WO2009123027A1 - 食品包装用ポリアミド系多層チューブ - Google Patents

食品包装用ポリアミド系多層チューブ Download PDF

Info

Publication number
WO2009123027A1
WO2009123027A1 PCT/JP2009/056197 JP2009056197W WO2009123027A1 WO 2009123027 A1 WO2009123027 A1 WO 2009123027A1 JP 2009056197 W JP2009056197 W JP 2009056197W WO 2009123027 A1 WO2009123027 A1 WO 2009123027A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nylon
multilayer tube
tube
polyamide
Prior art date
Application number
PCT/JP2009/056197
Other languages
English (en)
French (fr)
Inventor
裕樹 栗生
宏之 薮田
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Priority to KR1020107022441A priority Critical patent/KR101384607B1/ko
Priority to NZ588267A priority patent/NZ588267A/en
Priority to AU2009232944A priority patent/AU2009232944B2/en
Priority to ES09729025.8T priority patent/ES2441967T3/es
Priority to US12/934,869 priority patent/US8187683B2/en
Priority to EP09729025.8A priority patent/EP2261023B1/en
Priority to JP2010505804A priority patent/JP5340263B2/ja
Priority to CN2009801116784A priority patent/CN101980859B/zh
Publication of WO2009123027A1 publication Critical patent/WO2009123027A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C13/0013Chemical composition of synthetic sausage casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/002Sausage casings made by extrusion
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/004Sausage casings with at least one layer of a gas, e.g. oxygen, water vapour, impermeable material
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0053Sausage casings multilayer casings
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0063Sausage casings containing polyamide, e.g. nylon, aramide
    • AHUMAN NECESSITIES
    • A22BUTCHERING; MEAT TREATMENT; PROCESSING POULTRY OR FISH
    • A22CPROCESSING MEAT, POULTRY, OR FISH
    • A22C13/00Sausage casings
    • A22C2013/0086Sausage casings shrinkable casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • B32B2307/736Shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/14Corona, ionisation, electrical discharge, plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1324Flexible food casing [e.g., sausage type, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1328Shrinkable or shrunk [e.g., due to heat, solvent, volatile agent, restraint removal, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a polyamide-based multilayer tube for food packaging that has good adhesion to an object to be packaged.
  • polyolefin resins are usually used for the layers that come into contact with processed meats and the like that are to be packaged. Further, in order to improve the adhesion to the packaged object, a method of performing a corona treatment or the like on the surface of the layer in contact with the packaged object is employed (see, for example, Patent Documents 1 to 3).
  • the present invention provides a polyamide-based multilayer tube for food packaging in which the surface of a layer that comes into contact with processed meat or the like that is a multilayer tube package does not block, and the adhesion between the package and the layer surface is good.
  • the main purpose is to provide a polyamide-based multilayer tube for food packaging in which the surface of a layer that comes into contact with processed meat or the like that is a multilayer tube package does not block, and the adhesion between the package and the layer surface is good.
  • the inventors of the present invention blended a polypropylene resin having a predetermined heat deformation temperature and a Vicat softening point, or a linear low density polyethylene having a predetermined density, into the layer that comes into contact with the packaged object. I found that the problem could be solved.
  • the present invention has been completed as a result of further research based on such knowledge.
  • the present invention provides the following polyamide-based multilayer tube for food packaging and a method for producing the multilayer tube.
  • Item 1 A polyamide-based multilayer tube for food packaging having the following (A) layer, (B) layer, and (C) layer, a low-temperature shrinkage rate of 2 to 10%, and heat shrinkability and gas barrier properties: (A) The layer contains a polyamide-based resin, (B) the layer contains a polyolefin resin, The (C) layer that comes into contact with the package is (C-1) layer containing a polypropylene resin having a heat distortion temperature (ISO 75B-1, ISO 75B-2) of 60 ° C. or more and a Vicat softening point of 120 ° C.
  • ISO 75B-1, ISO 75B-2 heat distortion temperature
  • the polyamide resin contained in the layer (A) is 6-nylon, 66-nylon, 11-nylon, 12-nylon, 610-nylon, 6T-nylon, crystalline aromatic nylon, amorphous aromatic nylon, 6 A group consisting of a copolymer of nylon and 66-nylon, a copolymer of 6-nylon and 12-nylon, a copolymer of 6-nylon and 11-nylon, and a copolymer of 6-nylon and 6T-nylon
  • the polyolefin resin contained in the layer (B) is maleic anhydride-modified polyolefin, ionomer resin, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid.
  • Item 3 The polyamide multilayer tube for food packaging according to Item 1 or 2, which is at least one polyolefin resin selected from the group consisting of copolymers.
  • Item 4. The polyamide-based multilayer tube for food packaging according to any one of Items 1 to 3, wherein the linear low-density polyethylene contained in the layer (C-2) is a polymer obtained by polymerization using a metallocene catalyst. .
  • Item 6. Item 6. The polyamide-based multilayer tube for food packaging according to any one of Items 1 to 5, wherein the total film thickness is 30 to 80 ⁇ m.
  • item 1 including the following processes: (I) a step of coextrusion molding the raw material compositions (A), (B) and (C) constituting the (A) layer, (B) layer and (C) layer, respectively; (Ii) a step of biaxially stretching the tube obtained in the step (i); (Iii) a step of annealing the stretched tube; and (iv) a step of performing corona treatment on the tube after the annealing treatment.
  • Polyamide-based multilayer tube for food packaging has the following (A) layer, (B) layer and (C) layer, and has a low-temperature shrinkage of 2 to 10%. , Heat shrinkability and gas barrier properties.
  • A layer, (B) layer and (C) layer
  • B layer and (C) layer
  • (A) layer which has the following composition can be formed in the outer side of the multilayer tube of this invention (side which does not contact with a packaged object).
  • the (A) layer can impart excellent film strength, stretchability during production, heat shrinkability, gas barrier properties, and the like to the multilayer tube of the present invention.
  • the (A) layer of the multilayer tube of the present invention is made of polyamide resin.
  • Preferable examples include polyamides by polycondensation of ⁇ -amino acids or co-condensation polymerization of diamine and dicarboxylic acid.
  • 6-nylon, 66-nylon, 11-nylon, 12-nylon, 610-nylon, 6T-nylon crystalline aromatic polyamide (by polycondensation reaction of aromatic diamine and dicarboxylic acid or its derivative) Obtained, for example, by a polycondensation reaction of a crystalline aromatic nylon such as polymetaxylene adipamide (MXD-nylon), an amorphous aromatic polyamide (aliphatic diamine and dicarboxylic acid or a derivative thereof, For example, amorphous nylon, etc.), 6-nylon and 66-nylon copolymer, 6-nylon and 12-nylon copolymer, 6-nylon and 11-nylon copolymer, or 6-nylon and 6T- Examples include nylon copolymers. These polyamide resins can be used singly or in combination of two or more. Among these, 6-nylon and a copolymer of 6-nylon and 66-nylon are preferable.
  • MXD-nylon polymetaxylene a
  • a combination in which a crystalline aromatic polyamide is blended with the 6-nylon or a copolymer of 6-nylon and 66-nylon can be exemplified.
  • MX nylon for example, S-6007 (grade name), relative viscosity 2.7, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the compounding amount of the crystalline aromatic polyamide is preferably about 5 to 50% by weight, more preferably about 20 to 40% by weight in the total resin constituting the layer (A).
  • the layer (A) may be composed of the above-mentioned polyamide-based resin, but an inorganic or organic additive may be blended as necessary within a range not impairing the effects of the present invention. it can.
  • additives include antiblocking agents, nucleating agents, water repellents, antioxidants, heat stabilizers, and metal soaps.
  • silica, talc, kaolin and the like can be appropriately blended in the range of about 100 to 50,000 ppm.
  • the (B) layer is formed for the purpose of bonding the (A) layer and the (C) layer described later.
  • Polyolefin resin can be used for the (B) layer of the multilayer tube of the present invention, and examples thereof include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polypropylene, and modified products thereof. .
  • the modified product include acid-modified products, and maleic anhydride-modified polyolefin is preferable. Specific examples include maleic anhydride-modified polyethylene such as maleic anhydride graft-modified LLDPE; maleic anhydride-modified polypropylene such as maleic anhydride graft-modified polypropylene.
  • an ionomer resin As the polyolefin resin constituting the layer (B), an ionomer resin, an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, etc. It can also be used.
  • acid-modified polyolefins such as maleic anhydride-modified polyethylene and maleic anhydride-modified polypropylene are preferable. These polyolefin resins can be used singly or in combination of two or more.
  • the layer (B) may be composed of the above-mentioned polyolefin-based resin.
  • an inorganic or organic additive such as a pigment, as long as the effects of the present invention are not impaired.
  • a dye, an antioxidant, a heat stabilizer and the like can be appropriately blended.
  • the (C) layer is a layer that comes into contact with an article to be packaged such as processed food.
  • the layer (C) includes a polypropylene resin having a heat distortion temperature (ISO 75B-1, ISO 75B-2) of 60 ° C. or higher and a Vicat softening point of 120 ° C. or higher, and a surface wetting tension of 35 mN / m or higher.
  • the layer (C-1) has a heat distortion temperature of 60 ° C. or higher, preferably 60 to 120 ° C., more preferably 70 to 100, according to ISO 75B-1 or ISO 75B-2. And a Vicat softening point of 120 ° C. or higher, preferably 120 to 160 ° C., more preferably 125 to 155 ° C.
  • the Vicat softening point in the present invention is a value measured in accordance with ISO 306 (A50 (50 ° C./h, 10N)).
  • the melt viscosity (MFR) of the polypropylene resin according to ISO 1133 is preferably about 0.5 to 20 g / 10 minutes, more preferably about 2 to 10 g / 10 minutes, and further preferably about 4 to 8 g / 10 minutes.
  • a multilayer tube having a (C-1) layer excellent in blocking resistance, transparency, stretchability and the like can be obtained.
  • the polypropylene resin that satisfies the heat distortion temperature and the Vicat softening point can be appropriately selected from known ones, and includes homopolypropylene, random copolymer polypropylene, block copolymer polypropylene, and the like. Among these, Random copolymer polypropylene and block copolymer polypropylene are preferred.
  • random copolymer polypropylene examples include a random copolymer of polyethylene and polypropylene in which a propylene part and an ethylene part are randomly arranged to form a copolymer.
  • polypropylene resins are, for example, known products such as RD735CF (manufactured by Borealis), Crylell RC1601 (manufactured by Basell), Moplen RP215M (manufactured by Basell), and can be obtained commercially.
  • the (C-1) layer may be composed of the above-mentioned polypropylene resin, but if necessary, an inorganic or organic additive is blended as long as the effects of the present invention are not impaired.
  • (C-1) layer can be formed.
  • additives include antiblocking agents (silica, talc, kaolin, etc.), slip agents, polyethylene waxes, antioxidants and heat stabilizers, and dyes and pigments for coloring. It can mix
  • the blending amount is not particularly limited as long as the effect of the present invention is not impaired. For example, about 100 to 50,000 ppm is preferable.
  • the (C-2) layer has a density of 0.92 g / cm 3 or more and less than 0.95 g / cm 3 , preferably 0.92 to 0.93 g / cm 3 , and more. Preferably, it contains 0.925 to 0.93 g / cm 3 of linear low density polyethylene (LLDPE). Further, more preferably metallocene LLDPE, density of the case is preferably about 0.92 ⁇ 0.93g / cm 3, more preferably about 0.92 ⁇ 0.925g / cm 3.
  • LLDPE linear low density polyethylene
  • the density in the present invention is a value measured by the ISO1183-1 A method.
  • metacelon LLDPE refers to LLDPE polymerized using a metatheron catalyst (single site catalyst).
  • metatheron catalyst include bis (ferroceno [2,3] inden-1-yl) dimethylsilylene zirconium dichloride, rac- (ferroceno [2,3] inden-1-yl) dimethylsilylene (tetramethylcyclopentadienyl) zirconium.
  • LLDPE polymerized using a metallocene catalyst can be easily obtained commercially, for example, sold under the trade names Exeed 1023CA (manufactured by Exxon Mobile Chemical), Evolue SP2510 (manufactured by Prime Polymer), etc. Yes.
  • an inorganic or organic additive can be blended to form the (C-2) layer.
  • additives include antiblocking agents (silica, talc, kaolin, etc.), slip agents, polyethylene waxes, antioxidants and heat stabilizers, and dyes and pigments for coloring. It can mix
  • the blending amount is not particularly limited as long as the effect of the present invention is not impaired. For example, about 100 to 50,000 ppm is preferable.
  • the multilayer tube of the present invention can be used on the surface of either the (C-1) layer or the (C-2) layer without spreading an antiblocking agent.
