flows stably. And the reliability of device evaluation can be improved.
  • These leaf spring portions 12B, 14B, and 16B are provided with a plurality of slits S having a constant width as shown in FIGS. 4A and 5A. These slits S divide the leaf spring portions 12B, 14B, and 16B into a plurality of strip-shaped portions, and a constant value of allowable current flows through each strip-shaped portion. Therefore, the current flowing through the first, second, and third connection terminals 12, 14, and 16 is set to a desired allowable current value depending on the number of strips.
  • first, second, and third block connection terminals 12, 14, 16 are in contact with the emitter terminal 51, the gate terminal 52, and the collector terminal 53 of the tester 50 through the respective leaf spring portions 12 ⁇ / b> B, 14 ⁇ / b> B, 16 ⁇ / b> B in an elastic and conductive manner.
  • the mounting table 20 on which the semiconductor wafer W on which the plurality of power devices D are formed is moved, and the emitter electrode, gate electrode, and probe card 10 of the power device D are moved through the alignment mechanism.
  • the first and second probes 11 and 13 are aligned.
  • the mounting table 20 moves, and the emitter electrode and gate electrode of the power device D to be evaluated first come into contact with the first and second probes 11 and 13.
  • the contact block 21 attached to the mounting table 20 and the contact plate 15 come into elastic contact.
  • the mounting table 20 is overdriven, and the power device D and the tester 50 are electrically connected. Thereby, the emitter electrode, the gate electrode, and the collector electrode of the power device D can be conducted between the emitter terminal 51, the gate terminal 52, and the collector terminal 53 of the tester 50.
  • a gate current is applied to the gate electrode of the power device D from the gate terminal 52 of the tester 50 to the gate electrode of the power device D via the block-like second connection terminal 14 and the second probe 13 of the probe card 10, 1 the power device D is connected to the collector terminal 53 of the tester 50 through the block-shaped third connection terminal 16, the contact plate 15, the contact block 21, and the conductor film electrode (collector electrode) of the mounting table 20.
  • a large current (for example, 600 A) flows to the collector electrode. This large current flows from the emitter electrode of the power device D to the tester 50 through the first probe 11, the block-shaped first connection terminal 12 and the emitter terminal 51, and is measured by the tester 50.
  • a sufficiently reliable device evaluation as the probe card 10 can be performed.
  • each probe in a normal probe card is connected to the tester via a pogo pin, when replacing the probe card, a poor pogo pin pressure or poor contact between the pogo pin and each terminal of the probe and the tester should not occur.
  • the first, second, and third connection terminals 12, 14, and 16 are the emitter terminal 51 and the gate terminal 52 of the tester 50.
  • the pogo pin is not in contact with the collector terminal 53 directly, the fine adjustment is not necessary. Therefore, automatic replacement of the probe card 10 can be easily performed, and the probe card 10 having excellent practicality can be obtained.
  • the first, second, and third connection terminals 12, 14, and 16 are elastically contacted with the tester 50 via the leaf spring portions 12B, 14B, and 16B, respectively. 10 and the tester 50 can be sufficiently secured. Moreover, since the leaf
  • FIGS. 6A and 6B are cross-sectional views showing the main parts of a probe card according to the second embodiment of the present invention.
  • the probe card 10A uses a circuit board 18 ′ instead of the support board 18 in the first embodiment, and includes block-shaped first, second, and third connection terminals 12, 14, and 16. It is characterized in that it is provided in a tester (not shown), and the others are configured according to the first embodiment. Accordingly, only the characteristic part of the present embodiment will be described below.
  • a wiring pattern 18'A to which the first and second probes 11 and 13 are connected is formed on the circuit board 18 'used in the probe card 10A of the present embodiment.
  • the wiring pattern 18′A includes first and second wiring conductors 18′A1 and 18′A2 formed in a predetermined pattern on both surfaces of the circuit board 18 ′, and the first and second wiring conductors 18 respectively. And via conductors 18'A3 connecting 'A1 and 18'A2.
  • the first and second probes 11 and 13 are respectively connected to the first wiring conductor 18'A1 on the lower surface of the circuit board 18 'via solder, for example.
  • a hole 18'B through which a third connection terminal 16 'provided corresponding to the collector terminal of the tester is formed is formed in the circuit board 18'.
  • the third connecting terminal 16 ' penetrates the hole 18'B of the circuit board 18' and is fixed to the circuit board 18 'and the plate The elastic contact is made via the spring portion 16'B.
  • the third connection terminal 16 ′ penetrates the hole 18 ′ B of the circuit board 18 ′ and elastically contacts the contact plate 15. In this state, a plurality of power devices D formed on the semiconductor wafer W are evaluated. Also in this embodiment, the same effect as the above embodiment can be expected.
  • the present invention is not limited to the embodiment described above, and each component can be designed and changed as necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

