WO2009104746A1 - 変調方法、変調プログラム、記録媒体、変調装置及び光送信器 - Google Patents

変調方法、変調プログラム、記録媒体、変調装置及び光送信器 Download PDF

Info

Publication number
WO2009104746A1
WO2009104746A1 PCT/JP2009/053054 JP2009053054W WO2009104746A1 WO 2009104746 A1 WO2009104746 A1 WO 2009104746A1 JP 2009053054 W JP2009053054 W JP 2009053054W WO 2009104746 A1 WO2009104746 A1 WO 2009104746A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
input terminal
average potential
phase input
circuit
Prior art date
Application number
PCT/JP2009/053054
Other languages
English (en)
French (fr)
Inventor
浩崇 中村
木村 俊二
一貴 原
浩司 北原
Original Assignee
日本電信電話株式会社
Nttエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, Nttエレクトロニクス株式会社 filed Critical 日本電信電話株式会社
Priority to CN200980105081.9A priority Critical patent/CN102017468B/zh
Priority to US12/867,443 priority patent/US8094692B2/en
Priority to JP2009554400A priority patent/JP5118157B2/ja
Priority to EP09711758.4A priority patent/EP2249492B1/en
Publication of WO2009104746A1 publication Critical patent/WO2009104746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser

Definitions

  • the present invention relates to a modulation method in a case where a modulation circuit and a modulation target which is a direct modulation type laser or an external optical modulator are capacitively coupled, a modulation device which modulates by this modulation method, and an optical transmission including this modulation device It is about a vessel.
  • FIG. 1 is a circuit diagram of a conventional optical transmitter for transmitting a burst signal for GE-PON having the above function (see, for example, Non-Patent Document 1).
  • An LD (Laser Diode) 420 is DC-coupled to a drive circuit (LDD: Laser Diode Driver) 21 of the modulation circuit 11 and outputs an optical transmission signal modulated by the LDD 21.
  • the LD 420 is configured to stop the input of the electrical signal to the LDD 21 and the bias current to the LD 420 according to the input of the Tx_disable signal in order to stop the output during the transmission time of other ONUs. .
  • FIG. 2 is a block diagram of a modulation device 401 that capacitively couples LDD and LD and is driven by a differential electric signal.
  • FIG. 3 is a diagram showing potential fluctuations at terminals (positive phase output terminal 25a, negative phase output terminal 25b, positive phase input terminal 35a, negative phase input terminal 35b) that are capacitively coupled in the modulation device 401 of FIG. It is.
  • a general LDD output is generated by a current source.
  • the LDD output is used as a constant voltage source. Assume that the positive phase side terminal 25a and the negative phase side terminal 25b of the LDD 21 hold the potentials of V low and V high in the Tx_disabled state at the output time of other ONUs, respectively.
  • the average potential at the positive phase input terminal 35a increases by the amount of potential equal to
  • the negative phase input terminal 35b the average potential is lowered to Vc in order to pass the bias current of the LD. Therefore, the potential fluctuation
  • the average potential fluctuation applied to the LD in the transient state from Tx_disable to Tx_enable is opposite to the positive phase side. Different on the phase side, the fluctuations of the respective average potentials are in different transient states. For this reason, the optical signal output from the LD is distorted in waveform until the average potential fluctuation is stabilized, and it is difficult to normally transmit the optical signal.
  • An object of the present invention is to provide a modulation method, a modulation program, a recording medium, a modulation device, and an optical transmitter capable of normally transmitting an optical signal from a light source even before the average potential of a phase input terminal is stabilized.
  • the modulation method according to the present invention has a control circuit in which the time constant of fluctuation of the average potential is changed between the positive phase side and the negative phase side when the fluctuation of the average potential occurs at the input terminal of the light source.
  • a bias current is supplied to a modulation target that is a capacitively coupled direct modulation laser or an external optical modulator, and the differential electric signal having a positive phase and a reverse phase is used as the differential electric signal.
  • a modulation method in a modulation apparatus comprising: a modulation circuit that drives a modulation target; and a control circuit that controls the modulation circuit by sending a control signal to the modulation circuit based on a signal that indicates whether transmission is possible,
  • the control circuit changes in the average potential of the positive phase input terminal and the average potential of the negative phase input terminal of the modulation target, the average potential of each other generated before and after the change of the average potential is changed with respect to the modulation circuit.
  • the control circuit causes the modulation circuit to display a transient state of the average potential of each other before and after the fluctuation of the average potential.
  • the average potential of at least one of the positive phase input terminal and the negative phase input terminal and the positive phase output terminal and the negative phase output terminal of the modulation circuit is controlled so as to be the same.
  • the average potential of the positive-phase input terminal and the average potential of the negative-phase input terminal change in the same way, so the average potential of the positive-phase input terminal and the average potential of the negative-phase input terminal are between The potential difference is constant even in a transient state. That is, the transient state of the average potential of the positive phase input terminal and the average potential of the negative phase input terminal can be canceled as the in-phase component of the differential electric signal.
  • the modulation circuit and the light source are capacitively coupled, and the light source is driven by a differential signal, the average potential of the positive phase input terminal and the average potential of the negative phase input terminal of the light source. Even before the light is stabilized, the optical signal can be normally transmitted from the light source.
  • the control circuit has the same time constant as the time constant of the transient state of the average potential at the positive phase input terminal, with respect to the modulation circuit, It can be controlled to decrease until the fluctuation amount of the amplitude voltage of the modulation signal is reached.
  • the control circuit lowers the average potential of the negative phase input terminal with respect to the modulation circuit by the same time constant as the time constant of the transient state of the average potential at the positive phase input terminal,
  • the average potential of the negative phase input terminal is changed between the average potential of the positive phase input terminal after the transient state and the negative phase before the average potential of the positive phase input terminal and the average potential of the negative phase input terminal change. It is possible to control so that the amount of difference potential obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the input terminal is changed in advance.
  • the control circuit lowers the average potential of the negative phase input terminal with respect to the modulation circuit by the same time constant as the time constant of the transient state of the average potential at the positive phase input terminal,
  • the average potential of the positive phase output terminal is changed between the average potential of the positive phase input terminal after the transient state and the negative phase before the average potential of the positive phase input terminal and the average potential of the negative phase input terminal are changed. It is possible to control so that the amount of difference potential obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the input terminal is changed in advance.
  • the control circuit has the same time constant as the time constant of the transient state of the average potential at the negative phase input terminal, with respect to the modulation circuit, It can be controlled to increase until the amount of fluctuation of the amplitude voltage of the modulation signal is reached.
  • the control circuit increases the average potential of the positive phase input terminal with respect to the modulation circuit by the same time constant as the time constant of the transient state of the average potential at the negative phase input terminal.
  • the average potential of the positive phase input terminal is changed between the average potential of the positive phase input terminal after the transient state and the negative phase before the average potential of the positive phase input terminal and the average potential of the negative phase input terminal are changed. It is possible to control so that the amount of difference potential obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the input terminal is changed in advance.
  • the control circuit increases the average potential of the positive phase input terminal with respect to the modulation circuit by the same time constant as the time constant of the transient state of the average potential at the negative phase input terminal.
  • the average potential of the negative phase output terminal is changed between the average potential of the positive phase input terminal after the transient state and the negative phase before the average potential of the positive phase input terminal and the average potential of the negative phase input terminal are changed. It is possible to control so that the amount of difference potential obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the input terminal is changed in advance.
  • the modulation method according to the present invention measures the optical power of the optical signal output from the modulation target, and the positive phase input terminal, the negative phase input terminal, and the modulation circuit so that the optical power becomes a predetermined value. It is preferable that feedback control is performed to adjust at least one average potential of the positive phase output terminal and the negative phase output terminal.
  • the modulation method according to the present invention can cause the drive current and bias current for driving the modulation target to follow the aging of the modulation target even when the modulation target changes with time.
  • the feedback control is performed only when the transmission is instructed among the signals instructing whether or not transmission is possible.
  • the optical power is zero during the time when the optical signal is not output.
  • the modulation method according to the present invention improves the accuracy of the feedback control by excluding this time from the calculation in the feedback control.
  • the modulation method according to the present invention is such that the temperature of the modulation target is measured, and the intensity of the optical signal output from the modulation target becomes a predetermined value even if the temperature of the modulation target fluctuates. It is preferable to perform feedforward control for adjusting an average potential of at least one of the negative phase input terminal and the positive phase output terminal and the negative phase output terminal of the modulation circuit.
  • the modulation method according to the present invention can cause the drive current and bias current for driving the modulation target to follow the temperature fluctuation of the external air and the modulation target even when the temperature of the modulation target is outside.
  • the modulation device supplies a bias current to a modulation target that is a capacitively coupled direct modulation laser or an external optical modulator, and drives the modulation target with a differential electrical signal having a positive phase and a reverse phase.
  • a modulation device comprising: a modulation circuit; and a control circuit that sends a control signal to the modulation circuit based on a signal that indicates whether transmission is possible and controls the modulation circuit, wherein the control circuit is connected to the modulation circuit.
  • the modulation method controls the average potential of the positive phase input terminal and the negative phase input terminal to be modulated and at least one average potential of the positive phase output terminal and the negative phase output terminal of the modulation circuit, To do.
  • the modulation device includes a control circuit, and this control circuit causes the modulation circuit to modulate the input signal as in the modulation method described above. Therefore, even if fluctuation occurs in the average potential of the positive phase input terminal to be modulated and the average potential of the negative phase input terminal, the transient state of the average potential of the positive phase input terminal to be modulated and the average potential of the negative phase input terminal is changed. It can be canceled out as the in-phase component of the differential electrical signal.
  • the modulation device capacitively couples between the modulation circuit and the light source and drives the light source with a differential signal, the average potential of the positive phase input terminal and the average potential of the negative phase input terminal of the light source Even before the light is stabilized, the optical signal can be normally transmitted from the light source.
  • the modulation device supplies a bias current to a modulation target that is a capacitively coupled direct modulation laser or an external optical modulator, and drives the modulation target with a differential electrical signal having a positive phase and a reverse phase.
  • a control circuit that sends a control signal to the modulation circuit based on a signal that indicates whether or not transmission is possible, and a current that is connected to the control circuit that controls the modulation circuit, and to the positive phase output terminal and the negative phase output terminal of the modulation circuit
  • a modulation device comprising: a source circuit; and a current controller that controls a current value of the current source circuit, wherein the control circuit is configured to control the positive phase input terminal to be modulated by the modulation method.
  • the average potential of the negative phase input terminal and the average potential of at least one of the positive phase output terminal and the negative phase output terminal of the modulation circuit may be controlling the current value of the current source circuit.
  • the modulation device supplies a bias current to a modulation target that is a capacitively coupled direct modulation laser or an external optical modulator, and drives the modulation target with a differential electrical signal having a positive phase and a reverse phase.
