WO2007049633A1 - 車両用サスペンションシステム - Google Patents

車両用サスペンションシステム Download PDF

Info

Publication number
WO2007049633A1
WO2007049633A1 PCT/JP2006/321227 JP2006321227W WO2007049633A1 WO 2007049633 A1 WO2007049633 A1 WO 2007049633A1 JP 2006321227 W JP2006321227 W JP 2006321227W WO 2007049633 A1 WO2007049633 A1 WO 2007049633A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
suspension system
vehicle
electromagnetic
damping force
Prior art date
Application number
PCT/JP2006/321227
Other languages
English (en)
French (fr)
Inventor
Hirofumi Inoue
Takuhiro Kondo
Yoshihiro Suda
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Kayaba Industry Co., Ltd.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Kayaba Industry Co., Ltd., The University Of Tokyo filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06822204A priority Critical patent/EP1942020B1/en
Priority to JP2007542614A priority patent/JP4846727B2/ja
Priority to US12/091,385 priority patent/US8103408B2/en
Priority to CN200680040222XA priority patent/CN101296811B/zh
Publication of WO2007049633A1 publication Critical patent/WO2007049633A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/014Pitch; Nose dive

Definitions

  • the present invention relates to a vehicle suspension system, and more particularly to a vehicle suspension system provided with an electromagnetic shock absorber.
  • a suspension apparatus for an automobile supports the weight of a vehicle body (spring weight) and mitigates vibrations due to road surface irregularities and the like to improve the ride comfort of the vehicle and to add dynamic to parts of the vehicle body. It has the function of reducing the load and improving the running stability.
  • the shock absorber is one of the components that make up the suspension device, and the shock absorber is an electromagnetic type that generates a damping force for the relative movement between the upper and lower panels of the vehicle based on the force of the motor. The development of the fab-sover has been promoted.
  • the damping force can be generated by shorting the coil of the motor, in other words, by electrically connecting between the current-carrying terminals of the motor.
  • Japanese Patent Laid-Open Publication No. 2003-223220 describes that when the control of the electromagnetic suspension device becomes impossible, the coil of the motor is short-circuited to generate a damping force.
  • Japanese Patent Laid-Open Publication No. 2001-310736 relates to control of an electromagnetic suspension device, in which two of the coils included in each of four electromagnetic absorbers are connected to change the attitude of the vehicle. In accordance with the above, there is disclosed a technique for controlling the direction of generation of the electromagnetic force by switching the direction of the current flowing to the coils, thereby controlling the damping force.
  • the above problem is only a part of the problem with the system having the electromagnetic suspension device, that is, the electromagnetic suspension system.
  • the electromagnetic suspension system is still under development, and thus has various problems including the above problems, and it is possible to improve the practicability by addressing any of the various problems. .
  • the electromagnetic suspension system leaves much room for improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a highly practical vehicle suspension system.
  • the suspension system for vehicles to which the present invention is applied includes four electromagnetic absorbers provided corresponding to the front, rear, left, and right wheels, and more specifically, each of which has a coil and a magnet and their relative positions.
  • a system comprising four shock absorbers that generate a damping force that depends on the electromotive force generated by the operation, and the vehicle suspension system according to the first aspect of the present invention has a diagonal position in the system.
  • the coils provided corresponding to the two wheels located at diagonal positions are connected to each other, the operation of the wheels with respect to the vehicle body is performed.
  • the damping force to be generated differs depending on whether the direction is the same or the opposite direction. Therefore, it is possible to use that fact to exert an appropriate damping action on coupled motion, in particular, vibration accompanied by coupled motion (coupled vibration).
  • a suspension system for a vehicle comprising: a resistor provided in such a manner that each electromagnetic absorber forms a closed loop with a coil; Connection state in which one coil and another coil are connected to form a closed loop, and V, one coil is not connected also to the misalignment of the other three coils, not connected A coil connection device is provided which selectively realizes the state.
  • one electromagnetic absorber can independently generate a damping force, and the coil of the one electromagnetic absorber is otherwise By being connected to the coil of the electromagnetic absorber, it is possible to selectively realize a state in which an appropriate vibration damping action is exerted against vibration accompanied by coupled motion.
  • the panel lower side member moving relative to the panel upper side member according to the relative movement of the panel
  • a coil and a magnet operating relative to each other with the relative movement of the panel upper side member and the panel lower side member
  • a damping force generator for generating a damping force for relative movement between the panel upper side member and the panel lower side member on the basis of electromotive force generated by relative movement of the coil and the magnet.
  • a coil having a damping force generator of each of the two electromagnetic sabers provided corresponding to a wheel pair consisting of two wheels present at diagonal positions is formed into a closed loop including those two coils.
  • the coupled vibration is a vibration that is accompanied by an appropriate damping action for the coupled motion, in other words, a coupled vibration ), It is possible to exert appropriate damping action.
  • the damping force generation device can be configured mainly of, for example, a motor (which is a concept including a “generator”).
  • the motor in that case may be a rotary motor or a linear motor.
  • “connecting coils” specifically means, for example, connecting the current-carrying terminals of a motor.
  • the coil connection device is provided with a panel upper portion and a panel lower portion provided with one of the two electromagnetic absorbers corresponding to the two coils constituting the closed loop, and the other.
  • the current based on the electromotive force generated in the damping force generator of each of the two electromagnetic absorbers is reversed by the closed loop.
  • the embodiment of the present section is an embodiment in which limitations are imposed on the direction of connection of the coils of each of the two electromagnetic absorbers. According to the aspect of the present invention, for example, when the vehicle body bounces, a relatively small damping force is generated, and the vehicle body performs roll motion, pitch motion, etc. It is possible to generate a relatively large damping force.
  • the coil connection device has a first connection path connecting one ends of two coils constituting the closed loop and a second connection path connecting the other ends.
  • the aspect of this section is the aspect of the structure of the coil connection device, more specifically, the aspect of adding the limitation on the connection structure of the coils of each of the two electromagnetic absorbers, and according to the aspect of this section, A coil connection device with a proper structure will be realized.
  • the aspect of this section is simply an aspect in which a resistor is arranged in parallel with two coils at an intermediate position of a closed loop. By adjusting the resistance value of this resistor, it is possible to adjust the magnitude of the damping force generated by the two electromagnetic fab-sorbers. If the resistor is a variable resistor, for example, it is possible to change the magnitudes of the damping forces of the two electromagnetic absorbers according to the state of the vibration actually generated in the vehicle. Become
  • the coil connection device forms two closed loops each including two coils corresponding to each of two wheel pairs each consisting of two wheels present at diagonal positions.
  • the suspension system for a vehicle according to any one of (1) and (2), wherein the coils of the damping force generator of each of the four electromagnetic absorbers are connected.
  • the aspect of this section is an aspect in which coils constituting each of the two sets of electromagnetic absorbers corresponding to each of the two pairs of wheels are connected to each other. According to the aspect of this section, it is possible to exert a more appropriate damping force to the coupled motion.
  • the coil connection device corresponds to each of the two closed loops, and includes two first connection paths respectively connecting one ends of the two coils, and the other ones of the two coils.
  • the suspension system for a vehicle according to (5) having two second connection paths connecting the ends.
  • the aspect of the present section is an aspect in which limitations are added to the structure of the coil connection device in the case of connecting four electromagnetic absorbers. Similar to the above aspect, according to the aspect of this section, a coil connection device with a simple structure is realized.
  • the embodiment described in this section is an embodiment in which the coil of each of the four electromagnetic absorbers is connected to form a closed loop with any of the other three coils, in other words, the four coils These four coils are connected in such a way that a closed loop is formed with any two of the two coils. According to the aspect of this section, it is possible to demonstrate more appropriate damping force.
  • the coil connection device has a resistor arranged to connect at least one of the two first connection paths and at least one of the two second connection paths.
  • the embodiment of this section is an embodiment in which the above-mentioned resistor is arranged according to the above-mentioned embodiment in which four electromagnetic absorbers are connected. By adjusting the resistance value of this resistor, it is possible to adjust the magnitude of the damping force generated by the four electromagnetic fab-savers. If the resistor is a variable resistor, for example, it is possible to change the magnitudes of the damping forces of the four electromagnetic absorbers according to the state of the vibration actually generated in the vehicle. Become
  • (11) Provided corresponding to the front, rear, left, and right wheels, each of which is (A) connected to the upper part of the panel, and (B) connected to the lower part of the panel, the upper and lower parts of the panel
  • the panel lower side member moving relative to the panel upper side member according to the relative movement of the panel
  • a coil and a magnet operating relative to each other with the relative movement of the panel upper side member and the panel lower side member
  • a damping force generator for generating a damping force for relative movement between the panel upper side member and the panel lower side member on the basis of electromotive force generated by relative movement of the coil and the magnet.
  • Each of the four damping force generators has a closed loop with its own coil While having a resistor to be formed, for each of the four damping force generators, a coil of each of the four damping force generators and a coil of one of the other damping force generators are included.
  • the connection state connected to form a closed loop including two coils, and the non-connection state in which each coil is not connected to any of the three coils of the other damping force generator, are operated by its own operation.
  • a suspension system for a vehicle comprising a coil connection device which is selectively realized.
  • the coil connection device is provided with a panel upper portion and a panel lower portion provided with one of two electromagnetic absorbers corresponding to two coils constituting the closed loop, and the other is provided.
  • a current based on the electromotive force generated in the damping force generator provided in each of the two electromagnetic absorbers is squeezed by the closed loop.
  • the aspect of this section is an aspect to which a limitation is added as to the direction of connection between the coils of each of the two electromagnetic sabbers to be connected. According to the aspect of this section, for example, when vehicle body rolling motion, pitch motion and the like are performed, it is possible to generate a large attenuation compared to when bounce motion.
  • the vehicle suspension system force includes a control device for controlling itself, and the control device controls at least the four damping force generation devices when any vibration to be suppressed occurs in the vehicle.
  • the coil connection device control unit controls the operation of the coil connection device so that the coil of one of the coils and the coil of another damping force generator are in a connected state (11 A vehicle suspension system according to paragraph (12) or (12).
  • the control device includes a vibration mode determination unit that determines a mode of vibration occurring in the vehicle, and the coil connection device control unit determines the vibration mode determination unit based on the determination result by the vibration mode determination unit.
  • connection of the coil of the electromagnetic fab sober can be rearranged according to the mode of vibration, it is possible to obtain the damping characteristic adapted to the mode of vibration. In particular, it is possible to effectively damp out the vibration of the mode that is prominent.
  • the roll vibration mode in which the vibration mode determination unit generates the roll vibration to be suppressed as the vibration mode, and the pitch vibration mode in which the pitch vibration to be suppressed is generated.
  • the vibration mode determination unit determines at least a roll vibration mode in which roll vibration to be suppressed is generated as a vibration mode
  • the coil connection device control unit force S when the mode of vibration is a roll vibration mode, at least one of the front wheel side and the rear wheel side, of the two electromagnetic sabus bars provided corresponding to the left and right wheels
  • the vibration mode determination unit determines at least a pitch vibration mode in which a pitch vibration to be suppressed is generated as a vibration mode
  • the coil connection device control unit is configured to correspond to two front and rear wheels on at least one of the left wheel side and the right wheel side.
  • the vehicle suspension device includes a motion state index amount detector that detects a motion state index amount that indicates the motion state of the vehicle or a part of the vehicle,
  • the vibration mode determining unit is configured to determine the mode of vibration based on the movement state index amount detected by the movement state index amount detector (17), and (17).
  • the suspension system for a vehicle according to.
  • the aspect of this section is an aspect to which the limitation on the method of determining the mode of vibration is added.
  • the “motion state index amount” referred to in this section broadly includes various parameters relating to the behavior of a vehicle, a vehicle body, a wheel or the like, and in the aspect of this section, any one of these various parameters has a force of 1 or more. In this mode, the vibration mode, specifically speaking, what kind of vibration is determined.
  • the motion state index amount is not particularly limited.
  • acceleration in the direction, velocity, displacement amount, relative acceleration in the vertical direction between the upper panel and lower panel at each wheel position, relative velocity, distance, stroke amount, etc. can be adopted. is there.
  • the motion state index amount detector is configured to include a stroke amount detector that detects a stroke amount between the upper and lower panels of each wheel as the motion state index amount,
  • vibration mode determination unit determines the mode of the vibration based on the stroke amount of each wheel detected by the stroke amount detector.
  • the vibration mode determination unit is configured to determine the vibration mode based on at least one of the panel vertical acceleration and the panel vertical acceleration of each wheel detected by the acceleration detector (18).
  • the modes described in the above two items are modes in which the above-described exercise state index amount is specifically limited, and according to those modes, it is possible to easily determine the mode of vibration.
  • (31) Provided corresponding to the front, rear, left, and right wheels, each of which is (A) connected to the upper part of the panel, and (B) connected to the lower part of the panel, the upper and lower parts of the panel
  • the panel lower side member moving relative to the panel lower side member according to the relative movement of the panel
  • a damping force generator for generating a damping force for relative movement between the panel upper side member and the panel lower side member on the basis of electromotive force generated by relative movement of the coil and the magnet.
  • Each of the damping force generating devices of the four electromagnetic sorbers receives at least one of the damping force and the propulsive force for the relative movement between the panel upper side member and the panel lower side member in a state of receiving the power supply. It is configured to be capable of receiving power to be generated, and is provided corresponding to the vehicle suspension system force (a) power supply and (b) the four damping force generators, each of which is a corresponding damping force generator.
  • the control device controls a switch control unit that controls the operation of the four connection switches, and at least one damping force corresponding to the at least one of the four drive circuits by controlling at least one of the drive circuits.
  • Power supply operation control unit for controlling the power supply operation by the generator
  • a control switching unit for switching the execution / non-execution of the power reception operation of the damping force generation device possessed by each of the four electromagnetic absorbers by giving commands to the switch control unit and the power reception operation control unit;
  • a vehicle suspension system characterized by having.
  • the aspect of this section is a control (so-called passive control) that generates damping force using the electromotive force generated in the damping force generator exclusively for controlling each of the four electromagnetic absorbers (so-called passive control); It is an aspect related to a suspension system that can be switched between control that enables power generation to generate power and generates damping force or propulsion (so-called active control). According to the above power reception operation performed in active control, it is possible to generate a damping force larger than that in passive control. According to this aspect, switching between nossive control and active control By doing this, appropriate damping control can be performed in accordance with the vehicle conditions such as the vehicle's vibration condition.
  • control by the power reception operation control unit is not limited to the control in which the damping force generator is always in the power reception operation state. That is, although the damping force generator is connected to the drive circuit if it is configured to perform the power reception operation even temporarily, for example, at a time when only a relatively small damping force is required, The power receiving operation control unit causes the damping force generator to be in a state where it generates damping force without power being supplied from the power supply.
  • the vehicle suspension system force includes a motion state index amount detector that detects a motion state index amount that indicates the motion state of the vehicle or a part of the vehicle, and the control device determines the motion state index amount
  • the vibration control unit determines the vibration state generated in the vehicle based on the detection result of the detector, and the control switching unit forces the vibration generated in the vehicle by the vibration state determination unit.
  • one or more damping force generators included in each of the four electromagnetic sorbers are made to execute power reception operation (31).
  • the section Vehicle suspension system as described.
  • the control switching unit is configured to also prohibit the power receiving operation of the four damping force generating devices when the voltage of the power supply becomes lower than or equal to the set threshold voltage.
  • the suspension system for a vehicle according to any one of (31) and (32).
  • the additional control is performed by continuing the active control.
  • the effects of degradation for example, the impact on other systems, can be effectively suppressed or prevented.
  • the control system includes a control selection switch operated by the driver to select non-execution,
  • the control switching unit is configured to switch execution / non-execution of power reception operation by the four damping force generation devices based on the command of the control selection switch.
  • the vehicle suspension system according to any of the above.
  • the aspect of this section makes it possible to switch control that reflects the driver's preference, that is, the driver's intention.
  • the control device has an abnormality monitoring unit that monitors the occurrence of an abnormality in the vehicle suspension system.