プローブとテスタ間の測定ラインと載置台とテスタ間の測定ラインそれぞれの抵抗を格段に低減し、プローブ装置の実機として使用しても信頼性を十分に確保することができるパワーデバイス用のプローブカードを提供する。本発明のプローブカード10は、パワーデバイスDのエミッタ電極に電気的に接触する第1のプローブ11と、第1のプローブ11が接続されたブロック状の第1の接続端子12と、パワーデバイスDのゲート電極に電気的に接触する第2のプローブ13と、第2のプローブ13に接続されたブロック状の第2の接続端子14と、パワーデバイスDのコレクタ電極側に電気的に接触し得るコンタクトプレート15と、コンタクトプレート15に固定されたブロック状の第3の接続端子16と、を備え、第1、第2、第3の接続端子12、14、16は、それぞれが対応するテスタ側の接続端子に電気的に直に接触される。

Description

パワーデバイス用のプローブカード
 本発明は、例えば絶縁ゲートバイポーラトランジスタ(IGBT)で代表されるパワーデバイスの電気的な動特性をパワーデバイスがウエハから切り出されていない状態で測定することができるプローブ装置に用いられるプローブカードに関する。
 パワーデバイスは、種々の電源や自動車の電装関連用のスイッチング素子等として、あるいは産業機器の電装関連のスイッチング素子等として用いられるなど汎用性が高まっている。パワーデバイスは、通常の半導体素子と比べて高圧化、大電流化及び高速、高周波数化されている。パワーデバイスとしては、IGBT、ダイオード、パワートランジスタ、パワーMOS−FET、サイリスタなどがある。これらのパワーデバイスは、それぞれの静特性や動特性(例えば、スイッチング特性)が評価された後、それぞれの用途に応じて電子部品として市場に出される。
 ダイオードは、例えばパワーMOS−FETと並列接続してモータ等のスイッチング素子として用いられる。ダイオードのスイッチング特性は、逆回復時間が短い方が好ましく、逆回復時間が長い場合には使用条件によってダイオードが破壊されることがある。また、逆電流の電流変化(di/dt)が急峻なほど電流も大きくなり、ダイオードが破壊されやすい。パワーデバイスのスイッチング特性(動特性)は、パワーデバイスのパッケージ品一つひとつが専用の測定器によって測定され、個々のパワーデバイスとしての信頼性が評価されている。
 しかしながら、パッケージ品が不良品として評価されると、そのまま廃棄されるなどされるため、その分だけ良品のコスト高を招くことになる。そこで、本出願人は、このような無駄をなくするために、プローブ装置を用いてパワーデバイスをウエハレベルで評価する手法について種々検討した。パワーデバイスの評価に用いられるプローブ装置は、半導体ウエハを載置する移動可能な載置台と、載置台の上方に配置されたプローブカードと、載置台と協働して半導体ウエハとプローブカードとのアライメントを行なうアライメント機構と、プローブカード上に配置されてプローブカードと電気的に接続されるテスタと、を備え、テスタからの信号に基づいてアライメント後の半導体ウエハの電極とプローブカードのプローブとを電気的に接触させてパワーデバイスの電流変化等を測定し、スイッチング特性等の動特性を評価できるように構成されている。
 例えば、パワーデバイスが複数形成された半導体ウエハの上面にはゲート電極とエミッタ電極が形成され、下面にはコレクタ電極が形成されている。
 パワーデバイスの動特性を評価するプローブ装置の場合、載置台の上面にはパワーデバイスのコレクタ電極と接触する導体膜からなるコレクタ電極膜が形成されており、通常はコレクタ電極膜とテスタとがケーブルを介して接続されている。
 ところが、従来のプローブ装置は、載置台のコレクタ電極膜とテスタとを接続するケーブルが長いため、ケーブルでのインダクタンスが大きくなり、例えばケーブル10cm当たりのインダクタンスが100nHほど増加してしまうことが判った。このようなプローブ装置を用いて電流変化(di/dt)をマイクロ秒単位で測定すると動特性を評価するための電流変化が小さくなり、理想値から大きく外れ、本来の電流変化(di/dt)を正確に測定することが難しくなり、場合によっては破損することすらある。そのため、従来のプローブ装置ではパワーデバイスのスイッチング特性等の動特性を評価することができないことが判った。また、パワーデバイスのターンオフ時にコレクタ電極とエミッタ電極間に異常なサージ電圧がかかり、パワーデバイスを破損することもある。
 そこで、本出願人は、ケーブルでのインダクタンスの増加を抑制するために種々検討した結果、その解決手法の一つとして図7A及び図7Bに示すプローブ装置を提案した(特許文献1参照)。このプローブ装置では載置台とテスタを接続するケーブルに代えて特殊な導通機構が設けられている。そこで、このプローブ装置について図7A及び図7Bに基づいて概説する。このプローブ装置は、図7Aに示すようにプローバ室1内に載置台2、プローブカード3及び導通機構4を備えている。載置台2の少なくとも上面には金等の導電性金属からなる導体膜がコレクタ電極として形成されている。載置台2の上方には複数のプローブ3Aを有するプローブカード3がカードホルダ5(図7B参照)を介してプローバ室1のヘッドプレート(図示せず)に固定されている。プローブカード3の上面には複数のプローブ3Aに対応する端子電極が所定のパターンで形成され、複数のプローブ3Aがそれぞれの端子電極を介してテスタ(図示せず)と電気的に接続される。例えば、図7A及び図7B中、左側のプローブ3Aがパワーデバイスのゲート電極と接触し、右側のプローブ3Aがパワーデバイスのエミッタ電極と接触する。ゲート電極に電圧を印加することにより、コレクタ電極からエミッタ電極に電流が流れ、この時の電流変化(di/dt)が測定される。
 また、図7A及び図7Bに示すように載置台2、プローブカード3及びカードホルダ5には載置台2の導体膜電極とテスタとを電気的に接続する導通機構4が設けられている。この導通機構4は、図7A及び図7Bに示すように、載置台2の周面の互いに対向する位置に設けられた一対の接続端子4Bと、一対の接続端子4Bに対応して載置台2とプローブカード3の間に介在させて設けられた一対の分割導体(コンタクトプレート)4Cと、を備えている。一対の接続端子4Bは、各パワーデバイスの電気的特性を測定するために載置台2が如何なる場所へ移動してもそれぞれが対応するいずれかのコンタクトプレート4Cと弾力的に接触してコレクタ電極膜とテスタ(図示せず)とを電気的に接続する。