  • a voltage source circuit that is a circuit in which two voltage sources connected to ground and a switch that selects one of the voltage sources are connected in series, and a voltage controller that controls a voltage value of the voltage source circuit
  • a modulation device comprising: the control circuit, with respect to the modulation circuit, in the modulation method, an average potential of the positive phase input terminal and the negative phase input terminal to be modulated, and a positive phase output of the modulation circuit And controlling the average potential of at least one of the child and the negative phase output terminal
  • the modulation device includes a voltage source circuit and a voltage controller, and the control circuit controls them.
  • the average potential of the positive phase input terminal after the transient state is changed before the average potential of the positive phase output terminal or the negative phase output terminal changes in the average potential of the positive phase input terminal and the average potential of the negative phase input terminal.
  • the modulation device supplies a bias current to a modulation target that is a capacitively coupled direct modulation laser or an external optical modulator, and drives the modulation target with a differential electrical signal having a positive phase and a reverse phase.
  • a control signal is sent to the modulation circuit based on the modulation circuit and a signal indicating whether transmission is possible, and is connected to the control circuit for controlling the modulation circuit, and the positive phase output terminal and the negative phase output terminal of the modulation circuit
  • a modulation device comprising: a current source circuit; and a current controller that controls a current value of the current source circuit, wherein the modulation circuit has a Darlington connection type differential pair, and the positive phase of the modulation circuit A pair of an output terminal and a negative phase output terminal is the Darlington connection type differential pair, and the control circuit is the modulation method with respect to the modulation circuit, the positive phase input terminal and the negative phase input terminal to be modulated.
  • Average potential Controlling the average potential of at least one of the positive phase output terminal and the negative phase output terminal of the modulation circuit, and the current controller determines the average potential of the positive phase output terminal or the negative phase output terminal by the difference potential amount.
  • the current value of the current source circuit may be controlled so as to change.
  • the drive current that drives the modulation target can be reduced.
  • the modulation device may further include an integration circuit between at least one of the positive phase input terminal and the negative phase input terminal and the control means.
  • an integration circuit By providing the integration circuit, the time constant of the transient state at the positive phase input terminal can be matched with the time constant of the transient state at the negative phase input terminal.
  • the modulation apparatus further includes optical monitor means for measuring optical power of an optical signal output from the modulation target, and the control circuit is configured such that the optical power measured by the optical monitor means has a predetermined value. It is preferable to perform feedback control to adjust at least one average potential of the positive phase input terminal and the negative phase input terminal and the positive phase output terminal and the negative phase output terminal of the modulation circuit.
  • the modulation device can follow the aging of the modulation target for the drive current and bias current for driving the modulation target.
  • the control circuit performs the feedback control only when the signal indicates that transmission is possible among the signals that indicate whether transmission is possible.
  • the optical power is zero during the time when the optical signal is not output.
  • the modulation apparatus according to the present invention excludes this time from the calculation when performing feedback control, thereby improving the accuracy of feedback control.
  • the light monitoring means may be a light receiver arranged in a direction in which the modulation target outputs an optical signal. By providing a light receiver outside the modulation target, the modulation target can be reduced in size.
  • the modulation device further includes a temperature sensor that measures the temperature of the modulation target, and the control circuit outputs light output from the modulation target even when the temperature of the modulation target measured by the temperature sensor varies.
  • Feed-forward control for adjusting at least one average potential of the positive-phase input terminal and the negative-phase input terminal and the positive-phase output terminal and the negative-phase output terminal of the modulation circuit so that the signal intensity becomes a predetermined value. It is preferable to do.
  • the modulation device can cause the drive current and bias current for driving the modulation target to follow the outside air and the temperature variation of the modulation target.
  • An optical transmitter includes the modulation device and the modulation target.
  • the optical transmitter according to the present invention capacitively couples between the modulation circuit and the light source and drives the light source with a differential signal, the average potential of the positive phase input terminal and the average of the negative phase input terminal of the light source Even before the potential is stabilized, the optical signal can be normally transmitted from the light source.
  • the modulation program according to the present invention can cause a computer to execute the modulation method.
  • the optical transmitter is connected to a computer, and controls the modulation circuit so that the control circuit becomes the above-described modulation method according to an instruction from the computer that has read the modulation program.
  • the modulation program is preferably recorded on a computer-readable recording medium.
  • the modulation program and the recording medium according to the present invention are capacitively coupled between the modulation circuit and the light source and the light source is driven by a differential signal, the average potential and the negative phase input terminal of the positive phase input terminal of the light source Even before the average potential is stabilized, an optical signal can be normally transmitted from the light source.
  • the modulation circuit and the light source are capacitively coupled and the light source is driven with a differential signal
  • the average potential of the positive phase input terminal and the average potential of the negative phase input terminal of the light source are before stabilization.
  • FIG. 5 is a block diagram illustrating the configuration of the optical transmitter according to the present embodiment.
  • the optical transmitter of FIG. 5 includes a modulation device 301 and an LD 320 that is a modulation target.
  • the LD 320 is, for example, a direct modulation laser diode.
  • the modulation device 301 includes a control circuit 12 and a modulation circuit 11-1.
  • the modulation circuit 11-1 includes an LDD 21, an LD bias circuit 23, a Gate circuit 22, and an integration circuit 27.
  • the Gate circuit 22 passes or blocks the input signal based on a Tx_enable signal or a Tx_disable signal from the outside, which is a signal that indicates whether transmission is possible.
  • the input signal that has passed through the Gate circuit 22 is input to the LDD 21.
  • the LDD 21 amplifies and outputs an input signal so that the LD 320 can be driven.
  • the LDD 21 has a normal phase output terminal 25a which is a positive phase side of an input signal and a negative phase output terminal 25b which is a reverse phase side.
  • the positive phase output terminal 25a and the negative phase output terminal 25b are connected to the positive phase input terminal 35a and the negative phase input terminal 35b via the capacitor 24, respectively.
  • the normal phase input terminal 35a and the reverse phase input terminal 35b are connected to the LD 320. That is, there is capacitive coupling between the LDD 21 and the LD 320.
  • each terminal is connected to a power source via an inductor.
  • the LD bias circuit 23 is connected to the reverse phase input terminal 35b.
  • the LD bias circuit 23 supplies a current to the negative phase input terminal 35b based on an external Tx_enable signal or Tx_disable signal. With this current, the LD bias circuit 23 changes the potential of the negative phase input terminal 35b, adjusts the potential difference between the positive phase input terminal 35a and the negative phase input terminal 35b, and allows the bias current to flow through the LD 320.
  • the integration circuit 27 is, for example, a low-pass filter (LPF).
  • the integrating circuit 27 is connected between the LD bias circuit 23 and the reverse phase input terminal of the LD. Due to the differential electrical signals output from the positive phase output terminal 25a and the negative phase output terminal 25b, the average potential of the positive phase output terminal 25a and the negative phase output terminal 25b may change rapidly.
  • the average potential of the positive phase input terminal 35a and the negative phase input terminal 35b varies with a certain time constant according to the variation of the average potential of the positive phase output terminal 25a and the negative phase output terminal 25b. By adjusting the integration circuit 27, the time constant of the positive phase input terminal 35a and the time constant of the negative phase input terminal 35b can be matched.
  • the modulation circuit 11-1 causes a bias current to flow through the LD 320 that is capacitively coupled, and drives the LD 320 with a differential electrical signal composed of a positive phase and a reverse phase.
  • the control circuit 12 is connected to the modulation circuit 11-1.
  • the control circuit 12 sends a control signal to the modulation circuit 11-1 based on the Tx_enable signal or the Tx_disable signal to control the modulation circuit 11-1.
  • the control circuit 12 applies the average potential of the positive phase input terminal 35a and the negative phase input terminal 35b of the LD 320 and the modulation circuit 11- so that the modulation method described below is applied to the modulation circuit 11-1.
  • the average potential of at least one of the positive phase output terminal 25a and the negative phase output terminal 25b is controlled.
  • the modulation method of the modulation device 301 is that the control circuit 12 changes the average potential with respect to the modulation circuit 11-1 when the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b change.
  • the average potential of at least one of the positive phase input terminal 35a and the negative phase input terminal 35b and the positive phase output terminal 25a and the negative phase output terminal 25b of the LDD 21 is controlled so that the transient states of the average potentials generated before and after are the same.
  • the modulation method is characterized in that the transient state of the average potential of the positive phase input terminal 35a and the transient state of the average potential of the negative phase input terminal 35b are canceled as in-phase components of the differential electric signal output from the LDD 21. .
  • control circuit 12 sets the average potential of the negative-phase input terminal 35b to the modulation circuit 11-1 at the same time constant as the time constant of the transient state of the average potential at the positive-phase input terminal 35a. Control is performed so as to decrease until the fluctuation amount is twice the fluctuation amount of the average potential at the phase input terminal 35a.
  • FIG. 4 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low during Tx_disable, and outputs a modulation signal having an amplitude V p ⁇ p during Tx_enable.
  • the negative phase output terminal 25b holds the potential V high at Tx_disable and outputs a modulation signal having an amplitude V pp at Tx_enable.
  • the positive-phase input terminal 35a holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the LDD and the LD are capacitively coupled. Therefore, the average potential rises by V p ⁇ p / 2, then falls to Va with a certain time constant, and the mean potential Va and amplitude V A pp modulation signal is input to the LD.
  • of the transient response at this time is V pp / 2 which is the same as
  • the modulation signal amplitude V p-p is input to the LD.
  • the time constant of the negative phase input terminal 35b is adjusted to the same time constant as that of the positive phase input terminal 35a by changing the time constant of the integrating circuit 27. If adjustment of the time constant is not necessary, the integration circuit 27 is not necessary. Since the fluctuation potential amount
  • the positive phase input terminal 35a and the negative phase input terminal 35b have the same time constant as the average potential fluctuation in the transient response state even if the LDD-LD is capacitively coupled. Therefore, the waveform of the optical transmission signal output from the LD is stably output.
  • FIG. 17 is a block diagram for explaining another embodiment of the modulation device 301.
  • the modulation device 301 may further include an optical monitoring unit that measures the optical power of the optical signal output from the LD 320.
  • the control circuit 12 averages at least one of the positive phase input terminal 25a, the negative phase input terminal 25b, the positive phase output terminal 35a, and the negative phase output terminal 35b so that the optical power measured by the optical monitoring means becomes a predetermined value. Perform feedback control to adjust the potential.
  • the optical monitor means may use an optical monitor in the LD 320 or may be a light receiver 41 arranged in a direction in which the LD 320 outputs an optical signal as shown in FIG.
  • the modulation device 301 inputs a part of the optical signal output from the LD 320 to the light receiver 41.
  • the light receiver 41 inputs an output to the control circuit 12.
  • the control circuit 12 controls the LD bias circuit 23 so that an optimum bias current flows. Specifically, at the time of Tx_disable, the potential of the negative phase input terminal 35b is lowered by
  • the modulation device 301 performs feedback control based on the optical power of the optical signal output from the LD 320 in this way. By applying such feedback control, it is possible to output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging.
  • control circuit 12 may perform feedback control only for a time during which an optical signal can be transmitted.
  • the light receiver 41 monitors the optical power of the optical signal only when Tx_enable when the optical signal is output, and does not monitor the optical power of the optical signal when Tx_disable when the optical signal is not output.
  • the modulation device 301 can compensate each bias (25a, 25b) due to a temperature variation or a change with time. , 35a, 35b) can be maintained.