  • an antiblocking agent such as corn starch or starch may be distributed on the surface of the layer (C) as necessary.
  • (x) layer examples include, for example, polyethylene terephthalate resin, saponified ethylene-vinyl acetate copolymer (Evoh resin), polypropylene resin, polybutylene terephthalate resin, and the like. Layer.
  • the multilayer tube which has the structure of 4 layers or more combining the said 3 layers, for example, (A) layer / (B) layer / (A) layer / (B) layer / (C) layer, (A) layer / (B) layer / (C) layer / (C) layer, (A) layer / (A) layer / (B) layer / (C) layer, (A) layer / (B) layer / Examples include (A) layer / (B) layer / (C) layer / (C) layer.
  • the two (A) layers have the same composition. May be different.
  • the composition of each layer can be appropriately set as long as the effects of the present invention are not impaired.
  • the present invention includes the form of (A) layer / (B) layer / (A) layer / (B) layer / (C) layer.
  • the (A) layer is 6- Nylon homopolymer (film thickness: 15 ⁇ m)
  • (B) layer is maleic anhydride graft-modified LLDPE (film thickness: 5 ⁇ m)
  • (C-1) layer is a polypropylene resin (film thickness: 15 ⁇ m)
  • (A ) Layer is a copolymer of 6-nylon and 66-nylon (film thickness: 15 ⁇ m)
  • (B) layer is maleic anhydride graft-modified LLDPE (film thickness: 5 ⁇ m)
  • (C-2) layer is LLDPE (film thickness) : 15 ⁇ m) and the like.
  • a layer ((x) layer) other than the (A) to (C) layers may be further provided between the (B) layer and the (C) layer.
  • random copolymer polypropylene film thickness: 5 to 5
  • the thickness of the (x) layer can be appropriately set based on the thickness of the (A) to (B) layers and the total thickness of the multilayer tube.
  • the total film thickness of the polyamide-based multilayer tube for food packaging of the present invention having the layer structure as described above can be appropriately set according to the application and is not particularly limited, but is usually about 30 to 80 ⁇ m.
  • each layer is usually about 5 to 50 ⁇ m, preferably about 10 to 50 ⁇ m, more preferably about 5 to 40 ⁇ m for layer (A); about 2 to 15 ⁇ m for layer (B), preferably about 3 to 10 ⁇ m.
  • the layer (C) is about 2 to 50 ⁇ m, preferably about 3 to 40 ⁇ m, and in the case of the (C-2) layer, about 10 to 50 ⁇ m, preferably 10 to 40 ⁇ m.
  • the thickness ratio of each layer is about 40/20/40 to 50/5/45 (%), preferably 40/20/40 to 49. / 6/45 (%), more preferably 40/20/40 to 47/10/43 (%).
  • the present invention also provides a method for producing the above-mentioned polyamide-based multilayer tube for food packaging.
  • the manufacturing method of the multilayer tube of this invention includes the following processes. (I) a step of coextrusion molding the raw material compositions (A), (B) and (C) constituting the (A) layer, (B) layer and (C) layer, respectively; (Ii) A step of biaxially stretching the tube obtained in the step (i); (Iii) a step of annealing the stretched tube; and (iv) a step of performing corona treatment on the tube after the annealing treatment.
  • step (i) the specific compositions of the raw material compositions (A), (B) and (C) constituting the (A) layer, the (B) layer and the (C) layer are as described above.
  • 1 represents a polyamide-based multilayer tube formed by the double bubble method.
  • the raw material compositions (A) to (C) are co-extruded into a cylindrical shape with an annular die, then biaxially stretched with air (first bubble), and then folded with a pinch roll.
  • air is blown again to inflate, and annealing is performed in this state (second bubble).
  • the annealing temperature is preferably such that the tube surface temperature near the annealing outlet (between about 5 to 25 cm from the annealing outlet) is higher than 50 ° C. and lower than 180 ° C., for example, About 55 to 160 ° C is preferable, about 55 to 140 ° C is more preferable, and about 55 to 130 ° C is more preferable.
  • the effect of the present invention is further enhanced by heating with a heater or the like so that the tube surface temperature is within the predetermined range at a predetermined location from the annealing treatment outlet.
  • the annealing temperature is lower than 50 ° C., the annealing treatment is insufficient, and the blocking resistance and the low temperature shrinkage tend to be inferior.
  • the formed polyamide-based multilayer tube can be continuously wound by performing a corona treatment. Moreover, after formation, it may be wound up once and subjected to corona treatment.
  • FIG. 1 is a guide roll for the multilayer tube 1.
  • 4, 4 'and 5, 5' are a pair of pinch rolls, respectively. Between these rolls 4, 4 'and 5, 5', gas such as air previously introduced into the multilayer tube 1 is kept airtight, The multilayer tube 1 is kept in a fully inflated state.
  • Corona discharge is performed on the multilayer tube 1 in such a state from the outside to the inside of the tube.
  • the apparatus A for corona discharge a known apparatus may be used.
  • the upper corona discharge part is composed of a corona discharge electrode roller 6 and a counter electrode roller 6 'corresponding thereto
  • the lower corona discharge part is composed of a corona discharge electrode roller 7 and a counter electrode roller 7' corresponding thereto.
  • a pinch roll 4 and rollers 6, 6 ', 7, 7' are driven by a motor (not shown) via a transmission (not shown), and another speed reducer (not shown) is driven from the motor (not shown).
  • the pinch roll 5 is driven via
  • the mechanism for corona discharge provided in the corona discharge electrode rollers 6 and 7 is not shown.
  • the distance between the electrodes that is, the distance between the corona discharge electrode rollers 6 and 7 and the respective counter electrode rollers 6 'and 7' is arbitrarily adjusted by using one of the electrodes (discharge electrode or counter electrode) as a movable electrode. it can.
  • the inner surfaces of the multilayer tube 1 are kept in contact with each other at least during corona discharge by the air in the multilayer tube 1.
  • corona treatment is performed with the inner surfaces of the multilayer tubes in contact with each other, the corona discharge effect cannot be exhibited on the surface of the outermost layer (C), so avoid contact between the inner surface and the inner surface of the multilayer tube during the corona discharge treatment.
  • Corona treatment is performed from the corona discharge electrode rollers 6 and 7 toward the respective counter electrode rollers 6 'and 7'. That is, corona discharge is performed from the outside to the inside of the multilayer tube 1, and the discharge current is guided from the outside to the outside on the opposite side through the film multilayer tube.
  • Corona discharge increases the wetting tension of the polypropylene resin surface of the multilayer tube (C) layer. Since such corona treatment is performed from one side when one discharge electrode is used, the treatment becomes non-uniform. Therefore, preferably two or more discharge electrodes are used, and the discharge electrodes are mounted symmetrically on the opposite sides. It is desirable that the configuration allows processing from both right and left sides, and this is one preferred embodiment of the present invention.
  • the strength of the corona treatment can be appropriately set according to the type of multilayer tube, the feed rate, the thickness of the multilayer tube, the diameter of the multilayer tube, and the like.
  • the strength obtained by the corona treatment can be in a wide range, but it may be controlled so that the wetting tension of the surface of the (C) layer is 35 mN / m or more.
  • the more preferable wetting tension of the layer surface is 37 mN / m or more, and more preferably 40 to 50 mN / m.
  • FIG. 1 shows a case in which two pairs of corona discharge electrode rollers 6 and 7 and counter electrode rollers 6 'and 7' are used, but as shown in FIG. 2, the corona discharge electrode rollers 6 and 7 are used.
  • corona treatment from the corona discharge electrode rollers 6, 7, 12 and 13 toward the counter electrode rollers 6 ', 7', 12 'and 13' can be performed from four directions.
  • an antiblocking agent can be distributed as necessary.
  • a distribution method for example, the method described in Patent Document 1 can be adopted.
  • the advancing direction of the tube body is set from the top to the bottom.
  • the process in FIG. 1 may be performed so that the tube body proceeds from the bottom to the top, and this process may be performed in the lateral direction.
  • the polyamide-based multilayer tube for food packaging of the present invention obtained as described above has the following excellent physical properties.
  • the blocking resistance (opening property) of the polyamide-based multilayer tube for food packaging of the present invention is less than 50 (g / 15 mm width), preferably 0 to 40 (g / mm) when evaluated according to the measurement method shown in the Examples below. 15 mm width), the inner surface of the tube does not block even when the film is wound and stored immediately after film formation.
  • the wet tension of the (C) layer surface is preferably 35 mN / m or more, preferably Is 37 mN / m or more, more preferably about 40 to 50 mN / m.
  • the surface wettability is in the above range, the affinity between the processed meat and the multilayer tube inner surface is improved, and the adhesion effect between the meat and the multilayer tube inner surface is obtained.
  • the high-temperature shrinkability of the polyamide-based multilayer tube for food packaging of the present invention is 3% or more, preferably about 10 to 25% when evaluated according to the measurement method shown in the following examples. is there.
  • the shrinkage rate is 3% or more indicates that the shrinkage rate in both the MD direction and the TD direction is “3% or more” measured by the measurement method shown in the examples below.
  • the high temperature shrinkage refers to the so-called heat shrinkability of the film. If the high temperature shrinkage is within the above range, the effect of imparting a tight feeling by shrinking the multilayer tube by heat treatment and tightening the contents, There is an effect that the multi-layer tube and the multilayer tube are in close contact with each other without any gap.
  • the low temperature shrinkability of the polyamide-based multilayer tube for food packaging of the present invention is 2 to 10%, preferably 2 to 5 when evaluated according to the measurement method shown in the following examples. %.
  • the shrinkage rate is 2 to 10%
  • the shrinkage rate in both the MD direction and the TD direction is “2 to 10%” measured by the measurement method shown in the following examples.
  • Heat-shrinkable multilayer tubes may shrink even at storage temperatures or distribution temperatures.
  • the low-temperature shrinkage rate is intended to evaluate the property of spontaneous shrinkage other than the step of shrinking the multilayer tube of the present invention. Accordingly, the low temperature shrinkage rate is the amount that shrinks unexpectedly, so the lower the value, the better.
  • Examples of foods that can use the polyamide-based multilayer tube for food packaging of the present invention as described above include processed meat products such as ham, sausage and bacon, processed fish products, and processed food products such as kamaboko and chikuwa. Etc. can be illustrated. Moreover, as a form of a packaging material, a casing, a bag-like thing, etc. can be illustrated.
  • the multilayer tube is naturally shrunk (naturally shrinks at room temperature), so that the product (multi-layer tube) wound up in a roll shape over time is tightened, It is possible to prevent the phenomenon that blocking occurs between the inner surfaces of the multilayer tube due to the stress.
  • the polyamide-based multilayer tube for food packaging of the present invention has excellent blocking resistance, surface wettability, and high temperature shrinkability of the layer (C) that comes into contact with the packaged object, and is suitable for food (for example, processed meat). Since it has good adhesion, it has the effect of suppressing the occurrence of gravy from meat and preventing spoilage. Further, the meat and the multilayer tube are not separated when the processed meat is cut.
  • FIG. 1 is a schematic explanatory view showing an example of a corona treatment apparatus.
  • FIG. 2 is a schematic explanatory view showing a discharge part of the corona treatment apparatus.
  • the heat distortion temperature is a value measured according to ISO 75B-1 and ISO 75B-2
  • the Vicat softening point is ISO 306 (A50 (50 ° C./h, 10 N)).
  • the density is a value measured according to ISO1183-1 A method
  • the MFR is a value measured according to ISO1133.
  • Example 1-1 The following were used as the layers (A) to (C-1).
  • the (C-1) layer was mixed with 8,000 ppm of an antiblocking agent (silica).
  • the above raw material is co-extruded from an annular die to form a three-layer tube, and after biaxial stretching is performed on the three-layer tube, an annealing treatment is subsequently performed so that the tube surface temperature is 100 ° C. (about 10 cm from the annealing treatment outlet). went.
  • corona treatment was performed by continuously discharging from the corona discharge electrode rollers 6 and 7 using the corona treatment apparatus shown in FIG.
  • the distance between the corona discharge electrode roller (using a rubber coated roll, length 420 mm) and the counter electrode roller (using a metal roll, length 420 mm) is 1.3 mm, and the tube body is inflated with air The process was performed. The tube during this treatment was narrowed to an interval of about 1.3 mm, and the inner surfaces were not in contact with each other but were almost flat.