 図7A及び図7Bに示すプローブ装置は上述のように導通機構4が設けられているため、パワーデバイスのスイッチング特性等の動特性を評価する時には、載置台2のコレクタ電極膜とテスタ間の線路長が格段に短く、インダクタンスが小さいため、パワーデバイスでの電流変化を確実に測定することができる。
特開2012−58225号公報
 しかしながら、特許文献1には記載されていないが、現状のプローブカード3では、プローブ3Aが、例えば図8Aに示すように回路基板3Bの配線パターン3B1、ビア導体3B2、バナナ端子等の接続プラグ3Cからなる測定用ラインを介してテスタと接続されるため、測定ライン上の抵抗が大きく抵抗にもバラツキがあり、また耐熱性も十分でない。このため、このようなプローブカード3をプローブ装置の実機で使用しても十分な性能を発揮できない虞がある。また、例えば図8Bに示すように、導通機構4の測定ラインも接続プラグ3C、回路基板3Bの配線パターン3B1、ビア導体3B2、ポゴピン3Dからなるため、プローブ3Aとテスタ間の測定ラインと同様の課題がある。更に、プローブカード3が複数の接続プラグ3Cを介してテスタに接続されるため、プローブカード3の着脱に大きな力を要し、例えばプローブカード3の自動交換が難しくなることもある。
 本発明の課題は、プローブとテスタ間の測定ラインと載置台とテスタ間の測定ラインそれぞれの抵抗を格段に低減し、プローブ装置の実機として使用しても信頼性を十分に確保することができ、容易に自動交換することができるパワーデバイス用のプローブカードを提供することにある。
 上記課題を解決するために、本発明の第1の態様によれば、半導体ウエハに複数形成されたパワーデバイスの動特性を検査する際に用いられるプローブカードであって、前記パワーデバイスのエミッタ電極に電気的に接触する第1のプローブと、前記第1のプローブが接続されたブロック状の第1の接続端子と、前記パワーデバイスのゲート電極に電気的に接触する第2のプローブと、前記第2のプローブに接続されたブロック状の第2の接続端子と、前記パワーデバイスのコレクタ電極側に電気的に接触し得るコンタクトプレートと、前記コンタクトプレートに固定されたブロック状の第3の接続端子と、を備え、前記第1、第2、第3の接続端子は、それぞれが対応するテスタ側の接続端子に電気的に直に接触することを特徴とするプローブカードが提供される。
 本発明の第1の態様において、前記第1、第2の接続端子はそれぞれ支持基板を貫通し且つ前記支持基板の両面から露出するように前記支持基板に固定され、前記コンタクトプレートは前記支持基板の前記第1、第2のプローブ側の面に固定され、前記第3の接続端子は前記支持基板に形成された孔を貫通していることが好ましい。
 本発明の第1の態様において、前記第1、第2、第3の接続端子の前記テスタ側の面にはそれぞれ中央部が膨らむ板ばね部が形成されていることが好ましい。
 本発明の第1の態様において、前記板ばね部は、複数の帯状部からなることが好ましい。
 本発明の第1の態様において、前記第1、第2、第3の接続端子は、それぞれ接続子を有することが好ましい。
 上記課題を解決するために、本発明の第2の態様によれば、半導体ウエハに複数形成されたパワーデバイスの動特性を検査する際に用いられるプローブカードであって、前記パワーデバイスのエミッタ電極に電気的に接触する第1のプローブと、前記パワーデバイスのゲート電極に電気的に接触する第2のプローブと、前記第1、第2のプローブがそれぞれ接続された配線パターンを有する回路基板と、前記回路基板の前記第1、第2のプローブ側の面に固定され前記パワーデバイスのコレクタ電極側に電気的に接触し得るコンタクトプレートと、テスタに設けられ且つ前記第1、第2のプローブの配線パターンにそれぞれ電気的に接触するブロック状の第1、第2の接続端子と、前記テスタに設けられ且つ前記回路基板に形成された孔を貫通して前記コンタクトプレートに電気的に接触するブロック状の第3の接続端子と、を備えていることを特徴とするプローブカードが提供される。
 本発明の第2の態様において、前記第1、第2の接続端子の前記配線パターンと接触する面にはそれぞれ中央部が膨らむ板ばね部が形成されていることが好ましい。
 本発明の第2の態様において、前記板ばね部は、複数の帯状部からなることが好ましい。
 本発明の第2の態様において、前記第1、第2、第3の接続端子は、それぞれ接続子を有することが好ましい。
 本発明によれば、プローブとテスタ間の測定ラインと載置台とテスタ間の測定ラインそれぞれの抵抗を格段に低減し、プローブ装置の実機として使用しても信頼性を十分に確保することができ、容易に自動交換することができるパワーデバイス用のプローブカードを提供することができる。
本発明のプローブカードが適用されたプローブ装置の一例を示す概念図である。 図1に示すプローブカードの下面側からの斜視図である。 図1に示すプローブカードの第1、第2の接続端子を示す側面図である。 図1に示すプローブカードの分解斜視図である。 図1に示すプローブカードの第3の接続端子を示す側面図である。 図2A及び図2Bに示すプローブカードの第1、第2の接続端子の平面図である。 図2A及び図2Bに示すプローブカードの第1、第2の接続端子の横方向の断面図ある。 図3A及び図3Bに示すプローブカードの第3の接続端子の平面図である。 、図3A及び図3Bに示すプローブカードの第3の接続端子の横方向の断面図ある。 本発明の第2の実施の形態に係るプローブカードの要部を示す断面図ある。 本発明の第2の実施の形態に係るプローブカードの要部を示す断面図ある。 本出願人が先に提案したプローブ装置の要部を示す側面図である。 本出願人が先に提案したプローブ装置の要部であってプローブカードの下面を示す平面図である。 図7A及び図7Bに示すプローブカードの要部を示す断面図である。 図7A及び図7Bに示すプローブカードの要部を示す断面図である。
 以下、図1~図6Bに示す実施の形態に基づいて本発明を説明する。