  • the modulation device 301 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 18 is a block diagram illustrating another embodiment of the modulation device 301.
  • the modulation device 301 may further include a temperature sensor 42 that measures the temperature of the LD 320 or the temperature near the LD 320.
  • the control circuit 12 includes a positive phase input terminal 25a, a negative phase input terminal 25b, and a positive phase output so that the intensity of the optical signal output from the LD 320 becomes a predetermined value even when the temperature of the LD 320 or the temperature near the LD 320 fluctuates. Feed forward control for adjusting at least one average potential of the terminal 35a and the negative phase output terminal 35b is performed.
  • the temperature sensor 42 inputs the temperature measurement result to the control circuit 12.
  • the control circuit 12 controls the LD bias circuit 23 so that an optimum bias current flows. Specifically, at the time of Tx_disable, the potential of the negative phase input terminal 35b is lowered by
  • Modulator 301 performs feedforward control based on temperature information in the vicinity of LD 320 or LD 320 as described above. By applying such feedforward control, it is possible to output a stable optical signal even when an optimum bias current fluctuation occurs due to a temperature fluctuation.
  • an optical monitor in the LD 320 may be used, or a light receiver not shown in FIG. 18 may be arranged.
  • FIG. 7 is a block diagram illustrating the configuration of the optical transmitter according to this embodiment.
  • the difference between the optical transmitter of FIG. 5 and the optical transmitter of FIG. 7 is that a modulation device 302 is provided as an alternative to the modulation device 301.
  • the modulation device 302 includes a modulation circuit 11-2.
  • the difference between the modulation circuit 11-2 and the modulation circuit 11-1 in FIG. 5 is that the negative phase input terminal 35 b and the LD bias circuit 23 are grounded by a resistor 29.
  • the resistor 29 allows a leak current to flow through the LD 320 and adjusts the potential of the reverse phase input terminal 35b.
  • the control circuit 12 sends a control signal to the modulation circuit 11-2 based on the Tx_enable signal or the Tx_disable signal to control the modulation circuit 11-2.
  • the optical transmitter of FIG. 7 differs from the modulation method of the optical transmitter of FIG. 5 in the following points.
  • the control circuit 12 sets the average potential of the negative phase input terminal 35b to the modulation circuit 11-2 with the same time constant as that of the transient state of the average potential at the positive phase input terminal 35a.
  • the average potential of the negative phase input terminal 35b is reversed from the average potential of the positive phase input terminal 35a after the transient state before the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b fluctuate.
  • the difference potential amount obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the phase input terminal 35b is changed in advance.
  • FIG. 6 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low during Tx_disable, and outputs a modulation signal having an amplitude V p ⁇ p during Tx_enable.
  • the negative phase output terminal 25b holds the potential V high at Tx_disable and outputs a modulation signal having an amplitude V pp at Tx_enable.
  • the positive-phase input terminal 35a holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the LDD and the LD are capacitively coupled. Therefore, the average potential rises by V p ⁇ p / 2, then falls to Va with a certain time constant, and the mean potential Va and amplitude V A pp modulation signal is input to the LD.
  • of the transient response at this time is V pp / 2 which is the same as
  • the negative phase input terminal 35b holds the potential Va ⁇
  • is to be equal to Va-Vc-V p-p , adjusting the resistance value of the added resistor.
  • the average potential drops by V pp / 2 and the same time constant as that of the positive phase input terminal 35a for flowing a bias current. lowered to Vc with the average potential Vc, the modulation signal amplitude V p-p is input to the LD.
  • the integration circuit 27 is applied as in the first embodiment, and the time constant is adjusted to the same as that of the positive phase input terminal 35a.
  • of the transient response at this time is V pp / 2 equal to
  • the average potential fluctuation and the time constant in the transient response state can be obtained at the positive phase input terminal 35a and the negative phase input terminal 35b even if the LDD-LD is capacitively coupled. Since they are the same, the waveform of the optical transmission signal output from the LD is stably output.
  • FIG. 19 shows a block diagram of the modulation device 302 to which the configuration for performing the feedback control described in FIG. 17 is added.
  • the modulation device 302 can output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging. Further, feedback control may be performed only for a time during which an optical signal can be transmitted. By monitoring only the optical power at the time of Tx_enable without monitoring the optical power at the time of Tx_disable, the modulator 302 can compensate each bias (25a, 25b, 35a, The set value of the average potential of 35b) can be maintained.
  • the modulator 302 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 20 shows a block diagram of the modulation device 302 to which the configuration for performing the feedforward control described in FIG. 18 is added.
  • the modulation device 302 can output a stable optical signal even when the optimum bias current fluctuates due to temperature fluctuations.
  • FIG. 9 is a block diagram illustrating the configuration of the optical transmitter according to this embodiment.
  • the difference between the optical transmitter in FIG. 5 and the optical transmitter in FIG. 7 is that a modulation device 303 is provided instead of the modulation device 301.
  • the modulation device 303 includes a control circuit 12, a modulation circuit 11-1, a voltage source circuit 13, and a voltage controller 14.
  • the LDD 21 has a current source circuit 21j connected to the positive phase output terminal 25a and the negative phase output terminal 25b.
  • the voltage source circuit 13 may be a circuit in which a voltage source 32 and a voltage source 34 that apply different potentials and a switch (SW) 31 that selects one of these voltage sources are connected in series.
  • the voltage controller 14 can be, for example, the SW control unit 33 that controls the switch 31. The potentials of the voltage source 32 and the voltage source 34 are controlled by the control circuit 12.
  • the SW 31 is connected to the current source circuit 21j of the LDD 21 and switches between the voltage source 32 and the voltage source 34 that apply different potentials. Based on the Tx_enable signal or Tx_disable signal from the outside, the SW control unit 33 determines whether to apply a potential of V low to the positive phase output terminal 25a or a potential of V low ⁇
  • the control circuit 12 may determine the Tx_enable signal or the Tx_disable signal and give an instruction to switch the SW 31 to the voltage controller 14.
  • the voltage source circuit 13 and the voltage controller 14 can change the average potential of the positive phase output terminal 25a by adjusting the current source circuit 21j of the LDD 21.
  • the control circuit 12 sends a control signal to the modulation circuit 11-1 based on the Tx_enable signal or the Tx_disable signal to control the modulation circuit 11-1.
  • the optical transmitter of FIG. 9 differs from the modulation method of the optical transmitter of FIG. 5 in the following points.
  • the control circuit 12 sets the average potential of the negative phase input terminal 35b to the modulation circuit 11-1 with the same time constant as the time constant of the transient state of the average potential at the positive phase input terminal 35a.
  • the average potential of the positive phase output terminal 25a is reversed from the average potential of the positive phase input terminal 35a after the transient state before the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b fluctuate.
  • the difference potential amount obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the phase input terminal 35b is changed in advance.
  • FIG. 8 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low ⁇
  • the SW control unit controls the SW to the voltage source 32 side that applies a high voltage during Tx_disable and to the voltage source 34 side that applies a low voltage during Tx_enable. Specifically, this is performed as follows.
  • Tx_disable In this case, current always flows through the path of the LDD 21 on the transistor 21a side.
  • the gate circuit 22 applies a voltage to the gate of the transistor 21a on the positive phase side 22a, and causes a current to flow through the path on the transistor 21a side. For this reason, a voltage drop due to the resistor Ra occurs, the potential of the connection terminal Ta becomes lower than the power source Vc, and the potential of the positive phase output terminal 25a at the time of Tx_disable can be lowered to V low ⁇
  • the gate circuit 22 does not apply voltage to the gate of the transistor 21b on the opposite phase side 22b, and stops the current in the path on the transistor 21b side. For this reason, the potential of the connection end Tb becomes equal to the power supply Vc, and the potential of the negative phase output terminal 25b can be held at V high without fluctuation.
  • Tx_enable current flows alternately through the path on the transistor 21a side and the path on the transistor 21b side of the LDD 21.
  • the gate circuit 22 does not apply a voltage to the gate of the transistor 21a on the positive phase side 22a, stops the current in the path on the transistor 21a side, and the transistor 21b on the negative phase side 22b. A voltage is applied to the gate to cause a current to flow through the path on the transistor 21b side. For this reason, the potential of the connection end Ta becomes equal to the power supply Vc, and the potential of the positive phase output terminal 25a can be held at V high without fluctuation. Further, since the potential at the connection end Tb is a voltage drop due to the resistor Rb, the potential at the reverse phase output terminal 25b can be lowered to V low .
  • the gate circuit 22 applies a voltage to the gate of the transistor 21a on the positive phase side 22a and causes a current to flow through the path on the transistor 21a side, and the gate of the transistor 21b on the negative phase side 22b.
  • the current in the path on the transistor 21b side is stopped without applying a voltage to.
  • the potential of the connection end Ta drops by the resistor Ra, and the potential of the positive phase output terminal 25a can be lowered to V low .
  • the potential of the connection end Tb becomes equal to the power supply Vc, and the potential of the reverse phase output terminal 25b can be held at V high without fluctuation.
  • the positive-phase input terminal 35a holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the LDD and the LD are capacitively coupled. Therefore, the average potential rises by
  • of the transient response at this time is the same as
  • + V pp / 2 Va ⁇ Vc ⁇ V pp / 2.
  • the negative-phase input terminal 35b holds the potential Va when Tx_disabled, and simultaneously receives a modulation signal having an amplitude Vp -p when Tx_enable, and at the same time lowers the average potential to Vc in order to flow the LD bias current.
  • the average potential drops by V pp / 2 and the same time constant as that of the positive phase input terminal 35a for flowing a bias current. lowered to Vc with the average potential Vc, the modulation signal amplitude V p-p is input to the LD.
  • the integration circuit 27 is applied as in the first embodiment, and the time constant is adjusted to the same as that of the positive phase input terminal 35a.
  • of the transient response at this time is Va ⁇ Vc ⁇ V p ⁇ p / 2, which is equal to
  • the average potential fluctuation and the time constant in the transient response state can be obtained at the positive phase input terminal 35a and the negative phase input terminal 35b even if the LDD-LD is capacitively coupled. Since they are the same, the waveform of the optical transmission signal output from the LD is stably output.
  • the potential at Tx_disable of the positive phase output terminal 25a is adjusted using a voltage source circuit and a voltage controller including a switch and two voltage sources, but the current source itself in the LDD circuit is adjusted as described above.
  • a variable current source circuit capable of adjusting the potential may be used.
  • the pair of the positive phase output terminal 25a and the negative phase output terminal 25b may be a Darlington connection type differential pair.
  • FIG. 21 shows a block diagram of the modulation device 303 to which the configuration for performing the feedback control described in FIG. 17 is added.
  • the modulation device 303 can output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging. Further, feedback control may be performed only for a time during which an optical signal can be transmitted. By monitoring only the optical power at the time of Tx_enable without monitoring the optical power at the time of Tx_disable, the modulation device 303 can compensate each bias (25a, 25b, 35a, The set value of the average potential of 35b) can be maintained.
  • the modulator 303 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 22 shows a block diagram of the modulation device 303 to which the configuration for performing the feedforward control described in FIG. 18 is added.
  • the modulation device 303 can output a stable optical signal even when the optimum bias current fluctuates due to temperature fluctuations.
  • FIG. 11 is a block diagram illustrating the configuration of the optical transmitter according to this embodiment.
  • the difference between the optical transmitter of FIG. 5 and the optical transmitter of FIG. 11 is that a modulation device 304 is provided as an alternative to the modulation device 301.
  • the modulation device 304 includes a modulation circuit 11-4.
  • the difference between the modulation circuit 11-4 and the modulation circuit 11-1 in FIG. 5 is that the output of the LD bias circuit 23 and the integration circuit 27 are connected to the positive phase input terminal 35a.
  • the control circuit 12 sends a control signal to the modulation circuit 11-4 based on the Tx_enable signal or the Tx_disable signal to control the modulation circuit 11-4, similarly to the optical transmitter of FIG. .
  • the optical transmitter of FIG. 11 differs from the modulation method of the optical transmitter of FIG. 5 in the following points.
  • the control circuit 12 sets the average potential of the positive phase input terminal 35a to the modulation circuit 11-4 with the same time constant as the time constant of the transient state of the average potential at the negative phase input terminal 35b.