  • the control switching unit is configured to forcibly prohibit the power receiving operation when an abnormality that makes it impossible to execute the power receiving operation by the four damping force generating devices occurs.
  • Suspension system for a vehicle according to any of the items (34).
  • passive control can be used as a backup for active control, and a superior system in terms of fail-safe is realized.
  • the situation of this section It is also possible to configure it so that the active control force S backs up in the event of an abnormality that makes the passive control inoperable.
  • the suspension system according to the aspect of this section is, in a nutshell, a mode in which the above-described coil connection device is provided in the suspension system in which active control can be performed. According to the aspect of this section, it is possible to enjoy the various advantages described above with respect to the coil connection device.
  • FIG. 1 is a schematic view of a vehicle provided with a suspension system for a vehicle according to a first embodiment of the claimable invention.
  • FIG. 2 is a view showing in more detail the structure of an electromagnetic saber that the vehicle suspension system of the first embodiment has.
  • FIG. 3 is a view for explaining the principle of the suspension system for a vehicle according to the first embodiment.
  • FIG. 4 A table showing the characteristics of each electromagnetic sorber when the coils of its own are connected.
  • FIG. 5 is a view showing a method of connecting coils included in each electromagnetic fab sober in the suspension system for a vehicle according to the first embodiment.
  • FIG. 6 is a schematic view of a vehicle provided with a suspension system for a vehicle according to a second embodiment of the claimable invention.
  • FIG. 7 is a view showing a configuration regarding connection of coils included in an electromagnetic type saber in a suspension system for a vehicle according to a second embodiment.
  • FIG. 8 is a functional block diagram centering on an electronic control unit provided in the vehicle suspension system of the second embodiment.
  • FIG. 9 A view showing a circuit in a state where a coil of an electromagnetic saber provided on the left front wheel and a coil of an electromagnetic saber on the left rear wheel are connected in the vehicle suspension system of the second embodiment.
  • FIG. 10 is a diagram showing a circuit equivalent to the circuit shown in FIG.
  • FIG. 11 A table showing a method of connecting coils of electromagnetic fab sobers connected to cope with each vibration mode in the suspension system for a vehicle according to the second embodiment. It is.
  • FIG. 12 is a schematic view of a vehicle provided with a suspension system for a vehicle according to a third embodiment of the claimable invention.
  • FIG. 13 is a functional block diagram centering on an electronic control unit in the vehicle suspension system of the third embodiment.
  • FIG. 1 is a schematic view of a vehicle 10 provided with a vehicle suspension system according to the first embodiment.
  • coil springs 54FR, 54FL, 54RR, 54RL which are suspension springs, are disposed between the vehicle body 12 and the wheels 14FR, 14FL, 14RR, 14RL, and a motor 16FR that functions as a generator.
  • Electromagnetic type absorbers 30FR, 30FL, 30RR, and 30RL, in which 16FL, 16RR, and 16RL, and cylinder devices 18FR, 18FL, 18RR, and 18RL that function as telescopic members, are disposed in series are provided.
  • the above wheels, coil springs, motors, cylinder devices, electromagnetic type ave-sorts can be appropriately selected from “wheel 14”, “coil spring 54”, “motor 16”, “cylinder device 18”, “electromagnetic type” In some cases, it will be referred to as “absorber 30”.
  • the symbols FR, FL, RR, and RL indicate the positions of the front right, the front left, the rear right, and the rear left of the vehicle 10, respectively.
  • the suspension system for a vehicle comprises the four coil springs 54 and four electromagnetic types described above.
  • Force Composed Including Fab Sorber 30 In FIG. 1, since the system is schematically represented, the electromagnetic fab sober 30 is depicted in a planar arrangement. In an actual vehicle, the electromagnetic saber 30 is disposed in an appropriate posture in order to perform the function of the shock absorber in the suspension system. For example, the axle carrier, the tie rod, the upper arm, the lower arm, etc. In a known way with the components of the
  • the coil spring 54 prevents the vibration from the road surface from being directly transmitted from the wheel 14 to the vehicle body 12.
  • the electromagnetic absorber 30 relies on the force generated by the motor 16 to generate a damping force for the relative movement between the upper and lower panels of the vehicle.
  • the portion of the vehicle supported by the coil spring 54 is referred to as "panel upper portion”
  • the portion of the vehicle not supported by the coil spring 54 is referred to as "panel lower portion”.
  • the upper portion of the panel is a portion on the vehicle body 12 side of the vehicle
  • the lower portion of the panel is a portion on the wheel 14 side.
  • the coil spring 54 and the electromagnetic type absorber 30 be integrally configured, they may be provided separately.
  • the detailed structure of the electromagnetic type sorber 30 will be described later with reference to FIG.
  • the vehicle body 12 is provided with three acceleration sensors that respectively detect vertical acceleration, longitudinal acceleration, and lateral acceleration of the vehicle body, and these are collectively represented as a G sensor 102.
  • the acceleration in each direction of the vehicle body detected by the G sensor 102 is sent to an electronic control unit 100 (hereinafter referred to as "ECU 100").
  • the ECU 100 functions as a control device that controls the vehicle suspension system, and the behavior of the vehicle 10 based on information from various sensors provided in each part of the vehicle 10 including the G sensor 102. Control.
  • FIG. 2 is a diagram showing in more detail the structure of the electromagnetic type absorber 30 which also includes the motor 16 and the cylinder device 18 and the force.
  • the motor 16 is, for example, a rotary type DC motor, and mainly includes a stator having a coil wound around an iron core and a magnet attached to a cylindrical surface so as to be rotatably supported in a state facing the stator. And a configured rotor.
  • Output shaft 3 connected to the rotor of the motor 16 6 is integrally configured with a threaded rod 44 in which a threaded groove is formed.
  • the output shaft 36 and the screw rod 44 may be coaxially coupled via a coupling.
  • the output shaft 36 is rotatably supported by the inner tube 42 by a bearing 40 inside the inner tube 42 which is a component of the cylinder device 18 and functions as a panel upper member.
  • the inner tube 42 is a component of the cylinder device 18 and is fitted into an outer tube 50 which functions as a lower panel lower member and a lower spring member.
  • the inner tube 42 and the outer tube 50 are coaxially arranged.
  • screw rods 44 are arranged coaxially with them.
  • the inside of the water tube 50 has a nut support cylinder 78 erected at its bottom, and the nut support cylinder 78 holds a plurality of bearing balls 48 and engages with the screw rod 44. 46 is fixed and supported.
  • a ball screw mechanism is configured including the screw rod 44, the nut 46, and the plurality of bearing balls 48. The ball screw mechanism converts the rotational movement of the screw rod 44 and the relative linear movement of the screw rod 44 and the nut 46 in the axial direction with high efficiency.
  • Bush type bearings 56 and 58 are interposed between the inner surface of the outer tube 50 and the outer surface of the inner tube 42, and the outer tube 50 and the inner tube 42 slide in the vertical direction while sliding relative to each other. Relative movement is made possible!
  • a dust seal 76 is provided at the upper end portion of the water tube 50, and the dust seal 76 seals the space between the water tube 50 and the inner tube 42 so that dust or the like in the water shell 50 can be prevented. It prevents foreign objects from entering.
  • a panel lower side attachment portion 60 is provided at the lower part of the avatar tube 50.
  • the lower panel mounting portion 60 is a functional portion for connecting the electromagnetic absorber 30 to a lower arm (not shown) extending from the wheel 14.
  • a panel upper attachment portion 28 is provided on the upper portion of the inner tube 42.
  • the upper panel mounting portion 28 is a functional portion that connects the electromagnetic absorber 30 to the upper portion of the panel.
  • An annular stopper 82 having a buffer function is provided at the connection between the panel upper mounting portion 28 and the inner tube 42.
  • the stopper 82 is formed by the upper end portion of the water tube 50 and the panel upper mounting portion 28 directly. To prevent contact. Fata tube 50 inna
  • the movable range with respect to the hub 42 is defined by the contact of the dust seal 76 with the stopper 82.
  • a spring seat 52 formed in a bowl shape On the outer peripheral portion of the outer tube 50, a spring seat 52 formed in a bowl shape is provided.
  • a coil spring 54 is disposed between the spring seat 52 and a portion of the vehicle body 12 located on the periphery of the panel upper attachment portion 28 so that both ends thereof are supported by the coil spring 54 in a compressed state. Therefore, the coil spring 54 is in a state where a predetermined weight is given in advance.
  • the coil spring 54 supports the weight on the panel of the vehicle 10, and when it is elastically deformed, it performs a function of not transmitting the vibration and impact from the road surface to the vehicle body 12.
  • the vertical vibration of the vehicle body 12 generated by the elastic force of the coil spring 54 is attenuated by the damping force generated by the electromagnetic absorber 30.
  • the screw rod 44 is provided at the upper portion of the panel of the vehicle 10 and the nut 46 is provided at the lower portion of the panel of the vehicle. It may be provided at the top.
  • the electromagnetic type absorber 30 is disposed such that the motor 16 protrudes inside the vehicle body 12 and the cylinder device 18 projects out to the lower portion of the vehicle body. It may be configured to be installed.
  • the function of the electromagnetic sorber 30 will be described.
  • the wheel 14 and the vehicle body 12 move relatively vertically due to an external input such as road surface unevenness
  • the water tube 50 and the inner tube 42 move relative to each other in the vertical direction, whereby the coil spring 54 expands and contracts.
  • the threaded rod 44 and the nut 46 axially move relative to each other, thereby rotating the threaded rod 44 and rotating the output shaft 36 of the motor 60.
  • the rotation of the output shaft 36 causes the rotor and the stator to operate relative to each other, that is, the magnet and the coil to generate an electromotive force in the coil. That is, the motor 16 functions as a generator.
  • the electromotive force generated in the coil is proportional to the operating speed or rotational speed of the rotor, and the rotational speed is proportional to the relative moving speed of the inner tube 42 and the supplier tube 50. Therefore, the relative moving speed between the inner tube 42 and the air tube 50, that is, the upper part of the panel
  • An electromotive force is generated in proportion to the relative operating speed in the vertical direction with the lower part, and the electromagnetic absorber 30 has a resistance to the relative movement, that is, a damping force having a magnitude corresponding to the relative operating speed. It generates.
  • the magnitude of the damping force depends on the current flowing through the coil, and the larger the current, the larger the damping force. In view of such a function, it is possible to think that the electromagnetic type absorber 30 has a damping force generating device mainly composed of the motor 16.
  • the external force may also be supplied to the motor 16 to operate the motor 16.
  • rotational force is applied to the output shaft 36
  • rotational force is applied to the nut 46
  • a force is applied to move them relative to the screw rod 44 and the nut 46.
  • the electromagnetic type absorber 30 is also capable of generating a damping force or a propulsive force for the relative movement between the upper portion of the panel and the lower portion of the unsprung portion even when the electric power is supplied to the motor 16.
  • the amount of current supplied to the motor 16 strictly speaking, flows through the coil of the motor 16
  • Damping force control based on skyhook theory is also possible by controlling the current according to the acceleration in the vertical direction of the vehicle body 12 or the upper part of the panel, for example, using the power supply operation.
  • the electromagnetic absorber 30 When the motor 16 is used as a generator, the electromagnetic absorber 30 has an advantage that power consumption can be suppressed to a low level as long as it is necessary to supply electrical energy to the electromagnetic absorber 30. It is also possible to regenerate vibration energy and charge the battery. Furthermore, by measuring the current flowing through the coil, it is possible to measure the force generated by the electromagnetic absorber 12. As described above, the electromagnetic sorber 30 has various features that can not be obtained by the conventional oil damper (hydraulic sorber).
  • the coils 16 of the motor 16 of the electromagnetic absorber 26 disposed on each vehicle wheel 14 have a closed loop. Connected to generate a damping force in this state.
  • FIGS. 3 (a) and 3 (b) show the operation when two input coils are connected in the vertical direction from the wheel.
  • Fig. 3 (a) shows an example in which the stroke direction (direction of expansion and contraction movement) of the cylinder device 18 is in phase, that is, an input in the same direction, as in the bounce movement, for example.
  • b) is an input in which the stroke direction of the cylinder device 18 has an opposite phase, that is, an input in the opposite direction, such as pitch movement and roll movement, for example.
  • white arrows indicate the input direction, that is, the operation direction.
  • E indicates the electromotive force of the coil
  • t is the internal resistance of the coil
  • T is that of both coils.
  • the force generated by the soba will be relatively small.
  • the damping force to suppress movement is generated in the electromagnetic saber 30 on the high speed side of the telescopic motion, and conversely, the motion is accelerated in the electromagnetic web soba 30 on the side with the low telescopic speed.
  • a force is generated that
  • the two electromagnetic absorbers 30 exert a force to average the relative operating speeds of the wheel at the wheel position where they are provided and the vehicle body.
  • one of the two coils is the electromagnetic ave sorber 30 provided on the left wheel of the vehicle, and the other is the electromagnetic ave sorber 30 provided for the vehicle on the right of the vehicle. In such a case, the vehicle body is given a certain size of force to suppress its roll movement.
  • the damping forces generated by the two electromagnetic absorbers 30 are relatively large.
  • each of the two electromagnetic absorbers 30 generates a relatively large damping force to the relative movement between the wheel and the vehicle body at the wheel position at which each is provided.
  • Ru Specifically, one of two coils is the electromagnetic fab-sorber 30 provided on the left wheel of the vehicle, and the other is the electromagnetic fab-sorber 30 provided for the vehicle on the right of the vehicle. In such a case, a relatively large force S is applied to the vehicle body as a force for suppressing the roll movement.
  • a suspension system for a vehicle is required to have both contradictory characteristics of steering stability and improvement in ride comfort. For example, when the vehicle bounces, it is required to reduce the damping force to improve the ride comfort so that the vibration of the road surface is not transmitted to the upper part of the panel. During pitch movement, it is required to increase the damping force to minimize changes in the attitude of the vehicle. Under such contradictory requirements, when the suspension system is configured such that the electromagnetic absorbers function independently for each wheel, either of the characteristics is not sufficient. Connecting the coils of the electromagnetic fab-sorbers provided in the respective rings can be a means for satisfying the contradictory requirements described above. For example, the coils of each of the two electromagnetic fab-sorbers have To realize a suspension system that exhibits softness in the roll or pitch direction and softness in the bounce direction by combining so as to form a closed loop including them. It is possible to
  • FIG. 4 is a summary of the characteristics of the electromagnetic saber 30 when the coils of each are connected to each other.
  • the reciprocity to the vehicle suspension system described above is utilized by utilizing the change in the characteristics of each electromagnetic fab sovar 30 depending on whether the inputs to the two electromagnetic fab sobers 30 are in phase or in anti-phase. Against the requirements I am dealing with it.
  • the motor 16 acts as a generator, a resistance is generated and a current flows in the coil.
  • the force generated by the motor 16 is proportional to the amount of current, and the electromotive force is proportional to the motor rotational speed. Therefore, the resistance is proportional to the motor rotation speed, that is, the relative movement speed between the upper portion of the panel and the unsprung portion, and the resistance becomes a damping force. Therefore, the damping force is proportional to the magnitude of the current flowing through the coils of the stator, and in order to make the damping force variable, the magnitude of the current flowing through the coils may be adjusted. As described above, the damping force can be arbitrarily tuned by providing the resistor T in the circuit connecting the coils and changing the resistance value of the resistor T.
  • FIG. 5 shows a method of connecting coils in the suspension system of the first embodiment.
  • FR, FL, RR, and RL represent coils located on wheels 14FR, 14FL, 14RR, and 14RL, respectively, "M” represents the motor 16 and "t” represents the internal resistance of each coil. .
  • coils FR and RL at diagonal positions of the vehicle are connected to form a closed loop including them, and coil FL at the other diagonal position.
  • RR and force are connected to form a closed loop that includes them!
  • a first connection path 90 connecting one end of the coil FR and one end of the coil RL, and a second connection path 92 connecting the other end of the coil FR and the other end of the coil RL.
  • One closed loop is formed, and another first connection path 94 connecting one end of the coil FL to one end of the coil RR, and another end of the coil FL connected to the other end of the coil RR
  • Another second connection path 96 forms another closed loop.
  • the two first connection paths 90 and 94 are connected to each other, and the two second connection paths 92 and 96 are connected to each other.
  • a common resistor T is disposed for the two closed loops so as to connect the first connection paths 90, 94 and the second connection paths 92, 96. That is, the present suspension system has a system including a coil connection device 88 having the above circuit configuration, having two first connection paths 90 and 94, two second connection paths 92 and 96, and a resistor T. It is being done.
  • each electromagnetic absorber 28 is The damping force generated is relatively small.
  • pitch movement In the case of a combination of motion and roll motion (“combined motion between pitch motion and roll motion” and can also be generated), the two electromagnetic sabers in opposite positions 30 have opposite phases.
  • the damping forces generated by the electromagnetic absorbers 30 are relatively large.
  • the coils located at diagonal positions are connected to form a closed loop that includes them. Therefore, it is appropriate for movements such as combined roll movement and pitch movement. It is possible to generate a damping force.
  • the coil is a closed loop including two electromagnetic ave sorbers 30FL, RL coil on the left wheel side and a coil including two FL ⁇ RL of the right wheel side, and two electromagnetic lobbers 30 FR, RR in the right wheel side.
  • the closed loop including FR and RR is also configured. Therefore, the electromagnetic absorbers 30 can generate a relatively large damping force even for simple roll movement and pitch movement that are not limited to the combined movement described above, and effective measures can be taken against roll movement and pitch movement as well. It is assumed.
  • two closed loops independent of each other are formed without coupling the closed loop including coils FR and RL and the closed loop including coils FL and RR. It is also possible to have a system provided with various coil connection devices. It is also possible to have a system that includes a coil connection device in which only one of them is formed without forming these two closed loops. Even in this case, it is possible to generate relatively high damping force for mouth movement and pitch movement. It is also possible to build a system with a coil connection device, provided with a resistor T. Even without the resistor T, a certain effect will be obtained.