 図1は、本発明のプローブカードが適用されたプローブ装置の一例を示す概念図である。
 第1の実施の形態のプローブカード10は、例えば図1に示すように、移動可能な載置台20の上方に配置され、載置台20上の半導体ウエハWと電気的に接触してパワーデバイスDのスイッチング特性(動特性)を評価するように構成されている。
 本実施の形態のプローブカード10は、同図に示すように、パワーデバイスDのエミッタ電極に接触する第1のプローブ11と、第1のプローブ11が接続されたブロック状の第1の接続端子12と、パワーデバイスDのゲート電極に接触する第2のプローブ13と、第2のプローブ13が接続されたブロック状の第2の接続端子14と、パワーデバイスDのコレクタ電極側に接続されるコンタクトプレート15と、コンタクトプレート15の上面に固定されたブロック状の第3の接続端子16と、第1、第2のプローブ11、13をそれぞれ片持ち支持するプローブ支持体17と、を備え、カードホルダ30(図2A、図3A参照)を介してプローブ装置に装着され、第1、第2、第3の接続端子12、14、16を介してテスタ50に接続される。
 第1のプローブ11は、図1、図2Bに示すように基端が第1の接続端子12の下面に接続され、先端が斜め下方に延びてプローブ支持体17によって片持ち支持され、先端がパワーデバイスDのエミッタ電極に接触するように構成されている。第1の接続端子12は、図1に示すように支持基板18に形成された第1の孔18Aを貫通した状態で支持基板18に装着され、上端面がテスタ50のエミッタ端子51と直に接触するように構成されている。
 第2のプローブ13及び第2の接続端子14は、いずれも図2Bに示すように第1のプローブ11及び第1の接続端子12と同様に構成されている。即ち、第2のプローブ13は、図1、図2Bに示すように基端が第2の接続端子14の下面に接続され、先端が斜め下方に延びてプローブ支持体17によって片持ち支持され、先端がパワーデバイスDのゲート電極に接触するように構成されている。第2の接続端子14は、第1の接続端子12と同様に支持基板18に形成された第2の孔18Bを貫通した状態で支持基板18に装着され、上端面がテスタ50のゲート端子52と直に接触するように構成されている。
 コンタクトプレート15は、図1に示すように載置台20の側面に付設されたコンタクトブロック21を介して載置台20の表面に形成された導体膜電極(コレクタ電極)(図示せず)に接続されるように構成されている。コンタクトブロック21は、先端部が上下方向に弾力的に揺動するように構成されている。そのため、コンタクトブロック21は、パワーデバイスDの評価時に載置台20が移動する際、コンタクトプレート15と弾力的に接触することにより、両者15、21間、延いてはパワーデバイスDのコレクタ電極とテスタ50のコレクタ端子53間で大電流が流れるように構成されている。コンタクトプレート15は、図2Aに示すように六角形状に形成され、支持基板18の互いに対向する両側縁部に被さるようにカードホルダ30に複数箇所で固定されている。コンタクトプレート15は、複数箇所でネジ部材を介してカードホルダ30に固定され、両者15、30の固定部にはスペーサ(図示せず)が介在し、これら両者15、30間に隙間が形成されている。コンタクトプレート15には図3Aに示すように支持基板18を被覆する部分に第3の接続端子16が固定されている。第3の接続端子16は、図1、図3Bに示すように支持基板18に形成された第3の孔18Cを貫通し、テスタ50のコレクタ端子53と直に接触するように構成されている。
 このように第1、第2、第3の接続端子12、14、16は、ブロック状に形成されており、しかも、いずれもテスタ50のエミッタ端子51、ゲート端子52、コレクタ端子53と直に接触するため、複数の導体を経由してテスタの各端子と接続する図8A、図8Bのプローブカードと比較して測定ラインの抵抗が格段に小さく、大電流が流れても発熱が少ないため、大電流が流れても耐熱性が問題になることはなく、パワーデバイスDの評価の信頼性を格段に高めることができる。
 また、第1、第2、第3の接続端子12、14、16は、それぞれ図4A、図4B、図5A、図5Bに示すように接続子(端子台)12A、14A、16Aを有し、接続子12A、14A、16Aを介して大電流を確実に流すように構成されている。第1、第2、第3の接続端子12、14、16は、例えば銅等の良導体によって形成され、接続子12A、14A、16Aは、第1、第2、第3の接続端子12、14、16と同様に、例えば銅等の良導体によって形成されている。
 また、第1、第2、第3の接続端子12、14、16の上面には図2B、図3Bに示すように板ばね部12B、14B、16Bが形成され、これらの接続端子12、14、16は、板ばね部12B、14B、16Bでテスタ50のエミッタ端子51、ゲート端子52、コレクタ端子53と弾力的に接触するようになっている。そのため、第1、第2、第3の接続端子12、14、16は、テスタ50のエミッタ端子51、ゲート端子52、コレクタ端子53と電気的に確実に接続され、大電流を安定的に流すことができ、デバイス評価の信頼性を高めることができる。
 これらの板ばね部12B、14B、16Bには図4A、図5Aに示すように一定幅で複数のスリットSが切り込まれている。これらのスリットSは、板ばね部12B、14B、16Bを複数の帯状部に分割し、各帯状部に一定値の許容電流が流れるようになっている。従って、第1、第2、第3の接続端子12、14、16を流れる電流は、帯状部の本数によって所望の許容電流値に設定される。
 次いで、プローブカード10の動作について説明する。本実施の形態のプローブカード10は、図1及び図2Aに示すようにプローブ装置にカードホルダ30を介して装着して使用されると、第1、第2、第3のブロック状の接続端子12、14、16がそれぞれの板ばね部12B、14B、16Bを介してテスタ50のエミッタ端子51、ゲート端子52及びコレクタ端子53とそれぞれ弾力的且つ導通自在に接触する。