  • the three-layer biaxially stretched tube subjected to the corona treatment was continuously wound on a paper tube at a length of 1000 m to obtain a seamless heat-shrinkable multilayer tube having gas barrier properties.
  • the thickness of each layer is 20/5/20 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-1) layer, and the folded diameter (flattened state)
  • the width was 90 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 1 was 4.5% in length and 4.0% in width.
  • Example 1-2 A multilayer tube was obtained in the same manner as in Example 1-1 except that the following were used as the (A) layer and the (C-1) layer.
  • the multilayer tube of Example 1-2 had a thickness of 18/5/17 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-1) layer, and the folding diameter was 90 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 1-2 was 3.5% in length and 2.5% in width.
  • Example 1-3 A multilayer tube was produced using the following materials in the same manner as in Example 1-1 to obtain a multilayer tube.
  • the multilayer tube of Example 1-3 has a thickness of 7/2/10/3/13/3 ⁇ m in the order of the first layer, the second layer, the third layer, the fourth layer, the fifth layer, and the sixth layer. Yes, the folding diameter was 90 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 1-3 was 4.0% in length and 2.5% in width.
  • Example 1-4 A multilayer tube was obtained in the same manner as in Example 1-1 except that the following were used as the (A) layer and the (C-1) layer.
  • (C-1) layer homopolypropylene (Moplen HF500N (product name and grade name), heat distortion temperature : 95 ° C., Vicat softening point: 155 ° C., MFR: 12.0 g / 10 min, manufactured by Basell)
  • the thickness of the multilayer tube of Example 1-4 was 18/5/17 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-1) layer, and the folding diameter was 90 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Example 1-4 was 3.0% in length and 2.5% in width.
  • Example 1-5 A multilayer tube was obtained in the same manner as in Example 1-1 except that the following (C-1) layer was used.
  • (C-1) layer random copolymerized polypropylene (Moplen EP1006 (product name and grade name), heat distortion temperature: 88 ° C., Vicat softening point: 149 ° C., MFR: 2.0 g / 10 min, manufactured by Basell)
  • the multilayer tube of Example 1-5 had a thickness of 18/5/17 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-1) layer, and had a folding diameter of 90 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 1-5 was 4.0% in length and 3.0% in width.
  • Example 1-6 A multilayer tube was obtained in the same manner as in Example 1-1 except that the following (B) layer (adhesive layer) was used.
  • Example 1-7 A multilayer tube was obtained in the same manner as in Example 1-1 except that the following (B) layer (adhesive layer) was used.
  • the thickness of the multilayer tube of Comparative Example 1-1 was 20/5/20 ⁇ m in the order of the (A) layer, the (B) layer, and the (C) layer, and the folding diameter was 90 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Comparative Example 1-1 was 5.0% both in the vertical and horizontal directions.
  • Example 1-2 In the multilayer tube of Example 1-3, random copolymerized polypropylene (Adsyl 5C39F (product name and grade name)) used for the fifth layer as the sixth layer, heat distortion temperature: 62 ° C., Vicat softening point: 107 ° C., MFR : 5.5 g / 10 min, manufactured by Basell), and the same procedure as in Example 1-3 was performed to obtain a multilayer tube.
  • Adsyl 5C39F product name and grade name
  • the multilayer tube of Comparative Example 1-2 has a thickness of 7/2/10/3/13/3 ⁇ m in the order of the first layer, the second layer, the third layer, the fourth layer, the fifth layer, and the sixth layer. Yes, the folding diameter was 90 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Comparative Example 1-2 was 3.5% in length and 2.5% in width.
  • Comparative Example 1-3 (C) Random copolymer polypropylene (Cyrell RC1601 (product name and grade name), heat deformation temperature: 75 ° C., Vicat softening point: 140 ° C., MFR: 5.0 g / 10 min, manufactured by Basell) is used as the layer.
  • a multilayer tube was obtained in the same manner as in Example 1-1 except that the annealing process was performed at a surface temperature of 40 ° C. (about 10 cm from the annealing process outlet).
  • the multilayer tube of Comparative Example 1-3 had a thickness of 20/5/20 ⁇ m in order of the (A) layer, the (B) layer, and the (C) layer, and had a folding diameter of 90 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Comparative Example 1-3 was 11.0% in both the vertical and horizontal directions.
  • Comparative Example 1-4 (C) Random copolymer polypropylene (Adsyl 3C39F (product name and grade name), heat deformation temperature: 71 ° C., Vicat softening point: 122 ° C., MFR: 5.5 g / 10 min, manufactured by Basell) is used as the layer.
  • a multilayer tube was obtained in the same manner as in Example 1 except that the annealing process was performed at a surface temperature of 200 ° C. (about 10 cm from the annealing process outlet).
  • the multilayer tube of Comparative Example 1-4 had a thickness of 20/5/20 ⁇ m in the order of the (A) layer, the (B) layer, and the (C) layer, and had a folding diameter of 90 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Comparative Example 4 was 1.5% in length and 1.0% in width.
  • Tables 1 and 2 below show the composition of each layer in the multilayer tubes of Examples and Comparative Examples.
  • the multilayer tube obtained as described above was evaluated for blocking resistance, meat adhesion, high temperature shrinkage and low temperature shrinkage.
  • the evaluation method is as follows.
  • Blocking resistance evaluation opening evaluation
  • the tubular film is wound up to 1000 m on a paper tube and stored for 3 days under the condition of 40 ° C. ⁇ 90% RH as a sample.
  • a sample having a width of 15 mm is cut out at random from the portion near the core of the sample, and the peel strength between the inner surfaces thereof is measured.
  • the evaluation is performed at the maximum value in the measurement result, and the following is used as an index.
  • the meat-adhesive multilayer tube was stored in a roll wound around a paper tube for 3 days under conditions of 40 ° C. ⁇ 90% RH, and then cut into a length of 40 cm from the roll to obtain a processed meat casing.
  • the processed meat casing was filled with the processed meat, and both sides were sealed with an annular clip and heated at 85 ° C. for 1.5 hours to be cooled. Evaluation is made according to the following criteria from the state when the packaging material is peeled off from the processed meat.
  • C (Poor meat adhesion) Only the casing peels without resistance.
  • the surface wetting tension was evaluated according to JIS K 6768. The larger the value of the surface wetting tension, the better, and the better the adhesion to meat, so that good meat adhesion is realized.
  • Comparative Examples 1-1 and 1-2 in which the Vicat softening point of the polypropylene resin used in the (C) layer was less than 120 ° C., blocking occurred and there was a problem in the opening property.
  • Comparative Example 1-3 in which the annealing temperature was 40 ° C., the blocking resistance and the low-temperature shrinkage were inferior, and there were problems with the opening property and the tightening. Further, Comparative Example 1-4 in which the annealing temperature was 200 ° C. was inferior in high temperature shrinkage and was not sufficiently fitted to the contents.
  • Example 2-1 The following were used as the layers (A) to (C-2).
  • the above raw material is co-extruded from an annular die to form a three-layer tube, and after biaxial stretching is performed on the three-layer tube, an annealing treatment is subsequently performed so that the tube surface temperature is 100 ° C. (about 10 cm from the annealing treatment outlet). went.
  • discharge was continuously performed from the corona discharge electrode rollers 6 and 7 using the corona treatment apparatus shown in FIG.
  • the distance between the corona discharge electrode roller (using a rubber coated roll, length 420 mm) and the counter electrode roller (using a metal roll, length 420 mm) is 1.3 mm, and the tube body is inflated with air
  • the process was performed.
  • the tube during this treatment was narrowed to an interval of about 1.3 mm, and the inner surfaces were not in contact with each other but were almost flat.
  • the three-layer biaxially stretched tube subjected to the corona treatment was continuously wound on a paper tube at a length of 1000 m to obtain a seamless heat-shrinkable multilayer tube having gas barrier properties.
  • the thickness of each layer was 15/5/15 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-2) layer. Width in a state of being) 160 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Example 2-1 was 5.0% in both the vertical and horizontal directions.
  • Example 2-1 Since the multilayer tube of Example 2-1 had good heat shrinkability, it was possible to maintain a good packaging state. Moreover, when the processed meat was filled, the opening of the tube was sufficient, and no blocking was observed.
  • Example 2-2 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following (C-2) layer was used.
  • (C-2) layer linear low density polyethylene (Ultzex 4570 (product name and grade name), density: 0.945 g / cm 3 , MFR: 7.0 g / 10 min, manufactured by PRIME POLYMER Co., Ltd. )
  • the multilayer tube of Example 2-2 had a thickness of 15/5/15 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-2) layer, and a folding diameter of 160 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 2-2 was 4.0% in length and 3.0% in width.
  • Example 2-3 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following were used.
  • the multilayer tube of Example 2-3 had a thickness of 15/5/15 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-2) layer, and a folding diameter of 160 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Example 2-3 was 4.0% in length and 2.5% in width.
  • Example 2-4 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following were used as the (A) layer and the (C-2) layer.
  • the multilayer tube of Example 2-4 had a thickness of 15/5/15 ⁇ m in the order of the (A) layer, the (B) layer, and the (C-2) layer, and a folding diameter of 160 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Example 2-4 was 3.0% in length and 2.0% in width.
  • Example 2-5 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following were used as the (A) layer and the (C-2) layer.
  • C-2) layer linear low density polyethylene (Lupolex 18E FA (product name and grade name), (Density: 0.926 g / cm 3 , MFR: 0.7 g / 10 min, manufactured by Basell)
  • the multilayer tube of Example 2-5 had a thickness of 20/5/15 ⁇ m in order of the (A) layer, the (B) layer, and the (C-2) layer, and had a folding diameter of 160 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Example 2-5 was 5.0% in length and 4.0% in width.
  • Example 2-1 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following were used.
  • the thickness of the multilayer tube of Comparative Example 2-1 was 15/5/15 ⁇ m in order of the (A) layer, the (B) layer, and the (C) layer, and the folding diameter was 160 mm. Further, the low-temperature shrinkage rate of the multilayer tube of Comparative Example 2-1 was 5.0% in both the vertical and horizontal directions.
  • Comparative Example 2-2 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following were used as the (A) layer and the (C) layer.
  • the multilayer tube of Comparative Example 2-2 had a thickness of 15/5/15 ⁇ m in the order of the (A) layer, the (B) layer, and the (C) layer, and a folding diameter of 160 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Comparative Example 2-2 was 4.0% in length and 2.5% in width.
  • Comparative Example 2-3 A multilayer tube was obtained in the same manner as in Example 2-1, except that the annealing treatment was performed at a tube surface temperature of 40 ° C. (about 10 cm from the annealing treatment outlet).
  • the multilayer tube of Comparative Example 2-3 had a thickness of 15/5/15 ⁇ m in the order of (A) layer, (B) layer, and (C) layer, and a folding diameter of 160 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Comparative Example 2-3 was 10.5% in length and 11.0% in width.
  • Example 2-4 A multilayer tube was obtained in the same manner as in Example 2-1, except that the following layers were used and the annealing treatment was performed at a tube surface temperature of 200 ° C. (about 10 cm from the annealing treatment outlet).
  • the multilayer tube of Comparative Example 2-4 had a thickness of 15/5/15 ⁇ m in the order of (A) layer, (B) layer, and (C) layer, and a folding diameter of 160 mm.
  • the low-temperature shrinkage rate of the multilayer tube of Comparative Example 2-4 was 1.0% in length and 1.5% in width.
  • Table 4 below shows the composition of each layer in the multilayer tubes of Examples and Comparative Examples.
  • the multilayer tube obtained as described above was evaluated for blocking resistance, meat adhesion, high temperature shrinkage and low temperature shrinkage by the above-described methods.
  • the evaluation results are shown in Table 5 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、多層チューブの(C)層がブロッキングを起こさず、被包装物である加工肉類等と多層チューブ(C)層との密着性が良好な食品包装用ポリアミド系多層チューブを提供することを主な目的とする。本発明は、下記、(A)層、(B)層及び(C)層を有し、低温収縮率が2~10%であって、熱収縮性及びガスバリア性を有する食品包装用ポリアミド系多層チューブ:(A)層がポリアミド系樹脂を含有し、(B)層がポリオレフィン系樹脂を含有し、被包装物と接触する(C)層が、熱変形温度(ISO 75B-1,ISO 75B-2)60°C以上、ビカット軟化点120°C以上であるポリプロピレン系樹脂を含有し、表面のぬれ張力が35mN/m以上である(C-1)層、又は、密度が0.92g/cm以上0.95g/cm未満である直鎖状低密度ポリエチレンを含有し、表面のぬれ張力が35mN/m以上である(C-2)層である。