  • the resistor T can be a variable resistor. If it is a variable resistor, for example, the magnitude of the damping force generated by each electromagnetic fab sober 30 in an opportunistic manner based on the state of the vibration generated in the vehicle or the state of the vibration that may be generated, Damping force characteristics etc. of the whole system can be changed.
  • the control of the variable resistor in the case of being a variable resistor is, for example, described above. It is possible to carry out by ECUlOO. In this case, the control of the ECU 100 can be performed based on, for example, the vertical acceleration, the longitudinal acceleration, the lateral acceleration, and the like of the vehicle body detected by the G sensor 102 described above.
  • each of the two coils of the electromagnetic Fab Sover 30 provided at the diagonal position of the vehicle has a closed loop. Since the connection is made to form, it is possible to make the damping effect against the bounce vibration of the vehicle different from the damping effect against the roll vibration and the pitch vibration.
  • the vehicle suspension system of this embodiment has a state in which one electromagnetic absorber can independently generate a damping force, and a coil of the one electromagnetic absorber has another! It is a system that can selectively realize a state in which these two electromagnetic type absorbers exert an appropriate damping action on coupled motion by being connected to the coils possessed by the hub sovers.
  • FIG. 6 is a schematic view of a vehicle 10 provided with the vehicle suspension system of the second embodiment.
  • the electromagnetic sabsober 30, G sensor 102, etc. having the wheel 14, motor 16 and cylinder device 18 have the same configuration as that of the vehicle suspension system of the first embodiment, so they have the same reference numerals. The explanation is omitted.
  • stroke sensors 112FR, 112FL, 112RR, 112RL (hereinafter, these may be collectively referred to as “stroke sensor 112” as appropriate) as a stroke amount detector for detecting a stroke.
  • the detection signal of the stroke sensor 112 is sent to the ECU 100.
  • the stroke amount represents the amount of relative movement between the panel upper portion and the panel lower portion, and is a type of movement state index amount that indicates the movement state of a part of the vehicle.
  • the stroke sensor 112 is a movement state index It functions as a quantity detector.
  • ECUlOO is based on the detection signal from each stroke sensor 112, bounce vibration, roll vibration, pitch vibration, and composite vibration in which roll vibration and pitch vibration are combined, and! It judges about the mode of vibration. Specifically, it is determined that the vibration is V at the vibration frequency and the vibration in the resonance region.
  • FIG. 7 shows a configuration regarding connection of coils of the electromagnetic fab sober 30 in the suspension system of the second embodiment.
  • FR, FL, RR, and RL indicate coils of the electromagnetic type Anonono 30 provided on the wheels 14FR, 14FL, 14RR, and 14RL, respectively.
  • a resistor T is juxtaposed, and each electromagnetic absorber 30 has a closed loop including its own coil and the resistor T. Is formed.
  • each electromagnetic absorber 30 is configured to have a damping force generator that also includes this resistance T.
  • the closed loop is, more specifically, both ends of each coil FR, FL, RR, RL connected to a switch circuit 152 which functions as a coil connection device.
  • the switch circuit 152 is configured such that each coil can be connected to any other coil.
  • coil FR can be connected to any one of coils FL, RL, and RR, and it is possible to form a closed loop including two coils connected to each other. .
  • coil FR and coil RL may be connected to form one closed loop including them
  • coil FL and coil RR may be connected to form another closed loop including them. It is made possible.
  • FIG. 8 is a functional block diagram centering on the ECU 100 in the suspension system of the present embodiment.
  • each block in the ECU 100 can be realized by hardware as an element or mechanical device such as a CPU or memory of a computer, and as software as a computer program or the like. It is drawn as a functional block realized by. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by a combination of hardware and software.
  • Vibration mode determination unit 124 determines the mode of remarkable vibration of vehicle body 12 from the detection signal of stroke sensor 112 at each wheel position.
  • the vibration targeted for damping is pitch vibration, roll vibration, first diagonal vibration (direction of relative movement between upper and lower panels of left front wheel, and right rear wheel).
  • 2nd diagonal vibration direction of relative movement of upper panel with lower panel with respect to right front wheel, upper panel with respect to left rear wheel
  • the vibration mode determination unit 124 determines that the vibration is a vibration at the resonance frequency and its neighboring frequency, the vibration is such that the direction of the relative movement with the lower part of the panel is opposite to each other. It is determined that vibrations in the pitch vibration mode, the roll vibration mode, the first diagonal vibration mode, and the second diagonal vibration mode are generated, respectively.
  • Vibration mode determination unit 124 first calculates, for example, the component amount of vibration generated in the vehicle according to the following calculation formula, that is, the pitch amount, the roll amount, and the first diagonal difference amount.
  • the difference between the relative movement between the upper panel and the lower panel, the relative movement between the upper panel and the lower panel of the right rear wheel, and the second diagonal difference (panel for the right front wheel) The relative movement between the upper part and the lower part of the panel and the difference between the relative movement between the upper part and the lower part of the panel for the left rear wheel are calculated.
  • X is a stroke amount detected by the stroke sensor 112, and a subscript indicates each wheel position.
  • the first diagonal difference amount and the second diagonal difference amount can be considered to be the momentum corresponding to the combined movement of the pitch motion and the roll motion, and more specifically, the first diagonal difference amount is The amount of swing in the vertical plane including the line connecting left front FL and right back RR is shown, and the second diagonal difference amount is the swing in the vertical plane including the line connecting right front FR and left rear RL of the vehicle. It can be considered to indicate the amount of
  • the vibration mode determination unit 124 determines the pitch vibration mode described above from the temporal change of the pitch amount, the roll amount, the first diagonal difference amount, and the second diagonal difference amount obtained as described above. It is determined whether the vibration in roll vibration mode, first diagonal vibration mode, and second diagonal vibration mode is generated.
  • the mode of vibration is determined based on the stroke amount at each wheel position, but for example, the acceleration in the vertical direction of the upper portion of the panel at each wheel position. And at least one of the acceleration in the Acceleration detector, and the pitch vibration mode, the roll vibration mode, the first diagonal vibration mode, based on the temporal change of at least one of the on-panel acceleration and the on-panel acceleration detected by the acceleration detector. It may be determined whether or not the vibration in the second diagonal vibration mode is generated.
  • the acceleration above the panel and the acceleration below the panel are also a kind of the above-mentioned exercise state index amount, and the aspect adopting such a determination method is also an aspect of judging the mode of vibration based on the exercise state index amount.
  • the switch circuit control unit 126 is a functional unit that controls the operation of the above-described switch circuit 152, and functions as a coil connection device control unit. When the vibration of any of the vibration modes described above is generated based on the determination result of the vibration mode determination unit 124, the switch circuit control unit 126 causes the switch circuit 152 to perform the vibration.
  • the coils of each of the specific electromagnetic absorbers 30 are connected to generate a relatively large damping force.
  • switch circuit 152 forms a closed loop in which each coil is not connected to any other coil, and each coil force alone includes a resistor T juxtaposed thereto. It is done.
  • the switch circuit control unit 126 connects the coils FL and RL, and connects the coils FR and RR.
  • Fig. 9 shows a state where coils FL and RL of two electromagnetic sabers 30FL and RL provided on the left wheel are connected to each other. Since the circuit shown in FIG. 9 is equivalent to the circuit shown in FIG. 10, the resistance value of the resistor provided in the circuit of FIG. 10 is provided in parallel with the coil of the electromagnetic wave absorber 30.
  • the resistance value of the resistor T is 1Z2.
  • the switch circuit 152 is in a normal state.
  • the current i flowing through each coil has a value represented by the following equation.
  • the coils FR and FL of the two electromagnetic absorbers 30FR and 30FL provided on the front wheel are connected to each other, and the two electromagnetic absorbers 30RL and RR provided on the rear wheel.
  • the coils RL and RR of each are connected to each other.
  • the coil FL of the electromagnetic fab sober 30FL provided on the left front wheel and the coil RR of the electromagnetic fab sober 30R R provided on the right rear wheel are in the second diagonal vibration mode.
  • the coil FR of the electromagnetic absorber 30FR provided on the right front wheel and the coil RL of the electromagnetic absorber 26R provided on the rear left wheel are connected to each other.
  • switch circuit 152 is adapted to connect all coils in a normal state, and a vibration mode of V deviation is reached.
  • switch circuit 152 it is possible to construct a system in which the connection between the coils corresponding to the vibration mode is left and the other connection is released. Specifically, for example, when the first diagonal vibration mode is reached, the connection related to the coil FR and the connection related to the coil RL are cut off, leaving only the connection between the coil FL and the coil RR.
  • the system is configured to increase the current flowing to the two coils FL and RR.
  • the suspension is generated on the vehicle body It is made to connect the coils of the electromagnetic fab sober 30 with each other in a combination that determines the remarkable vibration mode and suppresses the vibration of the vibration mode.
  • the suspension system of the present embodiment can effectively damp the vibration of the vehicle body.
  • the suspension system for a vehicle is a control for generating damping force using the electromotive force generated in the motor 16 exclusively for controlling each of the four electromagnetic absorbers (so-called “passive control”); A suspension whose control mode can be switched between the above-mentioned control that also enables power reception operation to supply power to 16 and generate damping force or propulsion ("active control" as described above). It is a system.
  • FIG. 12 is a schematic view of a vehicle 10 provided with the vehicle suspension system of the third embodiment.
  • the electromagnetic saber 30, the G sensor 102, the stroke sensor 112, etc. having the wheel 14, the motor 16 and the cylinder device 18 have the same configuration as that of the suspension system of the first embodiment or the second embodiment. The same symbols are attached to them, and the explanation thereof is omitted.
  • the suspension system of the present embodiment corresponds to each of the electromagnetic absorbers 30 and includes drivers 20FR, 20FL, 20RR, 20RL (hereinafter, these will be collectively referred to as “drivers 20” as appropriate. There is a case).
  • the driver 20 executes a motor drive control program, a ROM that stores data of various constants used for control, etc., executes the motor drive control program, and controls the drive of the motor 16 in detail. It comprises a CPU that performs communication control, a RAM that temporarily stores calculation results of the CPU, etc., a signal generator for driving a motor, and so on.
  • the power supply 98 supplies power for driving the motor to each driver 20.
  • the power source 98 is, for example, a 36V battery provided on the vehicle body 12.
  • Each driver 20 is communicably connected to the ECU 100 via the communication bus 116.
  • Each driver 20 adjusts the signal generator so that the motor 16 corresponding to itself operates according to the motor drive signal from the ECU 100, and supplies the current from the power source 98 to the motor 16.
  • the ECU 100 and each driver 20 repeat bi-directional communication at regular intervals. It is configured.
  • switching switch 2 2 In the suspension system of the present embodiment, four switching switches 22FR, 22FL, 22RR, 22RL (hereinafter, these may be collectively referred to as “switching switch 2 2” as appropriate, corresponding to the electromagnetic absorbers 30. ) Is provided.
  • Each changeover switch 22 serves as a disconnection switch which switches whether the coil of the motor 16 possessed by the electromagnetic absorber 26 corresponding to itself forms a closed loop by the coil alone or is connected to the corresponding driver 20. I can do it.
  • Each switching switch 22 is communicably connected to the ECU 100 via the communication bus 116, and executes the above switching in response to a signal from the ECU 100.
  • the control selection switch 114 provided in the present suspension system is provided in the vehicle compartment, and according to the driver's preference, in other words, based on the driver's intention, the above-mentioned nossive control and active control are performed. It is a switch for making it selectable. Information on the operation of this switch is sent to the ECU 100.
  • the vehicle body 12 is further provided with a sensor 118 for detecting the motion state of the vehicle and the operation state of various devices and devices equipped in the vehicle.
  • the sensor 118 is collectively represented. Specifically, a voltage detection circuit for detecting the remaining amount of the battery which is the power supply 98, a vehicle speed sensor for detecting the traveling speed (vehicle speed) of the vehicle 10, the vehicle The steering angle sensor etc. which detect the steering angle of 10 are included.
  • the vehicle speed, steering angle, etc. are a kind of motion state index amount that indicates the motion state of the vehicle, and the vehicle speed sensor, steering angle sensor, etc. function as a motion state index amount detector. .
  • ECU 100 controls the control mode of electromagnetic absorber 30 based on the motion state of the vehicle, which is also estimated as a result of detection by sensor 118, or based on the operation state of the control selection switch by the driver. Decide whether to perform nossive control or active control. Then, in response to the determination, the driver 20 and the changeover switch 22 are signaled.
  • the ECU 100 determines the state of the vehicle 10, more specifically, the state of vibration occurring in the vehicle, based on detection signals from various sensors including the stroke sensor 112, Electromagnetic waves provided for each wheel to suppress vehicle vibration, posture change, unstable behavior, etc., and to make the vehicle more stable against the driver's steering, accelerator, brake, etc. operation. Force that is generated by the pressure absorber (the cylinder unit 18 Determine the amount of reduction) and send a drive signal to the motor 16 to each driver 20.
  • FIG. 13 is a functional block diagram of a control system centering on the ECU 100.
  • the vibration mode determination unit 130 as the vibration state determination unit is a mode of the vibration that is prominent by the method similar to the method in the suspension system of the second embodiment from the detection signal of the stroke sensor 112 or the G sensor 102. Determine
  • the abnormality monitoring unit 132 monitors, on the basis of the signals from the various sensors 118, when an active control or a passive control is performed, an abnormality that impedes it occurs.
  • the control switching unit 134 operates the switch control unit 136 and the active control unit 138 that functions as a power reception operation control unit based on the monitoring result in the abnormality monitoring unit 132 to obtain an electromagnetic type absorber 30. Switch the control mode of to either of the nossive control or the active control. In addition, the control switching unit 134 also receives a signal from the control selection switch 114, and when the driver selects any of the control modes, the selected control is performed unless the abnormality monitoring unit 132 detects any abnormality. Switch to the mode.
  • Active control unit 138 when electromagnetic absorber 30 receives power supplied from power supply 98, causes electromagnetic absorber 30 to have a driving force or a damping force for relative movement between the upper and lower panels. Generate In other words, it is a functional unit that can control the power reception operation of the electromagnetic absorber 30. Specifically, for example, the active control unit 138 receives the amount of vibration in the significant vibration mode from the vibration mode determination unit 130, and the electromagnetic absorber 30 provided at each wheel position is provided to suppress the vibration. The driving force or damping force to be generated is calculated, and this force is generated for each driver 20 which damps the vibration of the vehicle body and which stabilizes the vehicle against the driver's steering of the vehicle. It supplies a drive signal to drive.
  • the switch control unit 136 serving as the cutting and turning control unit performs the operation of the electromagnetic fab sober 30 in passive control or active control according to the control mode.
  • Switching switch 22 is switched. That is, when the control switching unit 134 switches to the passive control, the coils possessed by the electromagnetic fab sobers 30 at the respective wheel positions individually form closed loops, that is, the electromagnetic absolute The switching switch 22 is switched so that the damping force can be independently generated while the power supply 30 is not supplied with power from the power supply 98, and the control switching unit 134 is switched to active control. In order to connect the coil of each electromagnetic absorber 30 to the corresponding driver 20, the switch 22 is switched.
  • the control switching unit 134 may be configured to connect the coil of the motor 16 of each electromagnetic absorber 30 with the driver 20 at normal times.
  • the electromagnetic absorber 30 performs active control. Then, for example, when the active control becomes impossible due to a disconnection or the like, switching to the nossive control can cause each electromagnetic type absorptive 30 to exert at least a damping force in a single state.
  • the voltage drop of the power supply 98 is detected by the abnormality monitoring unit 132, more specifically, when the power supply voltage becomes lower than or equal to the set threshold voltage, the power reception operation of each electromagnetic sorber 30 is prohibited.
  • the full vehicle control it is possible to prevent the occurrence of a situation such as a decrease in responsiveness of the motor 16 due to a voltage drop or a lack of damping force.
  • the motor 16 acts as a generator and the stroke speed, That is, a damping force of a magnitude substantially proportional to the relative operating speed of the upper and lower panels is generated.
  • the control switching unit 134 also switches the passive control force to the active control. Command the switch control unit 136. In this way, active control can effectively dampen the vehicle's vibration and restore the ground property.
  • passive control is performed by causing the motor 16 of the electromagnetic saber 30 to operate exclusively as a generator to generate a damping force, and energization. It is adapted to switch between active control capable of driving the motor and actively operating the cylinder device. As a result, the vehicle suspension system of the present embodiment can exhibit appropriate damping performance according to the state of the vehicle.
  • the switching switch 22 connects the coil of each electromagnetic ave sorber 30 to the coil of any of the other electromagnetic nono 30 to form a closed loop. It may be possible to switch to
  • the electromagnetic absorber 26 having the damping force generator employing the rotary motor 16 has been described, but the damping force generator employing the linear motion motor is
  • the present invention can also be applied to an electromagnetic sorber having the same.
  • an electromagnetic fab sober having the following configuration can be used. That is, a plurality of coils are provided on the inner surface of the outer tube so as to extend in the axial direction, and a plurality of permanent magnets are provided on the outer surface of the inner tube so as to extend in the axial direction. It is possible to use an electromagnetic fab sober that is structured so as to support relative movement in the vertical direction without contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 前後左右の車輪に対応して設けられた4つの電磁式アブソーバ30を備えたシステムにおいて、対角位置に存在する2つの電磁式アブソーバの各々が有するモータ16のコイルを、それら2つのコイルをそれら含む閉ループが形成されるように接続する。対角位置に存在する2つの車輪の車体に対する動作が同方向である場合と逆方向である場合とで、発生させる減衰力をの大きさを相違させることができる。また、各電磁式アブソーバがコイルと閉ループを形成するようにして設けられた抵抗器を有するとともに、いずれかのコイルと他のいずれかのコイルとが閉ループを形成するように接続される接続状態と、いずれかのコイルが他の3つのコイルのいずれとも接続されない非接続状態とを、選択的に実現させる。連成運動に対して適切な制振作用を発揮する状態とを選択的に実現することが可能となる。

