WO2011161911A1 - 増幅装置 - Google Patents

増幅装置 Download PDF

Info

Publication number
WO2011161911A1
WO2011161911A1 PCT/JP2011/003435 JP2011003435W WO2011161911A1 WO 2011161911 A1 WO2011161911 A1 WO 2011161911A1 JP 2011003435 W JP2011003435 W JP 2011003435W WO 2011161911 A1 WO2011161911 A1 WO 2011161911A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
pulse width
power
signal
audio signal
Prior art date
Application number
PCT/JP2011/003435
Other languages
English (en)
French (fr)
Inventor
明学 張
誠吾 尾崎
剛史 羽賀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180031230.9A priority Critical patent/CN102959858B/zh
Priority to US13/701,554 priority patent/US9036836B2/en
Priority to JP2012521302A priority patent/JP5903638B2/ja
Priority to EP11797800.7A priority patent/EP2587665B1/en
Publication of WO2011161911A1 publication Critical patent/WO2011161911A1/ja
Priority to US14/690,883 priority patent/US9257945B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit

Definitions

  • the present invention relates to an amplifying apparatus that amplifies power of an input signal, and in particular, an amplifying apparatus that improves an S / N ratio of an output signal and power efficiency in a power amplifying stage by controlling a voltage of a power supply in the power amplifying stage.
  • an amplifying apparatus that improves an S / N ratio of an output signal and power efficiency in a power amplifying stage by controlling a voltage of a power supply in the power amplifying stage.
  • a voltage variable power supply is used as a power supply for an amplifying device, following the input audio signal level to the amplifying device, increasing or decreasing the power supply voltage value supplied to the power amplification stage, and reducing noise superimposed on the output signal and power amplification
  • the power supply voltage supplied to the power amplification stage is made to follow the input audio signal level, and when the input audio signal level is low, the power amplification stage reaches a voltage value with such an amplitude that the amplified signal is not distorted. Therefore, the effect of reducing noise superimposed on the output signal of the amplifying device can be obtained, and the power efficiency in the power amplification stage can be improved.
  • the amplification device also decreases the amplification gain due to voltage amplification of the power amplification stage.
  • a constant voltage is proportional to the amplitude level of the input analog signal.
  • the control circuit controls the voltage of the power amplifier, and the attenuator provided in the feedback circuit adjusts to keep the feedback amount constant according to the voltage level of the constant voltage in conjunction with the constant voltage control circuit.
  • Patent Document 1 there is also known one that adjusts the gain of the gain adjusting means provided in the feedback loop in accordance with the increase or decrease of the voltage value supplied to the switching amplifier of the signal reproducing device (for example, the following) Patent Document 2).
  • the conventional amplification device has the following problems. That is, the technique described in Patent Literature 1 is configured to change the attenuation in the feedback circuit in accordance with the voltage level of the constant voltage applied to the switching amplifier, and keep the loop gain constant. Therefore, it is necessary to make the amount of attenuation on the feedback circuit variable. If this amount of attenuation is changed steplessly or in multiple steps, an electronic attenuation circuit or the like is required, which increases the circuit scale. In addition, there is a problem that noise is generated when the change amount is switched. Next, the technique described in Patent Document 2 has a problem that the transfer function changes even though the negative feedback loop gain can be made the same.
  • the present invention does not increase the circuit scale, and does not change the transfer function (frequency characteristics of gain and phase) of the amplifier, while keeping the loop gain constant.
  • An object of the present invention is to provide an amplifying apparatus that can reduce noise superimposed on a signal and can improve the S / N ratio particularly when a small input audio signal is used.
  • the amplifying apparatus of the present invention is a power amplifying means for power amplifying the input audio signal by switching a power supply voltage with a pulse width modulation signal corresponding to the level of the input audio signal;
  • Power supply voltage control means for detecting an amplitude level of the input audio signal and applying a target setting voltage corresponding to the detected input signal amplitude level as the power supply voltage to the power amplification means;
  • Pulse width conversion means for converting the input audio signal into a pulse width modulation signal having a pulse width according to the level; Based on the target set voltage and the output of the monitored power amplification means, the pulse width of the pulse width modulation signal generated by the pulse width conversion means is set so as to cancel the change in amplification gain of the power amplification means.
  • a pulse width correcting means for correcting and applying to the power amplifying means, It was set as the structure which has.
  • the amplifying apparatus of the present invention is a power amplifying means for amplifying the power of the input audio signal by switching a power supply voltage with a pulse width modulation signal corresponding to the level of the input audio signal.
  • Power supply voltage control means for detecting an amplitude level of the input audio signal and applying a target setting voltage corresponding to the detected input signal amplitude level as the power supply voltage to the power amplification means; Detecting means for detecting a power supply voltage applied to the power amplifying means; Pulse width conversion means for converting the input audio signal into a pulse width modulation signal having a pulse width according to the level; A basic clock generation unit that generates a basic clock that is a basic timing signal when the input audio signal is converted into the pulse width modulation signal; A ramp slope control section for generating a ramp wave having a slope different according to the detected power supply voltage from the basic clock generated by the basic clock generation section; Means for monitoring the output of the power amplification means; Based on the ramp wave generated by the ramp wave slope control unit and the monitored output of the power amplifying unit, the pulse width converting unit generates the change in the amplification gain of the power amplifying unit. And a correction unit that corrects the pulse width of the pulse width modulation signal and applies
  • the noise superimposed on the output signal is reduced while keeping the loop gain constant without increasing the circuit scale and without changing the transfer function (frequency characteristic between gain and phase) of the amplifier.
  • the S / N ratio at the time of a small input voice signal can be improved.
  • Block diagram of an amplifying device in Embodiment 1 of the present invention The figure which shows the relationship between the inclination of a ramp wave and the rise time in Embodiment 1 of this invention.
  • Block diagram of an amplifying device in Embodiment 2 of the present invention The block diagram of the detector which detects the voltage value of the power supply power of the power amplification part in Embodiment 2 of this invention
  • Block diagram of an amplifying device in Embodiment 3 of the present invention Explanatory drawing which shows the relationship between the PWM modulation
  • the amplifying apparatus 1 is connected to an audio apparatus 8 that outputs an audio signal having a level of about the line level.
  • the audio signal output from the audio device 8 is input to the amplifying device 1 as the input audio signal S1 of the amplifying device 1, and is amplified by the amplifying device 1 and output to the speaker 9.
  • the speaker 9 converts the sound signal after power amplification output from the amplifying apparatus 1 into sound and emits the sound.
  • the amplifying device 1 and the audio device 8 are connected to a direct current power source (not shown) that supplies electric power necessary to operate them.
  • a direct current power source (not shown) that supplies electric power necessary to operate them.
  • the power source required to operate each device is not limited to a DC power source, and an AC power source may be used as appropriate in accordance with the characteristics of each device.
  • the amplifying device 1 includes a PWM (Pulse Width Modulation) modulation unit 2, a gate driver unit 3, a power amplification unit 4, a low-pass filter 5, a negative feedback unit 6, and a power supply voltage control unit 7.
  • the amplification device 1 is provided with a negative feedback unit 6 that negatively feeds back the output signal of the power amplification unit 4 to the PWM modulation unit 2.
  • the input audio signal S1 is input to the power supply voltage control unit 7 and also to the PWM modulation unit 2.
  • the power supply voltage control unit 7 detects the amplitude level (S9) of the input audio signal S1 input from the audio device 8, and the target setting voltage value information Vs (corresponding to the detected amplitude level (S9) of the input audio signal S1. (Details will be described later) are output to the PWM modulator 2, and the output voltages (+ Vdd, -Vdd) on the positive side and the negative side are controlled so as to be the target voltage that is the voltage value indicated by the target set voltage value information Vs, The power supply power having the positive and negative voltage values (+ Vdd, ⁇ Vdd) is sent to the power amplifying unit 4.
  • the PWM modulation unit 2 converts the input audio signal S1 input from the audio device 8 into a PWM signal S5 having a pulse width corresponding to the input audio signal S1, and then the feedback signal S4 input from the negative feedback unit 6 and the power source Using the target set voltage value information Vs input from the voltage control unit 7, the pulse width of the PWM signal S5 is corrected (details will be described later), and the obtained signal is used as a corrected PWM signal S2 to the gate driver unit 3 To send.
  • the PWM modulation unit 2 can be realized by a digital signal processor, a microcontroller, or the like.
  • the gate driver unit 3 inserts a dead time into the input corrected PWM signal S2 and can drive the high-side (+ Vdd) and low-side ( ⁇ Vdd) high-speed switching elements 4a and 4b of the power amplification unit 4.
  • a drive signal in which the potential of the corrected PWM signal S2 is shifted is created and sent to the power amplifier 4.
  • the power amplifying unit 4 is arranged on the high potential power source side and is supplied with the positive side voltage + Vdd from the power source voltage control unit 7 and the high side fast switching element 4a is arranged on the low potential power source (or ground) side to supply power voltage.
  • a half-bridge circuit including a low-side high-speed switching element 4b supplied with a negative voltage ⁇ Vdd from the control unit 7 is configured.
  • the power amplification unit 4 performs a high-speed switching operation with a voltage amplitude determined by the positive side voltage + Vdd and the negative side voltage ⁇ Vdd by the drive signal input from the gate driver unit 3, and is input to the power amplification unit 4.
  • the signal is power amplified to obtain a corrected amplified signal S3.
  • the obtained amplified signal S3 after correction is output to the negative feedback unit 6 and also sent to the low-pass filter 5.
  • the high-speed switching elements 4a and 4b for example, MOS field effect transistors or the like are used.
  • the negative feedback unit 6 is provided on the feedback circuit, attenuates the corrected amplified signal S3 output from the power amplification unit 4, and negatively feeds back to the PWM modulation unit 2 as the feedback signal S4.
  • the low-pass filter 5 is a filter that outputs an audio signal obtained by removing unnecessary high-frequency components from the corrected amplified signal S3 output from the power amplification unit 4 to the speaker 9, for example, a coil L, a capacitor C, or the like. It is comprised by the element of.
  • the power supply voltage control unit 7 includes an input signal level detection unit 71, a control unit 72, and a voltage variable power supply unit 73.
  • the input signal level detection unit 71 creates input signal amplitude level information S9 including amplitude information of the input audio signal S1 input from the audio device 8 and sends it to the control unit 72.
  • the control unit 72 selects target set voltage value information Vs corresponding to the input signal amplitude level information S9 created by the input signal level detection unit 71 from the data table information preset in the control unit 72. Then, the selected target set voltage value information Vs is output to the voltage variable power supply unit 73 and the target set voltage value information Vs is output to the PWM modulation unit 2.
  • the target set voltage value information Vs is information indicating the target value of the voltage value (+ Vdd, ⁇ Vdd) to be set for the voltage variable power supply unit 73.
  • the voltage variable power source unit 73 is a power source that varies the output voltage (+ Vdd, ⁇ Vdd) to a voltage value to be set according to the target set voltage value information Vs input from the control unit 72, and the target set voltage value information
  • a power supply power having a voltage value (+ Vdd, ⁇ Vdd) controlled based on Vs is supplied to the power amplifier 4.
  • the input signal level detection unit 71 and the control unit 72 can be realized by a digital signal processor, a microcontroller, or the like.
  • the PWM modulation unit 2 includes a PWM converter 23, a basic clock generation unit 21 as a PWM pulse width correction unit, a ramp slope control unit 22, an integrator 24, a comparator 25, and an adder 26. Is done. Each part of the PWM modulator 2 is supplied with ⁇ Vcc as a power supply voltage.
  • the PWM converter 23 is a processing unit that obtains a PWM signal mainly by a digital calculation circuit
  • the PWM modulation unit 2 is a modulation circuit including a correction unit or a “comparator” in addition to the converter 23. It is a block.
  • the basic clock generator 21 is a timing signal when the PWM converter 23 performs PWM conversion on the input audio signal S1, and has a predetermined period T and a voltage amplitude level of ⁇ Vcc (V). CL is generated.
  • the basic clock CL is a square wave having a period sufficiently shorter than the period of the input audio signal S ⁇ b> 1 input from the audio device 8.
  • the generated basic clock CL is output to the PWM converter 23 and is also output to the ramp wave slope control unit 22.
  • the PWM converter 23 uses the basic clock CL input from the basic clock generation unit 21 to convert it into a PWM signal S5 having a pulse width corresponding to the input audio signal S1 input from the audio device 8, and supplies the PWM signal S5 to the adder 26. Output.
  • a PWM conversion method a delta-sigma conversion method, a triangular wave comparison method, and the like are known, and any of these methods is also applied in the present embodiment.
  • the integrator 24 integrates the difference signal S6 input from the adder 26, creates a difference integration signal S7 including the error component, and outputs the difference integration signal S7 to the + input terminal of the comparator 25.
  • the ramp slope control unit 22 has a slope ⁇ using the basic clock CL input from the basic clock generation unit 21 and the target set voltage value information Vs input from the control unit 72.
  • the ramp wave S8 is generated (details will be described later) and output to the negative input terminal of the comparator 25.
  • a corrected PWM signal S2 represented by the period T is generated and sent to the gate driver unit 3.
  • the ramp wave S8 is a signal that rises in synchronization with the rising edges P1 to P2 of the basic clock CL and falls in synchronization with the falling edges P3 to P4.
  • the slopes ( ⁇ , ⁇ ) of the rising and falling edges of the ramp wave S8 are slopes determined by a predetermined time width ⁇ .
  • the voltage amplitude of the ramp wave S8 is the same ⁇ Vcc (V) as that of the basic clock CL, and the rising and falling time widths ⁇ of the ramp wave S8 have the same time width.
  • the relationship between the target voltage ⁇ Vt (V) corresponding to the target set voltage value information Vs, the time width ⁇ , and the slope ⁇ of the ramp wave S8 is defined as follows.
  • the target voltage value ⁇ Vt (V) is set to ⁇ Vdd (V)
  • the target set voltage value information Vs is set to Vsmax
  • the ramp The time width ⁇ of the slope of the wave S8 is ⁇ 1
  • the slope ⁇ of the ramp wave S8 is ⁇ 1.
  • the maximum amplitude level (S1max) is a case where the voltage value ⁇ Vdd (V) of the maximum power supply power is supplied to the power amplifying unit 4, and amplification is possible without generating distortion due to the voltage value ⁇ Vdd of the power supply power. This is the amplitude level of the input audio signal S1.
  • the control unit 72 When the control unit 72 outputs target set voltage value information (in this case, Vsmax) to the voltage variable power supply unit 73 and the ramp slope control unit 22, the voltage variable power supply unit 73 amplifies power based on the target set voltage value information Vsmax.
  • the unit 4 is supplied with a target voltage value ⁇ Vdd (V) which is a voltage value of the maximum power supply power.
  • the ramp wave slope control unit 22 sets the time width ⁇ of the slope ⁇ of the ramp wave S8 corresponding to the target set voltage value information Vsmax to 1 / m ⁇ T (2 ⁇ m).
  • a ramp wave S8 is created (thick solid line shown in FIG. 2).
  • the target voltage value ⁇ Vt (V) when the input audio signal S1min having the minimum amplitude level is input from the audio device 8 to the amplifying device 1 is ⁇ 2 / n1 ⁇ Vdd (V) (2 ⁇ n1)
  • the target set voltage value information Vs is defined as Vsmin
  • the ramp wave slope time width ⁇ is defined as ⁇ 2
  • the ramp wave S8 slope ⁇ is defined as ⁇ 2.
  • the minimum amplitude level (S1min) is the amplitude level of the input audio signal S1 when the voltage value ⁇ 2 / n1 ⁇ Vdd (V) of the minimum power supply power is supplied to the power amplifier 4.
  • the variable power supply unit 73 supplies the target voltage value ⁇ 2 / n1 ⁇ Vdd (V), which is the voltage value of the minimum power supply power, to the power amplification unit 4 based on the target set voltage value information Vsmin.
  • the ramp slope control unit 22 creates a ramp wave S8 in which the time width ⁇ 2 corresponding to the target set voltage value information Vsmin is 1/2 ⁇ T (thick broken line shown in FIG. 2).
  • Vcc / ⁇ 2
  • the target set voltage value information Vs is obtained when the input audio signal S1 having an arbitrary amplitude level is input to the amplifying apparatus 1.
  • Vdd (V) the target voltage value of the power supply supplied from the voltage variable power supply unit 73 to the power amplification unit 4
  • ⁇ Vdd (V) the target voltage value of the power supply supplied from the voltage variable power supply unit 73 to the power amplification unit 4
  • the ramp wave slope control unit 22 creates a ramp wave S8 in which the time width ⁇ is controlled in the range of ⁇ 1 to ⁇ 2 based on the variable range Vsmax to Vsmin of the target set voltage value information Vs (thick one-dot chain line shown in FIG. 2). .
  • the slope ⁇ of the ramp wave S8 is in the range of ⁇ 1 to ⁇ 2.
  • the time width ⁇ is inversely proportional to the target voltage value ⁇ Vt (V) corresponding to the target set voltage value information Vs. That is, the relationship between the time width ⁇ and the target set voltage value information V is expressed by Equation 1.
  • K0 ⁇ (1 /
  • the target voltage value ⁇ Vt ⁇ Vdd (V) corresponding to the target set voltage value information Vsmax when the input audio signal S1max having the maximum amplitude level is input from the audio device 8 to the amplifying device 1 and the time width of the ramp wave slope
  • K0 (1 / m ⁇ T) ⁇
  • the time width ⁇ of the ramp wave S8 is expressed by Expression 3.
  • (
  • is a time width ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2
  • T is a period
  • is a target voltage
  • Equation 4 the slope ⁇ of the ramp wave S8 is expressed by Equation 4 as the time width ⁇ of the ramp wave S8.
  • (2 ⁇
  • is the power supply voltage amplitude of the ramp wave S8.
  • the ramp wave slope control unit 22 controls the slope ⁇ of the ramp wave S8 at the rising edges P1 to P2 of the basic clock CL, which is a square wave, input from the basic clock generation unit 21, A ramp wave S8 to be used for correcting the pulse width of the PWM signal S5 is created.
  • the slope ⁇ of the generated ramp wave S8 is controlled based on the following principle, and is used for calculation processing by the correction unit. As a result, the change in the amplification gain G due to fluctuations in the voltage values (+ Vdd, ⁇ Vdd) of the power supply power of the power amplifier 4 is canceled out.
  • Case A is a case where the corrected PWM signal S2 corresponding to the ramp wave Ramp1 at the slope ⁇ 1 of the ramp wave S8 is amplified by supplying the power amplification unit 4 with the power supply voltage of voltage value ⁇ Vdd (V).
  • the amplification gain Gain1 of the power amplifying unit 4 in this case is
  • the corrected PWM signal S2 corresponding to the ramp wave Ramp2 at the ramp wave slope ⁇ 2 is supplied to the power amplifier 4 with the power supply voltage having the voltage value ⁇ 2 / n1 ⁇ Vdd (V), and the input audio signal S1 Is amplified.
  • the amplification gain Gain2 of the power amplifying unit 4 in this case is
  • (that is, Gain2 2 / n1 ⁇ G1), and has an inclination ⁇ 2 controlled by the time width ⁇ 2.
  • Line1 and Line2 are respectively defined as a maximum amplitude level S7max and a minimum amplitude level S7min of the differential integration signal S7 input from the integrator 24.
  • the corrected PWM signal S2 having the maximum on-time width tB2-tA1 corresponding to the section B2-A1 where Line1 is larger than the ramp wave Ramp1 is Ds1, and the line 2 corresponds to the section A2-B1 larger than the ramp wave Ramp1.