 次いで、図1に示すように複数のパワーデバイスDが形成された半導体ウエハWが載置された載置台20が移動し、アライメント機構を介してパワーデバイスDのエミッタ電極、ゲート電極とプローブカード10の第1、第2のプローブ11、13とのアライメントが行なわれる。その後、載置台20が移動し、最初に評価すべきパワーデバイスDのエミッタ電極、ゲート電極と第1、第2のプローブ11、13とが接触する。この時、載置台20に付設されたコンタクトブロック21とコンタクトプレート15が弾力的に接触する。更に、載置台20がオーバードライブしてパワーデバイスDとテスタ50とが電気的に接続される。これにより、パワーデバイスDのエミッタ電極、ゲート電極及びコレクタ電極がテスタ50のエミッタ端子51、ゲート端子52及びコレクタ端子53との間で導通可能になる。
 然る後、テスタ50のゲート端子52からプローブカード10のブロック状の第2の接続端子14及び第2のプローブ13を介してパワーデバイスDのゲート電極にゲート電流を印加してターンオンすると、図1に矢印で示すようにテスタ50のコレクタ端子53からブロック状の第3の接続端子16、コンタクトプレート15、コンタクトブロック21及び載置台20の導体膜電極(コレクタ電極)を介してパワーデバイスDのコレクタ電極へ大電流(例えば、600A)が流れる。この大電流はパワーデバイスDのエミッタ電極から第1のプローブ11、ブロック状の第1の接続端子12及びエミッタ端子51を介してテスタ50へ流れ、テスタ50において測定される。このようにテスタ50からパワーデバイスDのゲート電極にゲート電圧を印加することにより、コレクタ電極からエミッタ電極に大電流を流し、電流変化を測定した後、ターンオフする。この電流変化の測定により、パワーデバイスDの動特性を確実に評価することができる。
 以上説明したように本実施の形態によれば、第1のプローブ11及び第2のプローブ13がそれぞれ接続されたブロック状の第1の接続端子12及び第2の接続端子14、並びにブロック状の第3の接続端子16が、それぞれテスタ50のエミッタ端子51、ゲート端子52及びコレクタ端子53と直に接触するため、測定ラインの抵抗が格段に小さく、しかも耐熱性に優れており、プローブ装置のプローブカード10として十分に信頼性の高いデバイス評価を行うことができる。しかも、通常のプローブカードにおける各プローブはポゴピンを介してテスタと接続されているので、プローブカードを交換する際、ポゴピン圧不良又はポゴピンとプローブ及びテスタの各端子との接触不良を生じないように各部の接触状態を微調整する必要があるが、本実施の形態に係るプローブカードは、第1、第2、第3の接続端子12、14、16がテスタ50のエミッタ端子51、ゲート端子52及びコレクタ端子53と直に接触し、ポゴピンを必要としないので、上記微調整が不要となる。従って、プローブカード10の自動交換を容易に行うことができ、実用性に優れたプローブカード10を得ることができる。
 また、本実施形態によれば、第1、第2、第3の接続端子12、14、16はそれぞれ板バネ部12B,14B、16Bを介してテスタ50と弾力的に接触するため、プローブカード10とテスタ50との間の導通性を十分に確保することができる。また、板ばね部12B,14B、16Bが複数のスリットSによって複数の帯状部に分割されているため、帯状部の本数によって所望の電流値に設定することができる。更に、第1、第2、第3の接続端子12、14、16はそれぞれ接続子12A、14A、16Aを有するため、接続子12A、14A、16Aを介して大電流をより確実に通電することができる。
 次に、本発明の第2の実施の形態について説明する。
 図6A及び図6Bは、それぞれ本発明の第2の実施の形態に係るプローブカードの要部を示す断面図ある。
 本実施の形態のプローブカード10Aは、第1の実施の形態における支持基板18に代えて回路基板18’を用い、ブロック状の第1、第2、第3の接続端子12、14、16をテスタ(図示せず)に設けた点に特徴があり、その他は第1の実施の形態に準じて構成されている。従って、以下では、本実施の形態の特徴部分のみを説明する。
 本実施の形態のプローブカード10Aに用いられる回路基板18’には、図6Aに示すように第1、第2のプローブ11、13が接続される配線パターン18’Aが形成されている。この配線パターン18’Aは、回路基板18’の両面それぞれに所定のパターンで形成された第1、第2の配線導体18’A1、18’A2と、該第1、第2の配線導体18’A1、18’A2を連結するビア導体18’A3と、で構成されている。第1、第2のプローブ11、13は、それぞれ回路基板18’の下面の第1の配線導体18’A1に、例えば半田を介して接続されている。
 また、図6Bに示すように、回路基板18’にはテスタのコレクタ端子に対応して設けられた第3の接続端子16’が貫通するための孔18’Bが形成されている。テスタをプローブカード10Aに接続する時に、同図に示すように第3の接続端子16’が回路基板18’の孔18’Bを貫通して回路基板18’に固定されたコンタクトプレート15と板バネ部16’Bを介して弾力的に接触するようになっている。
 本実施の形態では、プローブ装置に装着されたプローブカード10Aとテスタとを接続する時には、テスタがプローブカード10Aに向けて降下すると、テスタに設けられた第1、第2の接続端子12’、14’が回路基板18’の第1、第2のプローブ11、13に対応する配線パターンの第2の配線導体18’A2に対して弾力的に接触する。第3の接続端子16’は、回路基板18’の孔18’Bを貫通してコンタクトプレート15に対して弾力的に接触する。この状態で半導体ウエハWに形成された複数のパワーデバイスDが評価される。本実施の形態においても上記実施の形態と同様の作用効果を期することができる。
 本発明は、上記実施の形態に何ら制限されるものではなく、必要に応じて各構成要素を設計変更することができる。
10、10A  プローブカード
11  第1のプローブ
12、12’ 第1の接続端子
12A、 接続子(端子台)
12’A 板ばね部
13  第2のプローブ
14、14’ 第2の接続端子
14A、 接続子(端子台)
14’B 板ばね部
15  コンタクトプレート
16、16’ 第3の接続端子
16A、 接続子(端子台)
16’B 板ばね部
18  支持基板
18’ 回路基板
18’B 孔
 W  半導体ウエハ
 D  パワーデバイス