Description

明 細 書
車両用サスペンションシステム
技術分野
[0001] 本発明は、車両用サスペンションシステム、詳しくは、電磁式のショックァブソーバを 備えた車両用サスペンションシステムに関する。
背景技術
[0002] 自動車用のサスペンション装置は、車体の重量(ばね上重量)を支持するとともに、 路面不整などによる振動を緩和して、車両の乗り心地を向上させ、また、車体の各部 に加わる動的荷重を軽減して、走行安定性を向上させるといった機能を有する。サス ペンション装置を構成する要素にショックァブソーバがあり、そのショックァブソーバと して、車両のパネ上部とパネ下部との相対動作に対する減衰力をモータの力に依拠 して発生させる電磁式ァブソーバの開発が進められて ヽる。
[0003] 上記電磁式ァブソーバでは、モータのコイルを短絡させることで、言!、換えれば、モ ータの通電端子間を外部にて導通させることで、減衰力を発生させることができる。 例えば、 日本国特許公開公報〔特開 2003— 223220号〕には、電磁式サスペンショ ン装置の制御が不能になったときに、モータのコイルを短絡させて減衰力を発生させ ることが記載されている。また、 日本国特許公開公報〔特開 2001— 310736号〕には 、電磁式サスペンション装置の制御に関し、 4つの電磁式ァブソーバの各々が有する コイルのうちの 2つのものを接続し、車両の姿勢変化に応じてそれらのコイルに流れ る電流の方向を切り換えて電磁力の発生する向きを制御し、そのことによって減衰力 を制御する技術が開示されて 、る。
発明の開示
[0004] (A)発明の概要
しかしながら、〔特開 2003— 223220号〕に記載の電磁式サスペンション装置では 、 1つの電磁式ァブソーバのコイルを単独で短絡させるのみであり、車両の連成運動 (例えば、ノ ゥンス,ロール、ピッチ、ヒーブ等、 2以上の車輪位置の各々における車 体の運動が互いに関連あるいは影響し合った運動であり、「相互関連運動」と呼ぶこ ともできる)を考慮していない。そのため、例えば、左右の電磁式ァブソーバが協調し た振動抑制効果を期待することはできないといった問題を抱えている。また、〔特開 2 001— 310736号〕の記載の電磁式サスペンション装置では、左右の車輪のコイルを 接続することで左右の連成運動に対処することができるが、例えば、車両の前後方向 の連成運動を伴う振動には対応できな 、と 、つた問題を抱えて 、る。
[0005] 上述の問題は、電磁式サスペンション装置を有するシステム、つまり、電磁式サスぺ ンシヨンシステムが抱える問題の一部に過ぎな 、。電磁式サスペンションシステムは、 未だ開発途上にあるため、上記問題を始めとする種々の問題を抱えており、それら 種々の問題のいずれかに対処することにより、実用性を向上させることが可能である 。つまり、電磁式サスペンションシステムは、改善の余地を多分に残すものとなってい るのである。本発明は、そのような実情に鑑みてなされたものであり、実用性の高い車 両用サスペンションシステムを提供することを課題とする。
[0006] 本発明の対象となる車両用サスペンションシステムは、前後左右の車輪に対応して 設けられた 4つの電磁式ァブソーバ、詳しく言えば、それぞれが、コイルと磁石とを有 してそれらの相対動作によって生じる起電力に依拠する減衰力を発生させる 4つの ショックァブソーバを備えたシステムであり、そして、本発明の第 1の観点に従う車両 用サスペンションシステムは、そのシステムにおいて、対角位置に存在する 2つの車 輪からなる車輪対に対応して設けられた 2つの電磁式ァブソーバの各々が有するコ ィルを互いに接続する装置、詳しく言えば、それら 2つのコイルをそれら含む閉ルー プが形成されるように接続するコイル接続装置を備えたことを特徴とする。
[0007] 本発明の第 1の観点に従う車両用サスペンションシステムでは、対角位置に存在す る 2つの車輪に対応して設けられたコイルどうしが接続されているため、それらの車輪 の車体に対する動作が同方向である場合と逆方向である場合とで、発生させる減衰 力が異なるものとなる。したがって、そのことを利用して、連成運動、詳しく言えば、連 成運動を伴う振動 (連成振動)に対して、適切な制振作用を発揮することが可能であ る。
[0008] また、本発明の第 2の観点に従う車両用サスペンションシステムは、各電磁式アブソ ーバがコイルと閉ループを形成するようにして設けられた抵抗器を有するとともに、い ずれかのコイルと他の 、ずれかのコイルとが閉ループを形成するように接続される接 続状態と、 V、ずれかのコイルが他の 3つのコイルの 、ずれとも接続されな 、非接続状 態とを、選択的に実現するコイル接続装置を備えたことを特徴とする。
[0009] 本発明の第 2の観点に従う車両用サスペンションシステムでは、 1つの電磁式アブ ソーバが単独で減衰力を発生させることができる状態と、その 1つの電磁式ァブソー バのコイルが他のいずれかの電磁式ァブソーバのコイルと接続されることによって、 連成運動を伴う振動に対して適切な制振作用を発揮する状態とを選択的に実現する ことが可能となる。
[0010] (B)発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発 明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は 請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引 用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためで あり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載された ものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実 施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項 の態様にさらに他の構成要素を付加した態様も、また、各項の態様力も何某かの構 成要素を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の 各項にお 、て、(1)項な 、し (8)項が請求項 1な!、し請求項 8に相当し、 (11)項な 、 し(20)項力 請求項 9な 、し請求項 18に相当する。
[0011] (1)前後左右の車輪に対応して設けられ、それぞれが、(A)パネ上部に連結される パネ上部側部材と、(B)パネ下部に連結されてパネ上部とパネ下部との相対動作に 伴って前記パネ上部側部材と相対移動するパネ下部側部材と、(C)それらパネ上側 部材とパネ下側部材との相対移動に伴って相対動作するコイルおよび磁石を有し、 それらコイルと磁石との相対動作によって生じる起電力に依拠して前記パネ上部側 部材と前記パネ下部側部材との相対移動に対する減衰力を発生させる減衰力発生 装置とを有する 4つの電磁式ァブソーバを備えた車両用サスペンションシステムであ つて、 対角位置に存在する 2つの車輪からなる車輪対に対応して設けられた 2つの前記 電磁式ァブソーバの各々の減衰力発生装置が有するコイルを、それら 2つのコイルを 含む閉ループが形成されるように接続するコイル接続装置を備えたことを特徴とする 車両用サスペンションシステム。
[0012] 本項に記載の態様では、対角位置に存在する 2つの車輪に対応して設けられたコ ィルどうしが接続されているため、それらの車輪の車体に対する動作が同方向である 場合と逆方向である場合とで、発生させる減衰力が異なるものとなる。具体的に言え ば、例えば、一方の車輪と車体とがバウンド方向(リバウンド方向)に相対動作しつつ 他方の車輪と車体とがバウンド方向(リバウンド方向)に相対動作する場合と、一方の 車輪と車体とがバウンド方向(リバウンド方向)に相対動作しつつ他方の車輪と車体と がリバウンド方向(バウンド方向)に相対動作する場合とで、発生させる減衰力を異な らせることができるのである。したがって、そのことを利用することで、本項の態様によ れば、連成運動に対して、適切な減衰作用を、言い換えれば、連成運動を伴う振動 である連成振動 (相互関連振動)に対して、適切な制振作用を発揮させることが可能 となる。
[0013] 本項の態様において、減衰力発生装置は、例えば、モータ(「発電機」を含む概念 である)を主体に構成することが可能である。その場合のモータは、回転型モータで あってもよぐまた、直動型モータであってもよい。なお、「コイルどうしを接続する」と は、具体的には、例えば、モータの通電端子どうしを接続することを意味する。
[0014] (2)前記コイル接続装置が、前記閉ループを構成する 2つのコイルに対応する 2つ の前記電磁式ァブソーバのうちの一方が設けられているパネ上部およびパネ下部と 、他方が設けられているパネ上部およびパネ下部とが同方向に相対動作する場合お いて、それら 2つの電磁式ァブソーバの各々が有する前記減衰力発生装置に生じる 起電力に依拠した電流がその閉ループにぉ 、て逆方向に流れるように、前記 2つの コイルを接続するものである (1)項に記載の車両用サスペンションシステム。
[0015] 本項の態様は、 2つの電磁式ァブソーバの各々のコイルどうしの接続の向きに関し て、限定をカ卩えた態様である。本項の態様によれば、例えば、車体がバウンス運動し たときは比較的小さな減衰力を発生させ、車体がロール運動,ピッチ運動等をしたと きは比較的大きい減衰力を発生させることが可能となる。
[0016] (3)前記コイル接続装置が、前記閉ループを構成する 2つのコイルの一方端どうし を接続する第 1接続路と他方端どうしを接続する第 2接続路を有する (1)項または (2) 項に記載の車両用サスペンションシステム。
[0017] 本項の態様は、コイル接続装置の構造、詳しく言えば、 2つの電磁式ァブソーバの 各々のコイルどうしの接続構造に関する限定を加えた態様であり、本項の態様によれ ば、簡単な構造のコイル接続装置が実現することになる。
[0018] (4)前記コイル接続装置が、前記第 1接続路と前記第 2接続路とを繋ぐようにして配 設された抵抗器を有する (3)項に記載の車両用サスペンションシステム。
[0019] 本項の態様は、簡単に言えば、閉ループの中間位置に、 2つのコイルと並列的に 抵抗器を配置した態様である。この抵抗器の抵抗値を調整することで、 2つの電磁式 ァブソーバが発生させる減衰力の大きさを調整することが可能である。なお、抵抗器 を可変抵抗器とすれば、例えば、実際に車両に発生している振動の状態に応じて、 2 つの電磁式ァブソーバの減衰力の大きさを、臨機応変に変化させることが可能となる
[0020] (5)前記コイル接続装置が、それぞれが対角位置に存在する 2つの車輪からなる 2 組の車輪対の各々に対応して、それぞれが 2つのコイルを含む 2つの前記閉ループ が形成されるように、 4つの前記電磁式ァブソーバの各々の減衰力発生装置が有す るコイルを接続するものである (1)項または (2)項に記載の車両用サスペンションシステ ム。
[0021] 車両には、上記車輪対は 2組存在する。本項の態様は、その 2組の車輪対の各々 に対応する 2組の電磁式ァブソーバの各々を構成するコイルどうしを接続させた態様 である。本項の態様によれば、連成運動に対して、より適切な減衰力を発揮させるこ とが可能となる。
[0022] (6)前記コイル接続装置が、前記 2つの閉ループの各々に対応して、それぞれが 2 つのコイルの一方端どうしを接続する 2つの第 1接続路と、それぞれが 2つのコイルの 他方端どうしを接続する 2つの第 2接続路を有する (5)項に記載の車両用サスペンショ ンシステム。 [0023] 本項の態様は、 4つの電磁式ァブソーバを接続させる場合におけるコイル接続装 置の構造に関する限定を加えた態様である。先の態様と同様、本項の態様によれば 、簡単な構造のコイル接続装置が実現することになる。
[0024] (7)前記 2つの第 1接続路が互いに接続され、かつ、前記 2つの第 2接続路が互い に接続されている (6)項に記載の車両用サスペンションシステム。
[0025] 本項に記載の態様は、 4つの電磁式ァブソーバの各々のコイルが、他の 3つのコィ ルのいずれとも閉ループを形成するように接続された態様、言い換えれば、 4つのコ ィルのうちのどの 2つのコイルとをとつてみても閉ループが形成されるように、それら 4 つのコイルが接続された構造である。本項の態様によれば、さらに適切な減衰力を発 揮させることが可會となる。
[0026] (8)前記コイル接続装置が、前記 2つの第 1接続路の少なくとも一方と前記 2つの第 2接続路の少なくとも一方とを繋ぐようにして配設された抵抗器を有する (7)項に記載 の車両用サスペンションシステム。
[0027] 本項の態様は、 4つの電磁式ァブソーバを接続する上記態様にぉ 、て、前述した 抵抗器を配置した態様である。この抵抗器の抵抗値を調整することで、 4つの電磁式 ァブソーバが発生させる減衰力の大きさを調整することが可能である。なお、抵抗器 を可変抵抗器とすれば、例えば、実際に車両に発生している振動の状態に応じて、 4 つの電磁式ァブソーバの減衰力の大きさを、臨機応変に変化させることが可能となる
[0028] (11)前後左右の車輪に対応して設けられ、それぞれが、(A)パネ上部に連結される パネ上部側部材と、(B)パネ下部に連結されてパネ上部とパネ下部との相対動作に 伴って前記パネ上部側部材と相対移動するパネ下部側部材と、(C)それらパネ上側 部材とパネ下側部材との相対移動に伴って相対動作するコイルおよび磁石を有し、 それらコイルと磁石との相対動作によって生じる起電力に依拠して前記パネ上部側 部材と前記パネ下部側部材との相対移動に対する減衰力を発生させる減衰力発生 装置とを有する 4つの電磁式ァブソーバを備えた車両用サスペンションシステムであ つて、
前記 4つの減衰力発生装置の各々力 その各々が有するコイルとともに閉ループを 形成する抵抗器を有するとともに、当該車両用サスペンションシステム力 前記 4つの 減衰力発生装置の各々について、その各々が有するコイルと他の減衰力発生装置 のうちのずれ力 1つが有するコイルとがそれら 2つのコイルを含む閉ループを形成す るように接続される接続状態と、前記各々が有するコイルが他の減衰力発生装置が 有する 3つのコイルのいずれとも接続されない非接続状態とを、自身の作動によって 選択的に実現するコイル接続装置を備えたことを特徴とする車両用サスペンションシ ステム。
[0029] 本項に記載の態様によれば、 1つの電磁式ァブソーバが単独で減衰力を発生させ ることができる状態と、その 1つの電磁式ァブソーバが有するコイルが他のいずれか の電磁式ァブソーバのコイルと接続されることで、連成運動を伴う振動に対して適切 な制振作用を発揮する状態とを選択的に実現することが可能となる。
[0030] (12)前記コイル接続装置が、前記閉ループを構成する 2つのコイルに対応する 2 つの前記電磁式ァブソーバのうちの一方が設けられているパネ上部およびパネ下部 と、他方が設けられて!/ヽるパネ上部およびパネ下部とが同方向に相対動作する場合 おいて、それら 2つの電磁式ァブソーバの各々が有する前記減衰力発生装置に生じ る起電力に依拠した電流がその閉ループにぉ 、て逆方向に流れるように、前記 2つ のコイルを接続するものである (11)項に記載の車両用サスペンションシステム。
[0031] 本項の態様は、接続状態とされる 2つの電磁式ァブソーバの各々のコイルどうしの 接続の向きに関する限定を加えた態様である。本項の態様によれば、例えば、車体 力 ール運動,ピッチ運動等をしたときに、バウンス運動したときに比較して大きい減 衰カを発生させることが可能となる。
[0032] (13)当該車両用サスペンションシステム力 自身を制御する制御装置を備え、 その制御装置が、車両に抑制すべき何らかの振動が生じている場合に少なくとも前 記 4つの減衰力発生装置の 、ずれか 1つが有するコイルと他の減衰力発生装置の!/、 ずれ力 1つが有するコイルとが接続状態となるように前記コイル接続装置の作動を制 御するコイル接続装置制御部を有する (11)項または (12)項に記載の車両用サスペン シヨンシステム。
[0033] 本項に記載の態様は、振動抑制の必要性に応じて、自動的に、上記非接続状態と 接続状態とを切り換える態様である。
[0034] (14)前記制御装置が、車両に生じている振動のモードを判定する振動モード判定 部を備え、前記コイル接続装置制御部が、その振動モード判定部による判定結果に 基づいて、前記 4つの減衰力発生装置うちの 1つが有するコイルと接続状態とされる 他の減衰力制御装置が有するコイルを変更するものとされた (13)項に記載の車両用 サスペンションシステム。
[0035] 本項の態様によれば、振動のモードに応じて電磁式ァブソーバが有するコイルの 接続を組み替えることができるので、振動のモードに適合する減衰特性を得ることが できる。詳しく言えば、顕著となっているモードの振動を効果的に減衰させることが可 能となる。
[0036] (15)前記振動モード判定部が、振動のモードとして、抑制すべきロール振動が発 生して 、るロール振動モードと、抑制すべきピッチ振動が発生して 、るピッチ振動モ ードとの少なくとも一方を判定するものとされた (14)項に記載の車両用サスペンション システム。
[0037] 本項の態様によれば、基本的な連成振動であるロール振動とピッチ振動との少なく ともいずれかに適切に対処することが可能となる。
[0038] (16)前記振動モード判定部が、振動のモードとして、少なくとも、抑制すべきロー ル振動が発生しているロール振動モードを判定するものとされ、
前記コイル接続装置制御部力 S、振動のモードがロール振動モードである場合に、 前輪側と後輪側との少なくとも一方において、左右の車輪に対応して設けられた 2つ の電磁式ァブソーバの各々の減衰力発生装置が有するコイルどうし力 それら 2つの コイルを含む閉ループを形成するように接続される接続状態を実現するものとされた ( 15)項に記載の車両用サスペンションシステム。
[0039] (17)前記振動モード判定部が、振動のモードとして、少なくとも、抑制すべきピッチ 振動が発生しているピッチ振動モードを判定するものとされ、
前記コイル接続装置制御部が、振動のモードがピッチ振動モードである場合に、左 輪側と右輪側との少なくとも一方において、前後の車輪に対応して設けられた 2つの 電磁式ァブソーバの各々の減衰力発生装置が有するコイルどうし力 それら 2つのコ ィルを含む閉ループを形成するように接続される接続状態を実現するものとされた (1 5)項または (16)項に記載の車両用サスペンションシステム。
[0040] 上記 2つの項に記載の態様は、それぞれ、ロール振動,ピッチ振動に対処するため の電磁式ァブソーバの接続の方法に関して具体的に限定した態様であり、それらの 態様によれば、ロール振動,ピッチ振動に適切に対処することが可能である。