  • the corrected PWM signal S2 having the minimum on-time width tA2-tB1 is set to Ds2.
  • tB1-tA1 is obtained.
  • variable range tB1-tA1 is expressed by Equation 5 using the time width ⁇ 1 in the ramp wave Ramp1 having the ramp wave slope ⁇ 1.
  • K1 is the ratio of the amplitude of the differential integration signal S7 (Line1-Line2) to the amplitude of the ramp wave (2 ⁇
  • the power output proportional to the ON time width of the amplified PWM signals Ampl1 and Ampl2 is calculated by the product of the time width tB1-tA1 and the voltage value 2 ⁇
  • SA1 (tB1-tA1) ⁇ 2 ⁇
  • SA1 K1 ⁇ ((
  • K1 ⁇ (1 / m ⁇ T) ⁇ 2 ⁇
  • the slope ⁇ 2 of the ramp wave Ramp2 is twice the slope ⁇ 1 of the ramp wave Ramp1 of case A, and the voltage value ⁇ 2 / n1 ⁇ Vdd (V) of the power source power supplied to the power amplifier 4 is The voltage value ⁇ Vdd (V) of the power source power supplied to the power amplifier 4 of case A is 2 / n1 times.
  • Other conditions are the same as in Case A.
  • the power switching area SB1 in case B is expressed by equation 8 using the same method as in case A.
  • SB1 K1 ⁇ ((
  • K1 ⁇ (n1 / 2 ⁇ (1 / m ⁇ T)) ⁇ 2 ⁇
  • SB1 SB2.
  • the input audio signal S1 having an arbitrary amplitude level (the amplitude level between the case A having the maximum amplitude level and the case B having the minimum amplitude level) is input from the audio device 8 to the amplifying device 1 is canceled out.
  • the details of the principle will be described.
  • the target voltage value ⁇ Vt (V) corresponding to the target set voltage value information Vs when the input audio signal S1 having an arbitrary amplitude level is input from the audio device 8 to the amplifying device 1 is ⁇ 2 / n ⁇ Vdd (V). And its range is ⁇ Vdd> ⁇ 2 / n ⁇ Vdd> ⁇ 2 / n1 ⁇ Vdd (2 ⁇ n ⁇ n1) It becomes.
  • the time width of the ramp wave slope ⁇ is ⁇
  • the time width ⁇ is ⁇ 1 ⁇ ⁇ 2 It becomes.
  • the amplification gain G of the power amplification unit 4 is
  • An on-time width gain K1 ⁇ n / 2 ⁇ (1 / m ⁇ T) in the ramp wave S8 having a slope ⁇ controlled by the time width ⁇ is defined as G ⁇ .
  • the voltage variable power supply unit 73 supplies power to the power amplifier 4 based on the target set voltage value information Vs.
  • the target voltage value ⁇ 2 / n ⁇ Vdd (V) is supplied.
  • the ramp wave slope control unit 22 creates a ramp wave S8 in which the time width of the ramp wave slope ⁇ corresponding to the target set voltage value information Vs is ⁇ .
  • the slope ⁇ of the ramp wave S8 in this case is ⁇ 1> ⁇ > ⁇ 2.
  • the change in the amplification gain caused by lowering the voltage values + Vdd and ⁇ Vdd of the power supply power supplied to the power amplifier 4 is the slope ⁇ controlled by the time width ⁇ . Is offset by the change in the time width gain in the ramp wave S8.
  • a transfer function G (s) in the amplifying apparatus 1 is expressed by Expression 12.
  • G (s) G0 (s) / (1 + G0 (s) ⁇ (s)) Equation 12
  • ⁇ (s) is a transfer function of the negative feedback unit 6
  • G0 (s) is an open loop transfer function of the amplifying apparatus 1
  • is a loop gain. .
  • the ramp wave slope control unit 22 proportionally changes the voltage value
  • the transfer functions G1 (s) and G2 (s) of other circuits in the first embodiment are the voltage values of the power supply power of the power amplifier 4 and the slope ⁇ of the ramp wave input to the comparator 25. Since it is not affected by the control and does not change, the open-loop transfer function G0 (s) does not change.
  • the transfer function G (s) is not changed, and the loop gain
  • the basic clock generation unit 21, the control unit 72, and the ramp wave slope control unit 22 can be realized by a digital signal processor, a microcontroller, or the like, the negative feedback unit 6 is provided with a circuit such as an electronic volume as in the prior art. There is no need to use it, and the circuit scale can be reduced.
  • the ramp wave slope control unit 22 outputs the ramp wave S8 having linearity by arithmetic processing such as a low-pass filter, so that the time width ⁇ of the ramp wave S8 can be controlled steplessly. There is no problem such as noise that occurs in the prior art when switching.
  • the voltage values + Vdd and ⁇ Vdd of the power supply supplied to the power amplifier 4 according to the amplitude level of the input audio signal S1 input to the amplifying apparatus 1 are set.
  • the ramp wave S8 is generated using the basic clock CL having the same period as the period of the PWM conversion for the input audio signal S1, and the slope ⁇ of the ramp wave S8 is the voltage variable power supply unit 73. Is controlled based on information of a target set voltage value (target set voltage value information Vs) as a voltage value to be outputted, and a pulse width correction is performed by comparing the differential integrated signal S7 with the ramp wave S8 in which the slope ⁇ is controlled.
  • the corrected PWM signal S2 is amplified by the power amplifier 4.
  • the loop gain does not decrease, so that distortion of the output signal of the amplifier 1 is reduced. It is possible to prevent deterioration of noise superimposed on the output signal and improve S / N.
  • the amplifying apparatus 1a is different from the amplifying apparatus 1 in the first embodiment in that it includes a detector 10.
  • the detector 10 detects the voltage value + Vdd of the power source power supplied to the power amplification unit stage 4, attenuates the detected voltage value + Vt at a predetermined ratio by a resistance voltage dividing method, and the slope ⁇ of the ramp wave S8 is detected. Is output to the ramp inclination control unit 22a as information Vdet for controlling.
  • the control unit 72 in the amplifying apparatus 1 outputs the target set voltage value information Vs to the ramp wave slope control unit 22 as information for controlling the ramp wave slope ⁇ , and obtains a similar effect. Yes.
  • the detector 10 includes a resistor 10a having a resistance value Ra and a resistor 10b having a resistance value Rb.
  • One end of the resistor 10a is connected to the positive voltage value + Vt (V) side of the power supply supplied from the voltage variable power supply unit 73 to the power amplifying unit 4, and the other end is connected in series to one end of the resistor 10b. .
  • One end of the resistor 10b is connected to the resistor 10a, and the other end is connected to the ground.
  • the divided voltage value of the resistor 10a and the resistor 10b is created as
  • (V) is expressed by Equation 14.
  • Kb ⁇
  • Kb is Rb / (Ra + Rb).
  • the control unit 72a in the amplifying apparatus 1a outputs the target set voltage value information Vs to the voltage variable power supply unit 73 in the same manner as the control unit 72 in the amplifying apparatus 1.
  • the ramp wave slope control unit 22a has the target set voltage value information Vs. Is not output.
  • the detector 10 detects the positive side voltage value + Vt of the power source power supplied from the voltage variable power source unit 73 to the power amplifying unit 4 and attenuates it to the voltage value Vdet for controlling the slope ⁇ of the ramp wave according to the equation 14, It outputs to the wave inclination control part 22a.
  • the ramp wave slope control unit 22a uses the voltage value Vdet input from the detector 10 to create a ramp wave S8 having a variable slope ⁇ (details will be described later) and outputs the ramp wave S8 to the comparator 25.
  • the ramp wave slope control unit 22a in the amplifying apparatus 1a uses the voltage value
  • the time width ⁇ is controlled.
  • (V) and the time width ⁇ is expressed by Equation 15.
  • ((Kb ⁇
  • the range of the time width ⁇ is the same as the time width range in the amplifying apparatus 1 (that is, ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2).
  • and Kb is expressed by Equation 14.
  • the ramp slope control unit 22a uses the basic clock CL input from the basic clock generation unit 21 and the voltage value
  • Equation 15 can be expressed as Equation 16.
  • ((
  • (
  • is equal to the target voltage value corresponding to the target set voltage value information Vs in the amplifying apparatus 1. Therefore, comparing Expression 17 with Expression 3, the time width ⁇ in the amplifying apparatus 1 and the time in the amplifying apparatus 1a are compared.
  • the width ⁇ is the same.
  • of the power supply power supplied to the power amplifier 4 in the amplifier 1a is offset by the amount of change in the on-time width gain in the ramp wave S8 having the slope ⁇ controlled by the time width ⁇ .
  • the transfer function Ga (s) of the amplification device 1a in the second embodiment of the present invention is not changed.
  • the loop gain can be kept constant.
  • the slope ⁇ of the ramp wave S8 detects the voltage value + Vdd of the power supply power supplied to the power amplifying unit 4 and attenuates it at a predetermined ratio.
  • the control is based on the measured voltage value
  • the amount of change in the amplification gain (gain due to voltage amplification of the power amplification unit) due to fluctuations in the power supply voltage values + Vdd and ⁇ Vdd of the power amplification unit 4 is changed to the ramp wave.
  • the loop gain does not decrease, so that the output signal of the amplifier 1a Distortion can be reduced, noise superimposed on the output signal can be reduced, and in particular, the S / N for a small input audio signal can be improved.
  • the amplifying apparatus 1b according to the third embodiment is connected to an audio apparatus 8 that outputs a digital audio signal having a level of about the line level.
  • the audio signal output from the audio device 8 is input to the amplifying device 1b as the input audio signal S1 of the amplifying device 1b, power amplified by the amplifying device 1b, and output to the speaker 9.
  • the speaker 9 converts the sound signal after power amplification output from the amplifying apparatus 1b into sound and emits the sound.
  • the amplifying device 1b and the audio device 8 are connected to a DC power source (not shown) that supplies electric power necessary to operate them.
  • a DC power source (not shown) that supplies electric power necessary to operate them.
  • the power source required to operate each device is not limited to a DC power source, and an AC power source may be used as appropriate in accordance with the characteristics of each device.
  • the amplifying device 1b includes a PWM (Pulse Width Modulation) modulation unit 200, a gate driver unit 3, a power amplification unit 4, an LPF (low-pass filter) 5, a negative feedback unit 60, and a power supply voltage control unit 7. Composed.
  • the amplification device 1b is provided with a negative feedback unit 60 that negatively feeds back the output signal of the LPF 5 to the PWM modulation unit 200 in order to monitor the change in the amplification gain of the power amplification unit 4.
  • the monitoring means refers to a configuration in which the negative feedback unit and the PWM modulation unit monitor the target voltage information (Vs) and the feedback signal and process the signal at the output destination of the negative feedback unit.
  • the power supply voltage control unit 7 detects the amplitude level S9 of the input audio signal S1 input from the audio device 8 for each sampling period T of the input audio signal S1, and the target corresponding to the detected amplitude level S9 of the input audio signal S1. Outputs the set voltage value information Vs to the PWM modulator 2 and controls the positive and negative output voltages (+ Vdd, ⁇ Vdd) for the power amplifier 4 so that the target voltage indicated by the target set voltage value information Vs is obtained. Then, the power supply power of the positive and negative voltage values (+ Vdd, ⁇ Vdd) is sent to the power amplifier 4.
  • the PWM signal S2 is sent to the gate driver unit 3.
  • the PWM modulation unit 200 can be realized by a digital signal processor (DSP), a microcontroller, or the like.
  • the gate driver unit 3 inserts a dead time into the input corrected PWM signal S2, and at the same time, a high-speed switching element on the high side (positive side voltage value + Vdd) and low side (negative side voltage value -Vdd) of the power amplification unit 4 A drive signal obtained by shifting the potential of the corrected PWM signal S2 to such an extent that the 4a and 4b can be driven is generated and sent to the power amplifier 4.
  • the power amplifying unit 4 is arranged on the high potential power source side and is supplied with the positive side voltage + Vdd from the power source voltage control unit 7 and the high side fast switching element 4a is arranged on the low potential power source (or ground) side to supply power voltage.
  • a half-bridge circuit including a low-side high-speed switching element 4b supplied with a negative voltage ⁇ Vdd from the control unit 7 is configured.
  • the power amplifying unit 4 is input to the power amplifying unit 4 by performing a high-speed switching operation with a voltage amplitude determined by the positive side voltage + Vdd and the negative side voltage ⁇ Vdd by the drive signal input from the gate driver unit 3.
  • the drive signal thus amplified is power-amplified to obtain an amplified signal S3 after AC correction.
  • the obtained corrected amplified signal S3 is sent to the LPF unit 5.
  • the high-speed switching elements 4a and 4b for example, MOS field effect transistors are used.
  • the LPF 5 is a filter that outputs an analog audio signal S14 obtained by removing unnecessary high-frequency components from the corrected amplified signal S3 output from the power amplifier 4 to the speaker 9.
  • the coil L, the capacitor C, etc. It is comprised by the element of.
  • the analog audio signal S14 output from the LPF 5 is output to the negative feedback unit 60, and the amount of change in the amplification gain of the power amplifier 4 is monitored.
  • the negative feedback unit 60 is provided on the feedback circuit, attenuates the analog audio signal S14 output from the LPF 5 by the attenuator 61 at a predetermined ratio according to the amplification gain of the power amplification unit 4, and then attenuates the audio signal S16. Is converted into a digital value at each sampling period T by the A / D converter 62, and negatively fed back to the PWM modulator 200 as a feedback signal S15.
  • the power supply voltage control unit 7 includes an input signal level detection unit 71, a control unit 72, and a voltage variable power supply unit 73.
  • the input signal level detection unit 71 creates input signal amplitude level information S9 including amplitude information of the input audio signal S1 input from the audio device 8 and sends it to the control unit 72.
  • the control unit 72 has a target set voltage value associated with the input signal amplitude level information S9 created by the input signal level detection unit 71 on a one-to-one basis from data table information preset in the control unit 72.
  • the information Vs is selected, the selected target set voltage value information Vs is output to the voltage variable power supply unit 73, and the target set voltage value information Vs is output to the PWM modulation unit 200.
  • the target set voltage value information Vs is set to the voltage variable power supply unit 73 in order to reduce the voltage value (+ Vdd, ⁇ Vdd) of the power supply power to an amplitude level that does not distort the amplified audio signal S14.
  • the target voltage value is information indicating a value stored in the control unit 72 in advance.
  • the voltage variable power source unit 73 is a power source that varies the output voltage (+ Vdd, ⁇ Vdd) to a voltage value to be set to the power amplifying unit 4 in accordance with the target set voltage value information Vs input from the control unit 72.
  • the input signal level detection unit 71 and the control unit 72 can be realized by a digital signal processor, a microcontroller, or the like.
  • the PWM modulation unit 200 includes a correction unit 221 and a PWM converter 222.
  • the error value ⁇ is a value for correcting the PWM modulation target value S17.
  • the correction unit 221 uses the target setting voltage value information Vs input from the control unit 72 to calculate a correction coefficient ⁇ corresponding to the target setting voltage value information Vs on a one-to-one basis from a predetermined calculation formula.
  • the correction coefficient ⁇ is a value obtained from a predetermined calculation formula by the correction unit 221 and is calculated so as to cancel out the change in the amplification gain due to the fluctuation of the power supply voltage value (+ Vdd, ⁇ Vdd) of the power amplification unit 4. (Details will be described later).
  • the PWM converter 222 compares the PWM modulation target value S17 input from the correction unit 221 with the reference wave P, and the corrected PWM signal S2 having a pulse width that repeats ON and OFF during a predetermined sampling time width T. Is output to the gate driver unit 3.
  • a PWM generation method a delta-sigma conversion method, a triangular wave comparison method, and the like are known, and any one of these methods is also applied in the present embodiment.
  • the PWM converter 222 compares the input PWM modulation target value S17 with the reference wave P for each predetermined sampling time width T.
  • the reference wave P is a triangular wave that transitions from the minimum value Pmin to the maximum value Pmax and then transitions to the minimum value Pmin again, corresponding to a predetermined sampling time width T.
  • the minimum value Pmin is a value corresponding to 100% of the pulse width of the corrected PWM signal S2 after the pulse width conversion
  • the maximum value Pmax is 0% of the pulse width of the corrected PWM signal S2 after the pulse width conversion.
  • Applicable value That is, the PWM modulation target value S17 is a value that changes in a range between the maximum value Pmax and the minimum value Pmin of the reference wave P.
  • a corrected PWM signal S2 having ON and OFF pulse widths corresponding to the PWM modulation target value S17 in a predetermined sampling time width T is generated, and if the value S17 is small, the pulse width of the corrected PWM signal S2 Conversely, if the value S17 is large, the pulse width of the corrected PWM signal S2 is small.
  • the amplified signal S3A (and the corrected amplified signal S3) is actually an AC signal, but is shown as a DC signal (only + Vdd side) for the sake of simplicity.
  • the voltage value of the power supply + Vdd (the output level of the corrected amplified signal S3) indicated by the target set voltage value information Vs is based on the change in the input signal amplitude level information S9.
  • a change occurs in which the amplification gain of the power amplification unit 4 increases.
  • the correction unit 221 has the input audio signal S1 and the negative feedback unit 6 as shown in FIG.
  • a value ⁇ 1 as a difference value ⁇ with respect to the feedback signal S15 input from is calculated, and a value ⁇ 1 as a correction coefficient ⁇ corresponding to the input target voltage value information Vs on a one-to-one basis is calculated from a calculation formula.
  • the PWM converter 222 compares this S71 with the reference wave P to perform pulse width conversion, and generates a corrected PWM signal S2.
  • ⁇ 1 ((V2 ⁇ V1) ⁇ T + 2V1 ⁇ ⁇ 1) / 2V2 ⁇ ⁇ 1 Therefore, ⁇ 1 is obtained from a predetermined sampling time width T, power supply voltage values V2 and V1, and a difference value ⁇ 1 when the power supply voltage value is V1.
  • the relationship between the vertical axis and the horizontal axis can be easily obtained from the right triangle theorem.
  • the ON pulse width of the corrected PWM signal S2 is reduced from (T4-T3) to (T2-T1) ( ⁇ (T4-T3)) as shown in FIG. 8 (b).
  • the power energy becomes smaller by that amount. That is, the amplification gain of the power amplifying unit 4 is reduced by reducing the ON pulse width of the corrected PWM signal S2 as in the corrected PWM signal S2.
  • the value ⁇ 1 which is the correction coefficient ⁇
  • the transfer function G (s) in the amplifying apparatus 1b is expressed by Expression 18.
  • G (s) G0 (s) / (1 + G0 (s) B (s)) Equation 18
  • B (s) is a transfer function of the negative feedback unit 60
  • G0 (s) is an open loop transfer function of the amplifying apparatus 1b
  • is a loop gain.
  • the open loop transfer function G0 (s) of the amplifying apparatus 1b is the product of the transfer functions of the circuits in the open loop path, that is, the transfer function G1 (s) of the PWM modulator 2, and power amplification. It is obtained by the product of the transfer function G2 (s) of the unit 4 and the transfer function G3 (s) of the LPF 5 and can be expressed by Equation 19.
  • G0 (s) G1 (s) ⁇ G2 (s) ⁇ G3 (s) Expression 19
  • the open loop transfer function G0 (s) does not change.
  • the transfer function G (s) does not change, and the loop gain
  • control unit 72 and the PWM modulation unit 200 can be realized by a digital signal processor, a microcontroller, or the like, the negative feedback unit 60 does not need to use a circuit such as an electronic volume control circuit as in the prior art.
  • the scale can be reduced, and there is no problem that noise is generated as in the prior art at the time of switching.
  • the voltage value (+ Vdd, power supply power) supplied to the power amplifying unit 4 according to the amplitude level S9 of the input audio signal S1 input to the amplifying apparatus 1b. -Vdd) is controlled, the PWM modulation target value S17 of the PWM converter 222 in the PWM modulator 200 is controlled based on the target set voltage value information Vs, and the original PWM signal S2A is corrected by the PWM modulation target value S17.
  • the power is amplified by the power amplifying unit 4 after being corrected and output to the post-PWM signal S2.
  • the loop gain does not decrease, so that the distortion of the output signal of the amplifier 1b Can be reduced, the deterioration of noise superimposed on the output signal can be prevented, and the S / N ratio can be improved.
  • the present invention reduces noise superimposed on an output signal while keeping the loop gain constant without increasing the circuit scale and without changing the transfer function (frequency characteristics of gain and phase) of the amplifier.
  • it has the effect of improving the S / N ratio at the time of a small input audio signal, and can be used in the field of design and manufacture of an audio amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