  • the modulation method is controlled to increase until the fluctuation amount is twice the fluctuation amount of the average potential at the negative phase input terminal 35b.
  • FIG. 10 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low during Tx_disable, and outputs a modulation signal having an amplitude V p ⁇ p during Tx_enable.
  • the negative phase output terminal 25b holds the potential V high at Tx_disable and outputs a modulation signal having an amplitude V pp at Tx_enable.
  • the inverse phase input terminal 35b holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the LDD and the LD are capacitively coupled. Therefore, the average potential drops to V pp / 2 and then rises to Va with a certain time constant, and the average potential Va and amplitude V A pp modulation signal is input to the LD.
  • of the transient response at this time is V pp / 2 which is the same as
  • Va ′ Va ⁇ V p ⁇ p
  • the average potential fluctuation and the time constant in the transient response state can be obtained at the positive phase input terminal 35a and the negative phase input terminal 35b even if the LDD-LD is capacitively coupled. Since they are the same, the waveform of the optical transmission signal output from the LD is stably output.
  • FIG. 23 shows a block diagram of the modulation device 304 to which the configuration for performing the feedback control described in FIG. 17 is added.
  • the modulation device 304 can output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging. Further, feedback control may be performed only for a time during which an optical signal can be transmitted. By monitoring only the optical power at the time of Tx_enable without monitoring the optical power at the time of Tx_disable, the modulation device 304 can compensate each bias (25a, 25b, 35a, The set value of the average potential of 35b) can be maintained.
  • the modulation device 304 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 24 shows a block diagram of the modulation device 304 to which the configuration for performing the feedforward control described in FIG. 18 is added.
  • the modulation device 304 can output a stable optical signal even when the optimum bias current fluctuates due to temperature fluctuations.
  • FIG. 13 is a block diagram illustrating the configuration of the optical transmitter according to this embodiment.
  • the difference between the optical transmitter of FIG. 7 and the optical transmitter of FIG. 13 is that a modulation device 305 is provided as an alternative to the modulation device 302.
  • the modulation device 305 includes a modulation circuit 11-5.
  • the difference between the modulation circuit 11-5 and the modulation circuit 11-2 in FIG. 7 is that the output of the LD bias circuit 23 and the resistor 29 for leakage current are connected to the positive phase input terminal 35a.
  • the control circuit 12 sends a control signal to the modulation circuit 11-5 based on the Tx_enable signal or the Tx_disable signal to control the modulation circuit 11-5.
  • the optical transmitter of FIG. 13 differs from the modulation method of the optical transmitter of FIG. 7 in the following points.
  • the modulation method of the modulation device 305 is as follows: The control circuit 12 raises the average potential of the positive phase input terminal 35a with respect to the modulation circuit 11-5 by the same time constant as that of the transient state of the average potential at the negative phase input terminal 35b. Before the average potential varies between the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b, the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b after the transient state In this modulation method, the difference potential amount obtained by subtracting the amplitude voltage of the modulation signal from the difference is changed in advance.
  • FIG. 12 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low during Tx_disable, and outputs a modulation signal having an amplitude V p ⁇ p during Tx_enable.
  • the negative phase output terminal 25b holds the potential V high at Tx_disable and outputs a modulation signal having an amplitude V pp at Tx_enable.
  • the inverse phase input terminal 35b holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the LDD and the LD are capacitively coupled. Therefore, the average potential drops to V pp / 2 and then rises to Va with a certain time constant, and the average potential Va and amplitude V A pp modulation signal is input to the LD.
  • of the transient response at this time is V pp / 2 which is the same as
  • the positive phase input terminal 35a holds the potential Va +
  • is Va'-Va-V p-p , equal to, the adjusting the resistance value of the added resistor.
  • the average potential fluctuation and the time constant in the transient response state can be obtained at the positive phase input terminal 35a and the negative phase input terminal 35b even if the LDD-LD is capacitively coupled. Since they are the same, the waveform of the optical transmission signal output from the LD is stably output.
  • FIG. 25 shows a block diagram of the modulation device 305 to which the configuration for performing the feedback control described in FIG. 17 is added.
  • the modulation device 305 can output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging. Further, feedback control may be performed only for a time during which an optical signal can be transmitted. By monitoring only the optical power at the time of Tx_enable without monitoring the optical power at the time of Tx_disable, the modulation device 305 can compensate each terminal (25a, 25b, 35a, The set value of the average potential of 35b) can be maintained.
  • the modulation device 305 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 26 shows a block diagram of the modulation device 305 to which the configuration for performing the feedforward control described in FIG. 18 is added.
  • the modulation device 305 can output a stable optical signal even when the optimum bias current fluctuates due to temperature fluctuations.
  • FIG. 15 is a block diagram illustrating the configuration of the optical transmitter according to this embodiment.
  • the difference between the optical transmitter in FIG. 9 and the optical transmitter in FIG. 15 is that a modulation device 306 is provided instead of the modulation device 303.
  • the difference between the modulation device 306 and the modulation device 303 in FIG. 9 is that a modulation circuit 11-4 is provided as an alternative to the modulation circuit 11-1.
  • the difference between the modulation device 306 and the modulation device 303 in FIG. 9 is that the SW 31 is connected not to the current source circuit 21 j in the LDD 21 but to the power supply terminal side of the negative phase output terminal 25 b of the differential pair. .
  • the holding potential can be raised by V high +
  • the optical transmitter of FIG. 15 modulates the input signal in the same manner as the optical transmitter of FIG. 9, but differs from the modulation method of FIG. 9 in the following points.
  • the control circuit 12 sets the average potential of the positive phase input terminal 35a to the modulation circuit 11-4 with the same time constant as the time constant of the transient state of the average potential at the negative phase input terminal 35b.
  • the average potential of the negative phase output terminal 25b is reversed from the average potential of the positive phase input terminal 35a after the transient state before the average potential of the positive phase input terminal 35a and the average potential of the negative phase input terminal 35b change.
  • the difference potential amount obtained by subtracting the amplitude voltage of the modulation signal from the difference from the average potential of the phase input terminal 35b is changed in advance.
  • FIG. 14 shows the potential state of each terminal in the modulation device of this embodiment.
  • the potential fluctuation of each terminal is indicated by a solid line, and the average potential is indicated by a broken line.
  • the positive phase output terminal 25a holds the potential V low during Tx_disable, and outputs a modulation signal having an amplitude V p ⁇ p during Tx_enable.
  • when the state changes from Tx_disable to Tx_enable becomes V pp / 2.
  • the reverse phase output terminal 25b the potential V high +
  • the SW control unit controls the SW to the voltage source 32 side that applies a high potential during Tx_disable, and to the voltage source 34 side that applies a low potential during Tx_enable.
  • Va′ ⁇ Va ⁇ Vp ⁇ p with respect to the potential V high at Tx_enable.
  • when the state changes from Tx_disable to Tx_enable is
  • the inverse phase input terminal 35b holds the Tx_disable sometimes potential Va, tx_enable sometimes modulated signal amplitude V p-p is input.
  • the average potential decreases
  • a modulation signal having an amplitude V pp is input to the LD.
  • of the transient response at this time is the same as
  • + V pp / 2 Va′ ⁇ Va ⁇ V pp / 2.
  • Positive-phase input terminal 35a holds the Tx_disable sometimes potential Va, tx_enable sometimes pulled simultaneously modulated signal having an amplitude V p-p is input, the average potential in order to flow a bias current of the LD to Va '.
  • the average potential rises by V p ⁇ p / 2, and the same time constant as that of the anti-phase input terminal 35b for flowing a bias current. And rises to Va ′, and a modulation signal having an average potential Va ′ and an amplitude V p ⁇ p is input to the LD.
  • the integration circuit 27 When it is necessary to adjust the time constant of the positive phase input terminal 35a, the integration circuit 27 is applied as in the first embodiment, and the time constant is adjusted to the same as that of the negative phase input terminal 35b.
  • ⁇ V LP 1 of the transient response at this time is Va′ ⁇ Va ⁇ V p ⁇ p / 2, which is equal to
  • the average potential fluctuation and the time constant in the transient response state can be obtained at the positive phase input terminal 35a and the negative phase input terminal 35b even if the LDD-LD is capacitively coupled. Since they are the same, the waveform of the optical transmission signal output from the LD is stably output.
  • the potential at the time of Tx_disable of the negative phase output terminal 25b is adjusted using a voltage source circuit and a voltage controller including a switch and two voltage sources, but the current source itself in the LDD circuit is adjusted as described above.
  • a variable current source circuit capable of adjusting the potential may be used.
  • the pair of the positive phase output terminal 25a and the negative phase output terminal 25b may be a Darlington connection type differential pair.
  • FIG. 27 shows a block diagram of the modulation device 306 to which the configuration for performing the feedback control described in FIG. 17 is added.
  • the modulation device 306 can output a stable optical signal even when an optimum bias current fluctuation occurs due to temperature fluctuation or aging. Further, feedback control may be performed only for a time during which an optical signal can be transmitted. By monitoring only the optical power at the time of Tx_enable without monitoring the optical power at the time of Tx_disable, the modulation device 306 can compensate each terminal (25a, 25b, 35a, The set value of the average potential of 35b) can be maintained.
  • the modulation device 306 shortens the time for stabilizing the optical output when Tx_disable changes to Tx_enable. be able to.
  • FIG. 28 shows a block diagram of the modulation device 306 to which the configuration for performing the feedforward control described in FIG. 18 is added.
  • the modulation device 306 can output a stable optical signal even when the optimum bias current fluctuates due to temperature fluctuations.
  • the direct modulation type LD is used as the LD 320.
  • modulation can be performed by the same modulation method.
  • the modulation device of the optical modulator of the present embodiment can be realized by a computer executing a modulation program.
  • the modulation program is provided by being stored in a recording medium, for example.
  • Examples of the recording medium include a recording medium such as a flexible disk, a CD-ROM, and a DVD, a semiconductor memory, and the like.
  • the database storage program and the database search program may be provided via a LAN (Local Area Network) or the Internet.
  • FIG. 16 is a diagram illustrating an example of a computer 300 for executing a modulation program recorded on the recording medium 90.
  • the computer 300 includes a storage medium reading device 111 that reads a storage medium 90 such as a flexible disk, a CD-ROM, and a DVD, a working memory (RAM) 112, a memory 113 that stores a program stored in the recording medium 90, A display 114, a mouse 115 and a keyboard 116 as input devices, a CPU 117 that controls execution of a program, a hard disk 118 that stores data, and a cable 119 are provided.
  • the work memory 112, the memory 113, the CPU 117, and the hard disk 118 are indicated by broken lines because they are built in the housing.
  • the computer 300 When the recording medium 90 is inserted into the storage medium reading device 111, the computer 300 installs the modulation program stored in the recording medium 90 from the storage medium reading device 111 into the memory 113. After the installation in the memory 113 is completed, the CPU 117 can access the modulation program, and the modulation program enables the computer 300 to operate as a control circuit of the modulation device of the optical modulator according to the present embodiment.
  • the computer 300 When the computer 300 operates as the control circuit 12 of the optical transmitter of FIG. 5, the computer 300 is connected to the modulation circuit 11-1 with the cable 119, and the positive phase output terminal 25a notified from the modulation circuit 11-1.
  • the average potential at each terminal is calculated from the potential fluctuation data of the negative phase output terminal 25b, the positive phase input terminal 35a and the negative phase input terminal 35b using the CPU 117, the memory 113, and the work memory 112, and the fluctuation amount Confirm.
  • the transient state of the average potential of the positive phase input terminal 35a and the negative phase input terminal 35b is the same, and the light source The average potential of the positive-phase input terminal 35a and the negative-phase input terminal 35b is controlled so that it can be canceled out as the in-phase component of the input signal.
  • the computer 300 is not limited to a personal computer as shown in FIG. 16, but includes a DVD player, a game machine, a mobile phone, and the like that include a storage medium reader 111 and a CPU 117 and perform processing and control by software.
  • Any optical transmitter that modulates an electrical signal into an optical signal can be applied to a public communication network, a dedicated network, a LAN, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明に係る変調方法は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する変調装置に適用される。本発明に係る変調方法は、光源の入力端子に平均電位の変動が生じた場合に、制御回路により、平均電位の変動の時定数が正相側と逆相側とで等しくなるように外部から電位変動を与え、双方の平均電位の過渡状態を同一とし、光源への入力信号の同相成分として相殺することで光源から光信号を正常の送信できるようにすることとした。光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる。