Description

食品包装用ポリアミド系多層チューブ
 本発明は、被包装物との密着性が良好な食品包装用ポリアミド系多層チューブに関する。
 食品包装用ポリアミド系多層チュ-ブの分野において、被包装物である加工肉類等と接触する層には、通常ポリオレフィン系樹脂が用いられる。また、被包装物との密着性を良好にするために、被包装物と接触する層の表面にコロナ処理等を行う方法が採用されている(例えば、特許文献1~3参照)。
 このような技術により、製膜直後は内面どうしのブロッキングの発生はなく開口性も問題のない食品包装用ポリアミド系多層チューブが得られるようになった。しかしながら、このような食品包装用ポリアミド系多層チューブが実際に使用されるまでの保管条件等により内面どうしのブロッキングが発生し開口性が著しく悪化する場合があった。特に、製膜後すぐに紙管にロール状に巻き取るような形態において、低温収縮率が大きい包装材では時間経過とともに巻き締りがおこる。その結果その応力で多層チューブの内面どうしにブロッキングが発生することが問題となっていた。
特開平1-64845号公報 特開平2-135230号公報 特開平11-155473号公報
 本発明は、多層チューブの被包装物である加工肉類等と接触する層表面がブロッキングを起こさず、被包装物と当該層表面との密着性が良好な食品包装用ポリアミド系多層チューブを提供することを主な目的とする。
 本発明者らは、被包装物と接触する層に、所定の熱変形温度及びビカット軟化点を有するポリプロピレン系樹脂、又は、所定の密度を有する直鎖状低密度ポリエチレンを配合することによって、上記課題を解決できることを見出した。本発明は、このような知見に基づいてさらに研究を重ねた結果完成されたものである。
 本発明は以下の食品包装用ポリアミド系多層チューブ及び該多層チューブの製造方法を提供する。
項1.下記、(A)層、(B)層及び(C)層を有し、低温収縮率が2~10%であって、熱収縮性及びガスバリア性を有する食品包装用ポリアミド系多層チューブ:
 (A)層がポリアミド系樹脂を含有し、
 (B)層がポリオレフィン系樹脂を含有し、
 被包装物と接触する(C)層が、
熱変形温度(ISO 75B-1,ISO 75B-2)60℃以上、ビカット軟化点120℃以上であるポリプロピレン系樹脂を含有し、表面のぬれ張力が35mN/m以上である(C-1)層、又は、
密度が0.92g/cm以上0.95g/cm未満である直鎖状低密度ポリエチレンを含有し、表面のぬれ張力が35mN/m以上である(C-2)層である。
項2.(A)層に含まれるポリアミド系樹脂が、6-ナイロン、66-ナイロン、11-ナイロン、12-ナイロン、610-ナイロン、6T-ナイロン、結晶性芳香族ナイロン、非晶性芳香族ナイロン、6-ナイロンと66-ナイロンの共重合体、6-ナイロンと12-ナイロンの共重合体、6-ナイロンと11-ナイロンの共重合体、及び6-ナイロンと6T-ナイロンの共重合体からなる群より選択される少なくとも1種である、上記項1に記載の食品包装用ポリアミド系多層チューブ。
項3.(B)層に含まれるポリオレフィン系樹脂が、無水マレイン酸変性ポリオレフィン、アイオノマー樹脂、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、及びエチレン-メタクリル酸共重合体からなる群より選択される少なくとも1種のポリオレフィン系樹脂である、上記項1又は2に記載の食品包装用ポリアミド系多層チューブ。
項4.(C-1)層のポリプロピレン系樹脂の熱変形温度(ISO 75B-1,ISO 75B-2)が60~120℃、ビカット軟化点が120~160℃である、上記項1~3のいずれかに記載の食品包装用ポリアミド系多層チューブ。
項5.(C-2)層に含有される直鎖状低密度ポリエチレンが、メタロセン触媒を用いて重合して得られるポリマーである、上記項1~3のいずれかに記載の食品包装用ポリアミド系多層チューブ。
項6.総膜厚が30~80μmである上記項1~5のいずれかに記載の食品包装用ポリアミド系多層チューブ。
項7.以下の工程を含む上記項1に記載の食品包装用ポリアミド系多層チューブの製造方法:
(i)(A)層、(B)層及び(C)層をそれぞれ構成する原料組成物(A)、(B)及び(C)を筒状に共押出成形する工程;
(ii)前記工程(i)で得られたチューブに対して2軸延伸を行う工程;
(iii)延伸されたチューブにアニール処理を行う工程;及び
(iv)アニール処理後のチューブに対してコロナ処理を行う工程。
 以下、本発明を詳細に説明する。
 1.食品包装用ポリアミド系多層チューブ
 本発明の食品包装用ポリアミド系多層チューブは、下記、(A)層、(B)層及び(C)層を有し、低温収縮率が2~10%であって、熱収縮性及びガスバリア性を有する。以下、各層の構成について詳述する。
 1.1 (A)層
 本発明の多層チューブの外側(被包装物と接触しない側)には、下記組成を有する(A)層を形成することができる。(A)層によって、本発明の多層チューブに、優れたフィルム強度、製造の際の延伸性、熱収縮性、ガスバリア性等を付与することができる。
 本発明の多層チューブの(A)層は、ポリアミド系樹脂によって構成される。好ましくは、ω-アミノ酸の重縮合やジアミンとジカルボン酸の共縮重合等によるポリアミドが挙げられる。具体的には、6-ナイロン、66-ナイロン、11-ナイロン、12-ナイロン、610-ナイロン、6T-ナイロン、結晶性芳香族ポリアミド(芳香族ジアミンとジカルボン酸又はその誘導体との重縮合反応で得られ、例えば、ポリメタキシレンアジパミド(MXD-ナイロン)等の結晶性芳香族ナイロン)、非晶性芳香族ポリアミド(脂肪族ジアミンとジカルボン酸又はその誘導体との重縮合反応で得られ、例えば、アモルファスナイロン等)、6-ナイロンと66-ナイロンの共重合体、6-ナイロンと12-ナイロンの共重合体、6-ナイロンと11-ナイロンの共重合体、又は6-ナイロンと6T-ナイロンの共重合体等が挙げられる。これらのポリアミド系樹脂を1種単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、6-ナイロンや6-ナイロンと66-ナイロンの共重合体が好ましい。
 また、2種以上の組み合わせとして、前記6-ナイロンや6-ナイロンと66-ナイロンの共重合体に、結晶性芳香族ポリアミドを配合する組み合わせが例示できる。この場合、結晶性芳香族ポリアミドとしては、MXナイロン(例えば、S-6007(グレード名)、相対粘度2.7、三菱ガス化学(株)製)が好ましい。この場合の結晶性芳香族ポリアミドの配合量は、(A)層を構成する全樹脂中5~50重量%程度が好ましく、20~40重量%程度がより好ましい。
 本発明の多層チューブにおいて(A)層は、上記ポリアミド系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、無機または有機添加剤を配合することができる。このような添加剤としては、アンチブロッキング剤、核剤、撥水剤、酸化防止剤、熱安定剤、金属石鹸等が挙げられる。例えば、アンチブロッキング剤であれば、シリカ、タルク、カオリン等を100~50,000ppm程度の範囲で適宜配合することができる。
 1.2 (B)層
 本発明において(B)層は、上記(A)層と後述する(C)層を接着させる目的で形成される。本発明の多層チューブの(B)層にはポリオレフィン系樹脂を使用することができ、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、これらの変性物が挙げられる。変性物としては、酸変性物が挙げられ、無水マレイン酸変性ポリオレフィンが好ましい。具体的には、例えば、無水マレイン酸グラフト変性LLDPE等の無水マレイン酸変性ポリエチレン;無水マレイン酸グラフト変性ポリプロピレン等の無水マレイン酸変性ポリプロピレンを挙げることができる。
 また、(B)層を構成するポリオレフィン系樹脂として、アイオノマー樹脂、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等を使用することもできる。
 これらの中でも、(B)層に使用される樹脂としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン等の酸変性ポリオレフィンが好ましい。これらのポリオレフィン系樹脂を1種単独で、又は2種以上を組み合わせて用いることもできる。
 本発明の多層チューブにおいて(B)層は、上記ポリオレフィン系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、無機または有機添加剤、例えば、顔料、染料、酸化防止剤、熱安定剤等を適宜配合することができる。
 1.3 (C)層
 本発明の多層チューブにおいて、(C)層は、加工食品等の被包装物と接触する層である。
 (C)層としては、熱変形温度(ISO 75B-1,ISO 75B-2)60℃以上、ビカット軟化点120℃以上であるポリプロピレン系樹脂を含有し、表面のぬれ張力が35mN/m以上である(C-1)層、又は、密度が0.92g/cm以上0.95g/cm未満である直鎖状低密度ポリエチレンを含有し、表面のぬれ張力が35mN/m以上である(C-2)層を挙げることができる。
 以下にそれぞれの層に分けて説明をする。
 1.3.1 (C-1)層
 (C-1)層は、ISO 75B-1又はISO 75B-2による熱変形温度が60℃以上、好ましくは60~120℃、より好ましくは70~100℃であって、且つビカット軟化点が120℃以上、好ましくは120~160℃、より好ましくは125~155℃であるポリプロピレン系樹脂によって形成される。
 ここで、本発明においてビカット軟化点とは、ISO306(A50(50℃/h、10N)の規定に従って測定した値である。
 また、上記ポリプロピレン系樹脂のISO1133による溶融粘度(MFR)は、0.5~20g/10分程度が好ましく、2~10g/10分程度がより好ましく、4~8g/10分程度がさらに好ましい。
 このようなポリプロピレン系樹脂であれば耐ブロッキング性、透明性、延伸性等に優れた(C-1)層を有する多層チューブが得られる。
 上記熱変形温度及びビカット軟化点を充足するポリプロピレン系樹脂は公知のものから適宜選択して使用することができ、ホモポリプロピレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン等が挙げられ、これらの中でも、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレンが好ましい。
 ランダム共重合体ポリプロピレンとしては、例えば、プロピレン部とエチレン部がランダムに並び共重合体を形成している、ポリエチレンとポリプロピレンのランダム共重合体が挙げられる。
 これらのポリプロピレン系樹脂は、例えば、RD735CF(Borealis製)、Clyrell RC1601(Basell製)、Moplen RP215M(Basell製)等の商品が知られており、商業的に入手することが可能である。
 本発明の多層チューブにおいて(C-1)層は、上記ポリプロピレン系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、無機または有機添加剤を配合して(C-1)層を形成することができる。このような添加剤としては、例えば、アンチブロッキング剤(シリカ、タルク、カオリン等)、スリップ剤、ポリエチレンワックス、酸化防止剤や熱安定剤、また着色の為に染料、顔料が挙げられ、これらを適宜配合することができる。その配合量は、本発明の効果を損なわない範囲であれば特に限定されないが、例えば、100~50,000ppm程度が好適である。
 1.3.2 (C-2)層
 (C-2)層は、密度が0.92g/cm以上0.95g/cm未満、好ましくは0.92~0.93g/cm、より好ましくは0.925~0.93g/cmの直鎖状低密度ポリエチレン(LLDPE)を含有するものである。また、より好ましくはメタセロンLLDPEであり、その場合の密度は、0.92~0.93g/cm程度が好ましく、0.92~0.925g/cm程度がより好ましい。
 ここで、本発明において密度とは、ISO1183-1 A法によって測定した値である。