 回路規模が大きくならず、かつ増幅装置の伝達関数(ゲインと位相との周波数特性)を変えず、ループゲインを一定に保ちながら、出力信号に重畳するノイズを低減させる技術が開示され、その技術によれば入力音声信号S1の振幅レベルS9を検出し、この振幅レベルS9に対応する目標設定電圧値情報Vsが示す電圧値の電力を出力する電源電圧制御部7と、入力音声信号S1をパルス幅変換するPWM変換器23とPWM変換器23にて変調された信号を補正する補正部とを備えたPWM変調部2とを備え、PWM変調部2は、補正部が目標設定電圧値情報Vsに応じて、電力増幅部4の増幅ゲインの変化分を相殺するように、PWM変換器23にて変調されたPWM信号S5のパルス幅を補正する。

Description

増幅装置
 本発明は、入力信号の電力を増幅する増幅装置に関し、特に電力増幅段における供給電源の電圧を制御することによって、出力信号のS/N比と電力増幅段における電力効率とを向上させる増幅装置に関する。
 従来、電圧可変電源を増幅装置の電源として用い、増幅装置への入力音声信号レベルに追従させて、電力増幅段へ供給する電源電圧値を増減させ、出力信号に重畳するノイズの低減と電力増幅段における電力効率の改善とを図る技術があった。この場合、電力増幅段へ供給する電源電圧を入力音声信号レベルに追従させることで、入力音声信号レベルが小さい場合には、その増幅された信号が歪まない程度の振幅の電圧値まで電力増幅段の電源電圧を低下させることができるため、増幅装置の出力信号に重畳するノイズが低減される効果が得られるとともに、電力増幅段における電力効率を改善することができる。
 しかし、増幅装置は電力増幅段へ供給される電源電圧を下げると、電力増幅段の電圧増幅による増幅ゲインも下がるため、これを防止するために、入力アナログ信号の振幅レベルに比例して定電圧制御回路が電力増幅部の電圧を制御するとともに、帰還回路に設けられている減衰器が定電圧制御回路と連動して、定電圧の電圧レベルに応じて、フィードバック量を一定に保つように調整するものが知られている(例えば下記の特許文献1参照)。また、他の従来例として、信号再生装置のスイッチングアンプに供給される電圧値の増減に応じて、帰還ループに設けられたゲイン調整手段のゲインを調整するものも知られている(例えば下記の特許文献2参照)。
特開2000-059153号公報(要約書) 特開2007-110646号公報(要約書)
 しかしながら、従来の増幅装置においては、以下の問題点がある。すなわち、特許文献1に記載の技術は、スイッチングアンプへ印加される定電圧の電圧レベルに応じてフィードバック回路での減衰量を変更して、ループゲインを一定に保つよう構成されている。したがってフィードバック回路上の減衰量を可変にする必要があり、この減衰量を無段階的にあるいは多段階的に変更しようとすると、電子減衰回路などが必要になり、回路規模が大きくなってしまう。また、変更量の切り替え時にノイズが発生してしまうなどの問題がある。次に、特許文献2に記載の技術は、負帰還ループゲインを同じにすることはできても、伝達関数は変化してしまうという問題がある。
 本発明は上記各従来例の問題点に鑑み、回路規模が大きくなることなく、かつ増幅装置の伝達関数(ゲインと位相との周波数特性)を変えることなく、ループゲインを一定に保ちながら、出力信号に重畳するノイズを低減させることができ、特に小入力音声信号時のS/N比を向上させることができる増幅装置を提供することを目的とする。
 本発明の増幅装置は上記目的を達成するために、入力音声信号のレベルに応じたパルス幅変調信号で電源電圧をスイッチングすることにより前記入力音声信号を電力増幅する電力増幅手段と、
 前記入力音声信号の振幅レベルを検出し、検出した入力信号振幅レベルに応じた目標設定電圧を前記電源電圧として前記電力増幅手段に印加する電源電圧制御手段と、
 前記電力増幅手段の出力をモニタリングする手段と、
 前記入力音声信号をそのレベルに応じたパルス幅のパルス幅変調信号に変換するパルス幅変換手段と、
 前記目標設定電圧と前記モニタリングした電力増幅手段の出力に基づいて、前記電力増幅手段の増幅ゲインの変化分を相殺するように、前記パルス幅変換手段により生成されたパルス幅変調信号のパルス幅を補正して前記電力増幅手段に印加するパルス幅補正手段とを、
 有する構成とした。
 また、本発明の増幅装置は上記目的を達成するために、入力音声信号のレベルに応じたパルス幅変調信号で電源電圧をスイッチングすることにより前記入力音声信号を電力増幅する電力増幅手段と、
 前記入力音声信号の振幅レベルを検出し、検出した入力信号振幅レベルに応じた目標設定電圧を前記電源電圧として前記電力増幅手段に印加する電源電圧制御手段と、
 前記電力増幅手段に印加される電源電圧を検出する検出手段と、
 前記入力音声信号をそのレベルに応じたパルス幅のパルス幅変調信号に変換するパルス幅変換手段と、
 前記入力音声信号を前記パルス幅変調信号に変換する際の基本的なタイミング信号である基本クロックを生成する基本クロック生成部と、
 前記基本クロック生成部が生成した基本クロックから、前記検出された電源電圧に応じて傾きが異なるランプ波を生成するランプ波傾き制御部と、
 前記電力増幅手段の出力をモニタリングする手段と、
 前記ランプ波傾き制御部により生成されたランプ波と、前記モニタリングした電力増幅手段の出力に基づいて、前記電力増幅手段の増幅ゲインの変化分を相殺するように、前記パルス幅変換手段により生成されたパルス幅変調信号のパルス幅を補正して前記電力増幅手段に印加する補正部とを
 有する構成とした。
 本発明によれば、回路規模が大きくなることなく、かつ増幅装置の伝達関数(ゲインと位相との周波数特性)を変えることなく、ループゲインを一定に保ちながら、出力信号に重畳するノイズを低減させることができ、特に小入力音声信号時のS/N比を向上させることができる。
本発明の実施の形態1における増幅装置のブロック図 本発明の実施の形態1におけるランプ波の傾きと立上がり時間の関係を示す図 本発明の実施の形態1における電力増幅部の電源電力の電圧値の変動による増幅ゲインの変化分をランプ波の傾きを制御することで相殺する原理を説明するための図 本発明の実施の形態2における増幅装置のブロック図 本発明の実施の形態2における電力増幅部の電源電力の電圧値を検出する検出器のブロック図 本発明の実施の形態3における増幅装置のブロック図 本発明の実施の形態3におけるPWM変換器のPWM変調対象値とPWM信号の関係を示す説明図 本発明の実施の形態3における電力増幅部の電源電力の電圧値の変動による増幅ゲインの変化分をPWM変換器のPWM変調対象値を制御することで相殺する原理を説明するための説明図
 (実施の形態1)
 以下、本発明の実施の形態1における増幅装置1について、図1のブロック図を参照しながら説明する。
 図1において、本実施の形態1の増幅装置1は、ラインレベル程度のレベルの音声信号が出力されるオーディオ装置8に接続される。
 オーディオ装置8から出力された音声信号は、増幅装置1の入力音声信号S1として増幅装置1に入力され、増幅装置1で電力増幅されてスピーカ9へ出力される。スピーカ9は、増幅装置1から出力された電力増幅後の音声信号を音声に変換して放音する。
 また、増幅装置1とオーディオ装置8は、それらを動作させるのに必要な電力を供給する直流電源(図示せず)に接続されている。ただし、各装置を動作させるのに必要な電源は直流電源に限定されることは無く、各装置の特性に合わせて適宜交流電源を用いてもよい。
 増幅装置1は、PWM(Pulse Width Modulation)変調部2、ゲートドライバ部3、電力増幅部4、ローパスフィルタ5、負帰還部6、電源電圧制御部7を備えて構成される。特に、増幅装置1には、電力増幅部4の出力信号をPWM変調部2へ負帰還させる負帰還部6が設けられている。
 オーディオ装置8から増幅装置1へ音声信号S1が入力されると、入力音声信号S1は電源電圧制御部7に入力されるとともに、PWM変調部2に入力される。
 電源電圧制御部7は、オーディオ装置8から入力された入力音声信号S1の振幅レベル(S9)を検出し、検出した入力音声信号S1の振幅レベル(S9)に対応する目標設定電圧値情報Vs(詳細後述)をPWM変調部2に出力するとともに、目標設定電圧値情報Vsが示す電圧値である目標電圧となるように正側と負側の出力電圧(+Vdd,-Vdd)を制御して、この正側および負側の電圧値(+Vdd,-Vdd)である電源電力を電力増幅部4へ送出する。
 PWM変調部2は、オーディオ装置8から入力された入力音声信号S1を、入力音声信号S1に応じたパルス幅のPWM信号S5に変換し、次いで負帰還部6から入力される帰還信号S4と電源電圧制御部7から入力される目標設定電圧値情報Vsを用いて、PWM信号S5のパルス幅を補正して(詳細を後述する)、得られた信号を補正後PWM信号S2としてゲートドライバ部3へ送出する。
 ここで、PWM変調部2は、デジタルシグナルプロセッサやマイクロコントローラなどによって実現され得る。
 ゲートドライバ部3は、入力された補正後PWM信号S2にデッドタイムを挿入するとともに、電力増幅部4のハイサイド(+Vdd)とローサイド(-Vdd)の高速スイッチング素子4a、4bを駆動できる程度に補正後PWM信号S2の電位をシフトしたドライブ信号を作成して、電力増幅部4へ送出する。
 電力増幅部4は、高電位電源側に配されて電源電圧制御部7から正側電圧+Vddを供給されるハイサイド高速スイッチング素子4aと、低電位電源(又はグラウンド)側に配されて電源電圧制御部7から負側電圧-Vddを供給されるローサイド高速スイッチング素子4bとによるハーフブリッジ回路で構成される。
 電力増幅部4は、ゲートドライバ部3から入力されたドライブ信号により、正側電圧+Vddと負側電圧-Vddとで決定される電圧振幅で高速スイッチング動作を行い、電力増幅部4へ入力された信号を電力増幅し、補正後増幅信号S3を得る。
 得られた補正後増幅信号S3は、負帰還部6に出力されるとともに、ローパスフィルタ5に送出される。ここで、高速スイッチング素子4a、4bとしては、例えば、MOS電界効果トランジスタ等が用いられる。
 負帰還部6は、帰還回路上に設けられ、電力増幅部4から出力された補正後増幅信号S3を減衰し、帰還信号S4としてPWM変調部2に負帰還する。
 ローパスフィルタ5は、電力増幅部4から出力された補正後増幅信号S3から不要な高周波成分を除去して得られた音声信号をスピーカ9へ出力するフィルタであり、例えば、コイルLやコンデンサCなどの素子で構成される。
 さらに、電源電圧制御部7とPWM変調部2に関する詳細な内部構成と動作を図1のブロック図を参照しながら説明する。
 電源電圧制御部7は、入力信号レベル検出部71と、コントロール部72と、電圧可変電源部73を備えて構成される。
 入力信号レベル検出部71は、オーディオ装置8から入力された入力音声信号S1の振幅情報を含む入力信号振幅レベル情報S9を作成して、コントロール部72へ送出する。
 コントロール部72は、コントロール部72内部に予め設定されたデータテーブル情報の中から、入力信号レベル検出部71にて作成された入力信号振幅レベル情報S9に対応した目標設定電圧値情報Vsを選択して、選択された目標設定電圧値情報Vsを電圧可変電源部73へ出力するとともに、目標設定電圧値情報VsをPWM変調部2へ出力する。
 なお、目標設定電圧値情報Vsは、電圧可変電源部73に対して設定すべき電圧値(+Vdd,-Vdd)の目標値を示す情報である。
 電圧可変電源部73は、コントロール部72から入力された目標設定電圧値情報Vsに応じて、設定すべき電圧値に出力電圧(+Vdd,-Vdd)を可変する電源であり、目標設定電圧値情報Vsに基づいて制御した電圧値(+Vdd,-Vdd)の電源電力を電力増幅部4へ供給する。
 入力信号レベル検出部71とコントロール部72とは、デジタルシグナルプロセッサやマイクロコントローラなどによって実現されうる。
 次に、PWM変調部2は、PWM変換器23と、PWMパルス幅補正部としての基本クロック生成部21、ランプ波傾き制御部22、積分器24、コンパレータ25及び加算器26とを備えて構成される。上記PWM変調部2の各部には電源電圧として±Vccが供給される。
 ここで、PWM変換器23は、主にデジタルで行う演算回路によってPWM信号を求める処理部であり、PWM変調部2は、変換器23に加え補正部あるいは「コンパレータなどを含む、変調回路としてのブロックである。
 基本クロック生成部21は図2に示すように、PWM変換器23が入力音声信号S1をPWM変換する際のタイミング信号であり所定の周期Tと電圧振幅レベルが±Vcc(V)である基本クロックCLを生成する。ここで、基本クロックCLは、オーディオ装置8から入力される入力音声信号S1の周期より十分に短い周期をもつ方形波である。
 生成された基本クロックCLは、PWM変換器23へ出力されるとともに、ランプ波傾き制御部22にも出力される。
 PWM変換器23は、基本クロック生成部21から入力された基本クロックCLを用いて、オーディオ装置8から入力された入力音声信号S1に応じたパルス幅のPWM信号S5に変換し、加算器26へ出力する。PWM変換の方式としては、デルタシグマ変換方式や三角波比較方式などが知られており、本実施の形態においてもこれらの方式のうちいずれかの方式が適用される。
 加算器26は、PWM変換器23から入力されたPWM信号S5と負帰還部6から入力された帰還信号S4とを用いて、より詳細には、PWM信号S5から帰還信号S4を減算させて、PWM信号S5と帰還信号S4との誤差成分を含む差分信号S6(=S5-S4)を作成して積分器24へ出力する。
 積分器24は、加算器26から入力された差分信号S6を積分して、上記誤差成分を含む差分積分信号S7を作成してコンパレータ25の+入力端子に出力する。