Description

変調方法、変調プログラム、記録媒体、変調装置及び光送信器
 本発明は、変調回路と直接変調型レーザ又は外部光変調器である変調対象との間が容量結合されている場合の変調方法、この変調方法で変調する変調装置及びこの変調装置を備える光送信器に関するものである。
 現在、インターネットの普及にともない、経済的な高速アクセスネットワークに対する要求が高まっており、GE-PONのように1Gbit/sのラインレートをもつ光回線を複数のユーザで時間的に多重することによって、経済化を実現する光アクセスシステムが導入されている。現在、更なる高速化に向けて、ラインレートの10Gbit/s化の技術開発が進められている。PONのような複数のユーザを時間多重する光アクセスシステムでは、ユーザ宅内装置であるONU(Optical Network Unit)から通信事業者ビル内の局内装置OLT(Optical Line Terminal)への上り信号は間欠的なバースト信号となる。従って、ONU内の光送信器は他のONUが送信をする間は光出力を停止する必要があり、安定した光信号を瞬時に出力停止、再出力を行うという機能が必要となる。
 図1は、前記機能を有する従来のGE-PON用バースト信号伝送用光送信器の回路図である(例えば、非特許文献1を参照。)。LD(Laser Diode)420は変調回路11の駆動回路(LDD:Laser Diode Driver)21と直流結合され、LDD21で変調された光送信信号を出力する。この時、LD420は他のONUの送信時間には出力を停止するために、Tx_disable信号の入力に応じて、LDD21への電気信号の入力及び、LD420へのバイアス電流を停止する構成となっている。本明細書では、Tx_disable信号で光信号の出力を停止し、Tx_enable信号で光信号を送信することを「間欠的に信号を送信する」と記載する。ここで、10GE-PONのように、ラインレートの高速化を経済的に実現する上では、送受信系の電気的クロストークを抑圧するために連続信号用の送受信系と同様に差動電気信号を採用することが必要となる(例えば、非特許文献2を参照。)。
木村俊二、「高速バースト技術」電子情報通信学会誌Vol.91 No.1 pp.60-65 2008年1月 T.Yoshida et.al., "First Single-fibre Bi-directiona1 XFP Transceiver for Optical Metro/Access Networks", ECOC 2005, We4. P.021,2005.
 差動電気信号を用いた場合、LDDとLDとを直流結合すれば大きな変調信号振幅が必要となるため、LDDとLDとの間は容量結合が望まれる。しかし、容量結合した場合、LDDが出力電気信号を間欠的に出力すれば、各端子間での時定数により、平均電位が時間的に大きく変動する。このため、LDから出力される光信号には過渡的な状態変動が生じ、正常に光信号を出力することが困難である。
 図2は、LDDとLDとの間を容量結合し、差動電気信号で駆動する変調装置401のブロック図である。図3は、図2の変調装置401において容量結合されている各端子(正相出力端子25a、逆相出力端子25b、正相入力端子35a、逆相入力端子35b)における電位変動を示した図である。一般的なLDDの出力は電流源により生成されるが、説明の簡易化のためにここではLDDの出力を定電圧源とする。LDD21の正相側端子25a、逆相側端子25bは、他のONUの出力時間ではTx_disableの状態で、それぞれVlow,Vhighの電位を保持しているとする。光信号を出力するTx_enableの時間では振幅がVp-pである間欠的な電気信号を出力する。従って、LDD側の平均電位は、正相出力端子25aではVlowから平均電位変動|ΔVDP|(=Vp-p/2)分だけ上界し、逆相出力端子25bではVhighから|ΔVDN|(=Vp-p/2)だけ降下する。LDのアノード側である正相入力端子35a、カソード側である逆相入力端子35bは他のONUの出力時間(Tx_disable)ではLDのバイアス電流を流さないようにVaの電位を保持している。Tx_disableからTx_enableへの状態変動時には、正相入力端子35aでは平均電位が|ΔVDP|、すなわちVp-p/2と等しい電位量だけ上昇し、その後緩やかにVaへと下降する。従って、正相入力端子35aでの過渡状態における電位変動|ΔVLP|はVp-p/2となる。逆相入力端子35bでは、LDのバイアス電流を流すために、平均電位をVcへ下げる。従って、逆相入力端子35bでの過渡状態における電位変動|ΔVLN|はVa-Vc-Vp-p/2に等しくなる。
 このように、LDDとLDとの間を容量結合し、差動電気信号でLDを駆動する光送信器は、Tx_disableからTx_enable時の過渡的状態のLDにかかる平均電位変動が正相側と逆相側で異なり、それぞれの平均電位の変動は互いに異なる過渡状態となる。このため、LDから出力される光信号は、この平均電位変動が安定するまで、波形の歪みが生じ、正常に光信号を送信することが困難であった。
 本発明は、上記課題を解決するためになされたもので、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる変調方法、変調プログラム、記録媒体、変調装置及び光送信器を提供することを目的とする。
 前記目的を達成するために、本発明に係る変調方法は、光源の入力端子に平均電位の変動が生じた場合に、制御回路により、平均電位の変動の時定数が正相側と逆相側とで等しくなるように外部から電位変動を与え、双方の平均電位の過渡状態を同一とし、光源への入力信号の同相成分として相殺することで光源から光信号を正常の送信できるようにすることとした。
 具体的には、本発明に係る変調方法は、容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、を備える変調装置における変調方法であって、前記制御回路が、前記変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じたときに、前記変調回路に対し、平均電位の変動前後間に生ずる互いの平均電位の過渡状態が同じになるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を制御させ、前記正相入力端子の平均電位の過渡状態及び前記逆相入力端子の平均電位の過渡状態を前記差動電気信号の同相成分として相殺することを特徴とする。
 変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じたときに、制御回路は、変調回路に、平均電位の変動前後間に生ずる互いの平均電位の過渡状態が同じになるように正相入力端子及び逆相入力端子並びに変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させる。このように制御することで、正相入力端子の平均電位及び逆相入力端子の平均電位は同じように推移するため、正相入力端子の平均電位と逆相入力端子の平均電位との間の電位間差は過渡状態であっても一定になる。すなわち、正相入力端子の平均電位及び逆相入力端子の平均電位の過渡状態を差動電気信号の同相成分として相殺することができる。
 従って、本発明に係る変調方法は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で、且つ変調信号の振幅電圧の変動量となるまで、下げるように制御することができる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で下げ、前記逆相入力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することができる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で下げ、前記正相出力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することができる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で、且つ変調信号の振幅電圧の変動量となるまで、上げるように制御することができる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で上げ、前記正相入力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することができる。
 本発明に係る変調方法は、前記制御回路が、前記変調回路に対し、前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で上げ、前記逆相出力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することができる。
 本発明に係る変調方法は、前記変調対象から出力される光信号の光電力を測定し、前記光電力が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードバック制御することが好ましい。本発明に係る変調方法は、変調対象が経年変化した場合でも変調対象を駆動する駆動電流やバイアス電流を変調対象の経年変化に追従させることができる。
 この場合、前記送信の可否を指示する信号のうち、送信可能の指示をする信号のときのみ前記フィードバック制御することが好ましい。光信号が出力されない時間では光電力はゼロである。このため、本発明に係る変調方法は、この時間をフィードバック制御する際の計算から除外することで、フィードバック制御の精度が向上する。
 本発明に係る変調方法は、前記変調対象の温度を測定し、前記変調対象の温度が変動しても前記変調対象が出力する光信号の強度が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードフォワード制御することが好ましい。本発明に係る変調方法は、外気や変調対象の温度変動があった場合でも変調対象を駆動する駆動電流やバイアス電流を外気や変調対象の温度変動に追従させることができる。
 本発明に係る変調装置は、容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、を備える変調装置であって、前記制御回路は、前記変調回路に対し、前記変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させることを特徴とする。
 変調装置は、制御回路を備えており、この制御回路が、変調回路に前述の変調方法のように入力信号を変調させる。このため、変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じても、変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位の過渡状態を差動電気信号の同相成分として相殺することができる。
 従って、本発明に係る変調装置は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる。
 本発明に係る変調装置は、容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記変調回路の正相出力端子及び逆相出力端子に接続する電流源回路と、前記電流源回路の電流値を制御する電流コントローラと、を備える変調装置であって、前記制御回路は、前記変調回路に対し、前記変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、前記電流コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電流源回路の電流値を制御させてもよい。
 本発明に係る変調装置は、容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記制御回路の正相出力端子及び逆相出力端子の少なくとも一方と接地との間に接続される、2つの電圧源と前記電圧源のいずれか一方を選択するスイッチとを直列接続した回路である電圧源回路と、前記電圧源回路の電圧値を制御する電圧コントローラと、を備える変調装置であって、前記制御回路は、前記変調回路に対し、前記変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、前記電圧コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電圧源回路の電圧値を制御させてもよい。
 変調装置は、電圧源回路と、電圧コントローラを備え、制御回路がこれらを制御する。これにより、正相出力端子又は逆相出力端子の平均電位を、正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じる前に、過渡状態後の正相入力端子の平均電位と逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくことができる。
 本発明に係る変調装置は、容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記変調回路の正相出力端子及び逆相出力端子に接続される電流源回路と、前記電流源回路の電流値を制御する電流コントローラと、を備える変調装置であって、前記変調回路は、ダーリントン接続型差動対を有しており、前記変調回路の正相出力端子と逆相出力端子との対が前記ダーリントン接続型差動対であり、前記制御回路は、前記変調回路に対し、前記変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、前記電流コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電流源回路の電流値を制御させてもよい。
 変調対象を駆動する駆動電流を小さくすることができる。
 本発明に係る変調装置は、前記正相入力端子及び前記逆相入力端子の少なくとも一方と前記制御手段との間に積分回路をさらに備えてもよい。積分回路を備えることで、正相入力端子における過渡状態の時定数と逆相入力端子における過渡状態の時定数を一致させることができる。
 本発明に係る変調装置は、前記変調対象から出力される光信号の光電力を測定する光モニタ手段をさらに備え、前記制御回路は、前記光モニタ手段が測定した前記光電力が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードバック制御することが好ましい。本発明に係る変調装置は、変調対象を駆動する駆動電流やバイアス電流を変調対象の経年変化に追従することができる。
 この場合、前記制御回路は、前記送信の可否を指示する信号のうち、送信可能の指示をする信号のときのみ前記フィードバック制御することが好ましい。光信号が出力されない時間において光電力はゼロである。このため、本発明に係る変調装置は、この時間をフィードバック制御する際の計算から除外し、フィードバック制御の精度の向上を図っている。
 また、前記光モニタ手段は、前記変調対象が光信号を出力する方向に配置された受光器であることでもよい。変調対象の外部に受光器を備えることで変調対象を小型化することができる。
 本発明に係る変調装置は、前記変調対象の温度を測定する温度センサをさらに備え、前記制御回路は、前記温度センサが測定した前記変調対象の温度が変動しても前記変調対象が出力する光信号の強度が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードフォワード制御することが好ましい。本発明に係る変調装置は、変調対象を駆動する駆動電流やバイアス電流を外気や変調対象の温度変動に追従させることができる。
 本発明に係る光送信器は、前記変調装置と、前記変調対象と、を備える。前述の変調装置を備えることで、変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じても、変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位の過渡状態を差動電気信号の同相成分として相殺することができる。
 従って、本発明に係る光送信器は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる。
 本発明に係る変調プログラムは、コンピュータに前記変調方法を実行させることができる。前記光送信器は、コンピュータに接続されており、前記変調プログラムを読み取りしたコンピュータからの指示で、制御回路が前述の変調方法となるように変調回路を制御する。また、前記変調プログラムは、コンピュータ読み取り可能な記録媒体に記録されていることが好ましい。
 従って、本発明に係る変調プログラム及び記録媒体は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる。
 本発明は、変調回路と光源との間を容量結合し、差動信号で光源を駆動する場合に、光源の正相入力端子の平均電位及び逆相入力端子の平均電位が安定する前であっても光源から光信号を正常に送信できる変調方法、変調プログラム、記録媒体、変調装置及び光送信器を提供することが可能である。
従来のGE-PON用バースト信号伝送用光送信器の回路図である。 従来の光送信器のブロック図である。 従来の光送信装置において容量結合されている各端子における電位変動を示した図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の変調装置における各端子の電位状態を示すした図である。 本発明に係る光送信器の構成を説明するブロック図である。 記録媒体に記録された変調プログラムを実行するためのコンピュータの例を示した図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。 本発明に係る光送信器の構成を説明するブロック図である。
符号の説明
 図面で使用されている符号は以下の通りである。
301~306、401:変調装置
320、420:LD(Laser Diode)
11、11-1、11-2、11-4、11-5:変調回路
12:制御回路
13:電圧源回路
14:電圧コントローラ
21:駆動回路(LDD:Laser Diode Driver)
21j:電流源回路
22:Gate回路
23:LDバイアス回路
24:容量
25a:正相出力端子
25b:逆相出力端子
27:積分回路
29:抵抗
31:スイッチ(SW)
32、34:電圧源
33:SW制御部
35a:正相入力端子
35b:逆相入力端子
41:受光器
42:温度センサ
90:記録媒体
111:記憶媒体読み取り装置
112:作業用メモリ
113:メモリ
114:ディスプレイ
115:マウス
116:キーボード
117:CPU
118:ハードディスク
119:ケーブル
300:コンピュータ
 添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施の形態1)
 図5に本実施形態の光送信器の構成を説明するブロック図を示す。図5の光送信器は、変調装置301及び変調対象であるLD320からなる。LD320は、例えば、直接変調型レーザダイオードである。変調装置301は、制御回路12及び変調回路11-1からなる。変調回路11-1は、LDD21、LDバイアス回路23、Gate回路22及び積分回路27からなる。