[0041] (18)当該車両用サスペンション装置が、車両若しくは車両の一部分の運動の状態 を指標する運動状態指標量を検出する運動状態指標量検出器を備え、
前記振動モード判定部が、その運動状態指標量検出器によって検出された運動状 態指標量に基づ 、て、振動のモードを判定するものとされた (14)項な 、し (17)項の 、 ずれ力 に記載の車両用サスペンションシステム。
[0042] 本項の態様は、振動のモードの判定手法に関する限定を加えた態様である。本項 にいう「運動状態指標量」は、車両あるいは車体,車輪等の挙動に関する種々のパラ メータを広く含むものでり、本項の態様では、それら種々のパラメータのうちのいずれ 力 1以上のものを採用して、振動のモードを、詳しく言えば、どのような振動であるか を判定する態様である。運動状態指標量は、特に限定されるものではなぐ例えば、 車両走行速度,操舵角ョーレート,車両の前後加速度,横加速度,ロールモーメント ,ピッチモーメント等や、各車輪位置におけるパネ上部,パネ下部の上下方向の加速 度,速度,変位量、各車輪位置におけるパネ上部とパネ下部との上下方向の相対加 速度,相対速度,距離,ストローク量等、種々のもののうちの 1以上のものを採用可能 である。
[0043] (19)前記運動状態指標量検出器が、前記運動状態指標量として、各車輪につい てのパネ上部とパネ下部とのストローク量を検出するストローク量検出器を含んで構 成され、
前記振動モード判定部が、そのストローク量検出器によって検出された各車輪につ いてのストローク量に基づいて、振動のモードを判定するものとされた (18)項に記載 の車両用サスペンションシステム。
[0044] (20)前記運動状態指標検出器が、前記運動状態指標量として、各車輪について のパネ上上下加速度とパネ下上下加速度との少なくとも一方を検出する加速度検出 器を含んで構成され、
前記振動モード判定部が、その加速度検出器によって検出された各車輪について のパネ上上下加速度とパネ下上下加速度との少なくとも一方に基づいて、振動のモ ードを判定するものとされた (18)項または (19)項に記載の車両用サスペンションシステ ム。
[0045] 上記 2つの項に記載の態様は、上述の運動状態指標量を具体的に限定した態様 であり、それらの態様によれば、振動のモードを容易に判定することが可能である。
[0046] (31)前後左右の車輪に対応して設けられ、それぞれが、(A)パネ上部に連結される パネ上部側部材と、(B)パネ下部に連結されてパネ上部とパネ下部との相対動作に 伴って前記パネ下部側部材と相対移動するパネ下部側部材と、(C)それらパネ上側 部材とパネ下側部材との相対移動に伴って相対動作するコイルおよび磁石を有し、 それらコイルと磁石との相対動作によって生じる起電力に依拠して前記パネ上部側 部材と前記パネ下部側部材との相対移動に対する減衰力を発生させる減衰力発生 装置とを有する 4つの電磁式ァブソーバを備えた車両用サスペンションシステムであ つて、
前記 4つの電磁式ァブソーバが有する減衰力発生装置の各々が、電力の供給を受 けた状態で前記パネ上部側部材と前記パネ下部側部材との相対移動に対する減衰 力と推進力との少なくとも一方を発生させる電力受給作動が可能な構造とされ、 当該車両用サスペンションシステム力 (a)電源と、(b)前記 4つの減衰力発生装置に 対応して設けられ、それぞれが、対応する減衰力発生装置に前記電源からの電力を 供給して減衰力発生装置に電力受給作動を行わせる 4つの駆動回路と、(c)前記 4つ の減衰力発生装置に対応して設けられ、それぞれが、自身の作動によってそれら 4 つの減衰力発生装置の各々とその各々に対応する前記駆動回路とを接続するため の 4つの接続切換器と、(d)当該車両用サスペンションシステムを制御する制御装置と を備え、
その制御装置が、前記 4つの接続切換器の作動を制御する切換器制御部と、前記 4つの駆動回路の少なくとも 1つを制御することでその少なくとも 1つに対応する少な くとも 1つの減衰力発生装置による電力受給作動を制御する電力受給作動制御部と 、前記切換器制御部と前記電力受給作動制御部とに指令を与えることで前記 4つの 電磁式ァブソーバの各々が有する減衰力発生装置の電力受給作動の実行 '非実行 を切り換える制御切換部とを有することを特徴とする車両用サスペンションシステム。
[0047] 本項の態様は、 4つの電磁式ァブソーバの各々の制御を、専ら減衰力発生装置に 生じる起電力を利用して減衰力を発生させる制御 (いわゆるパッシブ制御)と、電源 から減衰力発生装置に電力を供給して減衰力若しくは推進力を発生させる上記電 力受給作動を可能とする制御(いわゆるアクティブ制御)との間で切換可能とされた サスペンションシステムに関する態様である。アクティブ制御にぉ 、て行われる上記 電力受給作動によれば、パッシブ制御における減衰力よりも大きな減衰力を発生さ せることができること力 、本態様によれば、ノッシブ制御とアクティブ制御とを切り換 えることで、車体の振動の状態等、車両の状態に合わせた適切な減衰制御が可能と なる。なお、電力受給作動では上記推進力をも発生させ得ることから、アクティブ制 御によれば、スカイフックダンバ理論に基づく減衰力制御も可能となる。さらに、あまり 大きな減衰力を必要としない状況下においてパッシブ制御を実行するように構成す れば、本サスペンションシステムの電力消費を抑制することが可能となる。
[0048] ちなみに、上記電力受給作動制御部による制御は、減衰力発生装置が常に電力 受給作動の状態となる制御に限定されない。つまり、一時的にであれ、電力受給作 動を行うように構成されていればよぐ減衰力発生装置が駆動回路に接続されている ものの、例えば、比較的小さい減衰力しか要求されない時点において、電力受給作 動制御部によって、減衰力発生装置が電源から電力が供給されずに減衰力を発生 させるような状態とされてちょ 、のである。
[0049] (32)当該車両用サスペンションシステム力 車両若しくは車両の一部分の運動の 状態を指標する運動状態指標量を検出する運動状態指標量検出器を備え、 前記制御装置が、その運動状態指標量検出器の検出結果に基づいて車両に発生 している振動の状態を判定する振動状態判定部を有するとともに、前記制御切換部 力 前記振動状態判定部によって車両に発生している振動がそれへの対処に高い 応答性が要求される状態である場合に、前記 4つの電磁式ァブソーバの各々が有す る減衰力発生装置の 1以上のものに電力受給作動を実行させるようにされた (31)項に 記載の車両用サスペンションシステム。
[0050] 本項の態様によれば、電力受給作動において比較的大きな減衰力を得られること を利用し、例えば、ノッシブ制御では減衰力が不足することによって振動への応答が 不十分な状況下において、アクティブ制御に切り換えて振動への応答性を高めること ができる。その一方で、あまり大きな減衰力を必要としない状況下では、パッシブ制 御にしておくことで、電力消費を低減することができる。
[0051] (33)前記制御切換部が、前記電源の電圧が設定閾電圧以下となった場合に、前 記 4つの減衰力発生装置の 、ずれの電力受給作動をも禁止するようにされた (31)項 または (32)項に記載の車両用サスペンションシステム。
[0052] 本項の態様によれば、例えば、ノ ッテリ等の電源に充電されて 、る電気工ネルギの 減少等によってその電源の電圧がある程度低下したときに、アクティブ制御を続ける ことでさらなる電圧低下による影響、例えば、他システムに与える影響を効果的に抑 制あるいは防止することができる。
[0053] (34)当該車両用サスペンションシステム力 前記 4つの減衰力発生装置による電 力受給作動の実行 '非実行を選択するために運転者によって操作される制御選択ス イッチを備え、
前記制御切換部が、その制御選択スィッチの指令に基づ 、て前記 4つの減衰力発 生装置による電力受給作動の実行 '非実行を切り換えるようにされた (31)項ないし (33 )項のいずれかに記載の車両用サスペンションシステム。
[0054] 本項の態様は、運転者の嗜好、つまり、運転者の意思を反映させた制御の切換が 実行可能となる。
[0055] (35)前記制御装置力 当該車両用サスペンションシステムにおける異常の発生を 監視する異常監視部を有し、
前記制御切換部が、前記 4つの減衰力発生装置による電力受給作動の実行が不 能となる異常が発生した場合に、強制的にその電力受給作動を禁止するようにされ た (31)項な!/、し (34)項の!/、ずれかに記載の車両用サスペンションシステム。
[0056] 本項の態様によれば、パッシブ制御をアクティブ制御のバックアップとして利用可能 となり、フェールセィフの観点において優れたシステムが実現する。なお、本項の態 様は、ノ^シブ制御が実行不能となるような異常が発生した場合に、アクティブ制御 力 Sバックアップするように構成することも可能である。
[0057] (36)当該車両用サスペンションシステム力 前記 4つの減衰力発生装置の各々が 有するコイルのうちの 1つと他のいずれか 1つとがそれら 2つのコイルを含む閉ループ を形成するように接続可能なコイル接続装置を備え、前記 4つ接続切換器が、前記コ ィル接続装置の一部分を構成するものとされた (31)項な!/ヽし (35)項の ヽずれかに記 載の車両用サスペンションシステム。
[0058] 本項の態様のサスペンションシステムは、簡単に言えば、アクティブ制御を実行可 能としたサスペンションシステムにお ヽて、先に説明したコイル接続装置を設けた態 様である。本項の態様によれば、そのコイル接続装置に関して先に説明した種々のメ リットを享受することが可能である。
図面の簡単な説明
[0059] [図 1]請求可能発明の第 1実施形態に係る車両用サスペンションシステムを備えた車 両の模式図である。
[図 2]第 1実施形態の車両用サスペンションシステムが有する電磁式ァブソーバの構 造をより詳細に示す図である。
[図 3]第 1実施形態の車両用サスペンションシステムの原理を説明するための図であ る。
[図 4]自身が有するコイルどうしを接続させた場合における各電磁式ァブソーバが発 揮する特性を示す表である。
[図 5]第 1実施形態の車両用サスペンションシステムにおける各電磁式ァブソーバが 有するコイルの接続方法を示す図である。
[図 6]請求可能発明の第 2実施形態に係る車両用サスペンションシステムを備えた車 両の模式図である。
[図 7]第 2実施形態の車両用サスペンションシステムにおける電磁式ァブソーバが有 するコイルの接続に関する構成を示す図である。
[図 8]第 2実施形態の車両用サスペンションシステムが備える電子制御装置を中心と した機能ブロック図である。 [図 9]第 2実施形態の車両用サスペンションシステムにおいて、左前輪に設けられた 電磁式ァブソーバのコイルと、左後輪の電磁式ァブソーバのコイルとを接続した状態 の回路を示す図である。
[図 10]図 9に示す回路と等価な回路を示す図である。
[図 11]第 2実施形態の車両用サスペンションシステムにおいて、各振動モードにおけ る振動の成分量と、各振動モードに対処するために接続される電磁式ァブソーバの コイルの接続方法を示した表である。
[図 12]請求可能発明の第 3実施形態に係る車両用サスペンションシステムを備えた 車両の模式図である。
[図 13]第 3実施形態の車両用サスペンションシステムにおける電子制御装置を中心と した機能ブロック図である。
発明を実施するための最良の形態
[0060] 以下、請求可能発明のいくつかの実施形態を、図を参照しつつ詳しく説明する。な お、請求可能発明は、下記実施形態の他、前記〔発明の態様〕の項に記載された態 様を始めとして、当業者の知識に基づいて種々の変更を施した種々の形態において で実施することができる。
[0061] <第 1実施形態 >
図 1は、第 1実施形態に係る車両用サスペンションシステムを備えた車両 10の模式 図である。車両 10において、車体 12と各車輪 14FR、 14FL、 14RR、 14RLの間に は、サスペンションスプリングであるコイルスプリング 54FR、 54FL、 54RR、 54RLと が配設され、さらに、発電機として機能するモータ 16FR、 16FL、 16RR、 16RLと、 伸縮部材として機能するシリンダ装置 18FR、 18FL、 18RR、 18RLとが直列に配置 されてなる電磁式ァブソーバ 30FR、 30FL、 30RR、 30RLが配設されている。なお 、以下の説明において、上記車輪,コイルスプリング,モータ,シリンダ装置,電磁式 ァブソーバを、適宜、「車輪 14」, 「コイルスプリング 54」, 「モータ 16」, 「シリンダ装置 18」, 「電磁式ァブソーバ 30」と総称する場合があることとする。ちなみに、符号 FR、 FL、 RR、 RLは、それぞれ車両 10の右前、左前、右後、左後の位置を表している。
[0062] 本車両用サスペンションシステムは、上記 4つのコイルスプリング 54, 4つの電磁式 ァブソーバ 30を含んで構成されている力 図 1では、当該システムを模式的に表すも のであるため、電磁式ァブソーバ 30を平面的に配置して描いている。実際の車両に おいては、電磁式ァブソーバ 30は、サスペンションシステムにおけるショックァブソー バの機能を発揮するために、適切な姿勢で配設され、例えば、アクスルキャリア、タイ ロッド、アッパーアーム、ロアアーム等の他の構成部品と既知の方法で組み合わされ ている。
[0063] コイルスプリング 54は、路面からの振動が車輪 14から車体 12に直接的に伝達され ることを防止する。電磁式ァブソーバ 30は、モータ 16の発生させる力に依拠して、車 両のパネ上部とパネ下部との相対運動に対する減衰力を発生させる。なお、本明細 書において、コイルスプリング 54により支えられる車両の部分を「パネ上部」と呼び、 コイルスプリング 54により支えられていない車両の部分を「パネ下部」と呼ぶ。簡単に 言えば、パネ上部は、車両における車体 12側の部分であり、パネ下部は、車輪 14側 の部分である。
[0064] 省スペースの観点からすれば、コイルスプリング 54と電磁式ァブソーバ 30とが一体 的に構成されることが好ましいが、それらは、別体として設けられていてもよい。電磁 式ァブソーバ 30の詳細な構造については、図 2を参照して後述する。
[0065] 車体 12には、車体の上下加速度、前後加速度、横加速度をそれぞれ検出する 3個 の加速度センサが設置されており、これらは Gセンサ 102として集合的に表されてい る。この Gセンサ 102により検出された車体の各方向の加速度は、電子制御ユニット 1 00 (以下「ECU100」と表記する)に送られる。 ECU100は、本車両用サスペンション システムを制御する制御装置として機能するものであり、 Gセンサ 102を始めとする車 両 10の各部に備えられた種々のセンサからの情報を基に、車両 10の挙動を制御す る。
[0066] 図 2は、モータ 16とシリンダ装置 18と力も構成される電磁式ァブソーバ 30の構造を より詳細に示す図である。
[0067] モータ 16は、例えば、回転型の DCモータであり、主に、鉄心にコイルを卷回したス テータと、円筒表面に磁石が貼設されてステータと向い合う状態で回転可能に支持 されたロータとを含んで構成されている。モータ 16のロータと結合されている出力軸 3 6は、ねじ溝が形成されたネジロッド 44と一体的に構成されている。出力軸 36とネジ ロッド 44とは、カップリングを介して同軸に結合されていてもよい。出力軸 36は、シリ ンダ装置 18の構成要素であってパネ上側部材として機能するインナチューブ 42の 内部において、そのインナチューブ 42にベアリング 40によって回転可能に支持され ている。
[0068] インナチューブ 42は、シリンダ装置 18の構成要素であってパネ下側部材ばね下側 部材として機能するァウタチューブ 50に嵌め入れられており、それらインナチューブ 42,ァウタチューブ 50は同軸的に配置されており、ネジロッド 44は、それらと同軸的 に配置されている。ァウタチューブ 50の内部には、それの底部に立設されたナット支 持筒 78を有しており、そのナット支持筒 78によって、複数のベアリングボール 48を保 持してネジロッド 44と螺合するナット 46が固定支持されて 、る。それらネジロッド 44, ナット 46,複数のベアリングボール 48を含んでボールネジ機構が構成されている。こ のボールネジ機構によって、ネジロッド 44の回転運動と、ネジロッド 44とナット 46との 軸線方向における相対直線運動とが、相互に高効率で変換される。
[0069] ァウタチューブ 50の内面とインナチューブ 42の外面との間には、ブシュ型べアリン グ 56および 58が介装されており、ァウタチューブ 50とインナチューブ 42は、互いに 摺動しつつ上下方向に相対移動可能とされて!/ヽる。
[0070] なお、ァウタチューブ 50の上端部には、ダストシール 76が設けられており、そのダ ストシール 76は、ァウタチューブ 50とインナチューブ 42との間をシールして、ァウタ 一シェル 50内にゴミなどの異物が侵入することを防止している。
[0071] ァウタチューブ 50の下部には、パネ下側取付部 60が設けられている。このパネ下 側取付部 60は、車輪 14から延びる図示しないロアアームに電磁式ァブソーバ 30を 連結するための機能部である。
[0072] その一方で、インナチューブ 42の上部には、パネ上側取付部 28が設けられている 。このパネ上側取付部 28は、パネ上部に電磁式ァブソーバ 30を連結する機能部で ある。なお、パネ上側取付部 28とインナチューブ 42の接続部分には、緩衝機能を持 つ環状のストッパ 82が設けられており、ストッパ 82は、ァウタチューブ 50の上端部と パネ上取付部 28とが直接接触することを防止して 、る。ァウタチューブ 50のインナチ ユーブ 42に対する可動範囲は、ストッパ 82にダストシール 76が当接するよって規定 される。
[0073] ァウタチューブ 50の外周部には、鍔状に形成されたスプリングシート 52が設けられ ている。スプリングシート 52と車体 12のパネ上側取付部 28の周辺に位置する部分と の間には、コイルスプリング 54が、圧縮された状態でそれらによって両端を支持され るようにして配設されている。したがって、コイルスプリング 54には、予め所定の加重 が与えられた状態となって 、る。
[0074] コイルスプリング 54は、車両 10のパネ上重量を支持し、自身が弾性変形することで 路面からの振動や衝撃を車体 12に伝達させないような機能を果たすものとされてい る。コイルスプリング 54の弾性力によって生じる車体 12の上下振動は、電磁式アブソ ーバ 30が発生させる減衰力によって減衰される。