Claims (9)

  1.  半導体ウエハに複数形成されたパワーデバイスの動特性を検査する際に用いられるプローブカードであって、
     前記パワーデバイスのエミッタ電極に電気的に接触する第1のプローブと、
     前記第1のプローブが接続されたブロック状の第1の接続端子と、
     前記パワーデバイスのゲート電極に電気的に接触する第2のプローブと、
     前記第2のプローブに接続されたブロック状の第2の接続端子と、
     前記パワーデバイスのコレクタ電極側に電気的に接触し得るコンタクトプレートと、
     前記コンタクトプレートに固定されたブロック状の第3の接続端子と、を備え、
     前記第1、第2、第3の接続端子は、それぞれが対応するテスタ側の接続端子に電気的に直に接触することを特徴とするプローブカード。
  2.  前記第1、第2の接続端子はそれぞれ支持基板を貫通し且つ前記支持基板の両面から露出するように前記支持基板に固定され、前記コンタクトプレートは前記支持基板の前記第1、第2のプローブ側の面に固定され、前記第3の接続端子は前記支持基板に形成された孔を貫通していることを特徴とする請求項1記載のプローブカード。
  3.  前記第1、第2、第3の接続端子の前記テスタ側の面にはそれぞれ中央部が膨らむ板ばね部が形成されていることを特徴とする請求項1記載のプローブカード。
  4.  前記板ばね部は、複数の帯状部からなることを特徴とする請求項3記載のプローブカード。
  5.  前記第1、第2、第3の接続端子は、それぞれ接続子を有することを特徴とする請求項1記載のプローブカード。
  6.  半導体ウエハに複数形成されたパワーデバイスの動特性を検査する際に用いられるプローブカードであって、
     前記パワーデバイスのエミッタ電極に電気的に接触する第1のプローブと、
     前記パワーデバイスのゲート電極に電気的に接触する第2のプローブと、
     前記第1、第2のプローブがそれぞれが接続された配線パターンを有する回路基板と、
     前記回路基板の前記第1、第2のプローブ側の面に固定され前記パワーデバイスのコレクタ電極側に電気的に接触し得るコンタクトプレートと、
     テスタに設けられ且つ前記第1、第2のプローブの配線パターンにそれぞれ電気的に接触するブロック状の第1、第2の接続端子と、
     前記テスタに設けられ且つ前記回路基板に形成された孔を貫通して前記コンタクトプレートに電気的に接触するブロック状の第3の接続端子と、を備えていることを特徴とするプローブカード。
  7.  前記第1、第2の接続端子の前記配線パターンと接触する面にはそれぞれ中央部が膨らむ板ばね部が形成されていることを特徴とする請求項6記載のプローブカード。
  8.  前記板ばね部は、複数の帯状部からなることを特徴とする請求項7記載のプローブカード。
  9.  前記第1、第2、第3の接続端子は、それぞれ接続子を有することを特徴とする請求項6記載のプローブカード。
PCT/JP2012/069925 2011-08-01 2012-07-30 パワーデバイス用のプローブカード WO2013018910A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280037370.1A CN103703381B (zh) 2011-08-01 2012-07-30 功率器件用的探针卡
KR1020147005362A KR101835680B1 (ko) 2011-08-01 2012-07-30 파워 디바이스용의 프로브 카드
EP12819684.7A EP2762897A4 (en) 2011-08-01 2012-07-30 PROBE CARD FOR POWER SUPPLY DEVICE
US14/234,679 US9322844B2 (en) 2011-08-01 2012-07-30 Probe card for power device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011168425A JP5291157B2 (ja) 2011-08-01 2011-08-01 パワーデバイス用のプローブカード
JP2011-168425 2011-08-01