 Gate回路22は、送信の可否を指示する信号である、外部からのTx_enable信号又はTx_disable信号に基づき、入力信号を通過又は遮断する。Gate回路22を通過した入力信号は、LDD21に入力される。LDD21は、LD320を駆動できるように入力信号を増幅して出力する。LDD21は入力信号の正相側である正相出力端子25a及び逆相側である逆相出力端子25bを有する。
 正相出力端子25a及び逆相出力端子25bは、それぞれ容量24を介して正相入力端子35a及び逆相入力端子35bに接続されている。正相入力端子35a及び逆相入力端子35bはLD320に接続される。すなわち、LDD21とLD320との間は容量結合である。また、電流で正相出力端子25a、逆相出力端子25b、正相入力端子35a及び逆相入力端子35bの電位を制御するため、各々の端子はインダクタを介して電源に接続されている。
 LDバイアス回路23は、逆相入力端子35bに接続されている。LDバイアス回路23は、外部からのTx_enable信号又はTx_disable信号に基づき、逆相入力端子35bに電流を供給する。LDバイアス回路23は、この電流により、逆相入力端子35bの電位を変化させ、正相入力端子35aと逆相入力端子35bとの電位差を調整して、LD320にバイアス電流を流すことができる。
 積分回路27は、例えば、ローパスフィルタ(LPF)である。積分回路27はLDバイアス回路23とLDの逆相入力端子間に接続される。正相出力端子25a及び逆相出力端子25bから出力される差動電気信号により、正相出力端子25a及び逆相出力端子25bの平均電位が急激に変動することがある。正相入力端子35a及び逆相入力端子35bの平均電位は正相出力端子25a及び逆相出力端子25bの平均電位の変動に応じて、ある時定数をもって変動する。積分回路27を調整することで、正相入力端子35aの時定数と逆相入力端子35bの時定数とを一致させることができる。
 変調回路11-1は、容量結合される、LD320にバイアス電流を流し、正相及び逆相からなる差動電気信号でLD320を駆動する。制御回路12は、変調回路11-1と接続している。制御回路12は、Tx_enable信号又はTx_disable信号に基づいて変調回路11-1に制御信号を送り、変調回路11-1を制御する。具体的には、制御回路12は、変調回路11-1に対し、以下に説明する変調方法となるように、LD320の正相入力端子35a及び逆相入力端子35bの平均電位並びに変調回路11-1の正相出力端子25a及び逆相出力端子25bの少なくとも1つの平均電位を制御する。
 変調装置301の変調方法は、制御回路12が、正相入力端子35aの平均電位及び逆相入力端子35bの平均電位に変動が生じたときに、変調回路11-1に対し、平均電位の変動前後間に生ずる互いの平均電位の過渡状態が同じになるように正相入力端子35a及び逆相入力端子35b並びにLDD21の正相出力端子25a及び逆相出力端子25bの少なくとも1つの平均電位を制御させ、正相入力端子35aの平均電位の過渡状態及び逆相入力端子35bの平均電位の過渡状態をLDD21から出力される差動電気信号の同相成分として相殺することを特徴とする変調方法である。
 本実施例では、制御回路12が、変調回路11-1に対し、逆相入力端子35bの平均電位を、正相入力端子35aにおける平均電位の過渡状態の時定数と同じ時定数で、且つ正相入力端子35aにおける平均電位の変動量の2倍の変動量となるまで、下げるように制御する。
 図4に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlowを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|はVp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhighを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|はVp-p/2となる。
 この時、正相入力端子35aでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位はVp-p/2上昇してから、ある時定数をもってVaへ下降し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLP|は|ΔVDP|と同じVp-p/2である。
 逆相入力端子35bでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位を、その変動電位量が正相入力端子35aの変動電位量Vp-p/2の2倍となるようなVc(=Va-Vp-p)へ引き下げる。Tx_disableからTx_enableへ状態変化する時には、LDDとLD間が容量結合されているために、平均電位はVp-p/2下降し、さらにバイアス電流を流すために正相入力端子35aと同じ時定数をもってVcへ下降し、平均電位Vc、振幅Vp-pの変調信号がLDへ入力される。逆相入力端子35bの時定数は積分回路27の時定数を変化させることにより、正相入力端子35aと同じ時定数に調整する。なお、時定数の調整が不要な場合には、この積分回路27は不要である。この時の過渡応答の変動電位量|ΔVLN|はVa-Vc-Vp-p/2であり、VcはVa-Vp-pであるから、|ΔVLN|は|ΔVLP|と等しいVp-p/2となる。
 従って、このような変調方法を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 図17は、変調装置301の他の実施形態を説明するブロック図である。変調装置301は、LD320から出力される光信号の光電力を測定する光モニタ手段をさらに備えてもよい。制御回路12は、光モニタ手段が測定した光電力が所定の値となるように正相入力端子25a、逆相入力端子25b、正相出力端子35a、及び逆相出力端子35bの少なくとも1つの平均電位を調整するフィードバック制御を行う。
 光モニタ手段は、LD320内の光モニタを利用してもよいし、図17のようにLD320が光信号を出力する方向に配置された受光器41としてもよい。変調装置301は、LD320から出力された光信号の一部を受光器41へ入力する。受光器41は、出力を制御回路12に入力する。制御回路12は、最適なバイアス電流を流すようにLDバイアス回路23を制御する。具体的には、Tx_disable時に、その時のバイアス電流に対応した|△V|分だけ、逆相入力端子35bの電位を下げる。変調装置301は、このようにLD320が出力する光信号の光電力に基づいてフィードバック制御を行う。このようなフィードバック制御をかけることにより、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 さらに、制御回路12は、光信号を送信可能な時間のみフィードバック制御してもよい。具体的には、受光器41は光信号を出力するTx_enable時だけ光信号の光電力をモニタし、光信号を出力しないTx_disable時には光信号の光電力をモニタしないこととする。このようにTx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置301は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置301は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図18は、変調装置301の他の実施形態を説明するブロック図である。変調装置301は、LD320の温度又はLD320の付近の温度を測定する温度センサ42をさらに備えてもよい。制御回路12は、LD320の温度又はLD320の付近の温度が変動してもLD320が出力する光信号の強度が所定の値となるように正相入力端子25a、逆相入力端子25b、正相出力端子35a、及び逆相出力端子35bの少なくとも1つの平均電位を調整するフィードフォワード制御を行う。
 温度センサ42は、温度測定の結果を制御回路12に入力する。制御回路12は、最適なバイアス電流を流すようにLDバイアス回路23を制御する。具体的には、Tx_disable時に、その時のバイアス電流に対応した|△V|分だけ、逆相入力端子35bの電位を下げる。変調装置301は、このようにLD320又はLD320の付近の温度情報に基づいてフィードフォワード制御を行う。このようなフィードフォワード制御をかけることにより、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。なお、光信号の強度を測定するため、LD320内の光モニタを利用してもよいし、図18に示していない受光器を配置してもよい。
 なお、図17及び図18で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置301に搭載することができる。
(実施の形態2)
 図7に本実施形態の光送信器の構成を説明するブロック図を示す。図5の光送信器と図7の光送信器との違いは、変調装置301の代替として変調装置302を備えている点である。変調装置302は変調回路11-2を備えている。変調回路11-2と図5の変調回路11-1との違いは、逆相入力端子35bとLDバイアス回路23との間が抵抗29で接地されている点である。抵抗29は、LD320にリーク電流を流し、逆相入力端子35bの電位を調整する。
 図7の光送信器は、図5の光送信器と同様に、制御回路12が、Tx_enable信号又はTx_disable信号に基づいて変調回路11-2に制御信号を送り、変調回路11-2を制御する。図7の光送信器は、以下の点で図5の光送信器の変調方法と異なる。
 変調装置302の変調方法は、制御回路12が、変調回路11-2に対し、逆相入力端子35bの平均電位を、正相入力端子35aにおける平均電位の過渡状態の時定数と同じ時定数で下げ、逆相入力端子35bの平均電位を、正相入力端子35aの平均電位及び逆相入力端子35bの平均電位に変動が生じる前に、過渡状態後の正相入力端子35aの平均電位と逆相入力端子35bの平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御する変調方法である。
 図6に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlowを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|はVp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhighを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|はVp-p/2となる。
 この時、正相入力端子35aでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位はVp-p/2上昇してから、ある時定数をもってVaへ下降し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLP|は|ΔVDP|と同じVp-p/2である。
 逆相入力端子35bは、Tx_disable時には電位Va-|ΔV|を保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位をVcへ引き下げる。ここで、LDにリーク電流を流すことで|ΔV|がVa-Vc-Vp-pに等しくなるように、追加された抵抗の抵抗値を調整する。 Tx_disableからTx_enableへ状態変化する時には、LDDとLD間が容量結合されているために、平均電位はVp-p/2下降し、さらにバイアス電流を流すために正相入力端子35aと同じ時定数をもってVcへ下降し、平均電位Vc、振幅Vp-pの変調信号がLDへ入力される。逆相入力端子35bの時定数の調整が必要な場合には、第一の実施形態と同様に積分回路27を適用して、正相入力端子35aと同じ時定数に調整する。この時の過渡応答の変動電位量|ΔVLN|は|ΔVLP|と等しいVp-p/2となる。
 従って、このような手法で変調を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 図19に図17で説明したフィードバック制御を行う構成を加えた変調装置302のブロック図を示す。変調装置302は、フィードバック制御を行うことで、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。また、光信号を送信可能な時間のみフィードバック制御してもよい。Tx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置302は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置302は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図20に図18で説明したフィードフォワード制御を行う構成を加えた変調装置302のブロック図を示す。変調装置302は、フィードフォワード制御を行うことで、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 なお、図19及び図20で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置302に搭載することができる。
(実施の形態3)
 図9に本実施形態の光送信器の構成を説明するブロック図を示す。図5の光送信器と図7の光送信器との違いは、変調装置301の代替として変調装置303を備えている点である。変調装置303は、制御回路12、変調回路11-1、電圧源回路13及び電圧コントローラ14を備える。また、LDD21は、正相出力端子25a及び逆相出力端子25bに接続する電流源回路21jを持つ。電圧源回路13は、異なる電位を与える電圧源32及び電圧源34とこれらの電圧源のいずれか一方を選択するスイッチ(SW)31とを直列接続した回路とすることができる。電圧コントローラ14は、例えば、スイッチ31を制御するSW制御部33とすることができる。電圧源32及び電圧源34の電位は制御回路12で制御される。
 SW31は、LDD21の電流源回路21jに接続され、異なる電位を与える電圧源32と電圧源34とを切り替える。SW制御部33は、外部からのTx_enable信号又はTx_disable信号に基づいて、正相出力端子25aにVlowの電位を与えるか、又はVlow-|ΔV|の電位を与えるかを判断してSW31を制御する。制御回路12がTx_enable信号又はTx_disable信号の判断を行い、電圧コントローラ14に対してSW31の切り替えの指示をだしてもよい。変調装置303は、電圧源回路13及び電圧コントローラ14が、LDD21が持つ電流源回路21jを調整することで正相出力端子25aの平均電位を変化させることができる。
 図9の光送信器は、図5の光送信器と同様に、制御回路12が、Tx_enable信号又はTx_disable信号に基づいて変調回路11-1に制御信号を送り、変調回路11-1を制御する。図9の光送信器は、以下の点で図5の光送信器の変調方法と異なる。
 変調装置303の変調方法は、制御回路12が、変調回路11-1に対し、逆相入力端子35bの平均電位を、正相入力端子35aにおける平均電位の過渡状態の時定数と同じ時定数で下げ、正相出力端子25aの平均電位を、正相入力端子35aの平均電位及び逆相入力端子35bの平均電位に変動が生じる前に、過渡状態後の正相入力端子35aの平均電位と逆相入力端子35bの平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御する変調方法である。
 図8に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlow-|ΔV|を保持し、Tx_enable時には電位をVlowに上昇させ、振幅Vp-pの変調信号を出力するとする。SW制御部はTx_disable時には高い電圧を与える電圧源32側、Tx_enable時には低い電圧を与える電圧源34側にSWを制御する。具体的には、次のように行う。
 まず、Tx_disable時の場合を説明する。この場合、LDD21のトランジスタ21a側の経路に常に電流が流れる。
 ゲート回路22は正相側22aでトランジスタ21aのゲートに電圧をかけ、トランジスタ21a側の経路に電流を流す。このため、抵抗Raによる電圧降下が生じて接続端Taの電位は電源Vcより低くなり、Tx_disable時の正相出力端子25aの電位をVlow-|ΔV|に下げることができる。
 一方、ゲート回路22は逆相側22bでトランジスタ21bのゲートに電圧をかけず、トランジスタ21b側の経路の電流を止める。このため、接続端Tbの電位は電源Vcと等しくなり、逆相出力端子25bの電位を変動なくVhighに保持することができる。
 次に、Tx_enable時の場合を説明する。この場合、LDD21のトランジスタ21a側の経路とトランジスタ21b側の経路で交互に電流が流れる。
 ゲート回路22への信号が「1」の場合、ゲート回路22は正相側22aでトランジスタ21aのゲートに電圧をかけず、トランジスタ21a側の経路の電流を止め、逆相側22bでトランジスタ21bのゲートに電圧をかけてトランジスタ21b側の経路に電流を流す。このため、接続端Taの電位は電源Vcと等しくなり、正相出力端子25aの電位を変動なくVhighに保持することができる。また、接続端Tbの電位は抵抗Rbによる電圧降下のため、逆相出力端子25bの電位をVlowに下げることができる。
 ゲート回路22への信号が「0」の場合、ゲート回路22は正相側22aでトランジスタ21aのゲートに電圧をかけてトランジスタ21a側の経路に電流を流し、逆相側22bでトランジスタ21bのゲートに電圧をかけずにトランジスタ21b側の経路の電流を止める。このため、接続端Taの電位は抵抗Raにより電圧降下し、正相出力端子25aの電位をVlowに下げることができる。また、接続端Tbの電位は電源Vcと等しくなり、逆相出力端子25bの電位を変動なくVhighに保持することができる。
 Tx_disable時には電圧源32に接続することにより、正相出力端子25aの電位をTx_enable時の電位Vlowに対して、|ΔV|=Va-Vc-Vp-pだけ下降させる。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|は|ΔV|+Vp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhighを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|はVp-p/2となる。
 この時、正相入力端子35aでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位は|ΔV|+Vp-p/2上昇してから、ある時定数をもってVaへ下降し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLP|は|ΔVDP|と同じ|ΔV|+Vp-p/2=Va-Vc-Vp-p/2である。
 逆相入力端子35bは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位をVcへ引き下げる。Tx_disableからTx_enableへ状態変化する時には、LDDとLD間が容量結合されているために、平均電位はVp-p/2下降し、さらにバイアス電流を流すために正相入力端子35aと同じ時定数をもってVcへ下降し、平均電位Vc、振幅Vp-pの変調信号がLDへ入力される。逆相入力端子35bの時定数の調整が必要な場合には、第一の実施形態と同様に積分回路27を適用して、正相入力端子35aと同じ時定数に調整する。この時の過渡応答の変動電位量|ΔVLN|はVa-Vc-Vp-p/2であり、|ΔVLP|と等しくなる。