[0075] なお、本実施形態では、ネジロッド 44が車両 10のパネ上部に、ナット 46が車両の パネ下部に、それぞれ、設けられている力 逆に、ネジロッド 44がパネ下部に、ナット 46がパネ上部に設けられてもよい。また、本実施形態では電磁式ァブソーバ 30は、 モータ 16が車体 12の内部に、シリンダ装置 18が車体下部に突き出すようにして設 置されている力 モータ 16が車体 12から下部に突出するように設置されるような構成 であってもよい。
[0076] 次に、電磁式ァブソーバ 30の機能について説明する。路面の凹凸などの外部入力 によって車輪 14と車体 12とが相対的に上下動すると、ァウタチューブ 50とインナチュ ーブ 42とが上下方向において相対移動し、それによつてコイルスプリング 54が伸縮 する。ァウタチューブ 50とインナチューブ 42との相対移動に伴って、ネジロッド 44と ナット 46とが軸線方向に相対移動し、それによつて、ネジロッド 44が回転し、モータ 6 0の出力軸 36が回転する。この出力軸 36の回転により、ロータとステータとが、すな わち磁石とコイルとが相対動作し、コイルに起電力が生じる。つまり、モータ 16は発電 機として機能することなる。
[0077] コイルに生じる起電力は、ロータの動作速度つまり回転速度に比例し、その回転速 度は、インナチューブ 42とァウタチューブ 50との相対移動速度に比例する。したがつ て、インナチューブ 42とァウタチューブ 50との相対移動速度、つまり、パネ上部とば ね下部との上下方向における相対動作速度に比例した起電力が生じ、電磁式アブソ ーバ 30は、その相対動作速度に応じた大きさのその相対動作に対する抵抗力、す なわち、減衰力を発生させるのである。なお、減衰力の大きさは、コイルに流れる電 流に依存し、その電流が大きい程、減衰力は大きくなる。このような機能に鑑みれば 、電磁式ァブソーバ 30は、モータ 16を主体として構成される減衰力発生装置を有す るものと考えることができるのである。
[0078] なお、モータ 16に外部力も電力を供給してそのモータ 16を作動させてもよい。電力 の供給を受けて出力軸 36に回転力を付与すれば、ナット 46に回転力が付与され、 ネジロッド 44とナット 46との間にそれらを相対移動させようとする力が付与されること になる。これにより、ァウタチューブ 50とインナチューブ 42とを相対移動させようとす る力、つまり、パネ上部とパネ下部とを相対移動させようとする力が発生させられるこ とになる。したがって、電磁式ァブソーバ 30は、モータ 16に電力が供給されることに よっても、パネ上部とばね下部との相対動作に対する減衰力あるいは推進力を発生 させることが可能とされているのである。ちなみに、この電磁式ァブソーバ 30の作動、 つまり、モータ 16に電力を供給した状態での作動である電力受給作動では、モータ 16に供給される電流量、厳密に言えば、モータ 16のコイルを流れる電流量を調整す ることによって、減衰力あるいは推進力を調整することが可能である。電力供給作動 を利用し、例えば、車体 12つまりパネ上部の上下方向の加速度に応じてその電流を 制御することで、スカイフック理論に基づく減衰力制御も可能である。
[0079] 電磁式ァブソーバ 30は、モータ 16を発電機として使用する場合、電磁式ァブソー ノ 30に電気エネルギーを与える必要はなぐ消費電力を低く抑えることができるとい う利点を有する。また、振動エネルギーを回生してバッテリを充電することも可能であ る。さらに、コイルを流れる電流を計測することによって、電磁式ァブソーバ 30によつ て発生させられている力を計測することが可能である。このように、電磁式ァブソーバ 30は、従来のオイルダンバ(油圧式ァブソーバ)では持ち得な 、種々の特徴を有し ているのである。
[0080] 次に、図 3を参照しつつ、本実施形態の原理を説明する。本実施形態では、各車 輪 14に配置される電磁式ァブソーバ 30のモータ 16のコイルどうし力 閉ループを構 成するように接続されており、その状態で減衰力を発生させる。
[0081] 図 3 (a)、 (b)は、接続された 2つのコイルに対し、車輪から上下方向の入力があつ たときの動作を示す。図 3 (a)は、例えば、バウンス運動等のように、シリンダ装置 18 のストローク方向(伸縮動作の方向)が同相となる入力、つまり、同じ方向の入力があ つた場合であり、図 3 (b)は、例えば、ピッチ運動やロール運動等のように、シリンダ装 置 18のストローク方向が逆相となる入力、つまり、逆方向の入力があった場合である 。図において、白抜きの矢印が入力方向、つまり、動作方向を示している。また、「e」
1
「e」は、コイルの起電力を示しており、「t」はコイルの内部抵抗、「T」は両コイルのに
2
対して並列的に配置された抵抗である。さらに、「i」「i」「i」は回路の各部分を流れ
1 2 3
る電流を示している。
[0082] 図 3 (a)のように、シリンダ装置 18のストローク方向が同相つまり同じ方向となる場合 には、起電力 e、 eの方向は図の通りになる。説明を簡単にするために、 T> >tとす
1 2
れば、 i = 0とみなせるため、次式が成り立つ。
3
i =i = (e e ) /2t
1 2 1 2
[0083] 図力も解るように、シリンダ装置 18のストローク方向が同相である場合には、 2つの コイルを含んで形成される閉ループにおいて、 2つのコイルの起電力 e、 eの方向が
1 2 互いに逆方向となり、 i , iは比較的小さい電流となる。したがって、 2つの電磁式アブ
1 2
ソーバによって発生させられる力は、比較的小さいものとなる。ちなみに、伸縮動作 の速度の大きい側の電磁式ァブソーバ 30には、運動を抑制するような減衰力が発生 し、逆に、伸縮動作の速度が小さい側の電磁式ァブソーバ 30には、運動を加速させ るような力が発生する。その結果、 2つの電磁式ァブソーバ 30は、それらが設けられ ている車輪位置の車輪と車体との相対動作速度を平均化させようとする力を発揮す ることになる。具体的に言えば、 2つのコイルの一方力 車両左側の車輪に設けられ た電磁式ァブソーバ 30のものであり、かつ、他方が、車両右側の車両に対して設け られた電磁式ァブソーバ 30のものである場合には、車体に対して、それのロール運 動を抑制するような力力 ある程度の大きさで与えられることになるのである。
[0084] それに対し、図 3 (b)に示すように、シリンダ装置 18のストローク方向が逆相つまり逆 方向となる場合には、起電力 e、 eの方向は図の通りになる。この場合には、先に説 明した同相の場合と同様にして、次式が成り立つ。
i =i = (e + e ) /2t
1 2 1 2
[0085] 図力も解るように、シリンダ装置のストローク方向が逆相である場合には、 2つのコィ ルを含んで形成される閉ループにおいて、 2つのコイルの起電力 e l、 e2の方向が同 じ方向となり、 il , i2は比較的大きな電流となる。したがって、 2つの電磁式ァブソー ノ 30によって発生させられる減衰力は、比較的大きなものとなる。詳しく言えば、 2つ の電磁式ァブソーバ 30の各々は、その各々が設けられている車輪位置における車 輪と車体との相対動作に対して、比較的大きな減衰力を発生させることになるのであ る。具体的に言えば、 2つのコイルの一方力 車両左側の車輪に設けられた電磁式 ァブソーバ 30のものであり、かつ、他方が、車両右側の車両に対して設けられた電磁 式ァブソーバ 30のものである場合には、車体に対して、ロール運動を抑制するため の力として、比較的大きな力力 S与えられることになるのである。
[0086] 車両用サスペンションシステムには、一般的に、操縦安定性と乗り心地性の向上と いう相反する特性の両立が求められる。例えば、車両がバウンス運動するときは、路 面の振動がパネ上部に伝わらないように、減衰力を小さくして乗り心地性を向上させ ることが求められ、これに対し、車両のロール運動時やピッチ運動時は、車両の姿勢 変化を極力抑えるために減衰力を大きくすることが求められる。このような背反する要 求の下、サスペンションシステムを、電磁式ァブソーバが各輪独立で機能するように 構成した場合は、どちらかの特性が十分なものとはらない。各輪に設けられた電磁式 ァブソーバのコイルどうしを接続させることは、上述の背反する要求を満足させるため の手段となり得るのであり、例えば、 2つの電磁式ァブソーバの各々が有するコイルど うしを、それらを含んだ閉ループが形成されるように結合することによって、ロールま たはピッチ方向には硬ぐバウンス方向には柔らか!/、と!/、う特性を発揮するサスペン シヨンシステムを実現することができるのである。
[0087] それぞれが有するコイルどうしを接続した場合における電磁式ァブソーバ 30の特 性をまとめたものが、図 4である。本実施形態では、 2つの電磁式ァブソーバ 30への 入力が同相であるか逆相であるかによる各電磁式ァブソーバ 30の特性の変化を利 用することによって、上述した車両用サスペンションシステムへの相反する要求に対 処している。
[0088] なお、上述したように、モータ 16を発電機として作用させると、抵抗力が発生し、コ ィルには電流が流れる。モータ 16が発生する力は、電流量に比例し、起電力はモー タ回転速度に比例する。よって、その抵抗力は、モータ回転速度、つまり、パネ上部 とばね下部との相対動作速度に比例し、その抵抗力は、すなわち、減衰力となる。し たがって、減衰力は、ステータのコイルに流れる電流の大きさに比例するので、減衰 力を可変とするためには、コイルに流れる電流の大きさを調整すればよい。上述した ように、コイルどうしを接続する回路内に抵抗器 Tを設け、その抵抗器 Tの抵抗値を変 ィ匕させることによって、減衰力を任意にチューニングすることができる。
[0089] 図 5は、第 1実施形態のサスペンションシステムにおけるコイルの接続方法を示す。
図中の FR、 FL、 RR、 RLは、それぞれ車輪 14FR、 14FL、 14RR、 14RLに位置す るコイルを表しており、「M」はモータ 16を、「t」は各コイルの内部抵抗を表す。本サス ペンションシステムでは、車両の対角位置(対角車輪位置)にあるコイル FRと RLとが 、それらを含む閉ループを形成するように接続され、また、もう一方の対角位置にある コイル FLと RRと力 それらを含む閉ループを形成するように接続されて!、る。
[0090] 詳しく言えば、コイル FRの一端とコイル RLの一端とを接続する第 1接続路 90と、コ ィル FRの他端とコイル RLの他端とを接続する第 2接続路 92によって、 1つの閉ルー プが形成され、また、コイル FLの一端とコイル RRの一端とを接続するもう 1つの第 1 接続路 94と、コイル FLの他端とコイル RRの他端とを接続するもう 1つの第 2接続路 9 6とによって、もう 1つの閉ループが形成されている。そして、それら 2つの第 1接続路 90, 94が互いに接続され、また、 2つの第 2接続路 92, 96が互いに接続されている 。そしてさらに、第 1接続路 90, 94と第 2接続路 92, 96とを繋ぐようにして、 2つの閉 ループに対して共通の抵抗器 Tが配設されている。つまり、本サスペンションシステム は、 2つの第 1接続路 90, 94、 2つの第 2接続路 92, 96、抵抗器 Tを有して、上記回 路構成をもつコイル接続装置 88を備えたシステムとされているのである。
[0091] 上述のようなコイル接続装置 88によって、例えば、車両がバウンス運動をしたとき、 4つの電磁式ァブソーバ 30の各々に同相入力が発生するので、前述したように各電 磁式ァブソーバ 30が発生させる減衰力は比較的小さくなる。これに対し、ピッチ運動 とロール運動とが複合したような運動(「ピッチ運動とロール運動との連成運動」と 、う こともできる)が生じた場合に、対角位置にある 2つの電磁式ァブソーバ 30に逆相の 入力が発生するので、その場合の各電磁式ァブソーバ 30が発生させる減衰力は比 較的大きくなる。つまり、本サスペンションシステムでは、対角位置にあるコイルどうし 力 それらを含む閉ループを形成するように接続されているので、ロール運動とピッ チ運動とが複合したような運動に対しても、適切な減衰力を発生させることができるの である。
[0092] ちなみに、本サスペンションシステムでは、前輪側の 2つの電磁式ァブソーバ 30FL , FRのコイル FL, FRを含む閉ループ、および、後輪側の 2つの電磁式ァブソーバ 3 ORL, RRのコイル RL, RRを含む閉ループも形成されており、さら〖こは、左輪側の 2 つの電磁式ァブソーバ 30FL, RLのコイル FL, RLを含む閉ループ、および、右輪 側の 2つの電磁式ァブソーバ 30FR, RRのコイル FR, RRを含む閉ループも开成さ れていることになる。したがって、上述した複合運動だけでなぐ単なるロール運動, ピッチ運動に対しても各電磁式ァブソーバ 30が比較的大きな減衰力を発生さること ができ、ロール運動,ピッチ運動にも効果的な対処が可能とされている。
[0093] なお、本サスペンションシステムの変形例として、コイル FRと RLとを含む閉ループ と、コイル FLと RRとを含む閉ループとを連結せずに、互いに独立した 2つの閉ルー プを形成するようなコイル接続装置を備えたシステムとすることもできる。また、それら 2つの閉ループを形成せずに、それらのうちの一方のみが形成されるようなコイル接 続装置を備えるようなシステムとすることもできる。このようにした場合においても、口 ール運動,ピッチ運動に対して、比較的高い減衰力を発生させることが可能である。 また、抵抗器 Tが設けられて 、な 、コイル接続装置を備えたシステムを構築すること も可能である。抵抗器 Tがなくとも、一定の効果が得られることになる。
[0094] さらに、本サスペンションシステムにおいては、抵抗器 Tは、可変抵抗器とすること ができる。可変抵抗器とすれば、例えば、車両に発生している振動の状態あるいは 発生するであろう振動の状態等に基づいて、臨機応変に、各電磁式ァブソーバ 30が 発生させる減衰力の大きさ、システム全体の減衰力特性等を変化させることができる 。可変抵抗器とされた場合におけるその可変抵抗器の制御は、例えば、先に説明し た ECUlOOによって実行することが可能である。その場合の ECUlOOの制御は、例 えば、先に説明した Gセンサ 102によって検出した車体の上下加速度,前後加速度 ,横加速度等に基づい実行されるような制御とすることができる。
[0095] 以上説明したように、本第 1実施形態の車両用サスペンションシステムによれば、車 両の対角位置に設けられた電磁式ァブソーバ 30の各々コイルを、それら 2つのコィ ルが閉ループを形成するように接続したので、車両のバウンス振動に対する制振効 果と、ロール振動,ピッチ振動に対する制振効果とを相違させることが可能となる。
[0096] <第 2実施形態 >
本実施形態の車両用サスペンションシステムは、 1つの電磁式ァブソーバが単独で 減衰力を発生させることができる状態と、その 1つの電磁式ァブソーバが有するコィ ルが他の!/、ずれかの電磁式ァブソーバが有するコイルと接続されることで、それら 2 つの電磁式ァブソーバが連成運動に対して適切な制振作用を発揮する状態とを選 択的に実現することが可能なシステムである。
[0097] 図 6は、第 2実施形態の車両用サスペンションシステムを備えた車両 10の模式図で ある。車輪 14,モータ 16およびシリンダ装置 18を有する電磁式ァブソーバ 30, Gセ ンサ 102等については、第 1実施形態の車両用サスペンションシステムのものと同様 の構成であるので、それらには同一の符号を付し、それらの説明を省略する。
[0098] 本実施形態のサスペンションシステムでは、各車輪位置における電磁式ァブソーバ 30には、ァウタチューブ 50とインナチューブ 42との相対移動量(シリンダ装置 18の 長さの変化量に相当)であるストローク量を検出ためのストローク量検出器としてのス トロークセンサ 112FR, 112FL, 112RR, 112RL (以下、これらを適宜「ストロークセ ンサ 112」と総称する場合がある)が設けられて 、る。ストロークセンサ 112の検出信 号は、 ECU100に送られる。なお、ストローク量は、パネ上部とパネ下部との相対動 作量を表すものであり、車両の一部分の運動状態を指標する運動状態指標量の一 種であり、ストロークセンサ 112は、運動状態指標量検出器として機能するものとなつ ている。
[0099] ECUlOOは、各ストロークセンサ 112からの検出信号に基づいて、バウンス振動, ロール振動,ピッチ振動およびロール振動とピッチ振動とが複合した複合振動と!/、つ た振動のモードについて判定する。詳しく言えば、それらの振動が振動周波数にお V、て共振域の振動であることを判定する。
[0100] 図 7は、第 2実施形態のサスペンションシステムにおける電磁式ァブソーバ 30の有 するコイルの接続に関する構成を示す。図中の FR、 FL、 RR、 RLは、それぞれ車輪 14FR、 14FL、 14RR、 14RLに設けられた電磁式アブノーノ 30が有するコイルを 表している。図示するように、コイル FR、 FL、 RR、 RLの各々には、抵抗器 Tが並設 されており、各電磁アブソーバ 30には、自身が有するコイルと抵抗器 Tとを含む閉ル ープが形成されている。本実施形態のサスペンションシステムでは、各電磁式アブソ ーバ 30は、この抵抗 Tをも含む減衰力発生装置を有する構成とされて ヽる。
[0101] 上記閉ループは、詳しく言えば、各コイル FR、 FL、 RR、 RLの両端は、コイル接続 装置として機能するスィッチ回路 152に接続されている。スィッチ回路 152は、各コィ ルを他のいずれのコイルとも接続可能に構成されている。具体的には、例えば、コィ ル FRを、コイル FL、 RL、 RRのいずれカゝと接続可能とされており、互いに接続される 2つのコイルを含む閉ループを形成することが可能とされている。また、上記閉ルー プを 2つ形成することも可能とされている。例えば、コイル FRとコイル RLとを、それら を含む 1の閉ループを形成するように接続するともに、コイル FLとコイル RRとを、それ らを含むもう 1つの閉ループを形成するように接続することが可能とされて 、る。
[0102] 図 8は、本実施形態のサスペンションシステムにおける ECU100を中心とした機能 ブロック図である。なお、 ECU100内の各ブロックは、ハードウェア的にはコンビユー タの CPUやメモリをはじめとする素子や機械装置で実現でき、ソフトウェア的にはコン ピュータプログラム等によって実現され、ここでは、それらの連携によって実現される 機能ブロックとして描いている。したがって、これらの機能ブロックがハードウェア,ソフ トウエアの組合せによっていろいろな形態で実現できることは、当業者には理解され るところである。