 ランプ波傾き制御部22は図2に示すように、基本クロック生成部21から入力された基本クロックCLと、コントロール部72から入力された目標設定電圧値情報Vsとを用いて、傾きαを持たせたランプ波S8を作成し(詳細後述)、コンパレータ25の-入力端子に出力する。
 コンパレータ25は、積分器24から入力された差分積分信号S7とランプ波傾き制御部22から入力されたランプ波S8とを比較し、上述した誤差成分(=S5-S4)を含みランプ波S8の周期Tで表わされる補正後PWM信号S2を作成してゲートドライバ部3へ送出する。
 ここで、ランプ波S8の傾きαの定義と、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲインの変化分を、ランプ波の傾きαを制御することで相殺する原理の詳細について、図2と図3を用いて説明する。
 まず、本実施の形態1において用いられるランプ波S8の傾きαの定義を図2を参照しながら説明する。
 図2に示すように、ランプ波S8は、基本クロックCLの立上がりエッジP1~P2に同期して立上がり、立下がりエッジP3~P4に同期して立下がる信号である。また、ランプ波S8の立上がり、立下がりそれぞれの傾き(α、-α)は、所定の時間幅τによって定められる傾きとする。
 そして、ランプ波S8の電圧振幅は、基本クロックCLと同じ±Vcc(V)であり、ランプ波S8の立上がりと立下がりの各時間幅τは、同一の時間幅を有する。
 ここで、目標設定電圧値情報Vsに対応する目標電圧±Vt(V)と時間幅τとランプ波S8の傾きαとの関係を、それぞれ以下のように定義する。
 まず、オーディオ装置8から最大振幅レベルの入力音声信号S1maxが増幅装置1に入力される場合の目標電圧値±Vt(V)を±Vdd(V)、目標設定電圧値情報VsをVsmaxとし、ランプ波S8の傾きの時間幅τをτ1とし、ランプ波S8の傾きαをα1とする。最大振幅レベル(S1max)とは、電力増幅部4に最大電源電力の電圧値±Vdd(V)を供給する場合であり、電源電力の電圧値±Vddによる歪みを発生させること無く増幅が可能な入力音声信号S1の振幅レベルである。
 コントロール部72が目標設定電圧値情報(この場合、Vsmax)を電圧可変電源部73およびランプ波傾き制御部22へ出力すると、電圧可変電源部73は目標設定電圧値情報Vsmaxに基づいて、電力増幅部4に最大電源電力の電圧値である目標電圧値±Vdd(V)を供給する。
 そして、ランプ波傾き制御部22は、目標設定電圧値情報Vsmaxに対応するランプ波S8の傾きαの時間幅τを
 1/m×T(2<m)
とするランプ波S8を作成する(図2に示される太い実線)。この場合のランプ波の傾きをα1とし、
 α1=2|Vcc|/τ1
とする。
 また、オーディオ装置8から最小振幅レベルの入力音声信号S1minが増幅装置1に入力される場合の目標電圧値±Vt(V)を
 ±2/n1×Vdd(V)(ただし2<n1)、
目標設定電圧値情報VsをVsminとし、ランプ波の傾きの時間幅τをτ2とし、ランプ波S8の傾きαをα2として定義する。最小振幅レベル(S1min)とは、電力増幅部4に最小電源電力の電圧値±2/n1×Vdd(V)を供給する場合の入力音声信号S1の振幅レベルである。
 最大振幅レベルの入力音声信号S1maxが入力された場合と同様に、コントロール部72が目標設定電圧値情報(この場合、Vsmin)を電圧可変電源部73およびランプ波傾き制御部22へ出力すると、電圧可変電源部73は目標設定電圧値情報Vsminに基づいて、電力増幅部4に最小電源電力の電圧値である目標電圧値±2/n1×Vdd(V)を供給する。
 そしてランプ波傾き制御部22は、目標設定電圧値情報Vsminに対応する時間幅τ2を1/2×Tとするランプ波S8を作成する(図2に示される太い破線)。この場合のランプ波S8の傾きをα2とし、
 α2=2|Vcc|/τ2
とする。
 オーディオ装置8から最大振幅レベルと最小振幅レベルとの入力音声信号S1max、S1minが増幅装置1に入力される場合の目標設定電圧値情報Vsに対応する目標電圧値±Vt(V)と、時間幅τと、ランプ波S8の傾きαとの限界値を上述のように定義することにより、任意の振幅レベルの入力音声信号S1が増幅装置1に入力される場合には、目標設定電圧値情報VsはVsmax~Vsminの範囲となり、電圧可変電源部73から電力増幅部4に供給する電源電力の電圧値である目標電圧値±Vt(V)は、±Vdd(V)~±2/n1×Vdd(V)の範囲となる。
 ランプ波傾き制御部22は、目標設定電圧値情報Vsの可変範囲Vsmax~Vsminにより、時間幅τをτ1~τ2の範囲で制御したランプ波S8を作成する(図2に示される太い一点鎖線)。この場合のランプ波S8の傾きαは、α1~α2の範囲となる。
 上述の内容から、時間幅τが目標設定電圧値情報Vsに対応する目標電圧値±Vt(V)と反比例の関係になることが分かる。すなわち、時間幅τと目標設定電圧値情報Vとの関係は、式1で表される。
 τ=K0×(1/|Vt|)   ・・・式1
 オーディオ装置8から最大振幅レベルの入力音声信号S1maxが増幅装置1に入力される場合の目標設定電圧値情報Vsmaxに対応する目標電圧値±Vt=±Vdd(V)とランプ波の傾きの時間幅τ1=1/m×Tの定義を式1に代入すると、K0は式2で表される。
 K0=(1/m×T) ×|Vdd| ・・・式2
 式2を式1に代入すると、ランプ波S8の時間幅τは式3で表される。
 τ=(|Vdd|/|Vt|)×(1/m×T) ・・・式3
 ここで、τは時間幅 τ1≦τ≦τ2であり、Tは周期、|Vt|は目標電圧|Vdd|≧|Vt|≧|2/n1×Vdd|である。
 また、ランプ波S8の傾きαは、ランプ波S8の時間幅τで式4で表される。
 α=(2×|Vcc|)/τ (α1≧α≧α2) ・・・式4
 ただし、2×|Vcc|は、ランプ波S8の電源電圧振幅である。
 以上説明した内容を用いて、ランプ波傾き制御部22は、基本クロック生成部21から入力された、方形波である基本クロックCLの立上がりP1~P2におけるランプ波S8の傾きαを制御して、PWM信号S5のパルス幅補正に用いるためのランプ波S8を作成する。
 作成されたランプ波S8は、その傾きαが以下の原理に基づいて制御されて、補正部にて演算処理に用いられる。これにより、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲインGの変化分が相殺される。
 図3を参照しながら、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲインの変化分がランプ波の傾きαを制御することで相殺される原理を説明する。 
 入力音声信号S1が、最大振幅レベルS1maxの場合をケースAとし、最小振幅レベルS1minの場合をケースBとして、相殺される原理の詳細を説明する。
 ケースAとは、ランプ波S8の傾きα1におけるランプ波Ramp1に対応する補正後PWM信号S2が電力増幅部4に電圧値±Vdd(V)の電源電力が供給されて増幅されるケースである。この場合の電力増幅部4の増幅ゲインGain1は、|Vdd|/|Vcc|であり、時間幅τ1で制御された傾きα1のランプ波S8におけるオン時間幅ゲインK1×(1/m×T)をGτ1とする。
 ケースBは、ランプ波の傾きα2におけるランプ波Ramp2に対応する補正後PWM信号S2が電力増幅部4に電圧値±2/n1×Vdd(V)の電源電力が供給されて、入力音声信号S1が増幅される場合である。
 この場合の電力増幅部4の増幅ゲインGain2は、|2/n1×Vdd|/|Vcc|であり(すなわち、Gain2=2/n1×G1であり)、時間幅τ2で制御された傾きα2のランプ波S8におけるオン時間幅ゲインK1×n1/2×(1/m×T)をGτ2とする(すなわち、Gτ2=n1/2×Gτ1である)。
 ここで、Line1とLine2はそれぞれ、積分器24から入力された差分積分信号S7の最大振幅レベルS7maxと最小振幅レベルS7minと定義する。
 ケースAにおいて、Line1がランプ波Ramp1より大きい区間B2-A1に対応する最大オン時間幅tB2-tA1を有する補正後PWM信号S2をDs1とし、Line2がランプ波Ramp1より大きい区間A2-B1に対応する最小オン時間幅tA2-tB1を有する補正後PWM信号S2をDs2とする。Ds1とDs2との間のオン時間幅の可変範囲(片側)を表すとtB1-tA1になる。
 可変範囲tB1-tA1は、ランプ波の傾きα1のランプ波Ramp1における時間幅τ1を用いて、式5で表される。
 tB1-tA1=K1×τ1=K1×(|Vdd|/|Vdd|)×(1/m×T)・・・式5
 ここで、K1を差分積分信号S7の振幅(Line1-Line2)とランプ波の振幅(2×|Vcc|)の比とする。
 補正PWM信号Ds1とDs2がそれぞれ、電源電力の電圧値±Vddを供給された電力増幅部4で電力増幅されると、補正後増幅信号S3としてAmpl1とAmpl2とが電力増幅部4からそれぞれ出力される。
 増幅PWM信号Ampl1とAmpl2とのオン時間幅に比例した電力出力は、時間幅tB1-tA1と電力増幅部4に供給される電源電力の電圧値2×|Vdd|の積で算出される。すなわち、(tB1-tA1)×2×|Vdd|であり、この場合の電力出力を電力スイッチング面積SA1とすると、SA1は式6で表される。
 SA1=(tB1-tA1)×2×|Vdd| ・・・式6
 式5を式6に代入して整理すると、傾きα1のランプ波Ramp1における電力スイッチング面積SA1は式7で表される。
 SA1=K1×((|Vdd|/|Vdd|)×(1/m×T))×2×|Vdd|
   =K1×(1/m×T)×2×|Vdd| ・・・式7
 ここで、立上がりと立下がりの時間幅τが同一の時間幅であることから、SA1=SA2となることは、明らかである。
 ケースBにおいて、ランプ波Ramp2の傾きα2は、ケースAのランプ波Ramp1の傾きα1の2倍であり、電力増幅部4に供給された電源電力の電圧値±2/n1×Vdd(V)は、ケースAの電力増幅部4に供給された電源電力の電圧値±Vdd(V)の2/n1倍である。その他の条件はケースAと同じである。
 従って、ケースAと同様の手法を用いて、ケースBにおける電力スイッチング面積SB1が式8で表される。
 SB1=K1×((|Vdd|/|2/n1×Vdd|)×(1/m×T))×2×|2/n1×Vdd|
    =K1×(n1/2×(1/m×T))×2×|2/n1×Vdd| ・・・式8
 ここで、ケースAと同様に、SB1=SB2となることは、明らかである。式7と式8とを比較することで、電力スイッチング面積SA1と電力スイッチング面積SB1とが同じであることが分かる。
 また、式7と式8との両側を2×|Vcc|で除算して整理すると、それぞれ式9と式10で表される。
 SA1/(2×|Vcc|)=K1× (1/m×T)× (|Vdd|/|Vcc|)
             =Gτ1×Gain1 ・・・式9
 SB1/(2×|Vcc|)=K1×(n1/2×(1/m×T))×|2/n1×Vdd/Vcc|
             =Gτ2×Gain2 ・・・式10
 電力スイッチング面積SA1は電力スイッチング面積SB1と同じであることから、Gain2がGain1より下がることによる増幅ゲインの変化分(2/n1倍)は、Gτ2がGτ1より上がることによるオン時間幅ゲインの変化分(n1/2倍)で相殺される。
 さらに、オーディオ装置8から任意の振幅レベル(上述した最大振幅レベルのケースAと最小振幅レベルのケースBとの間の振幅レベル)の入力音声信号S1が増幅装置1に入力される場合について、相殺される原理の詳細を説明する。
 オーディオ装置8から任意の振幅レベルの入力音声信号S1が増幅装置1に入力される場合の目標設定電圧値情報Vsに対応する目標電圧値±Vt(V)は±2/n×Vdd(V)であり、その範囲は、
 ±Vdd>±2/n×Vdd>±2/n1×Vdd(2<n<n1)
となる。ランプ波の傾きαの時間幅をτとすると、時間幅τは、
 τ1<τ<τ2
となる。この場合の電力増幅部4の増幅ゲインGは、
 |2/n×Vdd|/|Vcc|
となる。時間幅τで制御された傾きαのランプ波S8におけるオン時間幅ゲインK1×n/2×(1/m×T)をGτとする。
 コントロール部72が目標設定電圧値情報Vsを電圧可変電源部73およびランプ波傾き制御部22へ出力すると、電圧可変電源部73は目標設定電圧値情報Vsに基づいて、電力増幅部4に電源電力の電圧値である目標電圧値±2/n×Vdd(V)を供給する。
 そして、ランプ波傾き制御部22は、目標設定電圧値情報Vsに対応するランプ波の傾きαの時間幅をτとするランプ波S8を作成する。ただし、この場合のランプ波S8の傾きαは、α1>α>α2とする。
 この場合、ケースAやケースBと同様に、この場合の電力スイッチング面積をSAとすると、電力増幅部4の増幅ゲインGと、ランプ波の傾きαにおけるランプ波の時間幅τとの関係は、式11で表される。
 SA/(2×Vcc)=K1×τ×(2×|2/n×Vdd|)/(2×|Vcc|)
  =K1×(n/2×(1/m×T))×|2/n×Vdd|/|Vcc|
  =Gτ×G ・・・式11
 式11によれば、GがGain1(最大振幅レベルの入力音声信号S1maxにおける増幅ゲイン)より下がることによる増幅ゲインの変化分(2/n倍)は、GτがGτ1より上がることによるオン時間幅ゲインの変化分(n/2倍)で相殺される。
 すなわち、入力音声信号S1の任意の振幅レベルにおいても、電力増幅部4に供給する電源電力の電圧値+Vdd,-Vddを下げることによる増幅ゲインの変化分が、時間幅τで制御された傾きαのランプ波S8における時間幅ゲインの変化分によって相殺されることとなる。