 従って、このような手法で変調を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 なお、ここでは正相出力端子25aのTx_disable時の電位を、スイッチと2つの電圧源とを含む電圧源回路及び電圧コントローラを用いて調整しているが、LDD回路内の電流源自体を上記の様な電位調整可能な可変電流源回路としてもよい。また、正相出力端子25aと逆相出力端子25bとの対をダーリントン接続型差動対としてもよい。
 図21に図17で説明したフィードバック制御を行う構成を加えた変調装置303のブロック図を示す。変調装置303は、フィードバック制御を行うことで、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。また、光信号を送信可能な時間のみフィードバック制御してもよい。Tx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置303は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置303は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図22に図18で説明したフィードフォワード制御を行う構成を加えた変調装置303のブロック図を示す。変調装置303は、フィードフォワード制御を行うことで、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 なお、図21及び図22で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置303に搭載することができる。
(実施の形態4)
 図11に本実施形態の光送信器の構成を説明するブロック図を示す。図5の光送信器と図11の光送信器との違いは、変調装置301の代替として変調装置304を備えている点である。変調装置304は変調回路11-4を備えている。変調回路11-4と図5の変調回路11-1との違いは、LDバイアス回路23の出力と積分回路27が正相入力端子35aに接続されている点である。
 図11の光送信器は、図5の光送信器と同様に、制御回路12が、Tx_enable信号又はTx_disable信号に基づいて変調回路11-4に制御信号を送り、変調回路11-4を制御する。図11の光送信器は、以下の点で図5の光送信器の変調方法と異なる。
 変調装置304の変調方法は、制御回路12が、変調回路11-4に対し、正相入力端子35aの平均電位を、逆相入力端子35bにおける平均電位の過渡状態の時定数と同じ時定数で、且つ逆相入力端子35bにおける平均電位の変動量の2倍の変動量となるまで、上げるように制御する変調方法である。
 図10に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlowを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|はVp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhighを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|はVp-p/2となる。
 この時、逆相入力端子35bでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位はVp-p/2下降してから、ある時定数をもってVaへ上昇し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLN|は|ΔVDN|と同じVp-p/2である。
 正相入力端子35aでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位を変調信号の振幅Vp-pと同じ電位変動となるVa’(=Va-Vp-p)へ引き上げる。Tx_disableからTx_enableへ状態変化する時には、LDDとLD間が容量結合されているために、平均電位はVp-p/2上昇し、さらにバイアス電流を流すために逆相入力端子35bと同じ時定数をもってVa’へ上昇し、平均電位Va’、振幅Vp-pの変調信号がLDへ入力される。なお、時定数の調整が不要な場合には、この積分回路27は不要である。この時の過渡応答の変動電位量|ΔVLP|はVp-p/2であり、|ΔVLN|と等しくなる。
 従って、このような手法で変調を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 図23に図17で説明したフィードバック制御を行う構成を加えた変調装置304のブロック図を示す。変調装置304は、フィードバック制御を行うことで、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。また、光信号を送信可能な時間のみフィードバック制御してもよい。Tx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置304は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置304は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図24に図18で説明したフィードフォワード制御を行う構成を加えた変調装置304のブロック図を示す。変調装置304は、フィードフォワード制御を行うことで、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 なお、図23及び図24で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置304に搭載することができる。
(実施の形態5)
 図13に本実施形態の光送信器の構成を説明するブロック図を示す。図7の光送信器と図13の光送信器との違いは、変調装置302の代替として変調装置305を備えている点である。変調装置305は変調回路11-5を備えている。変調回路11-5と図7の変調回路11-2との違いは、LDバイアス回路23の出力とリーク電流用の抵抗29が正相入力端子35aに接続されている点である。
 図13の光送信器は、図7の光送信器と同様に、制御回路12が、Tx_enable信号又はTx_disable信号に基づいて変調回路11-5に制御信号を送り、変調回路11-5を制御する。図13の光送信器は、以下の点で図7の光送信器の変調方法と異なる。
 変調装置305の変調方法は、
制御回路12が、変調回路11-5に対し、正相入力端子35aの平均電位を、逆相入力端子35bにおける平均電位の過渡状態の時定数と同じ時定数で上げ、正相入力端子35aの平均電位を、正相入力端子35aの平均電位及び逆相入力端子35bの平均電位に変動が生じる前に、過渡状態後の正相入力端子35aの平均電位と逆相入力端子35bの平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御する変調方法である。
 図12に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlowを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|はVp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhighを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|はVp-p/2となる。
 この時、逆相入力端子35bでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位はVp-p/2下降してから、ある時定数をもってVaへ上昇し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLN|は|ΔVDN|と同じVp-p/2である。
 正相入力端子35aは、Tx_disable時には電位Va+|ΔV|を保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位をVa’へ引き上げる。ここで、LDにリーク電流を流すことで|ΔV|がVa’-Va-Vp-p、に等しくなるように、追加された抵抗の抵抗値を調整する。Tx_disableからTx_enableへ状態変化する時には、LDDとLD間が容量結合されているために、平均電位はVp-p/2上昇し、さらにバイアス電流を流すために逆相入力端子35bと同じ時定数をもってVa’へ上昇し、平均電位Va’振幅Vp-pの変調信号がLDへ入力される。正相入力端子35aの時定数の調整が必要な場合には、第一の実施形態と同様に積分回路27を適用して、逆相入力端子35bと同じ時定数に調整する。この時の過渡応答の変動電位量|ΔVLP|は|ΔVLN|と等しいVp-p/2となる。
 従って、このような手法で変調を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 図25に図17で説明したフィードバック制御を行う構成を加えた変調装置305のブロック図を示す。変調装置305は、フィードバック制御を行うことで、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。また、光信号を送信可能な時間のみフィードバック制御してもよい。Tx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置305は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置305は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図26に図18で説明したフィードフォワード制御を行う構成を加えた変調装置305のブロック図を示す。変調装置305は、フィードフォワード制御を行うことで、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 なお、図25及び図26で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置305に搭載することができる。
(実施の形態6)
 図15に本実施形態の光送信器の構成を説明するブロック図を示す。図9の光送信器と図15の光送信器との違いは、変調装置303の代替として変調装置306を備えている点である。変調装置306と図9の変調装置303との違いは、変調回路11-1の代替として変調回路11-4を有する点である。また、変調装置306と図9の変調装置303との違いは、SW31がLDD21内の電流源回路21jではなく、差動対の逆相出力端子25bの電源端子側に接続されていることである。Tx_disable時に逆相出力端子25bに高い電位を与えることでVhigh+|ΔV|だけ保持電位を上げることができる。
 図15の光送信器は、図9の光送信器と同様に入力信号を変調するが、以下の点で図9の変調方法と異なる。
 変調装置306の変調方法は、制御回路12が、変調回路11-4に対し、正相入力端子35aの平均電位を、逆相入力端子35bにおける平均電位の過渡状態の時定数と同じ時定数で上げ、逆相出力端子25bの平均電位を、正相入力端子35aの平均電位及び逆相入力端子35bの平均電位に変動が生じる前に、過渡状態後の正相入力端子35aの平均電位と逆相入力端子35bの平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御する変調方法である。
 図14に本実施形態の変調装置における各端子の電位状態を示す。各端子の電位変動を実線で、平均電位を破線で表示する。
 正相出力端子25aでは、Tx_disable時には電位Vlowを保持し、Tx_enable時には振幅Vp-pの変調信号を出力するとする。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDP|はVp-p/2となる。一方、逆相出力端子25bでは、Tx_disable時には電位Vhigh+|ΔV|を保持し、Tx_enable時には電位をVhighに下降させ、振幅Vp-pの変調信号を出力するとする。SW制御部はTx_disable時には高い電位を与える電圧源32側、Tx_enable時には低い電位を与える電圧源34側にSWを制御する。Tx_disable時には電圧源32に接続することにより、逆相出力端子25bの電位をTx_enable時の電位Vhighに対して、|ΔV|=Va’-Va-Vp-pだけ上昇させる。Tx_disableからTx_enableへ状態変化する時の平均電位変動|ΔVDN|は|ΔV|+Vp-p/2となる。
 この時、逆相入力端子35bでは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力される。Tx_disableからTx_enableへ状態変化する時にはLDDとLD間が容量結合されているために、平均電位は|ΔV|+Vp-p/2下降してから、ある時定数をもってVaへ上昇し、平均電位Va、振幅Vp-pの変調信号がLDへ入力される。この時の過渡応答の変動電位量|ΔVLN|は|ΔVDN|と同じ|ΔV|+Vp-p/2=Va’-Va-Vp-p/2である。
 正相入力端子35aは、Tx_disable時には電位Vaを保持し、Tx_enable時には振幅Vp-pの変調信号が入力されると同時に、LDのバイアス電流を流すために平均電位をVa’へ引き上げる。Tx_disableからTx_enableへ状態変化する時には、LDDとLD間か容量結合されているために、平均電位はVp-p/2上昇し、さらにバイアス電流を流すために逆相入力端子35bと同じ時定数をもってVa’へ上昇し、平均電位Va’、振幅Vp-pの変調信号がLDへ入力される。正相入力端子35aの時定数の調整が必要な場合には、第一の実施形態と同様に積分回路27を適用して、逆相入力端子35bと同じ時定数に調整する。この時の過渡応答の変動電位量|ΔVLPlはVa’-Va-Vp-p/2であり、|ΔVLN|と等しくなる。
 従って、このような手法で変調を行なうことで、正相入力端子35aと逆相入力端子35bでは、LDD-LD間を容量結合していても、過渡応答状態時の平均電位変動と時定数が同じであるため、LDから出力される光送信信号の波形は安定して出力される。
 なお、ここでは逆相出力端子25bのTx_disable時の電位を、スイッチと2つの電圧源とを含む電圧源回路及び電圧コントローラを用いて調整しているが、LDD回路内の電流源自体を上記の様な電位調整可能な可変電流源回路としてもよい。また、正相出力端子25aと逆相出力端子25bとの対をダーリントン接続型差動対としてもよい。
 図27に図17で説明したフィードバック制御を行う構成を加えた変調装置306のブロック図を示す。変調装置306は、フィードバック制御を行うことで、温度変動や経年変化による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。また、光信号を送信可能な時間のみフィードバック制御してもよい。Tx_disable時の光電力をモニタせず、Tx_enable時の光電力のみをモニタすることで、変調装置306は、既に存在する温度や経時変化によるバイアス変動分を補償する各端子(25a、25b、35a、35b)の平均電位の設定値を維持することができる。このため、フィードバック制御をする回路の時定数に対して送信するフレームのフレーム間隔が長い場合であっても、変調装置306は、Tx_disableからTx_enableになったときに光出力を安定させる時間を短縮することができる。
 図28に図18で説明したフィードフォワード制御を行う構成を加えた変調装置306のブロック図を示す。変調装置306は、フィードフォワード制御を行うことで、温度変動による最適なバイアス電流の変動が生じても、安定した光信号を出力することが可能となる。
 なお、図27及び図28で説明したフィードバック制御とフィードフォワード制御を行う構成は組み合わせて変調装置306に搭載することができる。
(他の実施形態)
 以上に説明した実施の形態1~6において、LD320に生じた急激な電位変動によりLDD21に過渡的な電位変動が生じる場合にも、正相入力端子35a及び逆相入力端子35bの電位変動を相殺するように補正することにより、安定した光信号が送信できる。また、実施の形態1~6ではLD320に直接変調型LDを用いたが、光源及び外部光変調器を用いた場合も同様の変調方法で変調することができる。
(変調プログラム及びその変調プログラムを格納した記録媒体)
 本実施形態の光変調器の変調装置は、変調プログラムをコンピュータが実行することで実現することができる。変調プログラムは、例えば、記録媒体に格納されて提供される。記録媒体としては、フレキシブルディスク、CD-ROM、DVD等の記録媒体や、半導体メモリ等が例示される。データベース格納プログラム及びデータベース検索プログラムは、LAN(Local Area Network)やインターネットを介して提供されてもよい。
 図16は、記録媒体90に記録された変調プログラムを実行するためのコンピュータ300の例を示した図である。コンピュータ300は、フレキシブルディスク、CD-ROM、DVD等の記憶媒体90を読み取る記憶媒体読み取り装置111と、作業用メモリ(RAM)112と、記録媒体90に記憶されたプログラムを記憶するメモリ113と、ディスプレイ114と、入力装置であるマウス115及びキーボード116と、プログラムの実行を制御するCPU117と、データを記憶するハードディスク118と、ケーブル119と、を備えている。図16では、作業用メモリ112、メモリ113、CPU117及びハードディスク118は筐体に内蔵されるので破線で示している。
 コンピュータ300は、記録媒体90が記憶媒体読み取り装置111に挿入されると、記憶媒体読み取り装置111から記録媒体90に格納された変調プログラムがメモリ113にインストールされる。メモリ113へのインストール完了後、CPU117は変調プログラムにアクセス可能になり、当該変調プログラムによって、コンピュータ300は、本実施形態に係る光変調器の変調装置の制御回路として動作することが可能になる。
 コンピュータ300は、図5の光送信器の制御回路12として動作する場合、コンピュータ300はケーブル119で変調回路11-1と接続しており、変調回路11-1から通知される正相出力端子25a、逆相出力端子25b、正相入力端子35a及び逆相入力端子35bの電位変動のデータから、CPU117、メモリ113、作業用メモリ112を利用して各端子の平均電位を計算し、その変動量を確認する。いずれかの端子に急激な平均電位の変動が生じた場合、実施の形態1~6で説明したように、正相入力端子35a及び逆相入力端子35bの平均電位の過渡状態を同一とし、光源への入力信号の同相成分として相殺できるように、正相入力端子35a及び逆相入力端子35bの平均電位を制御する。
 ここでのコンピュータ300は、図16のようなパーソナルコンピュータに限らず、記憶媒体読み取り装置111、CPU117を具備しソフトウエアによる処理や制御を行うDVDプレーヤ、ゲーム機、携帯電話などを含む。
 電気信号を光信号へ変調する光送信器であれば、公衆通信網、専用網、LAN等に適用することができる。