[0103] 振動モード判定部 124は、各車輪位置におけるストロークセンサ 112の検出信号か ら、車体 12の顕著な振動のモードを判定する。本サスペンションシステムにおいて、 制振の対象とされる振動は、ピッチ振動,ロール振動,第 1対角振動 (左前輪につい てのパネ上部とパネ下部との相対動作の方向と、右後輪についてのパネ上部とパネ 下部との相対動作の方向とが互いに逆となるような振動),第 2対角振動 (右前輪に ついてのパネ上部とパネ下部との相対動作の方向と、左後輪についてのパネ上部と パネ下部との相対動作の方向とが互いに逆となるような振動)であり、振動モード判 定部 124は、それらの振動が共振周波数およびその近傍周波数の振動であると判 断した場合に、それぞれ、ピッチ振動モード,ロール振動モード,第 1対角振動モー ド,第 2対角振動モードの振動が発生していると判定する。
[0104] 振動モード判定部 124は、まず、例えば、以下のような計算式で、車両に生じる振 動の成分量、つまり、ピッチ量,ロール量,第 1対角差量 (左前輪についてのパネ上 部とパネ下部との相対動作量と、右後輪につ!、てのパネ上部とパネ下部との相対動 作量との差),第 2対角差量 (右前輪についてのパネ上部とパネ下部との相対動作量 と、左後輪についてのパネ上部とパネ下部との相対動作量との差)を算出する。
ピッチ量 =(X +X )/2-(X +X )/2
FL FR RL RR
ロール量 =(χ +X )/2-(X +X )/2
FL RL FR RR
第 1対角差量 =(x -x )
FL RR
第 2対角差量 =(X -X )
FR RL
ここで、 Xはストロークセンサ 112で検出されるストローク量であり、添え字は各車輪位 置を表す。また、第 1対角差量、第 2対角差量は、ピッチ運動とロール運動の複合運 動に対応する運動量と考えることができ、詳しく言えば、第 1対角差量は、車両の左 前 FLと右後 RRを結ぶ線を含む垂直な平面内における揺れの量を示し、第 2対角差 量は、車両の右前 FRと左後 RLを結ぶ線を含む垂直な平面内における揺れの量を 示すものと考えることができる。
[0105] 振動モード判定部 124は、上述のようにして求められたピッチ量,ロール量,第 1対 角差量,第 2対角差量の時間的な変化から、前述したピッチ振動モード,ロール振動 モード,第 1対角振動モード,第 2対角振動モードの振動が発生しているか否かを判 定する。
[0106] なお、本実施形態のサスペンションシステムでは、各車輪位置におけるストローク量 を基に振動のモードを判定するようにされているが、例えば、各車輪位置に、パネ上 部の上下方向の加速度とパネ下部の上下方向の加速度との少なくとも一方を検出す る加速度検出器を設け、その加速度検出器によって検出されたパネ上加速度とパネ 下加速度との少なくとも一方の時間的変化に基づいて、ピッチ振動モード,ロール振 動モード,第 1対角振動モード,第 2対角振動モードの振動が発生しているか否かを 判定するようにしてもよい。パネ上加速度,パネ下加速度も前述の運動状態指標量 の一種であり、そのような判定手法を採用する態様も、運動状態指標量に基づいて 振動のモードを判定する態様の一態様となる。
[0107] スィッチ回路制御部 126は、前述のスィッチ回路 152の作動を制御する機能部で あり、コイル接続装置制御部として機能する。このスィッチ回路制御部 126は、上記 振動モード判定部 124の判定結果に基づいて、先に説明したいずれかの振動モー ドの振動が発生している場合に、スィッチ回路 152をして、その振動に対して比較的 大きな減衰力を発生させるように、特定の電磁式ァブソーバ 30の各々が有するコィ ルどうしを接続せしめる。
[0108] スィッチ回路 152は、通常状態では、各コイルが他のいずれのコイルとも接続され ず、それぞれのコイル力 単独で、それに並設されている抵抗器 Tとを含む閉ループ を形成する状態とされてる。スィッチ回路制御部 126は、例えば、ピッチ振動モードの 振動が発生している場合には、コイル FLと RLを接続し、かつ、コイル FRと RRとを接 続する。図 9は、左側の車輪に設けられた 2つの電磁式ァブソーバ 30FL, RLのコィ ル FL, RLどうしを接続したときの様子を示す。図 9が示す回路は、図 10に示す回路 と等価であるから、図 10の回路に設けられている抵抗器の抵抗値は、それそれの電 磁式ァブソーバ 30が有するコイルと並列に設けられた抵抗器 Tの抵抗値の 1Z2とな る。
[0109] 各コイルの内部抵抗を t、各コイルに並設されて ヽる抵抗器の抵抗値を Tとし、各モ ータに生じる起電力を eとした場合、スィッチ回路 152が通常状態にあるとき、つまり、 コイルどうしが接続されていない場合には、各コイルに流れる電流 iは、次式で示す値 となる。
i = e/ (t+T)
[0110] 一方、 2つの電磁式ァブソーバ 30FL, RLの各々のコイル FL, RLどうしを接続した 場合において、 2つの電磁式ァブソーバ 30FL, RLに同じ大きさの同相入力があつ たときの各コイルに流れる電流 iは、上記式で定まる値、つまり、コイル FL, RLどうし が接続されていない状態での値と同じ値となる。それに対して、 2つの電磁式アブソ ーバ 30FL, RLに同じ大きさの逆相入力があつたときの各コイル FL, RLに流れる電 流 iは、次式で示す値となる。
i = e/t
[0111] したがって、コイルどうしを接続した場合、それらのコイルを流れる電流が増加し、逆 相入力時においてそれらのコイル有する電磁式ァブソーバ 30の各々が発生させる 減衰力は、通常の状態より大きなものとなる。このような減衰力の増加機能を利用して 、各振動モードの振動に対処すベぐ図 11に示すように、振動モードに応じたコイル の接続が実行される。具体的に言えば、ピッチ振動モードの場合には、左側の車輪 に設けられた 2つの電磁式ァブソーバ 30FL, 30RLの各々のコイル FL, RLどうしが 接続され、かつ、右側の車輪に設けられた 2つの電磁式ァブソーバ 30FR, RRの各 々のコイル FR, RRどうしが接続される。ロール振動モードの場合には、前輪に設け られた 2つの電磁式ァブソーバ 30FR, 30FLの各々のコイル FR, FLどうしが接続さ れ、かつ、後輪に設けられた 2つの電磁式ァブソーバ 30RL, RRの各々のコイル RL , RRどうしが接続される。そして、第 1対角振動モードの場合は、左前輪に設けられ た電磁式ァブソーバ 30FLのコイル FLと右後輪に設けられた電磁式ァブソーバ 30R Rのコイル RRとが、第 2対角振動モードの場合は、右前輪に設けられた電磁式アブソ ーバ 30FRのコイル FRと左後輪に設けられた電磁式ァブソーバ 30RLのコイル RLと が、それぞれ、接続される。
[0112] なお、本実施形態のサスペンションシステムの変形例として、スィッチ回路 152が、 通常状態にぉ 、てすベてのコイルを接続するようにされ、 Vヽずれかの振動モードとな つた場合に、その振動モードに対応するコイルどうしの接続を残して、他の接続を解 除するようにされたシステムを構築することもできる。具体的には、例えば、第 1対角 振動モードとなった場合に、コイル FRの関係する接続およびコイル RLが関係する接 続を断ち、コイル FLとコイル RRとの接続のみを残し、それらの 2つのコイル FL, RR に流れる電流が増加させるように構成されたシステムである。
[0113] 以上説明したように、本実施形態のサスペンションシステムでは、車体に生じている 顕著な振動モードを判定し、その振動モードの振動を抑えるような組み合わせで電 磁式ァブソーバ 30が有するコイルどうしを接続するようにされて 、る。このような構成 を採用することで、本実施形態のサスペンションシステムは、車体の振動を効果的に 減衰することができるのである。
[0114] <第 3実施形態 >
本実施形態の車両用サスペンションシステムは、 4つの電磁式ァブソーバの各々の 制御を、専らモータ 16に生じる起電力を利用して減衰力を発生させる制御(いわゆる 「パッシブ制御」)と、電源力もモータ 16に電力を供給して減衰力若しくは推進力を発 生させる上述の電力受給作動をも可能とする制御( 、わゆる「アクティブ制御」)との 間で、制御態様を切換可能とされたサスペンションシステムである。
[0115] 図 12は、第 3実施形態の車両用サスペンションシステムを備えた車両 10の模式図 である。車輪 14,モータ 16およびシリンダ装置 18を有する電磁式ァブソーバ 30, G センサ 102、ストロークセンサ 112等については、第 1実施形態、あるいは、第 2実施 形態のサスペンションシステムのものと同様の構成であるので、それらには同一の符 号を付し、それらの説明を省略する。
[0116] 本実施形態のサスペンションシステムは、各電磁式ァブソーバ 30の各々に対応し て、それぞれが駆動回路であるドライバ 20FR、 20FL、 20RR、 20RL (以下、これら を適宜「ドライバ 20」と総称する場合がある)を有している。ドライバ 20は、モータ駆動 用制御プログラム,制御に用いられる各種定数のデータ等を記憶する ROM、モータ 駆動用制御プログラムを実行して電磁式ァブソーバ 30詳しくはモータ 16の駆動制御 を司るとともに ECU100との通信制御を行う CPU、 CPUの演算結果などを一時的に 記憶する RAM、モータ駆動用の信号生成器等を備えて構成されて 、る。
[0117] 電源 98は、各ドライバ 20に対しモータ駆動用の電力を供給する。電源 98は、例え ば車体 12に備えられた 36Vのバッテリである。
[0118] 各ドライバ 20は、通信バス 116を介して ECU100と通信可能に接続されている。各 ドライバ 20は、 ECU100からのモータ駆動信号通りに、自身に対応するモータ 16が 動作するように信号生成器を調節し、電源 98からの電流をそのモータ 16に供給する 。なお、 ECU100と各ドライバ 20とは、一定間隔毎に双方向の通信を繰り返すように 構成されている。
[0119] 本実施形態のサスペンションシステムには、各電磁式ァブソーバ 30に対応して、 4 つの切換スィッチ 22FR, 22FL, 22RR, 22RL (以下、これらを適宜「切換スィッチ 2 2」と総称する場合ある)が設けられている。各切換スィッチ 22は、自身に対応する電 磁式ァブソーバ 30が有するモータ 16のコイルを、そのコイル単独で閉ループを構成 するか、または、対応するドライバ 20と接続するかを切り換える接続切翻として機 能する。各切換スィッチ 22は、通信バス 116を介して ECU100と通信可能に接続さ れており、 ECU100からの信号に応じて上記切換えを実行する。
[0120] 本サスペンションシステムに設けられている制御選択スィッチ 114は、車室内に設 けられ、運転者の嗜好によって、言い換えれば、運転者の意思に基づいて、上述の ノッシブ制御とアクティブ制御とを選択可能とするためのスィッチである。このスィッチ の操作に関する情報は ECU100に送られる。
[0121] 車体 12には、さらに、車両の運動状態や車両に装備されている各種装置,機器の 動作状態を検出するためのセンサ 118が設置されている。このセンサ 118は集合的 に表されており、具体的には、電源 98であるバッテリの残量を検知するための電圧検 出回路、車両 10の走行速度 (車速)を検出する車速センサ、車両 10の操舵角を検出 する操舵角センサ等が含まれる。ちなみに、車速,操舵角等は、車両の運動の状態 を指標する運動状態指標量の一種であり、車速センサ,操舵角センサ等は、運動状 態指標量検出器として機能するものとなっている。
[0122] ECU100は、センサ 118による検出の結果力も推定される車両の運動状態に基づ いて、または、運転者による制御選択スィッチの操作状態に基づいて、電磁式アブソ ーバ 30の制御態様を、ノッシブ制御するかまたはアクティブ制御するかを決定する。 そして、その決定に応じてドライバ 20および切換スィッチ 22に信号を送る。ァクティ ブ制御を実行するときは、 ECU100は、ストロークセンサ 112をはじめとする各種セン サからの検出信号に基づいて車両 10の状態、詳しくは、車両に生じている振動の状 態を判定し、車両の振動,姿勢変化,不安定な挙動等を抑制するように、また、運転 者のステアリング、アクセル、ブレーキ等の操作に対して車両がより安定するように、 各車輪対して設けられた電磁式ァブソーバ 30が発生させる力(シリンダ装置 18の伸 縮量であってもよい)を決定し、各ドライバ 20に、モータ 16に対する駆動信号を送信 する。
[0123] 図 13は、 ECU100を中心とした制御システムの機能ブロック図である。振動状態判 定部としての振動モード判定部 130は、ストロークセンサ 112または Gセンサ 102の 検出信号から、第 2実施形態のサスペンションシステムにおける方法と同様の方法に より、顕著となっている振動のモードを判定する。
[0124] 異常監視部 132は、各種センサ 118からの信号に基づいて、アクティブ制御または ノ^シブ制御を実行するに際し、それを妨げる異常が生じて 、な 、かを監視する。
[0125] 制御切換部 134は、異常監視部 132における監視結果に基づいて、スィッチ制御 部 136、および、電力受給作動制御部として機能するアクティブ制御部 138を作動さ せることで、電磁式ァブソーバ 30の制御態様を、ノッシブ制御とアクティブ制御との いずれかに切り換える。また、制御切換部 134は、制御選択スィッチ 114からの信号 も受け取り、運転者がいずれかの制御態様を選択したときは、異常監視部 132により 異常が検出されていない限り、その選択された制御態様に切り換える。
[0126] アクティブ制御部 138は、電磁式ァブソーバ 30が電源 98からの電力供給を受けた 状態において、その電磁式ァブソーバ 30に、パネ上部とパネ下部との相対動作に対 する推進力または減衰力を発生させる。つまり、電磁式ァブソーバ 30の電力受給作 動を制御可能な機能部である。具体的には、例えば、アクティブ制御部 138は、振動 モード判定部 130から顕著な振動モードにおける振動量を受け取り、その振動を抑 制するように、各車輪位置に設けられた電磁式ァブソーバ 30が発生させるべき推進 力または減衰力を算出し、そして、車体の振動を減衰させるベぐまた、運転者による 車両の操縦に対して車両を安定させるベぐ各ドライバ 20に対して、その力を発生さ せるための駆動信号を供給する。
[0127] 切翻制御部であるスィッチ制御部 136は、制御切換部 134の決定を基に、パッ シブ制御またはアクティブ制御における電磁式ァブソーバ 30の作動を実現させるた めに、制御態様に応じて、切換スィッチ 22を切り換える。すなわち、制御切換部 134 によりパッシブ制御に切り換えられたときには、各車輪位置にある電磁式ァブソーバ 3 0が有するコイルがそれぞれ単独で閉ループを構成するように、つまり、電磁式アブソ ーバ 30が電源 98からの電力の供給を受けない状態で、かつ、単独で減衰力を発生 させ得るように、切換スィッチ 22を切り換え、また、制御切換部 134によりアクティブ制 御に切り換えられたきには、各電磁式ァブソーバ 30が有するコイルを対応するドライ バ 20と接続するように、切換スィッチ 22を切り換える。
[0128] 制御切換部 134は、通常時において、各電磁式ァブソーバ 30が有するモータ 16 のコイルをドライバ 20と接続させておくようなものであってもよい。この場合、電磁式ァ ブソーバ 30はアクティブ制御を実行する。そして、例えば、断線などによりアクティブ 制御が不可能となった場合、ノッシブ制御に切り換えるようにすれば、各電磁式アブ ソーバ 30は、少なくとも単独の状態での減衰力を発揮させることができる。また、異常 監視部 132により電源 98の電圧低下が検出されたときに、より詳しく言えば、電源電 圧が設定閾電圧以下となった場合に、各電磁式ァブソーバ 30の電力受給作動を禁 止すベぐノッシブ制御に切り換えるようにすれば、電圧低下によるモータ 16の応答 性低下や減衰力の不足などの事態の発生を回避することができる。
[0129] ノッシブ制御のとき、つまり、各電磁式ァブソーバ 30が自身の有するコイルが単独 で閉ループを構成しているような状態とされているときには、モータ 16は発電機として 作用し、ストローク速度、すなわち、パネ上パネ下相対動作速度にほぼ比例した大き さの減衰力を発生する。そして、ノ¾シブ制御中において車輪の接地性が低下する ような過大な振動が車体に生じていることを異常監視部 132が検出したとき、制御切 換部 134はパッシブ制御力もアクティブ制御に切り換えるようスィッチ制御部 136に 指令する。こうすれば、アクティブ制御により効果的にに車両の振動を減衰させ、接 地性を回復することができる。
[0130] 以上説明したように、本実施形態の車両用サスペンションシステムによれば、電磁 式ァブソーバ 30のモータ 16を専ら発電機として動作させて減衰力を発生させるパッ シブ制御と、通電することによってモータを駆動しシリンダ装置を能動的に動作させる ことが可能なアクティブ制御とを切り換えるようにされている。そのことにより、本実施 形態の車両用サスペンションシステムは、車両の状態に応じた適切な減衰性能を発 揮させることができるのである。
[0131] <変形例 > 以上、いくつかの実施形態を基に、請求可能発明を説明した。これらの実施形態は 例示であり、各構成要素や各処理プロセスの組合せに!/、ろ 、ろな変形例を採用可能 なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところで ある。以下、そのような変形例について述べる。
[0132] 上記第 3実施形態のサスペンションシステムにおいて、切換スィッチ 22は、各電磁 式ァブソーバ 30のコイルを他の電磁式アブノーノ 30のうちのいずれかが有するコィ ルと接続して閉ループを構成するように切り換えることができるようにしてもよい。
[0133] 上述の各実施形態のサスペンションシステムでは、回転型のモータ 16を採用した 減衰力発生装置を有する電磁式ァブソーバ 30について説明したが、直動型のモー タを採用した減衰力発生装置を有する電磁式ァブソーバについても、本発明を適用 することができる。直動型のモータを採用する場合、例えば、次のような構成の電磁 式ァブソーバとすることができる。すなわち、ァウタチューブの内面に複数のコイルを 軸方向に所定長にわたって並ぶように設けるとともに、インナチューブの外面に複数 の永久磁石を軸方向に所定長にわたって並ぶように設け、さらにァウタチューブとィ ンナチューブとが接触せずに上下方向に相対移動できるように支持するような構造 の電磁式ァブソーバとすることが可能である。
[0134] 上記構成の電磁式ァブソーバでは、ァウタチューブとインナチューブ、つまり、コィ ルと永久磁石が相対移動すると、コイル内の磁束が変化するため電流が発生し (つま り、直動型モータが発電機として作用し)、コイルと永久磁石との間に減衰力が発生 するのである。