Publications (1)

Publication Number Publication Date
WO2013018910A1 true WO2013018910A1 (ja) 2013-02-07

Family

ID=47629422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069925 WO2013018910A1 (ja) 2011-08-01 2012-07-30 パワーデバイス用のプローブカード

Country Status (7)

Country Link
US (1) US9322844B2 (ja)
EP (1) EP2762897A4 (ja)
JP (1) JP5291157B2 (ja)
KR (1) KR101835680B1 (ja)
CN (1) CN103703381B (ja)
TW (1) TWI541514B (ja)
WO (1) WO2013018910A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157121A1 (ja) * 2013-03-28 2014-10-02 東京エレクトロン株式会社 プローブ装置
CN105548852A (zh) * 2014-10-22 2016-05-04 三菱电机株式会社 半导体评价装置及其评价方法
EP2980839A4 (en) * 2013-03-28 2016-11-30 Tokyo Electron Ltd PROBE DEVICE
JP2017503335A (ja) * 2014-02-25 2017-01-26 カスケード マイクロテック インコーポレイテッドCascade Microtech,Incorporated 電子デバイスのオンウェーハ動的検査のためのシステムおよび方法。
CN109298305A (zh) * 2017-07-24 2019-02-01 株洲中车时代电气股份有限公司 一种针对压接式 igbt 模块子模组的测试装置及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936579B2 (ja) * 2013-05-08 2016-06-22 本田技研工業株式会社 電流印加装置
JP6045993B2 (ja) * 2013-07-08 2016-12-14 東京エレクトロン株式会社 プローブ装置
US10527647B2 (en) * 2013-07-09 2020-01-07 Formfactor, Inc. Probe head with inductance reducing structure
JP6289962B2 (ja) 2013-07-11 2018-03-07 東京エレクトロン株式会社 プローブ装置
US10161990B2 (en) * 2014-03-11 2018-12-25 Sintokogio, Ltd. Inspection system for device to be tested, and method for operating inspection system for device to be tested
TWI580969B (zh) * 2015-04-14 2017-05-01 Mpi Corp Probe card
CN106707130B (zh) * 2017-01-04 2019-05-03 株洲中车时代电气股份有限公司 一种igbt模块测试装置
KR101845652B1 (ko) * 2017-01-17 2018-04-04 주식회사 텝스 부품 실장된 웨이퍼 테스트를 위한 하이브리드 프로브 카드
KR102243839B1 (ko) * 2018-07-13 2021-04-22 도쿄엘렉트론가부시키가이샤 중간 접속 부재, 및 검사 장치
AT525517A1 (de) * 2021-10-13 2023-04-15 Gaggl Dipl Ing Dr Rainer Prüfvorrichtung und Anordnung mit dieser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184639A (ja) * 1994-12-28 1996-07-16 Sony Tektronix Corp 接触子構体
JP2006344662A (ja) * 2005-06-07 2006-12-21 Mitsubishi Electric Corp プローブカード、およびこれを用いた直流特性測定方法、および半導体装置
JP2011138865A (ja) * 2009-12-28 2011-07-14 Micronics Japan Co Ltd 半導体デバイスの検査装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250779B2 (en) * 2002-11-25 2007-07-31 Cascade Microtech, Inc. Probe station with low inductance path
JP4387125B2 (ja) 2003-06-09 2009-12-16 東京エレクトロン株式会社 検査方法及び検査装置
JP2007040926A (ja) 2005-08-05 2007-02-15 Tokyo Seimitsu Co Ltd プローバ
JP4979214B2 (ja) * 2005-08-31 2012-07-18 日本発條株式会社 プローブカード
JP2007123430A (ja) * 2005-10-26 2007-05-17 Tokyo Seimitsu Co Ltd 半導体ウエハ及び半導体検査方法
US7521947B2 (en) * 2006-05-23 2009-04-21 Integrated Technology Corporation Probe needle protection method for high current probe testing of power devices
WO2007137284A2 (en) * 2006-05-23 2007-11-29 Integrated Technology Corporation Probe needle protection method for high current probe testing of power devices
US7498824B2 (en) * 2006-08-22 2009-03-03 Formfactor, Inc. Method and apparatus for making a determination relating to resistance of probes
JP5016892B2 (ja) * 2006-10-17 2012-09-05 東京エレクトロン株式会社 検査装置及び検査方法
JP2011047782A (ja) * 2009-08-27 2011-03-10 Tokyo Electron Ltd 半導体素子評価方法
JP5296117B2 (ja) 2010-03-12 2013-09-25 東京エレクトロン株式会社 プローブ装置
CN102072974A (zh) * 2010-11-11 2011-05-25 嘉兴斯达微电子有限公司 一种功率模块可靠性试验夹具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184639A (ja) * 1994-12-28 1996-07-16 Sony Tektronix Corp 接触子構体
JP2006344662A (ja) * 2005-06-07 2006-12-21 Mitsubishi Electric Corp プローブカード、およびこれを用いた直流特性測定方法、および半導体装置
JP2011138865A (ja) * 2009-12-28 2011-07-14 Micronics Japan Co Ltd 半導体デバイスの検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762897A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157121A1 (ja) * 2013-03-28 2014-10-02 東京エレクトロン株式会社 プローブ装置
JP2014192405A (ja) * 2013-03-28 2014-10-06 Tokyo Electron Ltd プローブ装置
US20160061882A1 (en) * 2013-03-28 2016-03-03 Tokyo Electron Limited Probe device
EP2980839A4 (en) * 2013-03-28 2016-11-30 Tokyo Electron Ltd PROBE DEVICE
US9759762B2 (en) * 2013-03-28 2017-09-12 Tokyo Electron Limited Probe device
JP2017503335A (ja) * 2014-02-25 2017-01-26 カスケード マイクロテック インコーポレイテッドCascade Microtech,Incorporated 電子デバイスのオンウェーハ動的検査のためのシステムおよび方法。
CN105548852A (zh) * 2014-10-22 2016-05-04 三菱电机株式会社 半导体评价装置及其评价方法
CN109298305A (zh) * 2017-07-24 2019-02-01 株洲中车时代电气股份有限公司 一种针对压接式 igbt 模块子模组的测试装置及方法
CN109298305B (zh) * 2017-07-24 2020-12-11 株洲中车时代半导体有限公司 一种针对压接式igbt模块子模组的测试装置及方法