 ここで、本発明の実施の形態1における増幅装置1の伝達関数G(s)(ゲインと位相との周波数特性)は変わることなく、ループゲインが一定に保たれる理由を説明する。増幅装置1における伝達関数G(s)は式12で表される。
 G(s)=G0(s)/(1+G0(s)β(s))  ・・・式12
 だだし、β(s)は負帰還部6の伝達関数であり、G0(s)は増幅装置1のオープンループの伝達関数であり、|G0(s)β(s)|はループゲインである。
 本実施の形態1において、増幅装置1のオープンループの伝達関数G0(s)はオープンループ経路における各回路の伝達関数の積、すなわち、PWM変換器23の伝達関数G1(s)と、積分器24の伝達関数G2(s)と、ランプ波の傾きαで制御されるコンパレータ25における伝達関数G3(s)と、電力増幅部4の伝達関数G4(s)との積で求められ、式13で表すことができる。
 G0(s)=G1(s)×G2(s)×G3(s)×G4(s)   ・・・式13
 また、ランプ波傾き制御部22は、電力増幅部4に供給される電源電力の電圧値|Vt|と傾きαにおけるランプ波S8の時間幅τとを比例的に変化させる、つまりゲインのみが制御されることとなるため、電力増幅部4の伝達関数G4(s)とコンパレータ25における伝達関数G3(s)との位相の周波数特性に変化が生じない。
 既に示したように、G3(s)とG4(s)とのゲインの変動分は互いに相殺されるため、G3(s)×G4(s)のゲインの周波数特性は変わらないこととなる。さらに、本実施の形態1における他の各回路の伝達関数G1(s)とG2(s)は、電力増幅部4の電源電力の電圧値とコンパレータ25に入力されるランプ波の傾きαとの制御に影響されないので変化しないため、オープンループの伝達関数G0(s)は変わらない。
 本発明の実施の形態1における増幅装置1によれば、伝達関数G(s)は変わることがなく、また、ループゲイン|G0(s)β(s)|を一定に保つことができる。
 なお、基本クロック生成部21とコントロール部72とランプ波傾き制御部22とは、デジタルシグナルプロセッサやマイクロコントローラなどによって実現され得るため、負帰還部6に従来技術のような電子ボリューム等の回路を用いる必要がなく、回路規模を小さくすることができる。また、ランプ波傾き制御部22は、ローパスフィルタなどの演算処理によりリニアリティのあるランプ波S8を出力することで、ランプ波S8の時間幅τは無段階で制御可能となるため、時間幅τの切り替え時に従来技術のようなノイズが発生してしまうなどの問題がない。
 以上説明したとおり、本発明の実施の形態1によれば、増幅装置1に入力される入力音声信号S1の振幅レベルに応じて電力増幅部4に供給する電源電力の電圧値+Vdd,-Vddを制御するにあたって、入力音声信号S1に対するPWM変換の際の周期と同じ周期である基本クロックCLを利用してランプ波S8を作成し、さらに、このランプ波S8の傾きαは、電圧可変電源部73が出力すべき電圧値としての目標設定電圧値の情報(目標設定電圧値情報Vs)に基づいて制御され、傾きαが制御されたランプ波S8と差分積分信号S7を比較することでパルス幅補正した補正後PWM信号S2が電力増幅部4にて増幅される。
 これにより、電力増幅部4の電源電力の電圧値+Vdd,-Vddの変動による増幅ゲイン(電力増幅部4の電圧増幅によるゲイン)の変化分を、ランプ波S8の傾きαを制御することで相殺できるため、増幅装置1の伝達関数(ゲインと位相との周波数特性)を変化させることなく、ループゲインを一定に保ちながら、なおかつ、帰還回路規模が小さいままで、従来技術のような切替時のノイズを発生させることがない。
 さらに、入力音声信号S1の振幅レベルに応じて電力増幅部4の電源電力の電圧値+Vdd,-Vddを低下させても、ループゲインが減少しないので、増幅装置1の出力信号の歪を低減することができ、出力信号に重畳するノイズの悪化を防止することができ、S/Nを向上させることができる。
 (実施の形態2)
 以下、本発明の実施の形態2における増幅装置1aについて、図4のブロック図を参照しながら説明する。ただし、以下の説明においては、本発明の実施の形態1に示す図1の増幅装置1と異なる点についてのみ説明するものとし、同様の構成とされた部分については、その説明を省略する。
 増幅装置1aでは、検出器10を含む構成となっている点が、実施の形態1における増幅装置1の構成とは異なる。
 検出器10は、電力増幅部段4に供給された電源電力の電圧値+Vddを検出して、検出した電圧値+Vtを抵抗分圧方式で所定の比率で減衰させて、ランプ波S8の傾きαを制御するための情報Vdetとしてランプ波傾き制御部22aに出力する。
 増幅装置1におけるコントロール部72が目標設定電圧値情報Vsをランプ波の傾きαを御するための情報としてランプ波傾き制御部22に出力することと、同様の効果を得るための構成となっている。
 ここで、図5のブロック図を参照しながら、検出器10の詳細な構成を説明する。
 検出器10は、抵抗値Raを有する抵抗10aと抵抗値Rbを有する抵抗10bとで構成される。抵抗10aの一端は、電圧可変電源部73から電力増幅部4に供給される電源電力の正側電圧値+Vt(V)側に接続され、他端は、抵抗10bの一端に直列に接続される。抵抗10bの一端は抵抗10aに接続され、他端はグラウンドに接続される。抵抗10aと抵抗10bの分圧電圧値を|Vdet|(V)として作成し、ランプ波傾き制御部22aに出力する。分圧電圧値|Vdet|(V)は式14で表される。
 |Vdet|=Kb×|Vt| ・・・式14
 ここで、KbをRb/(Ra+Rb)とする。
 上述した本発明の実施の形態2における増幅装置1aについて、その動作を説明する。ただし、本発明の実施の形態1と同様の動作をする部分については、その説明を省略する。
 増幅装置1aにおけるコントロール部72aは、増幅装置1におけるコントロール部72と同様に目標設定電圧値情報Vsを電圧可変電源部73へ出力するが、ランプ波傾き制御部22aには目標設定電圧値情報Vsは出力しない。
 検出器10は、電圧可変電源部73から電力増幅部4に供給する電源電力の正側電圧値+Vtを検出し、式14に従ってランプ波の傾きαを制御する電圧値Vdetに減衰させて、ランプ波傾き制御部22aに出力する。
 ランプ波傾き制御部22aは、検出器10から入力される電圧値Vdetを用いて、可変の傾きαを持たせたランプ波S8を作成し(詳細後述)、コンパレータ25に出力する。
 次に、図5のブロック図を参照しながら、実施の形態2におけるランプ波S8の傾きαの制御について、実施の形態1と異なる点についてのみ説明するものとし、同様な部分については、その説明を省略する。
 増幅装置1aにおけるランプ波傾き制御部22aは、ランプ波の傾きαを制御するための情報として、検出器10から出力される電圧値|Vdet|(V)を用いて、傾きαのランプ波S8の時間幅τを制御する。電圧値|Vdet|(V)と時間幅τとの関係は式15で表される。
 τ=((Kb×|Vdd|)/|Vdet|)×(1/m×T) (2<m)・・・式15
 ここで、時間幅τの範囲は増幅装置1における時間幅範囲と同じである(すなわち、τ1≦τ≦τ2)。また、|Vdet|とKbとの関係は式14で表される。
 ランプ波傾き制御部22aは、基本クロック生成部21から入力された基本クロックCLと、検出器10から入力された電圧値|Vdet|(V)とを用いて、式15に示される時間幅τを算出し、傾きαを持たせたランプ波S8を作成する。
 式15は式16のように表すことができる。
 τ=((|Vdd|/(|Vdet|/Kb))×(1/m×T) ・・・式16
 式16に式14を代入して整理すると、時間幅τと正側電圧値+Vt(V)との関係は式17で表される。
 τ=(|Vdd|/|Vt|)×(1/m×T) ・・・式17
 ここで、|Vt|は増幅装置1における目標設定電圧値情報Vsに対応する目標電圧値と等しいため、式17と式3とを比較すると、増幅装置1における時間幅τと増幅装置1aにおける時間幅τとは同じであることが分かる。この時間幅τでランプ波S8の傾きαを制御することで、増幅装置1と同様に、増幅装置1aにおいても、電力増幅部4に供給する電源電力の電圧値|+Vdd|,|-Vdd|を下げることによる増幅ゲインの変化分が、時間幅τで制御された傾きαのランプ波S8におけるオン時間幅ゲインの変化分によって相殺される。
 さらに、本発明の実施の形態1における増幅装置1の伝達関数G(s)の検討結果と同様に、本発明の実施の形態2における増幅装置1aの伝達関数Ga(s)も変えることなく、ループゲインを一定に保つことができる。
 以上説明したとおり、本発明の実施の形態2の増幅装置1aは、ランプ波S8の傾きαが、電力増幅部4に供給された電源電力の電圧値+Vddを検出して所定の比率で減衰させた電圧値|Vdet|(V)に基づいて制御されることが特徴であり、検出器10が直接に電力増幅部4の電源電力の電圧値+Vddを検出することで、実施の形態1より電力増幅部4の電源電力の電圧値+Vdd,-Vddの変動による増幅ゲインの変化を補正できる利点がある。
 これにより、本発明の実施の形態1と同様に、電力増幅部4の電源電力の電圧値+Vdd,-Vddの変動による増幅ゲイン(電力増幅部の電圧増幅によるゲイン)の変化分を、ランプ波の傾きαを制御することで相殺できるので、増幅装置1aの伝達関数(ゲインと位相との周波数特性)は変えることなく、ループゲインを一定に保ちながら、なおかつ、帰還回路規模が小さいままで、従来技術のような切替時のノイズを発生させることがない。
 さらに、入力音声信号S1の振幅レベルに応じて電力増幅部4の電源電力の電圧値|+Vdd|,|-Vdd|を低下させても、ループゲインが減少しないので、増幅装置1aの出力信号の歪を低減することができ、出力信号に重畳するノイズを低減でき、特に小入力音声信号時のS/Nを向上できる。
 (実施の形態3)
 本発明の実施の形態3における増幅装置1bについて、図6のブロック図を参照しながら説明する。図6において、実施の形態3の増幅装置1bは、ラインレベル程度のレベルのデジタルの音声信号が出力されるオーディオ装置8に接続される。オーディオ装置8から出力された音声信号は、増幅装置1bの入力音声信号S1として増幅装置1bに入力され、増幅装置1bで電力増幅されてスピーカ9へ出力される。スピーカ9は、増幅装置1bから出力された電力増幅後の音声信号を音声に変換して放音する。
 また、増幅装置1bとオーディオ装置8は、それらを動作させるのに必要な電力を供給する直流電源(図示せず)に接続されている。ただし、各装置を動作させるのに必要な電源は直流電源に限定されることはなく、各装置の特性に合わせて適宜交流電源を用いてもよい。
 増幅装置1bは、PWM(Pulse Width Modulation)変調部200と、ゲートドライバ部3と、電力増幅部4と、LPF(ローパスフィルタ)5と、負帰還部60と、電源電圧制御部7を備えて構成される。特に、増幅装置1bには、電力増幅部4の増幅ゲインの変化分をモニタリングするために、LPF5の出力信号をPWM変調部200へ負帰還させる負帰還部60が設けられている。オーディオ装置8から増幅装置1bへ音声信号S1が入力されると、入力音声信号S1は電源電圧制御部7に入力されるとともに、PWM変調部200に入力される。
 すなわち、モニタリングする手段とは、負帰還部とPWM変調部が目標電圧情報(Vs)と帰還信号をモニタして負帰還部の出力先でその信号を処理する構成をさす。
 電源電圧制御部7は、オーディオ装置8から入力された入力音声信号S1の振幅レベルS9を入力音声信号S1のサンプリング周期T毎に検出し、検出した入力音声信号S1の振幅レベルS9に対応する目標設定電圧値情報VsをPWM変調部2に出力するとともに、目標設定電圧値情報Vsが示す目標電圧となるように電力増幅部4に対する正側と負側の出力電圧(+Vdd,-Vdd)を制御して、この正側及び負側の電圧値(+Vdd,-Vdd)の電源電力を電力増幅部4へ送出する。
 PWM変調部200は、オーディオ装置8から入力された入力音声信号S1と負帰還部60から入力される帰還信号S15との差分値α(=S1-S15)をサンプリング周期T毎に算出し、次いで電源電圧制御部7から入力される目標設定電圧値情報Vsに対して所定の計算式(後述に詳細を説明)から算出された補正係数βを用いて、差分値αに補正係数βを乗算することで得られるPWM変調対象値S17(=α×β)を算出し、さらにPWM変調対象値S17(=α×β)を基準波P(後述)と比較してパルス幅変換した信号を補正後PWM信号S2としてゲートドライバ部3へ送出する。PWM変調部200は、デジタルシグナルプロセッサ(DSP)やマイクロコントローラなどによって実現され得る。
 ゲートドライバ部3は、入力された補正後PWM信号S2にデッドタイムを挿入するとともに、電力増幅部4のハイサイド(正側電圧値+Vdd)とローサイド(負側電圧値-Vdd)の高速スイッチング素子4a、4bを駆動できる程度に補正後PWM信号S2の電位をシフトしたドライブ信号を作成して、電力増幅部4へ送出する。
 電力増幅部4は、高電位電源側に配されて電源電圧制御部7から正側電圧+Vddを供給されるハイサイド高速スイッチング素子4aと、低電位電源(又はグラウンド)側に配されて電源電圧制御部7から負側電圧-Vddを供給されるローサイド高速スイッチング素子4bとによるハーフブリッジ回路で構成される。電力増幅部4は、ゲートドライバ部3から入力されたドライブ信号により、正側電圧+Vddと負側電圧-Vddとで決定される電圧振幅で高速スイッチング動作を行うことにより、電力増幅部4へ入力されたドライブ信号を電力増幅し、交流の補正後増幅信号S3を得る。得られた補正後増幅信号S3は、LPF部5に送出される。ここで、高速スイッチング素子4a、4bとしては、例えば、MOS電界効果トランジスタなどが用いられる。