Claims

請求の範囲
[1] 前後左右の車輪に対応して設けられ、それぞれが、(A)パネ上部に連結されるパネ 上部側部材と、(B)パネ下部に連結されてパネ上部とパネ下部との相対動作に伴って 前記パネ上部側部材と相対移動するパネ下部側部材と、(C)それらパネ上側部材と パネ下側部材との相対移動に伴って相対動作するコイルおよび磁石を有し、それら コイルと磁石との相対動作によって生じる起電力に依拠して前記パネ上部側部材と 前記パネ下部側部材との相対移動に対する減衰力を発生させる減衰力発生装置と を有する 4つの電磁式ァブソーバを備えた車両用サスペンションシステムであって、 対角位置に存在する 2つの車輪からなる車輪対に対応して設けられた 2つの前記 電磁式ァブソーバの各々の減衰力発生装置が有するコイルを、それら 2つのコイルを 含む閉ループが形成されるように接続するコイル接続装置を備えたことを特徴とする 車両用サスペンションシステム。
[2] 前記コイル接続装置が、前記閉ループを構成する 2つのコイルに対応する 2つの前 記電磁式ァブソーバのうちの一方が設けられているパネ上部およびパネ下部と、他 方が設けられているパネ上部およびパネ下部とが同方向に相対動作する場合おい て、それら 2つの電磁式ァブソーバの各々が有する前記減衰力発生装置に生じる起 電力に依拠した電流がその閉ループにぉ 、て逆方向に流れるように、前記 2つのコ ィルを接続するものである請求項 1に記載の車両用サスペンションシステム。
[3] 前記コイル接続装置が、前記閉ループを構成する 2つのコイルの一方端どうしを接 続する第 1接続路と他方端どうしを接続する第 2接続路を有する請求項 1または請求 項 2に記載の車両用サスペンションシステム。
[4] 前記コイル接続装置が、前記第 1接続路と前記第 2接続路とを繋ぐようにして配設さ れた抵抗器を有する請求項 3に記載の車両用サスペンションシステム。
[5] 前記コイル接続装置が、それぞれが対角位置に存在する 2つの車輪からなる 2組の 車輪対の各々に対応して、それぞれが 2つのコイルを含む 2つの前記閉ループが形 成されるように、 4つの前記電磁式ァブソーバの各々の減衰力発生装置が有するコィ ルを接続するものである請求項 1または請求項 2に記載の車両用サスペンションシス テム。
[6] 前記コイル接続装置が、前記 2つの閉ループの各々に対応して、それぞれが 2つの コイルの一方端どうしを接続する 2つの第 1接続路と、それぞれが 2つのコイルの他方 端どうしを接続する 2つの第 2接続路を有する請求項 5に記載の車両用サスペンショ ンシステム。
[7] 前記 2つの第 1接続路が互いに接続され、かつ、前記 2つの第 2接続路が互いに接 続されている請求項 6に記載の車両用サスペンションシステム。
[8] 前記コイル接続装置が、前記 2つの第 1接続路の少なくとも一方と前記 2つの第 2接 続路の少なくとも一方とを繋ぐようにして配設された抵抗器を有する請求項 7に記載 の車両用サスペンションシステム。
[9] 前後左右の車輪に対応して設けられ、それぞれが、(A)パネ上部に連結されるパネ 上部側部材と、(B)パネ下部に連結されてパネ上部とパネ下部との相対動作に伴って 前記パネ上部側部材と相対移動するパネ下部側部材と、(C)それらパネ上側部材と パネ下側部材との相対移動に伴って相対動作するコイルおよび磁石を有し、それら コイルと磁石との相対動作によって生じる起電力に依拠して前記パネ上部側部材と 前記パネ下部側部材との相対移動に対する減衰力を発生させる減衰力発生装置と を有する 4つの電磁式ァブソーバを備えた車両用サスペンションシステムであって、 前記 4つの減衰力発生装置の各々力 その各々が有するコイルとともに閉ループを 形成する抵抗器を有するとともに、当該車両用サスペンションシステム力 前記 4つの 減衰力発生装置の各々について、その各々が有するコイルと他の減衰力発生装置 のうちのずれ力 1つが有するコイルとがそれら 2つのコイルを含む閉ループを形成す るように接続される接続状態と、前記各々が有するコイルが他の減衰力発生装置が 有する 3つのコイルのいずれとも接続されない非接続状態とを、自身の作動によって 選択的に実現するコイル接続装置を備えたことを特徴とする車両用サスペンションシ ステム。
[10] 前記コイル接続装置が、前記閉ループを構成する 2つのコイルに対応する 2つの前 記電磁式ァブソーバのうちの一方が設けられているパネ上部およびパネ下部と、他 方が設けられているパネ上部およびパネ下部とが同方向に相対動作する場合おい て、それら 2つの電磁式ァブソーバの各々が有する前記減衰力発生装置に生じる起 電力に依拠した電流がその閉ループにぉ 、て逆方向に流れるように、前記 2つのコ ィルを接続するものである請求項 9に記載の車両用サスペンションシステム。
[11] 当該車両用サスペンションシステムが、自身を制御する制御装置を備え、
その制御装置が、車両に抑制すべき何らかの振動が生じている場合に少なくとも前 記 4つの減衰力発生装置の 、ずれか 1つが有するコイルと他の減衰力発生装置の!/、 ずれ力 1つが有するコイルとが接続状態となるように前記コイル接続装置の作動を制 御するコイル接続装置制御部を有する請求項 9または請求項 10に記載の車両用サ スペンションシステム。
[12] 前記制御装置が、車両に生じて 、る振動のモードを判定する振動モード判定部を 備え、前記コイル接続装置制御部が、その振動モード判定部による判定結果に基づ いて、前記 4つの減衰力発生装置うちの 1つが有するコイルと接続状態とされる他の 減衰力制御装置が有するコイルを変更するものとされた請求項 11に記載の車両用 サスペンションシステム。
[13] 前記振動モード判定部が、振動のモードとして、抑制すべきロール振動が発生して V、るロール振動モードと、抑制すべきピッチ振動が発生して 、るピッチ振動モードと の少なくとも一方を判定するものとされた請求項 12に記載の車両用サスペンションシ ステム。
[14] 前記振動モード判定部が、振動のモードとして、少なくとも、抑制すべきロール振動 が発生しているロール振動モードを判定するものとされ、
前記コイル接続装置制御部力 S、振動のモードがロール振動モードである場合に、 前輪側と後輪側との少なくとも一方において、左右の車輪に対応して設けられた 2つ の電磁式ァブソーバの各々の減衰力発生装置が有するコイルどうし力 それら 2つの コイルを含む閉ループを形成するように接続される接続状態を実現するものとされた 請求項 13に記載の車両用サスペンションシステム。
[15] 前記振動モード判定部が、振動のモードとして、少なくとも、抑制すべきピッチ振動 が発生しているピッチ振動モードを判定するものとされ、
前記コイル接続装置制御部が、振動のモードがピッチ振動モードである場合に、左 輪側と右輪側との少なくとも一方において、前後の車輪に対応して設けられた 2つの 電磁式ァブソーバの各々の減衰力発生装置が有するコイルどうし力 それら 2つのコ ィルを含む閉ループを形成するように接続される接続状態を実現するものとされた請 求項 13または請求項 14に記載の車両用サスペンションシステム。
[16] 当該車両用サスペンション装置が、車両若しくは車両の一部分の運動の状態を指 標する運動状態指標量を検出する運動状態指標量検出器を備え、
前記振動モード判定部が、その運動状態指標量検出器によって検出された運動状 態指標量に基づ!、て、振動のモードを判定するものとされた請求項 12な 、し請求項
15のいずれかに記載の車両用サスペンションシステム。
[17] 前記運動状態指標量検出器が、前記運動状態指標量として、各車輪についての パネ上部とパネ下部とのストローク量を検出するストローク量検出器を含んで構成さ れ、
前記振動モード判定部が、そのストローク量検出器によって検出された各車輪につ いてのストローク量に基づいて、振動のモードを判定するものとされた請求項 16に記 載の車両用サスペンションシステム。
[18] 前記運動状態指標検出器が、前記運動状態指標量として、各車輪についてのバ ネ上上下加速度とパネ下上下加速度との少なくとも一方を検出する加速度検出器を 含んで構成され、
前記振動モード判定部が、その加速度検出器によって検出された各車輪について のパネ上上下加速度とパネ下上下加速度との少なくとも一方に基づいて、振動のモ ードを判定するものとされた請求項 16または請求項 17に記載の車両用サスペンショ ンシステム。
PCT/JP2006/321227 2005-10-26 2006-10-25 車両用サスペンションシステム WO2007049633A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06822204A EP1942020B1 (en) 2005-10-26 2006-10-25 Suspension system for vehicle
JP2007542614A JP4846727B2 (ja) 2005-10-26 2006-10-25 車両用サスペンションシステム
US12/091,385 US8103408B2 (en) 2005-10-26 2006-10-25 Suspension system for vehicle
CN200680040222XA CN101296811B (zh) 2005-10-26 2006-10-25 用于车辆的悬架***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005311953 2005-10-26
JP2005-311953 2005-10-26

Publications (1)

Publication Number Publication Date
WO2007049633A1 true WO2007049633A1 (ja) 2007-05-03

Family

ID=37967743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321227 WO2007049633A1 (ja) 2005-10-26 2006-10-25 車両用サスペンションシステム

Country Status (5)

Country Link
US (1) US8103408B2 (ja)
EP (2) EP1942020B1 (ja)
JP (1) JP4846727B2 (ja)
CN (2) CN101296811B (ja)
WO (1) WO2007049633A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023624A (ja) * 2007-07-24 2009-02-05 Toyota Motor Corp 車両用サスペンションシステム
EP2098390A1 (en) * 2008-03-04 2009-09-09 Honda Motor Co., Ltd. Electric damper
JP4743276B2 (ja) * 2006-03-22 2011-08-10 トヨタ自動車株式会社 車両用サスペンションシステム
WO2011145226A1 (ja) * 2010-05-19 2011-11-24 トヨタ自動車株式会社 車両用サスペンション装置
CN104709024A (zh) * 2013-12-16 2015-06-17 通用汽车环球科技运作有限责任公司 包括采用永磁体的负刚度的悬架衰减的方法和设备
JP2020083030A (ja) * 2018-11-26 2020-06-04 Kyb株式会社 車高調整装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127298B2 (ja) * 2006-06-14 2008-07-30 トヨタ自動車株式会社 車輪車体間距離調整装置および車輪車体間距離調整システム
JP4920006B2 (ja) * 2008-05-15 2012-04-18 トヨタ自動車株式会社 車両用サスペンションシステム
WO2011004471A1 (ja) * 2009-07-08 2011-01-13 トヨタ自動車株式会社 車両用ダンパシステム
JP5261316B2 (ja) * 2009-08-05 2013-08-14 カヤバ工業株式会社 サスペンション装置
US8843274B2 (en) * 2010-05-11 2014-09-23 Toyota Jidosha Kabushiki Kaisha Suspension device
DE102010035088A1 (de) * 2010-08-21 2012-03-08 Audi Ag Radaufhängung für ein Kraftfahrzeug
WO2012157577A1 (ja) * 2011-05-19 2012-11-22 東海ゴム工業株式会社 能動型消音装置
WO2013125018A1 (ja) * 2012-02-23 2013-08-29 トヨタ自動車株式会社 車両懸架装置
US8641053B2 (en) 2012-02-27 2014-02-04 Bose Corporation Actuator assembly
CN103009950B (zh) * 2012-12-31 2015-09-02 江苏大学 一种带有振动能量回收的馈能悬架装置
CN103742589B (zh) * 2013-01-09 2016-04-27 摩尔动力(北京)技术股份有限公司 电阻尼减震器
JP2014167320A (ja) * 2013-02-28 2014-09-11 Hitachi Automotive Systems Ltd 電磁サスペンション装置
US9587704B2 (en) * 2013-08-05 2017-03-07 GM Global Technology Operations LLC System and method for managing noise and vibration in a vehicle using electro-dynamic regenerative force and vehicle having same
DE102014206142A1 (de) * 2013-08-14 2015-02-19 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur Höhenverstellung eines Fahrzeugaufbaus
WO2015021952A1 (de) * 2013-08-14 2015-02-19 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur höhenverstellung eines fahrzeugaufbaus
CN103625237B (zh) * 2013-11-18 2015-09-30 江苏大学 确定电磁馈能型半主动悬架馈能阻尼力发生器参数的方法
US20150231942A1 (en) * 2014-02-15 2015-08-20 GM Global Technology Operations LLC Method and apparatus for suspension damping
WO2015154763A1 (de) * 2014-04-10 2015-10-15 Schaeffler Technologies AG & Co. KG Vorrichtung zur höhenverstellung eines fahrzeugaufbaus
JP6239453B2 (ja) * 2014-07-03 2017-11-29 本田技研工業株式会社 電磁ダンパ
JP6304147B2 (ja) * 2015-01-23 2018-04-04 トヨタ自動車株式会社 車両の減衰力発生装置
CN104723820B (zh) * 2015-03-16 2016-10-05 华南理工大学 一种可产生能量的馈能减振装置及其能量捕获方法
CN104723819B (zh) * 2015-03-16 2016-10-05 华南理工大学 可产生电能、主动控制馈能减振装置及其能量捕获方法
US10300760B1 (en) 2015-03-18 2019-05-28 Apple Inc. Fully-actuated suspension system
CN105818634B (zh) * 2016-03-31 2019-02-19 广州汽车集团股份有限公司 一种闭环连续阻尼控制装置及其控制方法
CN108202587B (zh) * 2016-12-16 2020-02-21 比亚迪股份有限公司 悬置***、悬置结构和电动汽车及其减震控制方法
US10814690B1 (en) 2017-04-18 2020-10-27 Apple Inc. Active suspension system with energy storage device
US11358431B2 (en) 2017-05-08 2022-06-14 Apple Inc. Active suspension system
US10899340B1 (en) 2017-06-21 2021-01-26 Apple Inc. Vehicle with automated subsystems
US11173766B1 (en) 2017-09-07 2021-11-16 Apple Inc. Suspension system with locking structure
US11065931B1 (en) 2017-09-15 2021-07-20 Apple Inc. Active suspension system
US11124035B1 (en) 2017-09-25 2021-09-21 Apple Inc. Multi-stage active suspension actuator
US10960723B1 (en) 2017-09-26 2021-03-30 Apple Inc. Wheel-mounted suspension actuators
CN108248324A (zh) * 2018-03-20 2018-07-06 常州万安汽车部件科技有限公司 电磁悬架及其控制方法以及机动车
KR102497032B1 (ko) * 2018-04-12 2023-02-08 현대자동차주식회사 차고 조절 장치
CN108448813B (zh) * 2018-05-23 2024-03-19 眉山中车制动科技股份有限公司 一种铁路货车振动发电装置
CN109760481A (zh) * 2018-07-31 2019-05-17 中国人民解放军陆军装甲兵学院 一种无线电能回收式电磁作动器
US11285773B1 (en) 2018-09-12 2022-03-29 Apple Inc. Control system
US11634167B1 (en) * 2018-09-14 2023-04-25 Apple Inc. Transmitting axial and rotational movement to a hub
US11345209B1 (en) 2019-06-03 2022-05-31 Apple Inc. Suspension systems
RU193812U1 (ru) * 2019-06-14 2019-11-15 Публичное акционерное общество "КАМАЗ" Система подвески транспортного средства с эффектом рекуперации
US11938922B1 (en) 2019-09-23 2024-03-26 Apple Inc. Motion control system
US11179991B1 (en) 2019-09-23 2021-11-23 Apple Inc. Suspension systems
US11707961B1 (en) 2020-04-28 2023-07-25 Apple Inc. Actuator with reinforcing structure for torsion resistance
US11828339B1 (en) 2020-07-07 2023-11-28 Apple Inc. Vibration control system
CN112943850B (zh) * 2021-03-10 2023-06-27 恒大恒驰新能源汽车研究院(上海)有限公司 零部件防振动失效装置及汽车
EP4319998A1 (en) 2021-06-07 2024-02-14 Apple Inc. Mass damper system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263123A (ja) * 1987-04-20 1988-10-31 Mazda Motor Corp 車両のサスペンシヨン装置
JP2001310736A (ja) 2000-04-28 2001-11-06 Tokico Ltd 電磁サスペンション制御装置
JP2003505297A (ja) * 1999-07-30 2003-02-12 ブッフ, ホセ フォントデカバ 車両用アンチロールおよびアンチピッチシステム、およびその実行用装置
JP2003223220A (ja) 2002-01-31 2003-08-08 Tokico Ltd 電磁サスペンション装置
JP2005162021A (ja) * 2003-12-03 2005-06-23 Toyota Motor Corp 車両安定化制御装置
JP2005233347A (ja) * 2004-02-20 2005-09-02 Tamagawa Seiki Co Ltd サスペンション装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048323A1 (de) * 1970-10-01 1972-04-06 Daimler Benz Ag, 7000 Stuttgart Vorrichtung zur Stabilisierung des Fahrzeugoberbaus gegen Kurvenneigung
JPS61150806A (ja) * 1984-12-25 1986-07-09 Toyota Motor Corp サスペンシヨン制御装置
US4647068A (en) * 1985-01-16 1987-03-03 Toyota Jidosha Kabushiki Kaisha Rear suspension controller
JPH04129815A (ja) * 1990-09-21 1992-04-30 Mazda Motor Corp 自動車の磁力式サスペンション装置
ATE160117T1 (de) * 1991-07-16 1997-11-15 Kinetic Ltd Fahrzeugaufhängungssystem
WO1995011813A1 (en) * 1993-10-26 1995-05-04 Kinetic Limited Vehicle suspension system
BR9506869A (pt) * 1994-02-25 1997-09-09 Kinetic Ltd Sistema de suspens o para veículo e sistema de supens o para corpo de veículo
ES2223205B1 (es) * 2001-09-07 2007-01-01 Creuat S.L. Sistema de suspension para un vehiculo a motor y dispositivos para su realizacion.
JP4116796B2 (ja) 2002-02-04 2008-07-09 財団法人生産技術研究奨励会 電磁ダンパ制御装置
US7357229B2 (en) * 2002-05-29 2008-04-15 Kayaba Industry Co., Ltd. Electromagnetic shock absorber
JP4129815B2 (ja) 2003-02-21 2008-08-06 戸田建設株式会社 柱材建起し装置、並びに建起し装置
JP4389069B2 (ja) 2003-12-15 2009-12-24 株式会社東京大学Tlo 連接車輌
CN2708034Y (zh) * 2004-07-07 2005-07-06 重庆大学 车辆悬架减振器
US7686309B2 (en) * 2004-07-30 2010-03-30 Kinetic Pty. Ltd. Hydraulic system for a vehicle suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263123A (ja) * 1987-04-20 1988-10-31 Mazda Motor Corp 車両のサスペンシヨン装置
JP2003505297A (ja) * 1999-07-30 2003-02-12 ブッフ, ホセ フォントデカバ 車両用アンチロールおよびアンチピッチシステム、およびその実行用装置
JP2001310736A (ja) 2000-04-28 2001-11-06 Tokico Ltd 電磁サスペンション制御装置
JP2003223220A (ja) 2002-01-31 2003-08-08 Tokico Ltd 電磁サスペンション装置
JP2005162021A (ja) * 2003-12-03 2005-06-23 Toyota Motor Corp 車両安定化制御装置
JP2005233347A (ja) * 2004-02-20 2005-09-02 Tamagawa Seiki Co Ltd サスペンション装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743276B2 (ja) * 2006-03-22 2011-08-10 トヨタ自動車株式会社 車両用サスペンションシステム
US8191874B2 (en) 2006-03-22 2012-06-05 Toyota Jidosha Kabushiki Kaisha Vehicle suspension system
JP2009023624A (ja) * 2007-07-24 2009-02-05 Toyota Motor Corp 車両用サスペンションシステム
EP2098390A1 (en) * 2008-03-04 2009-09-09 Honda Motor Co., Ltd. Electric damper
US8042818B2 (en) 2008-03-04 2011-10-25 Honda Motor Co., Ltd. Electric damper
WO2011145226A1 (ja) * 2010-05-19 2011-11-24 トヨタ自動車株式会社 車両用サスペンション装置
US8556273B2 (en) 2010-05-19 2013-10-15 Toyota Jidosha Kabushiki Kaisha Vehicle suspension device
JP5429369B2 (ja) * 2010-05-19 2014-02-26 トヨタ自動車株式会社 車両用サスペンション装置
CN104709024A (zh) * 2013-12-16 2015-06-17 通用汽车环球科技运作有限责任公司 包括采用永磁体的负刚度的悬架衰减的方法和设备
JP2020083030A (ja) * 2018-11-26 2020-06-04 Kyb株式会社 車高調整装置
JP7193991B2 (ja) 2018-11-26 2022-12-21 Kyb株式会社 車高調整装置

Also Published As

Publication number Publication date
EP1942020A4 (en) 2009-08-05
EP2151337A1 (en) 2010-02-10
CN101296811B (zh) 2010-05-19
EP1942020A1 (en) 2008-07-09
CN101693439B (zh) 2012-02-15
EP1942020B1 (en) 2011-06-08
CN101693439A (zh) 2010-04-14
US20090273147A1 (en) 2009-11-05
EP2151337B1 (en) 2011-05-18
JPWO2007049633A1 (ja) 2009-04-30
CN101296811A (zh) 2008-10-29
US8103408B2 (en) 2012-01-24
JP4846727B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4846727B2 (ja) 車両用サスペンションシステム
JP4953281B2 (ja) サスペンションシステム
US20060273530A1 (en) Wheel guidance
WO2008032562A1 (fr) Système de suspension pour véhicule
JP4643416B2 (ja) 車両制振装置
JP4418998B2 (ja) 電磁サスペンション制御装置
JP2009179319A (ja) 電磁サスペンション制御装置
JP4846439B2 (ja) 車両用サスペンションシステム
JP5211674B2 (ja) 車両用サスペンションシステム
JP5429369B2 (ja) 車両用サスペンション装置
JP4858292B2 (ja) 車両用サスペンションシステム
JP6480202B2 (ja) サスペンション制御装置
JP5187252B2 (ja) 車両用サスペンションシステム
JP5272799B2 (ja) 車両用サスペンションシステム
JP2005096587A (ja) 車両懸架装置
JP2009274575A (ja) 車両用サスペンションシステム
JP4894501B2 (ja) 車両用サスペンションシステム
JP4775250B2 (ja) 車両用サスペンションシステム
JP2008114745A (ja) 車両用サスペンションシステム
JP4693055B2 (ja) 車両用サスペンションシステム
JP2009096315A (ja) 車両用サスペンションシステム
JP5266811B2 (ja) 車両用サスペンションシステム
JP2009202623A (ja) 車両用サスペンションシステム
JP2010241201A (ja) 車両用サスペンションシステム
JP2010179691A (ja) 車両用サスペンションシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040222.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542614

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12091385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822204

Country of ref document: EP