Also Published As

Publication number Publication date
TW201326827A (zh) 2013-07-01
JP2013032938A (ja) 2013-02-14
EP2762897A1 (en) 2014-08-06
EP2762897A4 (en) 2015-04-01
TWI541514B (zh) 2016-07-11
KR20140057571A (ko) 2014-05-13
CN103703381A (zh) 2014-04-02
JP5291157B2 (ja) 2013-09-18
CN103703381B (zh) 2016-12-21
US9322844B2 (en) 2016-04-26
US20140176173A1 (en) 2014-06-26
KR101835680B1 (ko) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2013018910A1 (ja) パワーデバイス用のプローブカード
US9658285B2 (en) Probe apparatus
US7262613B2 (en) Inspection method and inspection apparatus for inspecting electrical characteristics of inspection object
JP2013032938A5 (ja)
US20020050832A1 (en) Probe contact system having planarity adjustment mechanism
JP2003249323A (ja) 電気部品用ソケット
KR101186915B1 (ko) 검사용 접촉 구조체
KR101095902B1 (ko) 켈빈 테스트용 소켓
JPH0955273A (ja) Bgaパッケージic用icソケット
JPWO2009011201A1 (ja) 検査用構造体
JP6000046B2 (ja) プローブユニットおよび検査装置
JP2004178951A (ja) 電気部品用ソケット
JP2006278949A (ja) 半導体集積回路の検査装置及びその検査方法
KR20110132298A (ko) 켈빈 테스트용 소켓
CN108735618A (zh) 对器件进行测试和封装的方法
JP3172305B2 (ja) 半導体装置の製造方法
JP2009156720A (ja) 基板検査用治具及び検査用接触子
JP2985432B2 (ja) 電気的特性検査装置
JP6320285B2 (ja) 一体型複数接触子、それを備えた検査治具及び検査装置、並びに検査方法
KR20160001723A (ko) 테스트 소자 인서트 및 전자부품 테스트 장치
JPS63279179A (ja) 集積回路装置の測定用ソケット
JPH08115777A (ja) 接続装置
JPH01265531A (ja) プローブカード
JPH04199535A (ja) Icパッケージの特性評価治具
JP2002267716A (ja) 被測定デバイスの測定用基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14234679

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005362

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012819684

Country of ref document: EP