 LPF5は、電力増幅部4から出力された補正後増幅信号S3から不要な高周波成分を除去して得られたアナログ音声信号S14をスピーカ9へ出力するフィルタであり、例えば、コイルLやコンデンサCなどの素子で構成される。さらに、LPF5から出力されたアナログ音声信号S14は、負帰還部60に出力されて、電力増幅部4の増幅ゲインの変化分がモニタリングされる。
 負帰還部60は、帰還回路上に設けられ、LPF5から出力されたアナログ音声信号S14を減衰器61で電力増幅部4の増幅ゲインに応じた所定の比率で減衰した後、減衰した音声信号S16をA/D変換器62でサンプリング周期T毎にデジタル値に変換して、帰還信号S15としてPWM変調部200に負帰還する。
 さらに、電源電圧制御部7とPWM変調部200に関する詳細な内部構成と動作を図6のブロック図を参照しながら説明する。電源電圧制御部7は、入力信号レベル検出部71と、コントロール部72と、電圧可変電源部73を備えて構成される。入力信号レベル検出部71は、オーディオ装置8から入力された入力音声信号S1の振幅情報を含む入力信号振幅レベル情報S9を作成して、コントロール部72へ送出する。コントロール部72は、コントロール部72内部に予め設定されたデータテーブル情報の中から、入力信号レベル検出部71にて作成された入力信号振幅レベル情報S9に一対一に対応付けされた目標設定電圧値情報Vsを選択し、選択した目標設定電圧値情報Vsを電圧可変電源部73へ出力するとともに、目標設定電圧値情報VsをPWM変調部200へ出力する。
 なお、目標設定電圧値情報Vsは、増幅された音声信号S14が歪まない程度の振幅レベルにまで電源電力の電圧値(+Vdd,-Vdd)を下げるために、電圧可変電源部73に対して設定される目標電圧値であり、あらかじめコントロール部72に格納された値を示す情報である。電圧可変電源部73は、コントロール部72から入力された目標設定電圧値情報Vsに応じて、電力増幅部4へ設定すべき電圧値に出力電圧(+Vdd,-Vdd)を可変にする電源であり、目標設定電圧値情報Vsが示す電圧値になるように制御した電圧値(+Vdd,-Vdd)の電源電力を電力増幅部4へ供給する。入力信号レベル検出部71とコントロール部72とは、デジタルシグナルプロセッサやマイクロコントローラなどによって実現され得る。
 PWM変調部200は、補正部221とPWM変換器222とを備えて構成される。補正部221は、オーディオ装置8から入力された入力音声信号S1と負帰還部6から入力される帰還信号S15との誤差分α(=S1-S15)をサンプリング周期T毎に算出するとともに、電源電圧制御部7から入力される目標設定電圧値情報Vsに対して所定の計算式から求められる補正係数βを用いて、誤差分αに補正係数βを乗算することで得られるPWM変調対象値S17(=α×β)を算出して、PWM変換器222に出力する。
 補正部221は、より詳細には、オーディオ装置8から入力された入力音声信号S1と負帰還部6から入力された帰還信号S15とを用いて、サンプリング周期T毎に入力音声信号S1から帰還信号S15を減算することで、入力音声信号S1と帰還信号S15との誤差値α(=S1-S15)を求める。誤差値αは、PWM変調対象値S17を補正するための値である。さらに補正部221は、コントロール部72から入力された目標設定電圧値情報Vsを用いて、目標設定電圧値情報Vsに一対一に対応した補正係数βを所定の計算式から算出して、この補正係数βを誤差値αに乗算してPWM変調対象値S17(=α×β)として、PWM変換器222に出力する。補正係数βは、補正部221で所定の計算式から求められる値であり、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲインの変化分を相殺するように算出される値である(詳細は後述する)。
 PWM変換器222は、補正部221から入力されたPWM変調対象値S17を基準波Pと比較して、所定のサンプリング時間幅Tの時間にONとOFFを繰り返すパルス幅を有する補正後PWM信号S2を作成し、ゲートドライバ部3へ出力する。PWM生成の方式としては、デルタシグマ変換方式や三角波比較方式などが知られており、本実施の形態においてもこれらの方式のうちいずれかの方式が適用される。
 ここで、PWM変調対象値S17から補正後PWM信号S2を生成する方式について、三角波比較方式を用いた例を図7を参照しながら説明する。PWM変換器222は、所定のサンプリング時間幅T毎に、入力されたPWM変調対象値S17と基準波Pとを比較する。図7中に示すとおり、基準波Pは、所定のサンプリング時間幅Tの時間に対応して、最小値Pminから最大値Pmaxへと遷移した後、再び最小値Pminに遷移する三角波である。最小値Pminは、パルス幅変換後の補正後PWM信号S2のパルス幅が100%に該当する値であり、最大値Pmaxは、パルス幅変換後の補正後PWM信号S2のパルス幅が0%に該当する値となる。すなわち、PWM変調対象値S17は、基準波Pの最大値Pmaxと最小値Pminの間の範囲で変化する値である。
 所定サンプリング時間幅Tの時間の間、基準波PからPWM変調対象値S17を減算して、減算した値(=P-S17)が正である期間であれば補正後PWM信号S2の出力はONとなり、減算した値(=P-S17)が負である期間であれば補正後PWM信号S2の出力はOFFとなる。図7に示すとおり、基準波Pから、PWM変調対象値S17の一例としてS70を減算した値(=P-S70)が正である期間は、時点T1から時点T2であり、この期間には補正後PWM信号S2としてONを出力する。これにより、所定のサンプリング時間幅TにおけるPWM変調対象値S17に対応したONとOFFのパルス幅を有する補正後PWM信号S2が生成され、また、値S17が小さければ補正後PWM信号S2のパルス幅は大きくなり、逆に値S17が大きければ補正後PWM信号S2のパルス幅は小さくなる。
 次に、図8を参照しながら、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲインの変化分を、PWM変調対象値S17を制御することで相殺する原理の詳細について説明する。ここで、増幅信号S3A(及び補正後増幅信号S3)は、実際には交流信号であるが、説明を簡略にするために直流信号(+Vdd側のみ)として示す。図8(a)に示すように、目標設定電圧値情報Vsが示す電源電力の電圧値+Vdd(補正後増幅信号S3の出力レベル)が、入力信号振幅レベル情報S9の変化に基づいて、電圧V1から電圧V2(>V1)へと遷移した場合を例として説明する。この電力増幅部4の電源電力の2つの電圧値V1とV2が、増幅信号S3Aのそれぞれの振幅として生成され、増幅信号S3Aの振幅がV1からV2へと増加することになる。
 図8(a)に示すとおり、増幅信号S3Aの振幅がV2である場合は、振幅がV1である場合から面積C1(=(V2-V1)×(T4-T3))の分だけ増幅信号S3Aのもつ電力エネルギーが大きい。すなわち、図8(b)に示すように増幅信号S3Aの振幅がV1からV2に増加すれば、面積C2(=V2×(T1-T3))と面積C3(=V2×(T4-T2))の分だけ、電力増幅部4の増幅ゲインが増加するという変化を生じてしまう。
 そこで、電力増幅部4の電源電力の電圧値の変動による増幅ゲインの変化分を相殺するために、図8(b)に示すように、補正部221では、入力音声信号S1と負帰還部6から入力される帰還信号S15との差分値αとしての値α1を算出し、入力された目標電圧値情報Vsに一対一に対応した補正係数βとしての値β1を計算式より算出して、差分値α1に対して補正係数β1を乗算して算出した値S71(=α1×β1)をPWM変調対象値S17としてPWM変換器222へ送出する。そして、PWM変換器222ではこのS71を基準波Pと比較してパルス幅変換を行い、補正後PWM信号S2を生成する。
 補正係数β1を算出する式は、次のとおりに求められる。ここでは、基準波Pが直角二等辺三角形である場合を一例として図8を参照しながら説明する。面積の変化分(=C2+C3)が面積C1と等しくなる条件式は、図8(a)(b)に示すように
 (V2-V1)×(T4-T3)
  =V2((T1-T3)+(T4-T2))
と表される。
 また、補正後PWM変調対象値S71とパルス幅(T3~T4)、(T1~T4)の各関係式は、
 T1-T3=T4-T2、及び
 T-T4=T3、及び
 T1=α1×β1、及び
 T3=α1
で表される。
 上記条件式と関係式を整理すると次の式が求まる。
 β1=((V2-V1)×T+2V1・α1)/2V2・α1
 よって、β1は、所定のサンプリング時間幅Tと、電源電力の電圧値V2、V1と、電源電力の電圧値がV1の時の差分値α1とから求められる。なお、直角二等辺三角形以外でも、直角三角形の定理から縦軸と横軸の関係は容易に求まる。
 これにより、補正後PWM信号S2のONのパルス幅が図8(b)に示すとおり(T4-T3)から(T2-T1)(<(T4-T3))に小さくされ、この補正後PWM信号S2に基づいて増幅された補正後増幅信号S3は、図8(b)に示す面積C2(=V2×(T1-T3))と面積C3(=V2×(T4-T2))を合わせた面積の分だけ電力エネルギーが小さくなる。すなわち、補正後PWM信号S2のONのパルス幅を補正後PWM信号S2のように減少させることで電力増幅部4の増幅ゲインが減少することになる。
 ところで、補正係数βである値β1は、面積C1に対して面積C2と面積C3とを加えた合計面積が等しくなるように、すなわちC1=C2+C3となるように補正後PWM信号S2のONとOFFのパルス幅を生成するように前記の計算式から求められている。すなわち、差分値αを補正係数βを用いて乗算することで算出されたPWM変調対象値S17を用いてパルス幅変換することで、電力増幅部4の増幅ゲインの増減変化分を相殺することができる。
 ここで、本発明の実施の形態3における増幅装置1bの伝達関数G(s)(ゲインと位相との周波数特性)は変わることなく、ループゲインが一定に保たれる理由を説明する。増幅装置1bにおける伝達関数G(s)は式18で表される。
 G(s)=G0(s)/(1+G0(s)B(s))  ・・・式18
ただし、B(s)は負帰還部60の伝達関数であり、G0(s)は増幅装置1bのオープンループの伝達関数であり、|G0(s)B(s)|はループゲインである。
 本実施の形態3において、増幅装置1bのオープンループの伝達関数G0(s)はオープンループ経路における各回路の伝達関数の積、すなわち、PWM変調部2の伝達関数G1(s)と、電力増幅部4の伝達関数G2(s)とLPF5の伝達関数G3(s)の積で求められ、式19で表すことができる。
 G0(s)=G1(s)×G2(s)×G3(s)  ・・・式19
 また、PWM変調部200は、電力増幅部4に供給される電源電力の電圧値(+Vdd,-Vdd )の増減による増幅ゲインの変化分(=C2+C3)については、補正後PWM信号S2のONとOFFのパルス幅を、PWM変調対象値S17を用いて制御することで、増幅ゲインの変化分 (=C2+C3)を相殺する、すなわちゲインのみが相殺されることとなるため、PWM変調部200の伝達関数G1(s)と電力増幅部4の伝達関数G2(s)とLPF5における伝達関数G3(s)との位相の周波数特性に変化が生じない。よって、オープンループの伝達関数G0(s)は変わらない。本発明の実施の形態3における増幅装置1bによれば、伝達関数 G(s)は変わることがなく、また、ループゲイン|G0(s)B(s )|を一定に保つことができる。
 なお、コントロール部72とPWM変調部200とは、デジタルシグナルプロセッサやマイクロコントローラなどによって実現され得るため、負帰還部60に従来技術のような電子音量制御回路等の回路を用いる必要がないため回路規模を小さくすることができ、また、切り替え時に従来技術のようなノイズが発生してしまうなどの問題がない。
 以上に説明したとおり、本発明の実施の形態3によれば、増幅装置1bに入力される入力音声信号S1の振幅レベルS9に応じて電力増幅部4に供給する電源電力の電圧値(+Vdd,-Vdd)を制御するにあたって、PWM変調部200におけるPWM変換器222のPWM変調対象値S17が、目標設定電圧値情報Vsに基づいて制御され、PWM変調対象値S17により元のPWM信号S2Aが補正後PWM信号S2に補正されて出力されることで電力増幅部4にて増幅される。
 これにより、電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)の変動による増幅ゲイン(電力増幅部4の電圧増幅によるゲイン)の変化分(=C2+C3)を、PWM変調部200のPWM変換器222のPWM変調対象値S17を制御することで相殺できるため、増幅装置1bの伝達関数(ゲインと位相との周波数特性)を変化させることなく、ループゲインを一定に保つことができ、なおかつ、帰還回路規模が小さいままで、従来技術のような切替時のノイズを発生させることがない。さらに、入力音声信号S1の振幅レベルS9に応じて電力増幅部4の電源電力の電圧値(+Vdd,-Vdd)を低下させても、ループゲインが減少しないので、増幅装置1bの出力信号の歪を低減させることができ、出力信号に重畳するノイズの悪化を防止することができ、 S/N比を向上させることができる。
 本発明は、回路規模が大きくなることなく、かつ増幅装置の伝達関数(ゲインと位相との周波数特性)を変えることなく、ループゲインを一定に保ちながら、出力信号に重畳するノイズを低減させることができ、特に小入力音声信号時のS/N比を向上させることができるという効果を有し、オーディオ増幅装置の設計・製造の分野で利用可能である。