 LLDPEの密度がこのような数値範囲内にあることで、耐ブロッキング性、透明性、延伸性等に優れた多層チューブが得られる。
 ここで、メタセロンLLDPEとは、メタセロン触媒(シングルサイト触媒)を用いて重合したLLDPEを指す。メタセロン触媒としては、ビス(フェロセノ[2,3]インデン-1-イル)ジメチルシリレンジルコニウムジクロライド、rac-(フェロセノ[2,3]インデン-1-イル)ジメチルシリレン(テトラメチルシクロペンタジエニル)ジルコニウムジクロライド、rac-(フェロセノ[2,3]インデン-1-イル)ジメチルシリレン(シクロペンタジエニル)ジルコニウムジクロライド、rac-(フェロセノ[2,3]インデン-1-イル)ジメチルシリレン(2-メチルインデン-1-イル)ハフニウムジクロライド、rac-(フェロセノ[2,3]インデン-1-イル)ジメチルシリレン(フルオレン-9-イル)ジルコニウムジクロライド、rac-(フェロセノ[2,3]インデン-1-イル)ジメチルシリレン(t-ブチルアミド)ジルコニウムジクロライド、rac-(4-フェロセニルフェロセノ[2,3]シクロペンタジエニル)ジメチルシリレン(テトラメチルシクロペンタジエニル)ジルコニウムジクロライド、ビス(4-フェロセニルフェロセノ[2,3]シクロペンタジエニル)ジメチルシリレンジルコニウムジクロライド及びビス(9-フェロセニルフルオレニル)チタンジクロライド等が挙げられる。
 メタロセン触媒を用いて重合されたLLDPEは、簡便には商業的に入手することが可能であり、例えば、商品名Exeed 1023CA(Exxon Mobil Chemical製)、Evolue SP2510(Prime Polymer製)等として販売されている。
 上記LLDPEに加え、無機または有機添加剤を配合して、(C-2)層を形成することができる。このような添加剤としては、例えば、アンチブロッキング剤(シリカ、タルク、カオリン等)、スリップ剤、ポリエチレンワックス、酸化防止剤や熱安定剤、また着色の為に染料、顔料が挙げられ、これらを適宜配合することができる。その配合量は、本発明の効果を損なわない範囲であれば特に限定されないが、例えば、100~50,000ppm程度が好適である。
 本発明の多層チューブで加工肉等を包装する場合、本発明の多層チューブは、アンチブロッキング剤を撒布しなくても(C-1)層、(C-2)層のいずれの表面においても、耐ブロッキング性が十分に優れているが、必要に応じてコーンスターチ、澱粉等のアンチブロッキング剤を(C)層表面に撒布しておいてもよい。
 1.4 他の層
 本発明の多層チューブには、上記3層に加えて、さらに他の層を追加して形成することができる。他の層(以下、(x)層と表記することがある)としては、例えば、ポリエチレンテレフタレート樹脂、エチレン-酢酸ビニル共重合体のケン化物(Evoh樹脂)、ポリプロピレン系樹脂、ポリブチレンテレフタレート樹脂等の層が挙げられる。
 また、上記3層を組み合わせて4層以上の構成を有する多層チューブとすることもでき、例えば、(A)層/(B)層/(A)層/(B)層/(C)層、(A)層/(B)層/(C)層/(C)層、(A)層/(A)層/(B)層/(C)層、(A)層/(B)層/(A)層/(B)層/(C)層/(C)層等の構成が挙げられる。例えば、(A)層/(B)層/(A)層/(B)層/(C)層の構成を有する多層チューブとする場合、2つの(A)層は互い同じ組成を有していてもよいが、異なっていてもよい。他の構成を採用する場合であっても同様に、本発明の効果を損なわない限りにおいて、各層の組成を適宜設定することができる。
 本発明の他の好ましい実施態様としては、(A)層/(B)層/(A)層/(B)層/(C)層の形態が挙げられ、例えば、(A)層が6-ナイロンのホモポリマー(膜厚:15μm)、(B)層が無水マレイン酸グラフト変性LLDPE(膜厚:5μm)、(C-1)層がポリプロピレン系樹脂(膜厚:15μm)、又は、(A)層が6-ナイロンと66-ナイロンの共重合体(膜厚:15μm)、(B)層が無水マレイン酸グラフト変性LLDPE(膜厚:5μm)、(C-2)層がLLDPE(膜厚:15μm)等が挙げられる。
 また、(B)層と(C)層の間にさらに(A)~(C)層以外の層((x)層)を設けてもよく、例えば、ランダム共重合ポリプロピレン(膜厚:5~15μm)を用いることができる。(x)層の厚みは、(A)~(B)層の厚みと多層チューブの総膜厚に基づいて適宜設定することができる。
 以上のような層構成を有する本発明の食品包装用ポリアミド系多層チューブの総膜厚は、用途にあわせて適宜設定することができ、特に限定されないが、通常30~80μm程度である。
 また、各層の膜厚は、通常、(A)層は5~50μm程度、好ましくは10~50μm程度、より好ましくは5~40μm程度;(B)層は2~15μm程度、好ましくは3~10μm程度;(C)層は(C-1)層の場合、2~50μm程度、好ましくは3~40μm程度であり、(C-2)層の場合は、10~50μm程度、好ましくは10~40μm程度である。
 また、各層の膜厚比率((A)層/(B)層/(C)層)は、40/20/40~50/5/45(%)程度、好ましくは40/20/40~49/6/45(%)程度、より好ましくは40/20/40~47/10/43(%)程度である。
 2.製造方法
 本発明は、上記食品包装用ポリアミド系多層チューブの製造方法をも提供するものである。本発明の多層チューブの製造方法は、以下の工程を含む。
(i)(A)層、(B)層及び(C)層をそれぞれ構成する原料組成物(A)、(B)及び(C)を筒状に共押出成形する工程;
(ii)前記工程(i)で得られたチューブに対して2軸延伸を行う工程;
(iii)延伸されたチューブにアニール処理を行う工程;及び
(iv)アニール処理後のチューブに対してコロナ処理を行う工程。
 工程(i)において(A)層、(B)層及び(C)層をそれぞれ構成する原料組成物(A)、(B)及び(C)の具体的組成については、前述の通りである。
 本発明の多層チューブの製造方法を、例示的且つ概略的に示された図1に基づき説明する。
 図1において1はダブルバブル法により形成されたポリアミド系多層チューブを表す。ダブルバブル法とは、原料組成物(A)~(C)を環状のダイスで筒状に共押し出し、その後空気による2軸延伸工程(一つ目のバブル)を経て、一旦ピンチロールにて折りたたみ、さらにもう一度空気をいれて膨らまし、その状態のままアニール処理を行う方法である(二つ目のバブル)。
 アニール処理の温度は、アニール処理出口付近(アニール処理出口から5~25cm程度の間)のチューブ表面温度が50℃よりも高温であって180℃未満となるような温度とすることが好ましく、例えば、55~160℃程度が好ましく、55~140℃程度がより好ましく、55~130℃程度がさらに好ましい。アニール処理出口から所定の場所において前記所定範囲のチューブ表面温度になるようにヒーター等で加熱することによって、本発明の効果がより一層高められる。アニール温度が50℃よりも低い場合、アニール処理が不十分となり、耐ブロッキング性及び低温収縮性が劣る傾向があり、また、アニール処理温度が180℃を超えると、アニール処理が過度となり、高温収縮性が劣り、内容物に十分にフィットしない傾向がある。形成されたポリアミド系多層チューブを、連続的にコロナ処理を行い巻き取ることができる。また、形成後、一旦巻き取ってコロナ処理を行っても良い。
 図1中3は多層チューブ1のガイドロールである。4、4′及び5、5′は夫々一対のピンチロールで、この両者ロール4、4′及び5、5′間において多層チューブ1内部に予め導入された空気等の気体は気密に保持され、多層チューブ1は一杯にふくらんだ状態に保たれる。
 このような状態にある多層チューブ1に該チューブの外部から内部に向けてコロナ放電が行われる。コロナ放電のための装置Aは公知のものを使用すればよい。
 図1中の装置Aでは、上下に二組のコロナ放電部が設けられている。上部コロナ放電部はコロナ放電電極ローラー6及びこれと対応する対電極ローラー6′とからなり、下部コロナ放電部はコロナ放電電極ローラー7及びこれと対応する対電極ローラー7′とからなっている。モーター(図示せず)により変速機(図示せず)を介してピンチロール4、ローラー6、6′、7、7′が駆動され、且つ図示しない上記モーターから別の減速機(図示せず)を介してピンチロール5が駆動される。
 コロナ放電電極ローラー6及び7に備えられたコロナ放電の為の機構は図示しない。電極間間隔即ちコロナ放電電極ローラー6及び7とそれぞれの対電極ローラー6′及び7′との間の間隔は何れか一方の電極(放電電極又は対電極)を可動電極とすることにより任意に調整できる。設定された電極間間隔に基づき多層チューブ1内の空気により多層チューブ1の内面どうしは少なくともコロナ放電時には接触しない状態に保持される。多層チューブ内面どうしが接触した状態でコロナ処理を行うと、コロナ放電効果を最外層の(C)層表面に発現することができないため、コロナ放電処理時に多層チューブの内面と内面が接することは避ける必要がある。コロナ処理はコロナ放電電極ローラー6及び7からそれぞれの対電極ローラー6′及び7′に向けて行われる。すなわち多層チューブ1の外部から内部に向けてコロナ放電して、放電電流をフィルム多層チューブ外部から内部を通して反対側の外部に導く。
 コロナ放電を行うことにより多層チューブ(C)層のポリプロピレン系樹脂表面の濡れ張力が増大する。こうしたコロナ処理は、放電電極を1個で行うと片側からの処理となるために処理が不均一になるので、好ましくは放電電極を2個以上用い、放電電極をそれぞれ反対側に対称的に取付け、右左両面から処理が可能な如き構成にすることが望ましく、本発明の好ましい1つの実施態様である。
 コロナ処理の強度は、多層チューブの種類、送り速度、多層チューブの厚さ、多層チューブの径等に応じて適宜設定することができる。コロナ処理により得られる強度は広い範囲に亘り得るが、(C)層の表面のぬれ張力が35mN/m以上となるように制御すればよい。(C)層表面のより好ましいぬれ張力は37mN/m以上であり、さらに好ましくは40~50mN/mである。
 コロナ処理の方法は第1図の装置による方法に限られず、各種の方法を採ることができる。たとえば第1図には2対のコロナ放電電極ローラー6、7と対電極ローラー6′、7′を用いたものを示したが、更に第2図に示すように該コロナ放電電極ローラー6、7と直角方向にコロナ放電電極ローラー12、13及び対応する対電極ローラー12′、13′を設けたものを用いることができる。これによりコロナ放電電極ローラー6、7、12、13より対電極ローラー6′、7′、12′、13′に向けてコロナ処理して四方からのコロナ処理が可能となる。
 さらに、必要に応じてブロッキング防止剤の撒布を行うことができる。撒布方法としては、例えば、上記特許文献1に記載の方法を採用することができる。
 上例ではチューブ体をふくらます際に空気を用いたが、その他窒素ガス、炭酸ガス、不活性ガス等のガス体を用いればコロナ処理の効果がより高められることもあり、空気以外にも適宜の気体を用いてもよい。また、本例ではチューブ体の進行方向は上方から下方としたが、図1における工程をチューブ体が下方から上方に進むようにしてもよく、この工程をチューブ体が横方向に進むようにしてもよいし、特に制限はなく処理がし易いように自由に設計すればよい。
 以上のようにして得られる本発明の食品包装用ポリアミド系多層チューブは、次のような優れた物性を有するものである。
 (a)耐ブロッキング性(開口性)
 本発明の食品包装用ポリアミド系多層チューブの耐ブロッキング性(開口性)は、下記実施例において示される測定方法に従って評価した場合、50(g/15mm幅)未満、好ましくは0~40(g/15mm幅)程度の耐ブロッキング性(開口性)を有し、製膜後すぐにロール状に巻き取って保存した場合であってもチューブ内面どうしがブロッキングすることがない。
 (b)肉密着性
 本発明の食品包装用ポリアミド系多層チューブは、下記実施例において示される測定方法に従って評価した場合、多層チューブのみを剥離しようとした際に加工肉等の内容物が多層チューブに付着する程度の密着性を有していることが好ましい。
 加工肉等の製造工程での加熱処理後、肉密着性が高いと多層チューブの(C)層と肉が密着することにより、肉からの肉汁の発生を抑える効果がある。(C)層と肉の間に肉汁があると、腐敗しやすくなり、開封した際に肉汁が出て見た目も良くない。また、包装した加工肉をカットする際に、その切り口で肉と多層チューブが離れてしまうと、消費者はこのような商品を嫌うことから、肉密着性に優れていることが望ましい。
 (c)表面濡れ性
 本発明の食品包装用ポリアミド系多層チューブの表面濡れ性は、下記実施例において示される測定方法に従って評価した場合、(C)層表面のぬれ張力が35mN/m以上、好ましくは37mN/m以上、より好ましくは40~50mN/m程度である。表面濡れ性が前記範囲にある場合、加工肉と多層チューブ内面との親和性が向上し、肉と多層チューブ内面との密着効果が得られる。
 (d)高温収縮性
 本発明の食品包装用ポリアミド系多層チューブの高温収縮性は、下記実施例において示される測定方法に従って評価した場合、収縮率が3%以上、好ましくは10~25%程度である。
 ここで、「収縮率が3%以上」とは、下記実施例において示される測定方法によって測定されたMD方向、TD方向のいずれもの収縮率が「3%以上」であることを示す。
 高温収縮性は所謂フィルムの熱収縮性を指すものであり、高温収縮性が前記範囲内であると、加熱処理により多層チューブを収縮させ内容物を締め付けてタイト感を付与する効果や、内容物と多層チューブ間が隙間なく密着する効果がある。
 (e)低温収縮性
 本発明の食品包装用ポリアミド系多層チューブの低温収縮性は、下記実施例において示される測定方法に従って評価した場合、収縮率が2~10%であり、好ましくは2~5%程度である。
 ここで、「収縮率が2~10%」とは、下記実施例において示される測定方法によって測定されたMD方向、TD方向のいずれもの収縮率が「2~10%」であることを示す。
 熱収縮性の多層チューブは、保管している温度または流通の際の温度でも収縮することがある。低温収縮率は、本発明の多層チューブを収縮させる工程以外で自然に収縮する特性を評価することを目的としている。従って、低温収縮率は、想定外で収縮する分であるので数値が低いほど良い。
 以上のような本発明の食品包装用ポリアミド系多層チューブを使用することができる食品としては、例えば、ハム、ソーセージ、ベーコン等の食肉加工品、魚肉加工品、並びにカマボコ、チクワ等のねり加工品等を例示できる。また包装材の形態としては、ケーシング、袋状物等を例示できる。
 本発明の食品包装用ポリアミド系多層チューブによれば、多層チューブが自然収縮(常温で自然に収縮)することによって時間経過とともにロール状に巻き取られた製品(多層チューブ)が巻き締まってしまい、その応力で多層チューブの内面どうしにブロッキングが発生するという現象を防止することができる。
 また、本発明の食品包装用ポリアミド系多層チューブは、被包装物と接触する(C)層の耐ブロッキング性、表面ぬれ性、高温収縮性が優れており、食品(例えば、加工肉類)との密着性が良いことから、肉からの肉汁の発生を抑え、腐敗を防止する効果がある。また、加工肉をカットする際に肉と多層チューブが離れてしまうこともない。
図1はコロナ処理装置の一例を示す概略説明図である。 図2はコロナ処理装置の放電部を示す概略説明図である。
 以下、比較例と共に実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、以下の実施例及び比較例において、熱変形温度は、ISO 75B-1、ISO 75B-2に準じて測定した値であり、ビカット軟化点は、ISO306(A50(50℃/h、10N)に準じて測定した値であり、密度は、ISO1183-1 A法に準じて測定した値であり、MFRは、ISO1133に準じて測定した値である。
 実施例1-1
 (A)層~(C-1)層として、以下のものを用いた。
(A)層:6-ナイロンと66-ナイロンとの共重合体(UBENYLON 5033FDX57(製品名及びグレード名)、UBE INDUSTRIES, LTD.製)
(B)層(接着層):ポリプロピレンに無水マレイン酸をグラフト共重合した変性共重合体を含む変性ポリオレフィン系樹脂(Admer QF551E(製品名及びグレード名)、MITSUI CHEMICALS EUROPE GmbH製)
(C-1)層:ランダム共重合ポリプロピレン(RD735CF(製品名及びグレード名)、熱変形温度:76℃、ビカット軟化点:132℃、MFR:6.0g/10分、Borealis製)
 また、(C-1)層にはアンチブロッキング剤(シリカ)8,000ppmを混合した。
 上記原料を環状ダイスより共押出して三層チューブを成形し、その三層チューブに2軸延伸を施した後、引き続きチューブ表面温度100℃(アニール処理出口から約10cm)となるようにアニール処理を行った。こうして三層2軸延伸チューブを得た後、連続して図1に示すコロナ処理装置を用いてコロナ放電電極ローラー6及び7から放電を行い、コロナ処理を施した。このとき、コロナ放電電極ローラー(ゴム被覆ロールを使用、長さ420mm)と対電極ローラー(金属ロールを使用、長さ420mm)との間隔は1.3mmであり、空気によりチューブ体を膨らました状態で処理を行った。この処理時のチューブは約1.3mmの間隔に絞られ内面どうしは接していないが略々扁平に近い状態にあった。
 コロナ処理を施した三層2軸延伸チューブを、連続して紙管に1000mの長さで巻取り、ガスバリヤー性を有するシームレス状の熱収縮性多層チューブを得た。
 この方法により得た実施例1のチューブは、各層の厚さが(A)層、(B)層、(C-1)層の順に20/5/20μmであり、折径(扁平にした状態での幅)90mmであった。また、実施例1の多層チューブの低温収縮率は縦4.5%、横4.0%であった。
 実施例1-2
 (A)層、(C-1)層として以下のものを用いる以外は、実施例1-1と同様に行い多層チューブを得た。
(A)層:6-ナイロンのホモポリマー(Durethan B40FAM(製品名及びグレード名)、LANXESS製)
(C-1)層:ランダム共重合ポリプロピレン(Clyrell RC1601(製品名及びグレード名)、熱変形温度:75℃、ビカット軟化点:140℃、MFR:5.0g/10分、Basell製)
 実施例1-2の多層チューブは、厚さが(A)層、(B)層、(C-1)層の順に18/5/17μmであり、折径90mmであった。また、実施例1-2の多層チューブの低温収縮率は縦3.5%、横2.5%であった。
 実施例1-3
 以下の材料を用いて実施例1-1と同様に多層チューブを製造し、多層チューブを得た。
 第一層((A)層):6-ナイロンのホモポリマー(Durethan B40FAM(製品名及びグレード名)、LANXESS製)
 第二層((B)層):直鎖状低密度ポリエチレンに無水マレイン酸をグラフト共重合した変性共重合体を含む変性ポリオレフィン系樹脂(Modic M603(製品名及びグレード名)、Mitsubishi Chemical Europe GmbH製)
 第三層((A)層):第一層と同じ6-ナイロン
 第四層((B)層):第二層と同じ変性ポリオレフィン系樹脂
 第五層((x)層):ランダム共重合体ポリプロピレン(ターポリマーポリプロピレン)(Adsyl 5C39F(製品名及びグレード名)、熱変形温度:62℃、ビカット軟化点:107℃、MFR:5.5g/10分、Basell製)
 第六層((C-1)層):ランダム共重合ポリプロピレン(Moplen RP215M(製品名及びグレード名)、熱変形温度:70℃、ビカット軟化点:134℃、MFR:6.0g/10分、Basell製)
 実施例1-3の多層チューブは、厚さが第一層、第二層、第三層、第四層、第五層、第六層の順に7/2/10/3/13/3μmであり、折径90mmであった。また、実施例1-3の多層チューブの低温収縮率は縦4.0%、横2.5%であった。
 実施例1-4
 (A)層、(C-1)層として以下のものを用いる以外は、実施例1-1と同様に行い多層チューブを得た。
(A)層:6-ナイロンと66-ナイロンとの共重合体(UBENYLON 5033FDX57(製品名及びグレード名)、UBE INDUSTRIES, LTD.製)70重量%とMXナイロン(芳香族ナイロン)(MX-NYLON S-6007(製品名及びグレード名)、MITSUBISHI GAS CHEMICAL COMPANY, INC.製)30重量%を混合したもの
(C-1)層:ホモポリプロピレン(Moplen HF500N(製品名及びグレード名)、熱変形温度:95℃、ビカット軟化点:155℃、MFR:12.0g/10分、Basell製)
 実施例1-4の多層チューブは、厚さが(A)層、(B)層、(C-1)層の順に18/5/17μmであり、折径90mmであった。また、実施例1-4の多層チューブの低温収縮率は縦3.0%、横2.5%であった。
 実施例1-5
 (C-1)層として以下のものを用いる以外は、実施例1-1と同様に行い多層チューブを得た。
(C-1)層:ランダム共重合ポリプロピレン(Moplen EP1006(製品名及びグレード名)、熱変形温度:88℃、ビカット軟化点:149℃、MFR:2.0g/10分、Basell製)
 実施例1-5の多層チューブは、厚さが(A)層、(B)層、(C-1)層の順に18/5/17μmであり、折径90mmであった。また、実施例1-5の多層チューブの低温収縮率は縦4.0%、横3.0%であった。
 実施例1-6
 (B)層(接着層)として、以下のものを用いる以外は実施例1-1と同様にして多層チューブを得た。
 (B)層:アイオノマー(HIMILAN 1557 三井デュポンポリケミカル社製)
 実施例1-7
 (B)層(接着層)として、以下のものを用いる以外は実施例1-1と同様にして多層チューブを得た。
 (B)層:エチレン・メタクリル酸共重合体(NUCREL N410 三井デュポンポリケミカル社製)
 比較例1-1
 (C)層として、ランダム共重合ポリプロピレン(ターポリマーポリプロピレン)(Borseal TD220BF(製品名及びグレード名)、熱変形温度:63℃、ビカット軟化点:117℃、MFR:6.5g/10分、Borealis製)を用いる以外実施例1-1と同様に行い、多層チューブを得た。
 比較例1-1の多層チューブの厚さは、(A)層、(B)層、(C)層の順に20/5/20μmであり、折径90mmであった。また、比較例1-1の多層チューブの低温収縮率は縦、横ともに5.0%であった。
 比較例1-2
 実施例1-3の多層チューブにおいて、第六層として第五層に使用したランダム共重合ポリプロピレン(Adsyl 5C39F(製品名及びグレード名)、熱変形温度:62℃、ビカット軟化点:107℃、MFR:5.5g/10分、Basell製)を用いた以外は、実施例1-3と同様に行い、多層チューブを得た。
 比較例1-2の多層チューブは、厚さが第一層、第二層、第三層、第四層、第五層、第六層の順に7/2/10/3/13/3μmであり、折径90mmであった。また、比較例1-2の多層チューブの低温収縮率は、縦3.5%、横2.5%であった。
 比較例1-3
 (C)層としてランダム共重合ポリプロピレン(Clyrell RC1601(製品名及びグレード名)、熱変形温度:75℃、ビカット軟化点:140℃、MFR:5.0g/10分、Basell製)を用い、チューブ表面温度40℃(アニール処理出口から約10cm)でアニール処理を行う以外実施例1-1と同様に行い、多層チューブを得た。
 比較例1-3の多層チューブは、厚さが(A)層、(B)層、(C)層の順に20/5/20μmであり、折径90mmであった。また、比較例1-3の多層チューブの低温収縮率は縦、横ともに11.0%であった。
 比較例1-4
 (C)層としてランダム共重合ポリプロピレン(Adsyl 3C39F(製品名及びグレード名)、熱変形温度:71℃、ビカット軟化点:122℃、MFR:5.5g/10分、Basell製)を用い、チューブ表面温度200℃(アニール処理出口から約10cm)でアニール処理を行う以外実施例1と同様に行い、多層チューブを得た。
 比較例1-4の多層チューブは、厚さが(A)層、(B)層、(C)層の順に20/5/20μmであり、折径90mmであった。また、比較例4の多層チューブの低温収縮率は縦1.5%、横1.0%であった。
 実施例及び比較例の多層チューブにおける各層の組成を下記表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表中の略語は以下の通りである。
6Ny:6-ナイロン
6Nyと66Ny共重合体:6-ナイロンと66-ナイロンの共重合体
PP:ポリプロピレン
LLDPE:直鎖状低密度ポリエチレン
 <評価>
 以上のようにして得られた多層チューブの耐ブロッキング性、肉密着性、高温収縮性及び低温収縮性を評価した。評価方法は以下の通りである。
 耐ブロッキング性評価(開口性評価)
 チューブ状フィルムを紙管に1000m巻取り、それを40℃×90%RH条件下で3日間保管し、サンプルとする。そのサンプルの巻き芯に近い部分からランダムに15mm幅のサンプルを切り出し、それの内面どうしの剥離強度を測定する。評価は測定結果中の最大値で行い、下記を指標とする。
50(g/15mm幅)未満 : ブロッキングなし。 (○)
50(g/15mm幅)以上 : ブロッキング。   (×)
 肉密着性
 多層チューブを、紙管に巻き取ったロール状のまま40℃×90%RH条件化で3日間保管した後、そのロールから長さ40cmを切断して加工肉用ケーシングとした。この加工肉用ケーシングに、加工肉を充填して金環状のクリップで両側を密封し、85℃で1.5時間の加熱を行い冷却した。加工肉から包装材を剥離した際の状態から、下記基準に従い評価する。
A:(肉密着性優秀)ケーシングのみを剥離しようとした時加工肉がケーシングに付着するか、もしくはケーシングのみを剥離しようとした時加工肉がところどころでケーシングに付着する。
B:(肉密着性優)ケーシングのみが抵抗をもって剥離される。
C:(肉密着性不良)ケーシングのみが抵抗なく剥離する。
 表面の濡れ張力
 表面濡れ張力は、JIS K 6768に従って評価した。表面の濡れ張力の値が大きいほど良好であり、肉との親和性が向上することから良好な肉密着性が実現される。
 高温収縮性
 各フィルムにMD方向、TD方向に10cmの標線を引き、95℃の熱湯の中に30秒間浸漬した。その後、縮んだ長さの比率を下記式に基づいて算出した。
(10cm-収縮後の標線の長さ)÷10cm×100(%)
3%未満:収縮性不足によるシワなどで包装体の外観が不良となる。(×)
3%以上:収縮性に問題なし。包装体の外観良好。(○)
 収縮率が高いと、多層チューブを内容物にぴったりとフィットさせることができる。
 低温収縮性
 5枚のサンプルを切り出し、40℃×90%RHの環境下で3日間放置後、MD方向、TD方向の収縮率を測定した。各フィルムにMD方向、TD方向に10cmの標線を引き、それの縮んだ長さの比率を算出した。
(10cm-収縮後の標線の長さ)÷10cm×100(%)
10%未満:自然収縮による巻き締まり等の問題がない。(○)
10%以上:自然収縮による巻き締まり等の問題が生じる。(×)
 以上の評価結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1-1~1-7の多層チューブは、いずれも良好な熱収縮性を有するため良好な包装状態を保つことができた。しかも加工肉を充填する際チューブの開口性は十分であり、ブロッキングは認められなかった。
 これに対し、(C)層に使用されるポリプロピレン系樹脂のビカット軟化点が120℃未満であった比較例1-1及び1-2では、ブロッキングが生じ、開口性に問題があった。
 さらに、アニール処理温度が40℃であった比較例1-3では、耐ブロッキング性及び低温収縮性が劣り、開口性及び巻き締まりに問題があった。また、アニール処理温度が200℃であった比較例1-4は、高温収縮性が劣り、内容物に十分にフィットしていなかった。
 また、実施例1-1~1-7及び比較例1-1~1-4の多層フィルムの製造において、コロナ処理を行わなかったチューブについて肉密着性を評価したが、いずれの多層チューブも十分な肉密着性を有していなかった。
 実施例2-1
 (A)層~(C-2)層として、以下のものを用いた。
(A)層:ナイロン6とナイロン66との共重合体(UBE NYLON 5033FDX57(製品名及びグレード名)、UBE INDUSTRIES, LTD.製)
(B)層(接着層):直鎖状低密度ポリエチレンに無水マレイン酸をグラフト共重合した変性共重合体を含む変性ポリオレフィン系樹脂(Admer NF468 E(製品名及びグレード名)、MITSUI CHEMICALS EUROPE GmbH製)
(C-2)層:メタロセン触媒を用いて重合された直鎖状低密度ポリエチレン(Exeed 1023CA(製品名及びグレード名)、密度:0.923g/cm、MFR:1.0g/10分)、Exxon Mobil Chemical製)
 また、(C-2)層にはアンチブロッキング剤(シリカ)8,000ppmを混合した。
 上記原料を環状ダイスより共押出して三層チューブを成形し、その三層チューブに2軸延伸を施した後、引き続きチューブ表面温度100℃(アニール処理出口から約10cm)となるようにアニール処理を行った。こうして三層2軸延伸チューブを得た後、連続して図1に示すコロナ処理装置を用いてコロナ放電電極ローラー6及び7から放電を行い、コロナ放電処理を施した。このとき、コロナ放電電極ローラー(ゴム被覆ロールを使用、長さ420mm)と対電極ローラー(金属ロールを使用、長さ420mm)との間隔は1.3mmであり、空気によりチューブ体を膨らました状態で処理を行った。この処理時のチューブは約1.3mmの間隔に絞られ内面どうしは接していないが略々扁平に近い状態にあった。
 コロナ処理を施した三層2軸延伸チューブを、連続して紙管に1000mの長さで巻取り、ガスバリヤー性を有するシームレス状の熱収縮性多層チューブを得た。
 この方法により得た実施例2-1のチューブは、各層の厚さが(A)層、(B)層、(C-2)層の順に15/5/15μmであり、折径(扁平にした状態での幅)160mmであった。また、実施例2-1の多層チューブの低温収縮率は縦、横ともに5.0%であった。
 実施例2-1の多層チューブは、良好な熱収縮性を有するため良好な包装状態を保つことができた。しかも加工肉を充填する際チューブの開口性は十分であり、ブロッキングは認められなかった。
 実施例2-2
 (C-2)層として以下のものを用いる以外は、実施例2-1と同様に行い、多層チューブを得た。
(C-2)層:直鎖状低密度ポリエチレン(Ultzex 4570(製品名及びグレード名)、密度:0.945g/cm、MFR:7.0g/10分、PRIME POLYMER Co. , Ltd.製)
 実施例2-2の多層チューブは、厚さが(A)層、(B)層、(C-2)層の順に15/5/15μmであり、折径160mmであった。また、実施例2-2の多層チューブの低温収縮率は縦4.0%、横3.0%であった。
 実施例2-3
 (A)層として以下のものを用いる以外は、実施例2-1と同様に行い、多層チューブを得た。
(A)層:ナイロン6のホモポリマー(Durethan B40FAM(製品名及びグレード名)、LANXESS製)
 実施例2-3の多層チューブは、厚さが(A)層、(B)層、(C-2)層の順に15/5/15μmであり、折径160mmであった。また、実施例2-3の多層チューブの低温収縮率は縦4.0%、横2.5%であった。
 実施例2-4
 (A)層、(C-2)層として以下のものを用いた以外は、実施例2-1と同様に行い、多層チューブを得た。
(A)層:ナイロン6のホモポリマー(Durethan B40FAM(製品名及びグレード名)、LANXESS製)
(C-2)層:直鎖状低密度ポリエチレン(Dowlex 50560G(製品名及びグレード名)、密度:0.921g/cm、MFR:1.1g/10分、Dow Europe GmbH製)
 実施例2-4の多層チューブは、厚さが(A)層、(B)層、(C-2)層の順に15/5/15μmであり、折径160mmであった。また、実施例2-4の多層チューブの低温収縮率は縦3.0%、横2.0%であった。
 実施例2-5
 (A)層、(C-2)層として以下のものを用いた以外は、実施例2-1と同様に行い、多層チューブを得た。
(A)層:ナイロン6とナイロン66との共重合体(UBE NYLON 5033FDX57(製品名及びグレード名)、UBE INDUSTRIES, LTD.製)70重量%とMXナイロン(芳香族系ナイロン)(MX-NYLON S6007(製品名及びグレード名)、MITSUBISHI GAS CHEMICAL COMPANY, INC.製)30重量%を混合したもの
(C-2)層:直鎖状低密度ポリエチレン(Lupolex 18E FA(製品名及びグレード名)、密度:0.926g/cm、MFR:0.7g/10分、Basell製)
 実施例2-5の多層チューブは、厚さが(A)層、(B)層、(C-2)層の順に20/5/15μmであり、折径160mmであった。また、実施例2-5の多層チューブの低温収縮率は縦5.0%、横4.0%であった。
 比較例2-1
 (C)層として以下のものを用いる以外は、実施例2-1と同様に行い、多層チューブを得た。
 (C)層:メタロセン触媒を用いて重合された直鎖状低密度ポリエチレン(Exeed 2018CA(製品名及びグレード名)、密度:0.918g/cm、MFR:2.0g/10分、Exxon Mobil Chemical製)
 比較例2-1の多層チューブの厚さは、(A)層、(B)層、(C)層の順に15/5/15μmであり、折径160mmであった。また、比較例2-1の多層チューブの低温収縮率は縦、横ともに5.0%であった。
 比較例2-2
 (A)層、(C)層として以下のものを用いる以外は、実施例2-1と同様に行い、多層チューブを得た。
(A)層:ナイロン6のホモポリマー(Durethan B40FAM(製品名及びグレード名)、LANXESS製)
(C)層:直鎖状低密度ポリエチレン(密度:0.919g/cm、MFR:2.2g/10分、Stamylex 1026F(製品名及びグレード名)、DEXPLASTOMERS製)
 比較例2-2の多層チューブは、厚さが(A)層、(B)層、(C)層の順に15/5/15μmであり、折径160mmであった。また、比較例2-2の多層チューブの低温収縮率は縦4.0%、横2.5%であった。
 比較例2-3
 チューブ表面温度40℃(アニール処理出口から約10cm)でアニール処理を行う以外は、実施例2-1と同様に行い、多層チューブを得た。
 比較例2-3の多層チューブは、厚さが(A)層、(B)層、(C)層の順に15/5/15μmであり、折径160mmであった。また、比較例2-3の多層チューブの低温収縮率は縦10.5%、横11.0%であった。
 比較例2-4
 (C)層として以下のものを用い、チューブ表面温度200℃(アニール処理出口から約10cm)でアニール処理を行う以外は、実施例2-1と同様に行い、多層チューブを得た。
(C)層:メタロセン触媒を用いて重合された直鎖状低密度ポリエチレン(Exeed 2018CA(製品名及びグレード名)、密度:0.918g/cm、MFR:2.0g/10分、Exxon Mobil Chemical製)
 比較例2-4の多層チューブは、厚さが(A)層、(B)層、(C)層の順に15/5/15μmであり、折径160mmであった。また、比較例2-4の多層チューブの低温収縮率は縦1.0%、横1.5%であった。
 実施例及び比較例の多層チューブにおける各層の組成を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表中の略語は以下の通りである。
6Ny:6-ナイロン
6Nyと66Ny共重合体:6-ナイロンと66-ナイロンの共重合体
無水マレイン酸グラフト変性LLDPE:無水マレイン酸グラフト変性直鎖状低密度ポリエチレン
LLDPE:直鎖状低密度ポリエチレン
LLDPE(メタロセン):メタロセン触媒によって製造された直鎖状低密度ポリエチレン
 以上のようにして得られた多層チューブの耐ブロッキング性、肉密着性、高温収縮性及び低温収縮性を、前述の方法により評価した。その評価結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
符号の説明
 
Figure JPOXMLDOC01-appb-I000006

Claims (7)

  1. 下記、(A)層、(B)層及び(C)層を有し、低温収縮率が2~10%であって、熱収縮性及びガスバリア性を有する食品包装用ポリアミド系多層チューブ:
     (A)層がポリアミド系樹脂を含有し、
     (B)層がポリオレフィン系樹脂を含有し、
     被包装物と接触する(C)層が、
    熱変形温度(ISO 75B-1,ISO 75B-2)60℃以上、ビカット軟化点120℃以上であるポリプロピレン系樹脂を含有し、表面のぬれ張力が35mN/m以上である(C-1)層、又は、
    密度が0.92g/cm以上0.95g/cm未満である直鎖状低密度ポリエチレンを含有し、表面のぬれ張力が35mN/m以上である(C-2)層である。
  2. (A)層に含まれるポリアミド系樹脂が、6-ナイロン、66-ナイロン、11-ナイロン、12-ナイロン、610-ナイロン、6T-ナイロン、結晶性芳香族ナイロン、非晶性芳香族ナイロン、6-ナイロンと66-ナイロンの共重合体、6-ナイロンと12-ナイロンの共重合体、6-ナイロンと11-ナイロンの共重合体、及び6-ナイロンと6T-ナイロンの共重合体からなる群より選択される少なくとも1種のポリアミド系樹脂である、請求項1に記載の食品包装用ポリアミド系多層チューブ。
  3. (B)層に含まれるポリオレフィン系樹脂が、無水マレイン酸変性ポリオレフィン、アイオノマー樹脂、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体、及びエチレン-メタクリル酸共重合体からなる群より選択される少なくとも1種のポリオレフィン系樹脂である、請求項1又は2に記載の食品包装用ポリアミド系多層チューブ。
  4. (C-1)層のポリプロピレン系樹脂の熱変形温度(ISO 75B-1,ISO 75B-2)が60~120℃、ビカット軟化点が120~160℃である、請求項1~3のいずれかに記載の食品包装用ポリアミド系多層チューブ。
  5. (C-2)層に含有される直鎖状低密度ポリエチレンが、メタロセン触媒を用いて重合して得られるポリマーである、請求項1~3のいずれかに記載の食品包装用ポリアミド系多層チューブ。
  6. 総膜厚が30~80μmである請求項1~5のいずれかに記載の食品包装用ポリアミド系多層チューブ。
  7. 以下の工程を含む請求項1に記載の食品包装用ポリアミド系多層チューブの製造方法:
    (i)(A)層、(B)層及び(C)層をそれぞれ構成する原料組成物(A)、(B)及び(C)を筒状に共押出成形する工程;
    (ii)前記工程(i)で得られたチューブに対して2軸延伸を行う工程;
    (iii)延伸されたチューブにアニール処理を行う工程;及び
    (iv)アニール処理後のチューブに対してコロナ処理を行う工程。
PCT/JP2009/056197 2008-03-31 2009-03-26 食品包装用ポリアミド系多層チューブ WO2009123027A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020107022441A KR101384607B1 (ko) 2008-03-31 2009-03-26 식품 포장용 폴리아미드계 다층 튜브
NZ588267A NZ588267A (en) 2008-03-31 2009-03-26 Multilayered polyamide tube for food packaging
AU2009232944A AU2009232944B2 (en) 2008-03-31 2009-03-26 Multilayered polyamide tube for food packaging
ES09729025.8T ES2441967T3 (es) 2008-03-31 2009-03-26 Tubo de poliamida multicapa para el envasado de alimentos
US12/934,869 US8187683B2 (en) 2008-03-31 2009-03-26 Multilayered polyamide tube for food packaging
EP09729025.8A EP2261023B1 (en) 2008-03-31 2009-03-26 Multilayered polyamide tube for food packaging
JP2010505804A JP5340263B2 (ja) 2008-03-31 2009-03-26 食品包装用ポリアミド系多層チューブ
CN2009801116784A CN101980859B (zh) 2008-03-31 2009-03-26 用于食品包装的聚酰胺多层管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008090171 2008-03-31
JP2008-090171 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123027A1 true WO2009123027A1 (ja) 2009-10-08

Family

ID=41135405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056197 WO2009123027A1 (ja) 2008-03-31 2009-03-26 食品包装用ポリアミド系多層チューブ

Country Status (9)

Country Link
US (1) US8187683B2 (ja)
EP (1) EP2261023B1 (ja)
JP (1) JP5340263B2 (ja)
KR (1) KR101384607B1 (ja)
CN (1) CN101980859B (ja)
AU (1) AU2009232944B2 (ja)
ES (1) ES2441967T3 (ja)
NZ (1) NZ588267A (ja)
WO (1) WO2009123027A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516338A (ja) * 2010-01-08 2013-05-13 株式会社クレハ 深絞り成形用熱収縮性多層フィルムおよびその製造方法
JP2013139289A (ja) * 2012-01-06 2013-07-18 Toray Advanced Film Co Ltd レトルトパウチ用包装材料
WO2018135474A1 (ja) * 2017-01-19 2018-07-26 株式会社クレハ 熱収縮性多層フィルム
JP2018134756A (ja) * 2017-02-20 2018-08-30 グンゼ株式会社 食肉製品製造用ケーシングチューブ
WO2020203905A1 (ja) * 2019-03-29 2020-10-08 宇部興産株式会社 積層体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123027A1 (ja) * 2008-03-31 2009-10-08 グンゼ株式会社 食品包装用ポリアミド系多層チューブ
CN102837476A (zh) * 2012-08-31 2012-12-26 海南赛诺实业有限公司 一种三层共挤双向拉伸聚丙烯聚酰胺阻隔薄膜及其制造方法
WO2015042583A2 (en) * 2013-09-23 2015-03-26 Anand Srinivasan Systems, devices, & methods for microbial detection & identification, and antimicrobial susceptibility testing
CN104385748B (zh) * 2014-10-22 2016-08-24 海南赛诺实业有限公司 一种共挤双向拉伸镀氧化铝超高阻隔膜及其制造方法
CN109195796B (zh) * 2016-04-01 2021-07-20 克里奥瓦克公司 无尘可热收缩包装物件
CN109367045A (zh) * 2018-09-26 2019-02-22 江阴长庚高科技材料有限公司 一种高抗冲双向拉伸聚酰胺薄膜及其二泡生产方法与应用
CN109367044B (zh) * 2018-09-26 2022-02-01 江阴长庚高科技材料有限公司 一种高抗冲双向拉伸聚酯/聚酰胺薄膜及其制备方法
CN113518715B (zh) * 2019-02-13 2024-03-22 埃克森美孚化学专利公司 取向的多层聚乙烯膜及其层合材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464845A (en) 1987-05-21 1989-03-10 Gunze Kk Food packing material and manufacture thereof
JPH02135230A (ja) 1988-11-17 1990-05-24 Gunze Ltd 多層プラスチックチューブの処理方法
JPH10100346A (ja) * 1996-09-26 1998-04-21 Mitsubishi Chem Corp 共押出成形フィルム及び食品包装袋
JPH11155473A (ja) 1987-05-21 1999-06-15 Gunze Ltd 食品包装材及びその製造法
WO1999033657A1 (fr) * 1997-12-29 1999-07-08 Kureha Chemical Industry Co., Ltd. Materiau d'emballage stratifie et procede de production de ce materiau
WO2001078980A1 (fr) * 2000-04-18 2001-10-25 Gunze Limited Film multicouche tendu anticondensation a action rapide, et son procede de production
JP2002172746A (ja) * 2000-09-26 2002-06-18 Kureha Chem Ind Co Ltd 熱収縮性多層フィルム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005757A1 (en) * 1988-11-17 1990-05-31 Gunze Limited Process for modifying multi-layered plastic film seamless tube
ES2087179T3 (es) * 1990-06-27 1996-07-16 Gunze Kk Pelicula multicapa y procedimiento para su preparacion.
DE4339337C2 (de) * 1993-11-19 1999-10-21 Becker & Co Naturinwerk Fünfschichtige, biaxial verstreckte Schlauchfolie zur Verpackung und Umhüllung von pastösen Lebensmitteln
JP3836164B2 (ja) * 1994-05-12 2006-10-18 凸版印刷株式会社 バリヤー性包装材料およびその製造方法
EP0787761A1 (fr) * 1996-01-31 1997-08-06 Elf Atochem S.A. Films a base de polyamides et de polyoléfines
US5843502A (en) * 1996-06-26 1998-12-01 Cryovac, Inc. Package having cooked food product packaged in film having food adhesion layer containing high vicat softening point olefin/acrylic acid copolymer
US6165166A (en) 1997-04-25 2000-12-26 Schneider (Usa) Inc. Trilayer, extruded medical tubing and medical devices incorporating such tubing
DE19721142A1 (de) * 1997-05-21 1998-11-26 Kalle Nalo Gmbh Mehrschichtige, biaxial verstreckte Nahrungsmittelhülle mit zwei Sauerstoff-Barriereschichten
AU761091B2 (en) * 1999-03-23 2003-05-29 Gunze Limited Multilayered polyamide film with excellent processability
DE60101938T2 (de) * 2000-09-26 2004-12-23 Kureha Kagaku Kogyo K.K. Heissschrumpfbarer Mehrschichtfilm
US7244481B2 (en) * 2001-06-18 2007-07-17 Viskase Companies, Inc. Nylon food casing having a barrier core layer
UA79975C2 (en) * 2002-07-05 2007-08-10 Becker & Co Naturinwerk Biaxial stretch tubular film for the packaging and covering of meat, meat with bones or paste like foodstuffs, bag made from this film and their use
US6984442B2 (en) * 2002-07-19 2006-01-10 Cryovac, Inc. Multilayer film comprising an amorphous polymer
GB0314189D0 (en) * 2003-06-18 2003-07-23 Borealis Tech Oy Food packaging
CN1736813B (zh) * 2004-01-09 2011-01-12 朱春英 一种食品包装膜及其制造方法
WO2009123027A1 (ja) * 2008-03-31 2009-10-08 グンゼ株式会社 食品包装用ポリアミド系多層チューブ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464845A (en) 1987-05-21 1989-03-10 Gunze Kk Food packing material and manufacture thereof
JPH11155473A (ja) 1987-05-21 1999-06-15 Gunze Ltd 食品包装材及びその製造法
JPH02135230A (ja) 1988-11-17 1990-05-24 Gunze Ltd 多層プラスチックチューブの処理方法
JPH10100346A (ja) * 1996-09-26 1998-04-21 Mitsubishi Chem Corp 共押出成形フィルム及び食品包装袋
WO1999033657A1 (fr) * 1997-12-29 1999-07-08 Kureha Chemical Industry Co., Ltd. Materiau d'emballage stratifie et procede de production de ce materiau
WO2001078980A1 (fr) * 2000-04-18 2001-10-25 Gunze Limited Film multicouche tendu anticondensation a action rapide, et son procede de production
JP2002172746A (ja) * 2000-09-26 2002-06-18 Kureha Chem Ind Co Ltd 熱収縮性多層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2261023A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516338A (ja) * 2010-01-08 2013-05-13 株式会社クレハ 深絞り成形用熱収縮性多層フィルムおよびその製造方法
JP2013139289A (ja) * 2012-01-06 2013-07-18 Toray Advanced Film Co Ltd レトルトパウチ用包装材料
WO2018135474A1 (ja) * 2017-01-19 2018-07-26 株式会社クレハ 熱収縮性多層フィルム
US11345124B2 (en) 2017-01-19 2022-05-31 Kureha Corporation Heat-shrinkable multilayer film
JP2018134756A (ja) * 2017-02-20 2018-08-30 グンゼ株式会社 食肉製品製造用ケーシングチューブ
WO2020203905A1 (ja) * 2019-03-29 2020-10-08 宇部興産株式会社 積層体
CN113646172A (zh) * 2019-03-29 2021-11-12 宇部兴产株式会社 层叠体
US11951718B2 (en) 2019-03-29 2024-04-09 Ube Corporation Laminate

Also Published As

Publication number Publication date
ES2441967T3 (es) 2014-02-07
CN101980859B (zh) 2013-08-07
JPWO2009123027A1 (ja) 2011-07-28
JP5340263B2 (ja) 2013-11-13
KR20100135253A (ko) 2010-12-24
EP2261023A4 (en) 2011-06-22
EP2261023B1 (en) 2013-12-11
AU2009232944B2 (en) 2013-04-18
AU2009232944A1 (en) 2009-10-08
EP2261023A1 (en) 2010-12-15
KR101384607B1 (ko) 2014-04-11
US20110027511A1 (en) 2011-02-03
US8187683B2 (en) 2012-05-29
CN101980859A (zh) 2011-02-23
NZ588267A (en) 2012-05-25

Similar Documents

Publication Publication Date Title
JP5340263B2 (ja) 食品包装用ポリアミド系多層チューブ
JP4864177B2 (ja) 延伸多層フィルムケーシング
CN102248735A (zh) 包装用聚烯烃薄膜及其制备方法
EP2691233B1 (en) Multilayer heat-shrinkable asymmetrical film
JP4889075B2 (ja) 深絞り包装用多層フィルムおよびそれからなる深絞り包装用容器
AU2018210069B2 (en) Heat-shrinkable multilayer film
EP1892092B1 (en) Heat-shrinkable multilayer casing film and process for production thereof
JP2016179648A (ja) 熱収縮性積層フィルム
KR101772370B1 (ko) 열수축성 적층 필름
EP0967073A2 (en) Biaxially stretched multilayer film
JP2018114699A5 (ja)
JP3070217B2 (ja) ヒートシール可能な熱収縮性積層フイルム
JP4287875B2 (ja) ポリオレフィン系積層ストレッチシュリンクフィルム
AU2019278185B2 (en) Heat shrinkable multilayer film
JP2000079669A (ja) 二軸延伸多層フィルム
JP3798072B2 (ja) 熱収縮包装用多層フィルム
JP4768006B2 (ja) 延伸多層フィルムケーシングの製造方法
JPH0890738A (ja) ポリオレフィン系熱収縮性多層フィルム
JP2001164007A (ja) アルコール消毒可能なガスバリヤー性シュリンクフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111678.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505804

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12010502169

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12934869

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 588267

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2009232944

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107022441

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009729025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009232944

Country of ref document: AU

Date of ref document: 20090326

Kind code of ref document: A