Claims (22)

  1.  容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、を備える変調装置における変調方法であって、
     前記制御回路が、前記変調対象の正相入力端子の平均電位及び逆相入力端子の平均電位に変動が生じたときに、前記変調回路に対し、平均電位の変動前後間に生ずる互いの平均電位の過渡状態が同じになるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を制御させ、前記正相入力端子の平均電位の過渡状態及び前記逆相入力端子の平均電位の過渡状態を前記差動電気信号の同相成分として相殺することを特徴とする変調方法。
  2.  前記制御回路が、前記変調回路に対し、
     前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で、且つ変調信号の振幅電圧の変動量となるまで、下げるように制御することを特徴とする請求項1に記載の変調方法。
  3.  前記制御回路が、前記変調回路に対し、
     前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で下げ、
     前記逆相入力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することを特徴とする請求項1に記載の変調方法。
  4.  前記制御回路が、前記変調回路に対し、
     前記逆相入力端子の平均電位を、前記正相入力端子における平均電位の過渡状態の時定数と同じ時定数で下げ、
     前記正相出力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することを特徴とする請求項1に記載の変調方法。
  5.  前記制御回路が、前記変調回路に対し、
     前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で、且つ変調信号の振幅電圧の変動量となるまで、上げるように制御することを特徴とする請求項1に記載の変調方法。
  6.  前記制御回路が、前記変調回路に対し、
     前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で上げ、
     前記正相入力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することを特徴とする請求項1に記載の変調方法。
  7.  前記制御回路が、前記変調回路に対し、
     前記正相入力端子の平均電位を、前記逆相入力端子における平均電位の過渡状態の時定数と同じ時定数で上げ、
     前記逆相出力端子の平均電位を、前記正相入力端子の平均電位及び前記逆相入力端子の平均電位に変動が生じる前に、過渡状態後の前記正相入力端子の平均電位と前記逆相入力端子の平均電位との差分から変調信号の振幅電圧を差し引いた差分電位量を予め変化させておくように制御することを特徴とする請求項1に記載の変調方法。
  8.  前記変調対象から出力される光信号の光電力を測定し、前記光電力が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードバック制御することを特徴とする請求項1から7のいずれかに記載の変調方法。
  9.  前記送信の可否を指示する信号のうち、送信可能の指示をする信号のときのみ前記フィードバック制御することを特徴とする請求項8に記載の変調方法。
  10.  前記変調対象の温度を測定し、前記変調対象の温度が変動しても前記変調対象が出力する光信号の強度が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードフォワード制御することを特徴とする請求項1から9のいずれかに記載の変調方法。
  11.  コンピュータに請求項1から10に記載のいずれかの変調方法を実行させるための変調プログラム。
  12.  請求項11に記載の変調プログラムを記録したコンピュータ読み取り可能な記録媒体。
  13.  容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、を備える変調装置であって、
     前記制御回路は、
     前記変調回路に対し、請求項1から7のいずれかの変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させることを特徴とする変調装置。
  14.  容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記変調回路の正相出力端子及び逆相出力端子に接続する電流源回路と、前記電流源回路の電流値を制御する電流コントローラと、を備える変調装置であって、
     前記制御回路は、
     前記変調回路に対し、請求項4又は7の変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、
     前記電流コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電流源回路の電流値を制御させることを特徴とする変調装置。
  15.  容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記制御回路の正相出力端子及び逆相出力端子の少なくとも一方と接地との間に接続される、2つの電圧源と前記電圧源のいずれか一方を選択するスイッチとを直列接続した回路である電圧源回路と、前記電圧源回路の電圧値を制御する電圧コントローラと、を備える変調装置であって、
     前記制御回路は、
     前記変調回路に対し、請求項4又は7の変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、
     前記電圧コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電圧源回路の電圧値を制御させることを特徴とする変調装置。
  16.  容量結合される、直接変調型レーザ又は外部光変調器である変調対象にバイアス電流を流し、正相及び逆相からなる差動電気信号で前記変調対象を駆動する変調回路と、送信の可否を指示する信号に基づいて前記変調回路に制御信号を送り、前記変調回路を制御する制御回路と、前記変調回路の正相出力端子及び逆相出力端子に接続される電流源回路と、前記電流源回路の電流値を制御する電流コントローラと、を備える変調装置であって、
     前記変調回路は、ダーリントン接続型差動対を有しており、前記変調回路の正相出力端子と逆相出力端子との対が前記ダーリントン接続型差動対であり、
     前記制御回路は、
     前記変調回路に対し、請求項4又は7の変調方法で、前記変調対象の正相入力端子及び逆相入力端子の平均電位並びに前記変調回路の正相出力端子及び逆相出力端子の少なくとも1つの平均電位を制御させ、
     前記電流コントローラに対し、前記正相出力端子又は前記逆相出力端子の平均電位を前記差分電位量だけ変化させるように、前記電流源回路の電流値を制御させることを特徴とする変調装置。
  17.  前記正相入力端子及び前記逆相入力端子の少なくとも一方と前記制御手段との間に積分回路をさらに備えることを特徴とする請求項13から16のいずれかに記載の変調装置。
  18.  前記変調対象から出力される光信号の光電力を測定する光モニタ手段をさらに備え、
     前記制御回路は、前記光モニタ手段が測定した前記光電力が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードバック制御することを特徴とする請求項13から17のいずれかに記載の変調装置。
  19.  前記制御回路は、前記送信の可否を指示する信号のうち、送信可能の指示をする信号のときのみ前記フィードバック制御することを特徴とする請求項18に記載の変調装置。
  20.  前記光モニタ手段は、前記変調対象が光信号を出力する方向に配置された受光器であることを特徴とする請求項18又は19に記載の変調装置。
  21.  前記変調対象の温度を測定する温度センサをさらに備え、
     前記制御回路は、前記温度センサが測定した前記変調対象の温度が変動しても前記変調対象が出力する光信号の強度が所定の値となるように前記正相入力端子及び前記逆相入力端子並びに前記変調回路の前記正相出力端子及び前記逆相出力端子の少なくとも1つの平均電位を調整するフィードフォワード制御することを特徴とする請求項13から20のいずれかに記載の変調装置。
  22.  請求項13から21に記載のいずれかの変調装置と、前記変調対象と、を備える光送信器。
PCT/JP2009/053054 2008-02-22 2009-02-20 変調方法、変調プログラム、記録媒体、変調装置及び光送信器 WO2009104746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980105081.9A CN102017468B (zh) 2008-02-22 2009-02-20 调制方法、调制程序、记录介质、调制装置以及光发送器
US12/867,443 US8094692B2 (en) 2008-02-22 2009-02-20 Modulation method, modulation program, recording medium, modulation device, and optical transmitter
JP2009554400A JP5118157B2 (ja) 2008-02-22 2009-02-20 変調方法、変調プログラム、記録媒体、変調装置及び光送信器
EP09711758.4A EP2249492B1 (en) 2008-02-22 2009-02-20 Modulation method, modulation program, recording medium, modulation device, and light transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-042034 2008-02-22
JP2008042034 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104746A1 true WO2009104746A1 (ja) 2009-08-27

Family

ID=40985623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053054 WO2009104746A1 (ja) 2008-02-22 2009-02-20 変調方法、変調プログラム、記録媒体、変調装置及び光送信器

Country Status (5)

Country Link
US (1) US8094692B2 (ja)
EP (1) EP2249492B1 (ja)
JP (1) JP5118157B2 (ja)
CN (1) CN102017468B (ja)
WO (1) WO2009104746A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146469A (ja) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> 低電力レーザ駆動回路
JP2011243827A (ja) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> 変調器、光送信機及び変調方法
JP2014236442A (ja) * 2013-06-04 2014-12-15 富士通株式会社 光通信装置及び光通信装置制御方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8666260B2 (en) * 2009-06-02 2014-03-04 General Instrument Corporation Burst mode laser transmitter having an extremely fast response time when triggered from a totally off state
JP5278712B2 (ja) * 2011-08-31 2013-09-04 住友電気工業株式会社 光トランシーバ、宅側装置および光トランシーバ制御方法
JP5382375B2 (ja) * 2011-08-31 2014-01-08 住友電気工業株式会社 駆動回路および宅側装置
CN102843190B (zh) * 2012-08-06 2015-09-30 青岛海信宽带多媒体技术有限公司 光模块及其光模块芯片
CN102820931A (zh) * 2012-08-09 2012-12-12 青岛海信宽带多媒体技术有限公司 双模光网络单元光模块
US10097908B2 (en) * 2014-12-31 2018-10-09 Macom Technology Solutions Holdings, Inc. DC-coupled laser driver with AC-coupled termination element
US9472921B2 (en) * 2015-01-16 2016-10-18 Macom Technology Solutions Holdings, Inc. Split voltage supply configuration with matched input load for single ended drivers
US10749605B2 (en) * 2016-07-08 2020-08-18 Hilight Semiconductor Limited Laser power controller
GB2541291B (en) * 2016-07-08 2018-06-20 Hilight Semiconductor Ltd Laser power controller
EP3507924A4 (en) 2016-08-30 2020-04-08 MACOM Technology Solutions Holdings, Inc. DRIVER WITH DISTRIBUTED ARCHITECTURE
US10103513B1 (en) 2017-06-23 2018-10-16 Google Llc Common cathode laser driving circuit
US10630052B2 (en) 2017-10-04 2020-04-21 Macom Technology Solutions Holdings, Inc. Efficiency improved driver for laser diode in optical communication
US11005573B2 (en) 2018-11-20 2021-05-11 Macom Technology Solutions Holdings, Inc. Optic signal receiver with dynamic control
US12013423B2 (en) 2020-09-30 2024-06-18 Macom Technology Solutions Holdings, Inc. TIA bandwidth testing system and method
US11658630B2 (en) 2020-12-04 2023-05-23 Macom Technology Solutions Holdings, Inc. Single servo loop controlling an automatic gain control and current sourcing mechanism
CN113805363B (zh) * 2021-09-27 2023-07-07 烽火通信科技股份有限公司 一种突发发送的硅光调制器装置及控制方法
US11867814B1 (en) * 2022-12-06 2024-01-09 Aeva, Inc. Techniques for driving a laser diode in a LIDAR system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166582A (ja) * 1987-12-22 1989-06-30 Sumitomo Electric Ind Ltd レーザ駆動回路
JPH04298088A (ja) * 1991-03-27 1992-10-21 Furukawa Electric Co Ltd:The 光送信器
JP2005038943A (ja) * 2003-07-16 2005-02-10 Oki Electric Ind Co Ltd 発光素子駆動装置
JP2005302865A (ja) * 2004-04-08 2005-10-27 Ntt Electornics Corp 光送信モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740291B2 (ja) * 1998-08-24 2006-02-01 日本オプネクスト株式会社 光送信器
JP4298088B2 (ja) 1999-10-12 2009-07-15 キヤノン株式会社 撮像装置及びその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166582A (ja) * 1987-12-22 1989-06-30 Sumitomo Electric Ind Ltd レーザ駆動回路
JPH04298088A (ja) * 1991-03-27 1992-10-21 Furukawa Electric Co Ltd:The 光送信器
JP2005038943A (ja) * 2003-07-16 2005-02-10 Oki Electric Ind Co Ltd 発光素子駆動装置
JP2005302865A (ja) * 2004-04-08 2005-10-27 Ntt Electornics Corp 光送信モジュール

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2249492A4
SHUNJI KIMURA: "High-speed burst technology", IEICE TRANSACTION, vol. 91, no. 1, January 2008 (2008-01-01), pages 60 - 65
T. YOSHIDA: "First Single-fibre Bi-directional XFP Transceiver for Optical Metro/Access Networks", ECOC 2005, WE 4. P.021, 2005

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146469A (ja) * 2010-01-13 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> 低電力レーザ駆動回路
JP2011243827A (ja) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> 変調器、光送信機及び変調方法
JP2014236442A (ja) * 2013-06-04 2014-12-15 富士通株式会社 光通信装置及び光通信装置制御方法

Also Published As

Publication number Publication date
JPWO2009104746A1 (ja) 2011-06-23
CN102017468A (zh) 2011-04-13
CN102017468B (zh) 2014-08-06
JP5118157B2 (ja) 2013-01-16
US8094692B2 (en) 2012-01-10
EP2249492A1 (en) 2010-11-10
EP2249492B1 (en) 2014-01-01
US20110033193A1 (en) 2011-02-10
EP2249492A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5118157B2 (ja) 変調方法、変調プログラム、記録媒体、変調装置及び光送信器
JP3583846B2 (ja) 光変調器の駆動方法及び装置並びに光通信システム
US7215894B2 (en) Optical transmitter device
JP5853386B2 (ja) 光変調装置および光変調制御方法
JP5669674B2 (ja) 半導体光変調器の駆動制御装置
US20140334829A1 (en) Optical transmitter and bias control method of optical modulator
JP6217152B2 (ja) 光送信器及び光送信器の制御方法
WO2014038239A1 (ja) 光通信モジュール、宅側装置および発光素子の制御方法
JP2005202400A (ja) バイアス制御装置を備えた光変調装置及びこれを用いたバイアス制御方法
KR102423938B1 (ko) 버스트 모드로 광송신을 하기 위한 광망 종단 장치
JP2014219571A (ja) 光変調制御装置、送信器および光出力波形制御方法
US20080212979A1 (en) Optical transmitter and optical transmission control method
JP3822548B2 (ja) 光変調器制御装置
TWI811247B (zh) 具有雷射驅動器餘裕電壓補償之光通信系統及方法
JP2009168833A (ja) 外部変調器のバイアス回路
JP4090708B2 (ja) 光送信器
JP2011243827A (ja) 変調器、光送信機及び変調方法
US11982921B2 (en) Pluggable optical module and optical communication system
WO2015159528A1 (ja) 光送信装置及び電源電圧制御方法
JP2009118471A (ja) 光送信装置の制御装置
JP2003134052A (ja) 光送信装置
JP2002214573A (ja) 光変調器の駆動回路および光送信装置
KR100959398B1 (ko) 듀오 바이너리 데이터 변조 방식이 적용된 광 변조기로입력되는 직류 바이어스 전압을 최적화하기 위한 광 전송장치 및 방법
KR100860415B1 (ko) 광 변조 장치, 그의 바이어스 제어 장치 및 방법
US8843001B2 (en) Optical transmitter and optical transmission apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105081.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554400

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009711758

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12867443

Country of ref document: US