Claims (6)

  1.  入力音声信号のレベルに応じたパルス幅変調信号で電源電圧をスイッチングすることにより前記入力音声信号を電力増幅する電力増幅部と、
     前記入力音声信号の振幅レベルを検出し、検出した入力信号振幅レベルに応じた目標設定電圧を前記電源電圧として前記電力増幅手段に印加する電源電圧制御部と、
     前記電力増幅手段の出力をモニタリングする手段と、
     前記入力音声信号をそのレベルに応じたパルス幅のパルス幅変調信号に変換するパルス幅変換部と、
     前記目標設定電圧と前記モニタリングした電力増幅部の出力に基づいて、前記電力増幅部の増幅ゲインの変化分を相殺するように、前記パルス幅変換部により生成されたパルス幅変調信号のパルス幅を補正して前記電力増幅手段に印加するパルス幅補正部とを、
     有する増幅装置。
  2.  前記パルス幅補正部は、
     前記入力音声信号を前記パルス幅変調信号に変換する際の基本的なタイミング信号である基本クロックを生成する基本クロック生成部と、
     前記基本クロック生成部が生成した基本クロックから、前記目標設定電圧に応じて傾きが異なるランプ波を生成するランプ波傾き制御部と、
     前記ランプ波傾き制御部により生成されたランプ波と、前記モニタリングした電力増幅部の出力に基づいて、前記パルス幅変換部により生成されたパルス幅変調信号のパルス幅を補正する補正部とを
    有することを特徴とする請求項1記載の増幅装置。
  3.  入力音声信号のレベルに応じたパルス幅変調信号で電源電圧をスイッチングすることにより前記入力音声信号を電力増幅する電力増幅部と、
     前記入力音声信号の振幅レベルを検出し、検出した入力信号振幅レベルに応じた目標設定電圧を前記電源電圧として前記電力増幅部に印加する電源電圧制御部と、
     前記電力増幅部に印加される電源電圧を検出する検出部と、
     前記入力音声信号をそのレベルに応じたパルス幅のパルス幅変調信号に変換するパルス幅変換部と、
     前記入力音声信号を前記パルス幅変調信号に変換する際の基本的なタイミング信号である基本クロックを生成する基本クロック生成部と、
     前記基本クロック生成部が生成した基本クロックから、前記検出された電源電圧に応じて傾きが異なるランプ波を生成するランプ波傾き制御部と、
     前記電力増幅手段の出力をモニタリングする手段と、
     前記ランプ波傾き制御部により生成されたランプ波と、前記モニタリングした電力増幅部の出力に基づいて、前記電力増幅部の増幅ゲインの変化分を相殺するように、前記パルス幅変換部により生成されたパルス幅変調信号のパルス幅を補正して前記電力増幅手段に印加する補正部とを
     有する増幅装置。
  4.  入力音声信号のレベルに応じたパルス幅変調信号で電源電圧をスイッチングすることにより前記入力音声信号を電力増幅する電力増幅部と、
     前記入力音声信号の振幅レベルを検出し、検出した入力信号振幅レベルに応じた目標設定電圧を前記電源電圧として前記電力増幅部に印加する電源電圧制御部と、
     前記電力増幅部の増幅ゲインの変化分をモニタリングする手段と、
     前記目標設定電圧に応じて、前記モニタリングした電力増幅部の増幅ゲインの変化分を相殺するようにパルス幅変調対象の入力音声信号のレベルを補正することにより、前記パルス幅変調信号のパルス幅を補正して前記電力増幅部に印加するパルス幅変換部とを、
     有する増幅装置。
  5.  前記パルス幅変換部は、前記入力音声信号の振幅レベルと、前記電力増幅部の出力を減衰してモニタリングしたレベルとの差分値を算出し、前記算出した差分値と、前記目標設定電圧に応じた補正係数を乗算することにより、前記パルス幅変調対象の入力音声信号のレベルを補正することを特徴とする請求項4に記載の増幅装置。
  6.  前記パルス幅変換部はさらに、前記補正されたパルス幅変調対象の入力音声信号のレベルを所定の基準波と比較することにより、前記パルス幅変調信号を生成することを特徴とする請求項5に記載の増幅装置。
PCT/JP2011/003435 2010-06-25 2011-06-16 増幅装置 WO2011161911A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180031230.9A CN102959858B (zh) 2010-06-25 2011-06-16 放大装置
US13/701,554 US9036836B2 (en) 2010-06-25 2011-06-16 Amplifier apparatus
JP2012521302A JP5903638B2 (ja) 2010-06-25 2011-06-16 増幅装置
EP11797800.7A EP2587665B1 (en) 2010-06-25 2011-06-16 Amplifier apparatus
US14/690,883 US9257945B2 (en) 2010-06-25 2015-04-20 Amplifier apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-144647 2010-06-25
JP2010144647 2010-06-25
JP2011071471 2011-03-29
JP2011-071471 2011-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/701,554 A-371-Of-International US9036836B2 (en) 2010-06-25 2011-06-16 Amplifier apparatus
US14/690,883 Continuation US9257945B2 (en) 2010-06-25 2015-04-20 Amplifier apparatus

Publications (1)

Publication Number Publication Date
WO2011161911A1 true WO2011161911A1 (ja) 2011-12-29

Family

ID=45371118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003435 WO2011161911A1 (ja) 2010-06-25 2011-06-16 増幅装置

Country Status (5)

Country Link
US (2) US9036836B2 (ja)
EP (1) EP2587665B1 (ja)
JP (2) JP5903638B2 (ja)
CN (1) CN102959858B (ja)
WO (1) WO2011161911A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104365018A (zh) * 2012-05-24 2015-02-18 慕尼黑应用技术大学 用于可变电源电压的开关放大器
JP2016508092A (ja) * 2012-12-04 2016-03-17 メタ システムズ エス.ピー.エー. 電気自動車、ハイブリッド車などのための音響信号伝達システム
JP2017531963A (ja) * 2014-10-24 2017-10-26 シラス ロジック、インコーポレイテッド ポップ音雑音を最小限にし、または排除するための調節可能なランプアップ/ダウン利得を伴う増幅器
WO2017212676A1 (ja) * 2016-06-10 2017-12-14 シャープ株式会社 デジタルアンプおよび出力装置
WO2019235061A1 (ja) * 2018-06-08 2019-12-12 ソニー株式会社 電源装置及び電源供給方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963643B2 (en) * 2010-03-25 2015-02-24 Emhiser Research Limited Method and system for providing automatic gate bias and bias sequencing for field effect transistors
US9203359B2 (en) 2011-03-28 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Amplifier and audio device provided with amplifier
US9184705B2 (en) 2013-03-15 2015-11-10 Bose Corporation Feedback mechanism for boost-on-demand amplifiers
US9154095B2 (en) * 2013-03-15 2015-10-06 Bose Corporation Boost-on-demand amplifier
EP3217544B1 (en) 2014-02-04 2020-11-18 Cirrus Logic, Inc. Switch mode amplifier
GB2545337B (en) 2014-05-08 2021-04-14 Cirrus Logic Inc System with multiple signal loops and switched mode converter
GB2550243B (en) * 2014-08-29 2018-03-21 Cirrus Logic Int Semiconductor Ltd Class D amplifier circuit
US9628033B2 (en) 2014-10-29 2017-04-18 Cirrus Logic, Inc. Power stage with switched mode amplifier and linear amplifier
WO2017154051A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 D級増幅器および音声再生装置
JPWO2017159396A1 (ja) * 2016-03-17 2019-01-24 ソニー株式会社 計測回路および駆動方法、並びに電子機器
GB2563094A (en) * 2017-06-02 2018-12-05 Cirrus Logic Int Semiconductor Ltd Audio amplifiers
EP3416285B1 (en) * 2017-06-16 2021-06-02 ICEpower a/s Self-oscillating amplifier system
US10763811B2 (en) * 2018-07-25 2020-09-01 Cirrus Logic, Inc. Gain control in a class-D open-loop amplifier
JP7273484B2 (ja) 2018-11-16 2023-05-15 株式会社東芝 信号生成回路
CN112448699A (zh) * 2019-08-29 2021-03-05 炬佑智能科技(苏州)有限公司 一种快速响应的脉冲宽度补偿电路及方法
US11837999B2 (en) * 2020-05-19 2023-12-05 Maxim Integrated Products, Inc. Audio amplifier having idle mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164113A (ja) * 1988-12-19 1990-06-25 Matsushita Electric Ind Co Ltd 電力増幅器
JP2000059153A (ja) 1998-08-06 2000-02-25 Sharp Corp ディジタルスイッチングアンプ
JP2004180294A (ja) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd 電力増幅装置
JP2007110646A (ja) 2005-10-17 2007-04-26 Sharp Corp 信号再生装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281606A (ja) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd パルス幅変調増幅器
US5410592A (en) * 1993-06-04 1995-04-25 Harris Corporation Class `D` audio speaker amplifier circuit with state variable feedback control
JPH07254823A (ja) * 1994-03-14 1995-10-03 Kenwood Corp デルタシグマ変調増幅器
US5523715A (en) * 1995-03-10 1996-06-04 Schrader; Daniel J. Amplifier arrangement and method and voltage controlled amplifier and method
DE69827039T2 (de) 1997-04-02 2006-02-09 Bang & Olufsen Icepower A/S Pulsreferenziertes Steuerverfahren zur verbesserten Leistungsverstärkung eines pulsmodulierten Signals
JP4129183B2 (ja) * 2001-03-26 2008-08-06 ハーマン インターナショナル インダストリーズ インコーポレイテッド デジタル信号プロセッサによって強化されたパルス幅変調増幅器
SE0104403D0 (sv) * 2001-12-21 2001-12-21 Bang & Olufsen Powerhouse As Attenuation control for digital power converters
JP3857154B2 (ja) * 2002-02-05 2006-12-13 シャープ株式会社 パルス符号変調信号再生装置
CN1277351C (zh) * 2002-10-03 2006-09-27 三菱电机株式会社 D类放大器
AU2003277573A1 (en) * 2002-11-15 2004-06-15 Matsushita Electric Industrial Co., Ltd. Power amplifying apparatus
KR100496883B1 (ko) * 2003-02-04 2005-06-23 삼성전자주식회사 전류 제어 피더블유엠 회로 및 이를 포함하는 클래스 디이앰프
WO2005011109A1 (ja) * 2003-07-25 2005-02-03 Matsushita Electric Industrial Co., Ltd. 増幅装置
SE0302681D0 (sv) 2003-10-09 2003-10-09 Bang & Olufsen Icepower As Method for pulse area modulation
WO2005114833A2 (en) * 2004-05-18 2005-12-01 Nphysics, Inc. Self-oscillation switching amplifier
JP2006033204A (ja) 2004-07-14 2006-02-02 Toshiba Corp オーディオ信号処理装置
JP2006238256A (ja) * 2005-02-28 2006-09-07 Pioneer Electronic Corp 増幅装置
US7456686B2 (en) * 2005-09-21 2008-11-25 International Rectifier Corporation Class AD audio amplifier
KR100765790B1 (ko) * 2006-06-30 2007-10-12 삼성전자주식회사 모바일 기기의 가변 전원공급 장치 및 방법
KR100765792B1 (ko) * 2006-07-28 2007-10-12 삼성전자주식회사 스위칭 파워 앰프에서 에러 보정 방법 및 장치
US7489190B2 (en) * 2007-07-11 2009-02-10 Himax Analogic, Inc. Switching audio power amplifier with de-noise function
US7629840B2 (en) * 2007-10-22 2009-12-08 Freescale Semiconductor, Inc. Digital pulse width modulated feedback system for a switching amplifier and method therefor
US7733171B2 (en) * 2007-12-31 2010-06-08 Synopsys, Inc. Class D amplifier having PWM circuit with look-up table
DE112009001227T5 (de) 2008-05-21 2011-04-07 Silicon Laboratories, Inc., Austin Prädiktive Rückkopplungskompensation für PWM-Schaltverstärker
US8093951B1 (en) * 2009-04-14 2012-01-10 Cirrus Logic, Inc. Pulse-width modulated (PWM) audio power amplifier having output signal magnitude controlled pulse voltage and switching frequency
JP5167196B2 (ja) * 2009-05-14 2013-03-21 シャープ株式会社 信号補正装置、音声処理装置及びパルス増幅方法
JP4933583B2 (ja) * 2009-06-19 2012-05-16 株式会社デジタル 警報音発生回路
US8410855B2 (en) * 2009-06-19 2013-04-02 Samsung Electronics Co., Ltd. Method and apparatus for controlling power supply of audio amplifier
EP2491650A4 (en) * 2009-10-19 2017-10-18 Meyer Sound Laboratories, Incorporated Circuit and method for reducing noise in class d amplifiers
WO2012029210A1 (ja) * 2010-08-30 2012-03-08 パナソニック株式会社 増幅装置
KR101213778B1 (ko) * 2011-01-11 2012-12-18 (주)펄서스 테크놀러지 노이즈 보상을 위한 전압 가변형 디지털 오디오 증폭 장치 및 그 방법
US9450548B2 (en) * 2011-03-14 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for outputting audio signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164113A (ja) * 1988-12-19 1990-06-25 Matsushita Electric Ind Co Ltd 電力増幅器
JP2000059153A (ja) 1998-08-06 2000-02-25 Sharp Corp ディジタルスイッチングアンプ
JP2004180294A (ja) * 2002-11-15 2004-06-24 Matsushita Electric Ind Co Ltd 電力増幅装置
JP2007110646A (ja) 2005-10-17 2007-04-26 Sharp Corp 信号再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587665A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104365018A (zh) * 2012-05-24 2015-02-18 慕尼黑应用技术大学 用于可变电源电压的开关放大器
JP2015519020A (ja) * 2012-05-24 2015-07-06 ホーホシューレ、フューア、アンゲバント、ビッセンシャフテン、ミュンヘンHochschule Fuer Angewandte Wissenschaften Muenchen 可変の供給電圧のためのスイッチング増幅器
US20150236660A1 (en) * 2012-05-24 2015-08-20 Hochschule Fur Angewandte Wissenschaften Munchen Switched amplifier for a variable supply voltage
US9559645B2 (en) * 2012-05-24 2017-01-31 Hochschule für angewandte Wissenschaften München Switched amplifier for a variable supply voltage
CN104365018B (zh) * 2012-05-24 2017-08-04 慕尼黑应用技术大学 用于可变电源电压的开关放大器
JP2016508092A (ja) * 2012-12-04 2016-03-17 メタ システムズ エス.ピー.エー. 電気自動車、ハイブリッド車などのための音響信号伝達システム
JP2017531963A (ja) * 2014-10-24 2017-10-26 シラス ロジック、インコーポレイテッド ポップ音雑音を最小限にし、または排除するための調節可能なランプアップ/ダウン利得を伴う増幅器
WO2017212676A1 (ja) * 2016-06-10 2017-12-14 シャープ株式会社 デジタルアンプおよび出力装置
CN109451784A (zh) * 2016-06-10 2019-03-08 夏普株式会社 数字放大器及输出装置
WO2019235061A1 (ja) * 2018-06-08 2019-12-12 ソニー株式会社 電源装置及び電源供給方法

Also Published As

Publication number Publication date
JPWO2011161911A1 (ja) 2013-08-19
JP6150865B2 (ja) 2017-06-21
EP2587665A1 (en) 2013-05-01
EP2587665B1 (en) 2016-01-20
US9257945B2 (en) 2016-02-09
US20150229284A1 (en) 2015-08-13
CN102959858B (zh) 2015-09-02
JP5903638B2 (ja) 2016-04-13
EP2587665A4 (en) 2014-12-24
US9036836B2 (en) 2015-05-19
JP2016029835A (ja) 2016-03-03
US20130077806A1 (en) 2013-03-28
CN102959858A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP6150865B2 (ja) 増幅装置
US20200228079A1 (en) Tracking and correcting gain of open-loop driver in a multi-path processing system
KR100983946B1 (ko) △∑-형 ad변환기, d급 증폭기 및 dc-dc 변환기
JP5635507B2 (ja) 増幅装置
JP4561459B2 (ja) D級増幅器
JP5914842B2 (ja) 増幅装置
JP2011066558A (ja) D級増幅器
JP2006222852A (ja) デジタルアンプ
US20070008031A1 (en) Method and device for correcting signal distortions in an amplifier device
WO2016007552A1 (en) Edge correction to mitigate total harmonic distortion in class d amplifier
JP2004194334A (ja) Pdmd級増幅器の線形化
US7528662B2 (en) Signal amplification apparatus and signal amplification method
US10601379B2 (en) Digital amplifier
US7501886B2 (en) Low distortion class-D amplifier
JP6509726B2 (ja) 可変の供給電圧のためのスイッチング増幅器
WO2021066061A1 (ja) D級増幅器
US11047890B2 (en) Minimizing phase mismatch and offset sensitivity in a dual-path system
JP2004266398A (ja) D級増幅器
US10256780B2 (en) Duty cycle clipper
US10673392B2 (en) Digital amplifier and output device
JP2008109650A (ja) スイッチングアンプ
KR101352990B1 (ko) 디지털 피드백 증폭기
JP2004356963A (ja) D級増幅器
JP2014011763A (ja) D級増幅回路及びd級増幅方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031230.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011797800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13701554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012521302

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE