WO2006004164A1 - ディザパターン製造方法 - Google Patents

ディザパターン製造方法 Download PDF

Info

Publication number
WO2006004164A1
WO2006004164A1 PCT/JP2005/012513 JP2005012513W WO2006004164A1 WO 2006004164 A1 WO2006004164 A1 WO 2006004164A1 JP 2005012513 W JP2005012513 W JP 2005012513W WO 2006004164 A1 WO2006004164 A1 WO 2006004164A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
dither
threshold
dots
dot
Prior art date
Application number
PCT/JP2005/012513
Other languages
English (en)
French (fr)
Inventor
Yoshitomo Marumoto
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Publication of WO2006004164A1 publication Critical patent/WO2006004164A1/ja
Priority to US11/618,979 priority Critical patent/US7920294B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size

Definitions

  • the present invention relates to a data processing method, a data processing apparatus, a dither pattern manufacturing method, and a dither pattern, and more specifically, a dither process for quantizing image data or an application thereof.
  • V is related to the dither pattern.
  • 8-bit image data is converted from 1-bit binary image data to generate dot recording data for forming a plurality of ink dots constituting a recorded image in a printer such as an inkjet printer. This is done by the process of quantizing the data.
  • One of these quantization methods is known as dithering.
  • dithering By using the methods described in Patent Document 1, Patent Document 2, etc., patterns with good dispersibility can be generated, and binary image data quantized with these patterns also has low noise and dispersibility. It becomes a pattern. Since the dither method is faster than the error diffusion method, it is suitable for high-speed printers that require speed, a large number of data, and multi-color printers.
  • Patent Document 1 Japanese Patent No. 2622429
  • Patent Document 2 U.S. Pat.No. 5,535,020
  • FIGS. 32A to 32C are diagrams for explaining this problem.
  • This figure shows the process in which each ink is driven into the recording medium in the order of cyan, magenta, and yellow.
  • cyan ink is first ejected onto a recording medium on which nothing has been printed yet.
  • the position where each cyan ink is applied follows the arrangement of the dots of the dither pattern used.
  • the cyan ink droplet 10C exists on the recording medium in an arrangement according to the mask.
  • the ink is ejected to a position according to the corresponding dither pattern in the same manner as the magenta ink force, and similarly forms an ink droplet 10M before absorption.
  • the ink droplet 10 B in which the cyan ink droplet 10C and the magenta ink droplet 10M are connected in contact with each other (the one marked with an X in the figure). ) May form.
  • the ink droplet 10Y is formed before being absorbed and ejected to the position according to the corresponding dither pattern.
  • connected ink droplets 10B are formed depending on the relationship of the dot arrangement of the mask used for each ink.
  • the ink droplets may be ejected in the same pixel, and the same connected ink droplets are formed.
  • ink droplets that are sequentially ejected are applied to adjacent or adjacent pixels or the same pixel, they contact each other and attract each other by the surface tension, and are equivalent to two or three.
  • Large droplets 10B formed by coalescence of (or more) ink droplets. Once such a grain is formed, the ink droplet applied to the next or adjacent position is likely to be attracted to the dahrain. In other words, the grain that was first generated grows gradually as a nucleus and eventually produces large grains. In particular, in a uniform image area, the grains fixed on the recording medium are scattered in an irregular manner and are visually recognized as beading.
  • the proximity or adjacency of dots that cause grains that occur during recording depends on the arrangement pattern of quantized data inherent in the quantized image data. That is, according to the threshold arrangement pattern in the dither pattern, the arrangement of the quantized data in the image data plane is determined.
  • the dithering process or dither pattern described in Patent Document 1 cannot solve the grain problem described in FIG. That is, the dither pattern described in Patent Document 1 can also apply different dither patterns to different colors. In this case, the dither patterns are defined independently of different colors. For this reason, the arrangement of recording dots of different colors is poorly distributed, and it may be impossible to avoid dot adjacency or even dot overlap in an image (intermediate image) in the middle of divided recording.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to suppress the occurrence of dullin when performing printing using a plurality of different color inks, thereby reducing the beading.
  • a data processing method, a data processing apparatus, a dither pattern manufacturing method, and a dither pattern that can reduce image quality degradation due to the above.
  • the manufacturing method of a plurality of dither patterns used for generating recording data of the plurality of types of dots in order to form a plurality of types of dots constituting the recording image And a step of determining an arrangement of threshold values in each of the plurality of dither patterns corresponding to the type of recording dots, and the step includes a step in which a low frequency component of the threshold distribution in each of the plurality of dither patterns is the plurality of dither patterns.
  • the method includes a step of determining an arrangement of the threshold values so that both are reduced in the pattern.
  • the method in a method of manufacturing a plurality of dither patterns used to generate dot recording data, includes the step of determining the arrangement of threshold values in a dither pattern, the step comprising: A first state of the threshold distribution in each pattern and a second state of the threshold distribution in each of the plurality of dither patterns to which the first state force also shifts, and the process includes the second state from the first state
  • the method includes a step of determining the arrangement of the threshold values so that the low frequency components of the threshold distribution are reduced in the plurality of dither patterns when the process proceeds to step (1).
  • the plurality of dither patterns are obtained by superimposing two or more of them.
  • the pattern power of the average value of the threshold value of the corresponding threshold pixel is characterized in that there are fewer low frequency components than the pattern of the average value of the threshold value of the corresponding threshold pixel when the overlapping position is shifted for the two or more dither patterns.
  • the plurality of dither patterns are obtained by superimposing two or more of them.
  • the pattern power of the average value of the threshold value of the corresponding threshold pixel is lower than the pattern of the average value of the threshold value of the corresponding threshold pixel when the overlapping position is shifted for two or more dither patterns.
  • the pattern power of the average value of the threshold values of the corresponding threshold pixels when the two or more dither patterns overlap each other, the pattern power of the average value of the threshold values of the corresponding threshold pixels It is characterized in that there are fewer low frequency components than the average threshold pattern of the corresponding threshold pixels when the overlapping position is shifted for two or more dither patterns.
  • FIG. 1 is a block diagram mainly showing a hardware and software configuration of a PC as an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining the flow of image data conversion processing in the ink jet recording system of one embodiment of the present invention.
  • FIG. 3 is a perspective view showing an ink jet recording apparatus applicable to the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a dither pattern manufacturing method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing the procedure of the dither pattern manufacturing method according to the first embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a function of the basic repulsive potential E (r) according to the embodiment of the present invention.
  • FIG. 7A is a diagram schematically illustrating the application of repulsive potential and the attenuation process of the total energy, which are relevant to the first embodiment of the present invention.
  • FIG. 7B is a diagram schematically illustrating the application of repulsive potential and the attenuation process of the total energy, which are relevant to the first embodiment of the present invention.
  • FIG. 7C is a diagram schematically illustrating the application of repulsive potential and the attenuation process of the total energy, which are relevant to the first embodiment of the present invention.
  • FIG. 7D is a diagram schematically illustrating the application of repulsive potential and the attenuation process of the total energy, which are relevant to the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing a dither pattern creation process of the present embodiment.
  • FIG. 9 is a diagram showing the arrangement of the dither pattern threshold values according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing the arrangement of the threshold values of the dither pattern according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing the arrangement of the threshold values of the dither pattern according to the first embodiment of the present invention.
  • FIG. 12 is a diagram showing a threshold average arrangement of two dither pattern patterns according to the first embodiment of the present invention.
  • FIG. 13 is a diagram showing an average threshold arrangement of three dither pattern patterns according to the first embodiment of the present invention.
  • FIG. 14 is a diagram showing an arrangement of threshold averages of two dither pattern patterns when the dither pattern is shifted according to the first embodiment of the present invention.
  • FIG. 15 is a diagram showing a threshold average arrangement of three dither pattern patterns when the dither pattern is shifted according to the first embodiment of the present invention.
  • FIG. 16 is a diagram showing a power spectrum of a threshold average of two dither patterns of the dither pattern according to the first embodiment of the present invention and the dither pattern shifted from the dither pattern. 17] FIG. 17 is a diagram showing a threshold average power spectrum of three dither patterns of the dither pattern and the dither pattern shifted from the dither pattern of the first embodiment of the present invention.
  • FIG. 18 is a diagram showing the difference in the low-frequency component of the threshold average between the dither pattern of the first embodiment of the present invention and the dither pattern shifted from the dither pattern.
  • FIG. 19 is a diagram showing an arrangement of dither pattern threshold values according to a conventional example.
  • FIG. 20 is a diagram showing a threshold average arrangement of two dither pattern patterns according to a conventional example.
  • FIG. 21 is a diagram showing an average threshold arrangement of three dither pattern patterns according to a conventional example.
  • FIG. 22 is a diagram showing a power spectrum of an average threshold of three dither patterns of the dither pattern of the first embodiment of the present invention and the dither pattern of the conventional example.
  • FIG. 23 is a diagram showing a difference in average low frequency components of the dither pattern of the first embodiment of the present invention and the dither pattern of the conventional example.
  • FIG. 24 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image using the laminated dither patterns C and M of the present embodiment.
  • FIG. 25 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image using conventional dither patterns C and M.
  • FIG. 26 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image using dither patterns C and M of another conventional example.
  • FIG. 27 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image using the laminated dither patterns C, M, and Y of the present embodiment.
  • FIG. 28 is a diagram showing a [superposition] pattern of dot patterns obtained by binarizing a uniform image using the laminated dither patterns C, M, and Y of the present embodiment.
  • FIG. 29 shows a dot pattern obtained by binarizing a uniform image using the dither pattern of the first embodiment of the present invention and the dither pattern of the conventional example. It is a figure which shows no power spectrum.
  • FIG. 30 is a diagram illustrating a dot pattern obtained by binarizing a uniform image using the three dither pattern patterns of the first embodiment of the present invention and the dither pattern of the conventional example.
  • FIG. 31 is a dot pattern obtained by binarizing a uniform image using the three dither patterns of the first embodiment of the present invention and the dither pattern of the conventional example [superposition]
  • FIG. 5 is a diagram showing differences in low frequency components.
  • FIG. 32 is a diagram for explaining the problems of the prior art.
  • Embodiments of the present invention relate to the manufacture of a dither pattern for generating binary image data used in multi-pass printing or the dither pattern.
  • FIG. 1 is a block diagram mainly showing hardware and software configurations of a personal computer (hereinafter also simply referred to as a PC) functioning as a host device according to an embodiment of the present invention.
  • This host device generates image data to be recorded by the printer 104.
  • a PC 100 that is a host computer operates application software 101, a printer driver 103, and a monitor driver 105 by an operating system (OS) 102.
  • the application software 101 performs processing related to a word processor, spreadsheet, internet browser, and the like.
  • the monitor driver 105 executes processing such as creating image data to be displayed on the monitor 106.
  • the printer driver 103 performs drawing processing on various drawing command groups (image drawing commands, text drawing commands, graphics drawing commands, etc.) issued from the application software 101 to the OS 102, and finally uses the binary values used by the printer 104. Generate image data. Specifically, binary image data for each of a plurality of ink colors used in the printer 104 is generated by executing image processing described later in FIG.
  • the host computer 100 includes a CPU 108, a hard disk (HD) 107, a RAM 109, a ROM 110, etc. as various hardware for operating the above software. That is, the CPU 108 executes the process according to the software program stored in the hard disk 107 or ROM 110, and the RAM 109 performs the process. Used as a work area.
  • a CPU 108 executes the process according to the software program stored in the hard disk 107 or ROM 110, and the RAM 109 performs the process. Used as a work area.
  • the printer 104 is a so-called serial type printer that performs recording by running a recording head that ejects ink on a recording medium and ejecting ink during that time.
  • the recording head is prepared corresponding to each ink of C, M, Y, and ⁇ , and when these are mounted on the carriage, the recording medium such as recording paper can be scanned.
  • Each recording head has an ejection port array density of 1200 dpi, and ejects 3.0 picoliter of ink droplets from each ejection port.
  • Each recording head has 512 outlets.
  • FIG. 2 is a block diagram for explaining main data processing steps in the PC 100 and the printer 104 when recording is performed by the printer 104 in the configuration shown in FIG.
  • the ink jet printer 104 performs recording using four colors of ink of cyan, magenta, yellow, and black, and includes a recording head J0010 that ejects these four colors of ink.
  • a user can create image data to be recorded by the printer 104 via the application 101 of the host PC 100.
  • the image data created by the application 101 is passed to the printer driver 103.
  • the printer driver 103 executes the pre-stage process 3 ⁇ 4 [0002, the post-stage process 3 ⁇ 4 [0003, y supplement 1 ⁇ 0004, the binarization process 3 ⁇ 4 [0005], and the print data creation 0006, respectively.
  • color gamut conversion is performed to convert the color gamut of the display device that displays the screen by the application into the color gamut of the printer 104.
  • image data R, G, and B each of which is represented by 8 bits in R, G, and B, are converted to 8-bit data scale, G, and B within the printer's color gamut using a 3D LUT.
  • the post-processing [0003] the color that reproduces the converted color gamut is separated into ink colors.
  • ⁇ complement 1 ⁇ 0004 ⁇ correction is performed for each CMYK data obtained by color separation.
  • conversion is performed so that each 8-bit data CMYK obtained by color separation is linearly associated with the gradation characteristics of the printer.
  • the binary image data containing binary-coded 1-bit data C, M, K, and ⁇ is added with print control data and printed. Create data.
  • the binary image data includes dot recording data indicating dot recording and dot non-recording data indicating non-recording of dots.
  • the print control data includes “recording medium information”, “recording quality information”, and “other control information” such as a paper feed method.
  • the print data generated as described above is supplied to the printer 104.
  • FIG. 3 is a perspective view showing the ink jet printer 104.
  • Carriage ⁇ 4000 is the X direction in the figure (main scanning direction) with the recording head and ink tank H1900 that supplies each ink of cyan (C), magenta ( ⁇ ), yellow ( ⁇ ), and black ( ⁇ ). ), And each nozzle of the recording head discharges ink at a predetermined timing based on binary image data.
  • the data binarized by the dither pattern according to the first embodiment of the present invention is particularly well-distributed with less low frequency components in the dot distribution when the planes for each color overlap. .
  • the example described above with reference to FIG. 2 relates to a configuration in which a binary computer process using a dither pattern is performed in a host computer, but depending on the processing load of a printing apparatus such as a printer, It is possible to perform binary key processing in a printing device. It ’s roaming.
  • binary data (dot) forces in four planes corresponding to C, M, Y, and Y are generated by the four dither patterns of this embodiment.
  • a dither pattern for generating binary data for the three planes C, M, and Y excluding ⁇ will be described for the sake of simplicity.
  • a repulsive potential is basically used in creating a dither pattern corresponding to three planes.
  • the data of 3 planes obtained using each dither pattern is assumed to have a well-distributed dot distribution with few low-frequency components when 2 or 3 planes are overlaid. be able to.
  • an initial dot pattern is created for each of the plurality of planes of the dither pattern, and at that time, by using the repulsive potential, the in-plane and other planes are used. Each dot is arranged with high dispersibility. Further, the initial dot pattern is set as an initial value, and then dots are sequentially thinned out, and a threshold value corresponding to the dot pattern is arranged at the position of the dot pattern after the thinning out to obtain a dither pattern. At the time of thinning, the dot arrangement with low repulsive potential energy is selected to increase the dispersibility of the dot arrangement after thinning.
  • FIG. 4 is a diagram conceptually showing dot pattern generation according to the present embodiment.
  • dot patterns C, M, and Y for C, M, and Y are generated.
  • the dot arrangement for each of the dot patterns C, M, and Y is performed as follows.
  • FIG. 5 is a flowchart showing dot arrangement determination processing in a dot pattern by the arrangement movement method according to the present embodiment.
  • step S501 50% density images of C, M, and Y corresponding to the sizes of the respective dot patterns C, M, and Y are acquired.
  • step S502 a binary value is applied to each image using a binary value method such as an error diffusion method.
  • a binary value method such as an error diffusion method.
  • the reason why the initial arrangement of dots is obtained using this binary method is that the dispersibility and the arrangement can be obtained in the initial state to some extent according to the binary method used. This makes it possible to shorten the computation time or convergence time until the final placement determination.
  • the method of obtaining the initial arrangement is not essential in applying the present invention.
  • the dot pattern plane the dot having 1-bit data power '1' is randomly arranged.
  • a 50% image of C is used as the first plane, and an image obtained by rotating the image 90 degrees clockwise is used as the second plane of ⁇ .
  • Get an initial arrangement such that ⁇ ⁇ ⁇ is the third plane of ⁇ .
  • step S503 the repulsive potential is calculated for all the dots in the respective planes of the dot patterns C, M, and Y obtained as described above.
  • FIG. 6 is a diagram schematically showing a function of the basic repulsive potential E (r) according to the present embodiment.
  • the repulsive force function defined in the present embodiment represents the range covered by the repulsive force r
  • a repulsive potential of a E (r) is given for dots in the same plane
  • j8 E (r) is given for dots between different planes
  • ⁇ s (n) E (r) is given for overlapping dots.
  • the size of the dot pattern pattern is finite (in this embodiment, it is 128 X 128 pixels), in the potential calculation, the same pattern of 128 X 128 pixels seems to repeat the force. Periodic boundary conditions are used. Therefore, the left end of the dot pattern is adjacent to the right end, and the bottom is adjacent to the top.
  • the dispersibility of the dots is affected by these ⁇ , ⁇ , and ⁇ values.
  • the values of a, ⁇ , and ⁇ can be obtained, for example, by performing an experiment in practice and optimizing with reference to a recorded image recorded using a dot pattern.
  • the coefficient s ( ⁇ ) is a coefficient that is further added in addition to ⁇ in order to disperse overlapping dots.
  • This coefficient s (n) is set to a value corresponding to the number of overlaps that more disperse the dots as the overlap increases. According to the experiment by the present inventor, good results regarding dispersion can be obtained by using s (n) obtained by either of the following two formulas.
  • n is the number of overlaps
  • the sum of the number of combinations is s (n).
  • the dot that overlaps the target dot for calculating repulsive force (at the same position in the same plane or different plane) and the dot located at a distance r from the target dot are checked.
  • n be the number of overlaps in common between the dot of interest and the dot of another plane that overlaps at the same position as that pixel, and the dot that overlaps in the same way at that pixel of each plane at distance r. Then consider the repulsive force caused by the overlapping dots between these two pixels.
  • n 3.
  • a repulsive force caused by the overlap of three dots acts between these pixels.
  • the overlapping force of two dots and the repulsive force of one dot act in a multiple manner along with the overlap of three dots.
  • the third plane is not considered, it can be considered as an overlap of the two dots of the first plane and the second plane, and if the second plane is not considered, the first plane and the third plane can be considered. It can also be considered as an overlap of two dots.
  • the first plane is not considered, it can be considered that the second and third planes overlap.
  • step S503 the energy that is the sum of the repulsive potentials of all dots is found. Then, this total energy is attenuated.
  • the dots are transferred to the pixel having the lowest repulsive potential among the pixels having the distance r within 4 in order for all dots.
  • the total energy which is the total value of the repulsive potential of all dots, is decreased.
  • step S505 the rate of decrease in total energy in step S504 is calculated and When it is determined that is less than or equal to a predetermined value, the energy attenuation process is terminated.
  • the predetermined value can be obtained as a reduction rate at which an image in which low frequency components are appropriately suppressed can be recorded based on the result of actual printing.
  • step S506 each plane in which the rate of decrease in total energy is equal to or less than the predetermined value as described above is set as initial dot patterns C, M, and Y for processing to be described later with reference to FIG. .
  • step S505 it is determined whether or not the power is reduced when the reduction rate of the total energy is equal to or less than a predetermined value.
  • step S506 is performed. I am trying to migrate to.
  • the present embodiment is not limited to this example.
  • step S505 it may be determined whether or not the total energy is equal to or less than a predetermined value. If the total energy is equal to or less than the predetermined value, the process may proceed to step S506!
  • FIGS. 7A to 7D are diagrams schematically illustrating the repulsive potential calculation and the total energy attenuation process described above. Specifically, the three planes C, M, and Y according to the present embodiment are shown in a perspective view, and in particular, the movement of dots is shown in a plan view. Here, the smallest square indicates a dot pattern pixel, and the overlapping pixels correspond to the same pixel position between the planes.
  • FIG. 7B is a diagram for explaining that the potential is added (increased) by the repulsive force between the dots when the dots exist in the same plane.
  • 3 is applied, and the potential of dot Do is IX.
  • a E (r) potential is added.
  • FIG. 7C shows the above two cases, when there is a dot on a different plane than when a dot exists on the same plane, and when there is a dot on the same pixel on a different plane.
  • Repulsion potentiometer applied in relation to those dots when there is an overlap FIG.
  • Fig. 7C shows the above two cases, when there is a dot on a different plane than when a dot exists on the same plane, and when there is a dot on the same pixel on a different plane.
  • FIG. 7D is a diagram for explaining that the total repulsive potential of the dot changes by moving the dot Do in the dot arrangement shown in FIG. 7C.
  • the total repulsive potential due to the presence of dot Do is the distance force r2 and the number n of overlaps is When it becomes 0, it changes to J8E (1) + 1X A E (r2) + 2X j8 E (r2).
  • the total of the repulsive potential is the force that, in the above description, determines the sum of the energy of the dots of two pixels or three pixels when the dots are moved.
  • it is obtained as an integral of the repulsive potential based on the relationship with dots including dots of other pixels that may exist in addition to these dots.
  • FIG. 8 is a flowchart showing a dither pattern creation process according to the present embodiment.
  • a binary pattern having good dispersibility in a certain gradation is created as an initial dot pattern.
  • a 50% density pattern is created.
  • an initial dot pattern with a size of 128 ⁇ 128 and a density of 50 percent is created by the method described in FIG.
  • the dot patterns C, M, and Y of each plane created in this way are saved as the initial pattern.
  • step S302 a repulsive potential is applied to the initial dot pattern of 128 gradations obtained above to perform dot thinning, and a threshold is set for each level of 128 gradations in the low gradation direction.
  • Create value data Specifically, the dots are thinned out while calculating the repulsive potential for the initial dot pattern.
  • the repulsive potential is calculated for all dots of the dot pattern ⁇ ⁇ in the same manner as described in Fig. 5, and the dot with the highest energy is thinned out.
  • dot pattern ⁇ the energy of repulsion is calculated for all dots, and the largest dot is thinned out.
  • dot pattern C the repulsive potential of all dots is calculated, and the dot with the maximum energy is thinned out.
  • a dot pattern can be obtained for each gradation level gl of 128 gradations, and a dither pattern, that is, a distribution of threshold values can be generated according to the pattern.
  • step S302 to S304 is repeated until the tone level gl becomes 0 (steps S302 to S307) using the dot pattern obtained at the previous level as the initial dot pattern (steps S302 to S307).
  • a threshold value pattern of each gradation value on the gradation side can be obtained.
  • the threshold value turn on the high gradation side can be obtained in the same manner.
  • This process can be performed in the same manner as the process shown in FIG.
  • Dot patterns are added in the same way for dot patterns M and Y. Other processes are the same as those on the low gradation side.
  • the threshold pattern of each plane for each gradation obtained as described above can be combined into a dither pattern for each of the C, M, and Y planes.
  • the way of arranging the dots of the dither pattern is not limited to the method of thinning and adding dots with 50% density as the initial value as in the above example. For example, assuming that the initial value is 0%, nothing is arranged, and it may be arranged so that dots (thresholds) can be detected from the state. This addition is the same as the above-described method for obtaining the threshold arrangement on the high gradation side.
  • weighting coefficient of repulsive potential, ⁇ in dither pattern Facial Mino weighting coefficients of influence, / 3, ⁇ 5 ( ⁇ ) respectively how whether have affected concrete to be described in.
  • the dither pattern threshold generation algorithm described above was designed to increase the dispersibility by defining dots and the associated repulsive potential when determining each threshold. Therefore, here we will also assume that dots are distributed in relation to the threshold distribution.
  • the coefficient ⁇ affects the dispersion of dots in the same plane
  • the coefficient j8 affects the dispersion of dots between different planes
  • ⁇ s ( ⁇ ) is a pixel in which the dots of different planes are at the same position. This influences the dispersion of the overlap.
  • the influence of other planes can be made relatively small, and the dispersibility within the same plane can be improved.
  • the dot distribution (logical sum pattern) of two superimposed planes is a good distribution with low frequency components and low dispersion.
  • both dispersibility of dots in the same plane and different planes is improved.
  • the dispersion of both in the same plane and in different planes is improved by applying the term ⁇ ( ⁇ :; ⁇
  • the term ⁇ s (n) E (r) basically gives the effect that the overlapping dots are well dispersed, but as explained in FIGS.
  • this term is set so that the potential increases as the overlap increases, and by moving the dots one by one or arranging them according to the potential to reduce the energy, the overlap is reduced in the process of reducing the energy.
  • a E (r) has the effect of reducing the number of adjacent dots.
  • the term y s (n) E (r) also has the effect of reducing the number of overlapping dots by simply dispersing the overlapping dots as much as possible. With this effect, the number of dots in a cluster of dots due to adjacent or overlapping can be reduced as much as possible, and as a result, a dot distribution with less low frequency components can be obtained.
  • the interaction between the planes is different from each other in consideration of the magnitude of the force interaction between the planes, which is j8 E (r). For example, if the number of planes is large, the repulsive potential between the planes of the dither pattern used for ink that is driven as close as possible is made larger than other repulsive potentials, that is, the coefficient of j8 E (r) or E (r It is also effective to change the shape of) between planes. Further, for example, in fixing using a reaction system, a reaction solution or an ink having such a component is used. It is also effective to increase the repulsive potential of the dither pattern plane used for the reaction liquid, etc.
  • “Uniform dispersion” means that the total energy is as low as possible in the case of the above repulsive potential, that is, if there are dots due to overlapping or adjacent dots, these overlapping or adjacent In this state, the dots are arranged as evenly as possible.
  • “low frequency component is reduced (decreased)” means that when the dispersion is good as described above, in the power spectrum described later about the distribution, a region with high sensitivity in human visual characteristics (low frequency) This means that the frequency component of (region) decreases (decreases) to the extent that the dispersion is good.
  • FIGS. 9 to 11 show the dither patterns C, M, and Y (hereinafter also referred to as “laminated dither pattern”) of the present embodiment manufactured by the above-described manufacturing method in concentrations corresponding to the threshold values.
  • FIG. FIG. 19 is a diagram showing a similar pattern of the conventional dither pattern described in Patent Document 1 and Patent Document 2.
  • Each dither pattern shown in FIGS. 9 to 11 and FIG. 19 has an area of 128 ⁇ 128 pixels. In each pattern, the lower the density, the larger the threshold.
  • the conventional dither pattern shown in FIG. 19 and the dither pattern of this embodiment are particularly distributed within the same plane due to the effect of the coefficient ⁇ . Since the dots are arranged in consideration of the characteristics, there is no bias in the distribution of each density indicated by the threshold value, and an overall smooth impression is received.
  • FIG. 12 is the same as the laminated dither patterns C and M of the present embodiment shown in FIGS. 9 and 10. It is a figure which shows the pattern of the density
  • FIG. 13 is a diagram showing a density pattern according to an average of threshold values of the laminated dither patterns C, M, and Y shown in FIGS. 9, 10, and 11 according to the present embodiment.
  • FIG. 20 is a diagram showing a density pattern according to the average of threshold values of the same pixels of the conventional dither pattern C shown in FIG. 19 and the dither pattern ⁇ ⁇ obtained by shifting it.
  • FIG. 21 is a diagram showing a pattern of density according to the conventional dither pattern C shown in FIG. 19 and the average of the threshold values of the same dither pattern ⁇ and ⁇ obtained by shifting the conventional dither pattern C. is there. Since these patterns satisfy the above-mentioned periodic boundary conditions, it is possible to easily set the overlap.
  • the threshold average arrangement is well distributed and has no rough feeling. This is because, as described above, the dispersion of the dots between the two planes is taken into consideration (coefficient
  • the arrangement pattern of the average threshold of the conventional dither pattern shown in FIG. 20 and FIG. 21 exhibits a feeling of roughness due to reduced dispersibility.
  • FIG. 22 is a diagram showing a comparison of the power spectra of the average threshold arrangement pattern when the layered dither pattern of the present embodiment and the conventional layered dither pattern are overlapped.
  • the power spectrum can be treated as a one-dimensional two-dimensional spatial frequency, “T. Mitsa and KJ Parker, Digital Halftoning using a Blue Noise Mask, Proc. SPIE 1452, pp. 47—56 (1991 J)”. Is a radially averaged power spectrum.
  • the conventional threshold-average arrangement pattern that does not consider the dispersion with other planes has a larger power in the entire frequency domain and a low-frequency domain.
  • the ingredients are larger than those of this embodiment.
  • FIG. 23 is a diagram showing a comparison of the amount of low frequency components in the power spectrum of the threshold value average arrangement pattern of each of the laminated dither pattern of this embodiment and the conventional dither pattern. As is clear from this figure, the dither pattern superimposed has more low frequency components in the conventional pattern.
  • the dither pattern As an evaluation of the performance of the dither pattern, a cycle in which the power spectrum of the dither pattern exists is used. It is a major feature of the present invention to focus on the “low frequency component” that is on the lower frequency side than about half of the wave number region. In the situation where the low-frequency component of the dither pattern is kept low, beading due to the grain distribution is not likely to appear and is not visually recognized as described above. As a result, the recorded image is visually irritating. In particular, as for the dither pattern, one pattern is repeatedly used two-dimensionally for the recorded image. When one dither pattern is used repeatedly, the more low frequency components of the dither pattern are, the more easily the pattern of the repeated pattern is recognized by the human eye.
  • the pattern greatly affects the appearance and appearance of beading. For this reason, a rough feeling related to the dither cycle occurs. Therefore, it is important to pay attention to the repetitive pattern and to suppress the low frequency component side of the dither pattern.
  • the present invention focuses on the low frequency region where the roughness or the like is visually anxious, and suppresses the low frequency component. Further, the dither pattern of the present invention is characterized in that such low frequency power is kept low.
  • the frequency characteristics related to the sensitivity of the human eye depend on the distance between the printed material and the human eye, for example, Dooley (“RP Dooley: Prediction Brightness Appearance at Edges Using Linear and Non-Liner Visual Describing Functions, SPES annual Meeting (1975))).
  • Dooley RP Dooley: Prediction Brightness Appearance at Edges Using Linear and Non-Liner Visual Describing Functions, SPES annual Meeting (1975)
  • components in the frequency range lower than approximately lOcycles / mm are recognized by the human eye.
  • the present inventor has also confirmed experimentally. Therefore, it can be said that it is important to focus on the region including the low frequency side (low frequency region) from lOcycles / mm.
  • the dither pattern according to the embodiment of the present invention is different from the dither pattern obtained by considering only one conventional plane (the dither pattern described in Patent Document 1 and Patent Document 2).
  • the dither pattern according to the embodiment of the present invention when the dither pattern of different planes is intentionally shifted, the dispersibility of the threshold arrangement pattern is greatly reduced.
  • dispersibility is greatly reduced if the overlap is different from the normal overlap when considering the dispersion.
  • the dispersibility between different planes is not taken into consideration, and therefore the dispersibility does not change even if the overlap is different from the normal overlap.
  • FIG. 14 is a diagram showing an average threshold arrangement pattern when the stacked dither patterns C and M according to the present embodiment are shifted
  • FIG. 15 is a shifted stacked dither pattern C and M.
  • Y is a figure which shows the threshold value arrangement pattern of the threshold value average when it overlaps.
  • FIGS. 16 and 17 are diagrams comparing the power spectra when the overlapping position is shifted and when the overlapping position is not shifted (that is, when the overlapping position is overlapped at the regular position).
  • FIG. 5 is a diagram showing a power spectrum of a laminated dither pattern C, M, or a laminated dither pattern C, M, Y threshold average arrangement pattern.
  • the laminated dither pattern of the present embodiment shown in these figures increases in power in all frequency ranges when shifted, and becomes larger compared to the case where low frequency components are not shifted. This is because, as described above, the laminated dither pattern considers dispersion even between different planes. Therefore, if the overlap is different from the normal overlap when considering the dispersion, the dispersion is different. This is because the performance is greatly reduced.
  • Fig. 18 is a diagram showing the evaluation by the above shift in terms of the amount of the low frequency component.
  • the case (normal) In the case of (), the comparison of the amount of low frequency components in the power spectrum is shown.
  • the shifted one is not shifted in any of the dither patterns C and M and the dither patterns C, M, and Y. In comparison, it can be seen that the amount of low frequency components increases.
  • FIG. 24 is a diagram showing a logical product pattern of dot patterns obtained by actually binarizing a uniform image having a density of 64 using the laminated dither patterns C and M of this embodiment.
  • FIG. 27 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image having a density of 64 using the laminated dither patterns C, M, and Y of the present embodiment.
  • FIGS. 25 and 26 respectively use two dither patterns C and M obtained by randomly shifting according to the conventional example, and two dither patterns C and M obtained by shifting only one pixel according to the conventional example.
  • FIG. 6 is a diagram showing a logical product pattern of dot patterns obtained by binarizing a uniform image having a density of 64 respectively.
  • This “overlapping” pattern uses multiple dither patterns, for example, when a dot (“1”) exists in each dot pattern pixel obtained by binarizing a uniform image with a density of 64.
  • the data “1” indicating the dot exists in the corresponding pixel and the dot overlaps with the same pixel the data corresponding to the number exists. For example, if the overlap is 2, use "2". If the overlap is 3, use "3". So Then, the pattern shown in FIG. 28 below is represented by the density corresponding to the number indicated by the data. That is, this superposition pattern can show the dot arrangement of each different plane as a single plane and the dot overlap arrangement along with the degree of overlap.
  • FIG. 28 is a diagram showing an “overlapping” pattern when the respective dot patterns obtained by binarizing a uniform image with a density of 64 using three stacked dither patterns of the present embodiment are overlapped. is there.
  • the pattern shown in FIG. 28 represents a pattern close to the superimposed ink dot pattern when recording is performed using the dither pattern of the present embodiment. Therefore, it can be seen from these patterns that the superimposed ink dots and their overlap are well dispersed.
  • FIGS. 29 and 30 show the “overlapping” obtained as described above when the laminated dither pattern of the present embodiment and the above-described two conventional dither patterns are overlapped, respectively. It is a figure which compares and shows the power spectrum of a "matching" pattern.
  • the conventional superposed pattern by the two dither patterns has more low frequency components than the superposed pattern by the laminated dither pattern of the present embodiment. That is, the dispersion becomes worse and the feeling of roughness of the pattern increases.
  • FIG. 31 shows the “overlapping” pattern obtained as described above when the laminated dither pattern of the present embodiment and two and three of the above-described conventional dither patterns are overlapped, respectively.
  • FIG. 6 is a diagram showing a comparison of the amount of low frequency components in the power spectra of the two.
  • the conventional overlay pattern by two dither patterns has more low frequency components than the overlay pattern by the multilayer dither pattern of this embodiment. That is, it is understood that the dispersion becomes worse and the feeling of roughness of the pattern increases. (Embodiment 2)
  • the dither pattern may be switched according to the gradation value. That is, when a dither pattern is created as in the above embodiment, for example, if all three planes have a coverage of 50%, it is relatively clean. However, if the coverage of each plane is 50%, 25%, or 25%, the image quality may be degraded. This is for example magenta 2 This is because the 5% threshold dot distribution is created under the influence of repulsion when all other colors are printed on a 25% plane.
  • a dither pattern is created by dividing three planes into two stages. First of all, ij is divided into 4 ij as 255 planes. At this time, it is set in two stages of 0 to 127 and 128 to 255. Then, as a combination, it is possible to immediately calculate whether the remaining two planes are more than half of the maximum gray value of each plane.
  • the dither of (1, 1, 0) is selected.
  • the dither of (1, 1, 0) is an initial binary pattern in which the first plane is created from 128/255 level, the second plane is also created from 128Z255 level force,
  • the third plane is a dither pattern created from the initial binary image created from the 64Z255 level. Then, after applying the repulsive potential and arranging the dots, the first and second planes are thinned by 2 dots, while the third plane is thinned by 1 dot.
  • the present invention may apply the laminated dither pattern described in the above embodiment to all of the plurality of types of ink used in the recording apparatus, or a combination of some of the plurality of types of ink used in the recording apparatus. Apply the laminated dither pattern.
  • a laminated dither pattern may be applied.
  • a laminated dither pattern for six colors is generated by the manufacturing method described in the above embodiment.
  • a layered dither pattern may be applied to combinations of some of these six colors (two colors, three colors, four colors, and five colors).
  • the first form is a form in which the laminated dither pattern is generated for the part of the above colors, and the dither pattern manufacturing method for the other colors is not limited.
  • a laminated dither pattern is generated by the manufacturing method described in the above embodiment, and
  • KLcLm For the other three colors (KLcLm), dither patterns are generated by a well-known manufacturing method.
  • the second form is a form in which the laminated dither pattern is generated for the part of the colors, and for the other colors, the medium dither pattern generated for the part of the colors is also selected.
  • the laminated dither pattern is generated by the manufacturing method explained in the above embodiment, and for the other 3 colors (KLcLm), the laminated dither pattern generated for CMY is used. If selected, apply the selected one.
  • the force described in the case where the laminated dither pattern is applied to a combination of different ink colors is not limited to this embodiment.
  • the present invention is also applicable to a mode in which recording is performed using dots of the same color and different diameters (same color inks having different ejection volumes).
  • the above-described stacked dither pattern may be applied to dots of the same color and different diameters (for example, large dots and small dots). For example, consider the case of using six types of dots: large cyan, small cyan, large magenta, small magenta, yellow, and black.
  • a stacked dither pattern is generated for the large cyan and small cyan or large magenta and small magenta by the manufacturing method described in the above embodiment.
  • the above-mentioned laminated dither pattern is applied to the combination of different color dots, and the same color dots having different diameters are combined.
  • the same dither pattern may be applied.
  • a stacked dither pattern is generated by the manufacturing method described in the above embodiment for large cyan and large magenta, and the same dither pattern as large cyan is applied to small cyan.
  • magenta the same dither pattern as for large magenta is applied.
  • the number of types of dots of the same color and different diameters is not limited to two types of large and small, and may be three types of large, medium, and small, or more.
  • the present invention is not effective only when it is applied to dots having different colors and / or sizes.
  • the present invention is applied to the same color ink that is ejected at different timings even when separated nozzle group forces are applied. Is also effective. For example, if the nozzle groups are arranged in the order of CMYMC along the main scanning direction of the head!
  • the laminated dither pattern manufactured by the above method is applied to (C nozzle group, M nozzle group).
  • the present invention is also applicable to a form using a liquid other than ink.
  • the liquid other than the ink include a reaction liquid that aggregates or insolubilizes the color material in the ink.
  • a laminated dither pattern is generated by the manufacturing method described in the above embodiment for at least one kind of ink and reaction liquid.
  • the present invention can be applied to any deviation of a dye ink containing a dye as a color material, a pigment ink containing a pigment as a color material, and a mixed ink containing a dye and a pigment as a color material. It is.
  • the size is horizontal: 128 pixels X vertical: 128 pixels.
  • align the dither pattern in the vertical and horizontal sizes to determine the force frequency component. For example, when the length is 256 x 128 and the length is short, the vertical and horizontal sizes are aligned to the size in the longitudinal direction (in this example, 256 pixels in the horizontal direction), so the pattern is repeated vertically to create a pattern of 256 pixels x 256 pixels. Evaluate frequency components.
  • the frequency component is evaluated for a pattern in which the vertical and horizontal sizes are aligned with the size in the longitudinal direction. Specifically, the pattern is repeated in the short direction until the size in the short direction of the pattern is equal to or greater than the size in the long direction, the medium force pattern is cut out, and the cut pattern is evaluated.
  • the vertical and horizontal sizes are preferably 2 to the nth power (n is a positive integer) so that the fast Fourier transform can be used when performing the frequency conversion. If it is not 2 n, the 2 n power closest to the size in the longitudinal direction is specified, and the pattern is repeated vertically and horizontally so that it can be cut out with the specified 2 n size.
  • the above-identified pattern of 2 n size is extracted, and the extracted pattern is evaluated.
  • the dither pattern is horizontal: 500 pixels X vertical: 320 pixels.
  • the 2 nth power closest to “500” is specified. Closest 2 to the power of n is specified as “512”. Therefore, in order to cut out a pattern of 512 pixels by 512 pixels, the pattern is repeated once in the horizontal and vertical directions to generate a pattern of 1000 pixels by 640 pixels.
  • a pattern of the medium power 512 pixels x 512 pixels of the 1000 pixel x 640 pixel pattern generated in this way is cut out, and the cut out pattern is evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Color, Gradation (AREA)

Abstract

 異なる複数の色のインクを用い記録を行う際のグレインの発生を抑制しビーディングによる画質劣化を軽減できるディザパターンを提供する。 斥力ポテンシャルの合計が計算される各閾値ドットの中で、例えば、閾値ドットDoが斥力ポテンシャルの合計が最も大きい場合、その移動前後の斥力ポテンシャルの変化を求め、移動前後で最も斥力ポテンシャルの合計が低くなる画素に閾値ドットDoを移動させる。このような処理を繰り返すことによって3プレーン全体の総エネルギーを下げることができ、3プレーンのディザパターンの重なりにおいて閾値ドット分布が、低周波数成分が少なく良好に分散された配置となる。

Description

明 細 書 次に示すように国際調査機関が作成した。
ディザパターン製造方法 技術分野
[0001] 本発明は、データ処理方法、データ処理装置、ディザパターン製造方法およびディ ザパターンに関し、詳しくは、画像データの量子化を行うディザ処理ないしそれに用
V、られるディザパターンに関するものである。
背景技術
[0002] インクジェットプリンタをはじめとするプリンタにおいて記録画像を構成する複数のィ ンクドットを形成するためのドット記録データの生成は、一般には、例えば 8ビットの画 像データを 1ビット 2値の画像データに量子化する処理によって行う。これら量子化の 手法の 1つとしてディザ処理が知られている。特許文献 1や特許文献 2などに記載さ れている手法を用いると、分散性のよいパターンを生成でき、これらのパターンで量 子化された 2値画像データもノイズ感の少な 、分散性のょ 、パターンとなる。ディザ法 は、誤差拡散法などと比べて、演算スピードが速いため、スピードが必要とされる高 速プリンタ、データ数が多!、多色プリンタなどの処理に向 、て 、る。
[0003] 特許文献 1:特許 2622429号公報
特許文献 2 :米国特許第 5535020号明細書
発明の開示
[0004] ところで、近年のインクジェット記録システムでは、その高速化、高密度化、また、ィ ンクの種類の多様ィ匕に伴い、単位時間当たりに付与されるインク量や記録媒体の単 位面積あたりに付与されるインクの量が増大する傾向にある。このため、これまで以 上に重要な課題としてビーディングの問題があげられる。ビーディングは、記録媒体 で吸収しきれな 、インクが媒体上で接触して連なり、それが記録画像にぉ 、てムラな どの原因となるものである。
[0005] ビーディングを低減させるには、短 、時間内に付与されるインクを極力異なる位置 に配置することが重要である。このために、それぞれの色インク毎に、極力異なるディ ザパターンを用いるのが有効である。こうすることで、異なる色のインク同士が同じ場 所に打ち込まれる確率を下げることができる。
[0006] し力しながら、ディザパターンを色毎に異ならせるだけでは、ビーディングの低減は 十分ではない。
[0007] 図 32 (a)〜(c)はこの問題を説明する図である。同図は、シアン、マゼンタ、イエロ 一の順でそれぞれのインクが記録媒体に打ち込まれて行く過程を示している。図 32 ( a)に示すように、未だ何も打ち込まれていない記録媒体に先ずシアンインクが吐出さ れる。このとき、それぞれのシアンインクが打ち込まれる位置は用いているディザパタ ーンのドットの配置に従うことはもちろんである。そして、このインクが記録媒体に完全 に吸収される前は、記録媒体上に上記マスクに従った配置でシアンインク滴 10Cが 存在する。次に、図 32 (b)に示すように、マゼンタインク力 同様に対応するディザパ ターンに従った位置に吐出され、同様に吸収前にはインク滴 10Mを形成する。ここで 、シアンインクとマゼンタインクについてそれぞれ用いるディザのドット配置の関係に よっては、シアンインク滴 10Cとマゼンタインク滴 10Mとが接して連結したインク滴 10 B (図中、 X印を付したもの)を形成することがある。さらに、図 32 (c)に示すように、ィ エローインク力 同様に、対応するディザパターンに従った位置に吐出され吸収前に はインク滴 10Yを形成する。この場合も、それぞれのインクについて用いるマスクのド ット配置の関係によって、連結したインク滴 10B (図中、 X印を付したもの)を形成す る。さらに走査が重ねられて、画素に対するインク滴の比率が高くとなると、同じ画素 にインク滴が重ねて吐出されることもあり、同様の連結したインク滴を形成する。
[0008] このように、順次吐出されるインク滴が隣接ないし近接する画素あるいは同じ画素 に付与される場合には、互いが接触して相互の表面張力によって引き合い、 2つ分 あるいは 3つ分の(あるいはそれ以上の)インク滴が合体した大きな滴 10B (グレイン) を形成する。一度このようなグレインが形成されると、次に隣接ないし近接した位置に 付与されたインク滴はそのダレインに引き寄せられ易くなる。すなわち、最初に発生し たグレインが核となって徐々に成長し、やがて大きなグレインを生成する。そして、特 に一様な画像領域では、このようなグレインが記録媒体に定着したものが不規則に 散らばった状態で散在し、ビーディングとして視認されることとなる。 [0009] 記録の途中で発生するグレインの原因となるドットの近接ないし隣接は、量子化さ れた画像データが本来的に持っている量子化データの配置パターンに依存している 。すなわち、ディザパターンにおける閾値の配置パターンに応じて、それによつて量 子化されたデータのその画像データプレーンにおける配置が定まる。
[0010] 特許文献 1に記載されるディザ処理もしくはディザパターンによっては、図 Zにて説 明したようなグレインの問題を解決することはできない。すなわち、特許文献 1に記載 のディザパターンは、異なる色に異なるディザパターンを適用することも可能であるが 、この場合異なる色の間ではそれらのディザパターンは無関係に定められたものであ る。このため、異なる色同士の記録ドットの配置は分散が悪く分割記録の途中の画像 (中間画像)におけるドットの隣接やさらにはドットの重なりを避けることができないこと がある。
[0011] 本発明は、上述した問題点を解消するためになされたものであり、その目的とすると ころは、異なる複数の色のインクを用い記録を行う際のダレインの発生を抑制しビー デイングによる画質劣化を軽減できるデータ処理方法、データ処理装置、ディザパタ ーン製造方法およびディザパターンを提供することにある。
[0012] そのために本発明では、記録画像を構成する複数種類のドットを形成するため、当 該複数種類のドットの記録データを生成するのに用いられる複数のディザパターンの 製造方法において、前記複数種類の記録ドットに対応した複数のディザパターンそ れぞれにおける閾値の配置を定める工程を有し、該工程は、前記複数のディザバタ ーンそれぞれにおける閾値分布の低周波数成分が、当該複数のディザパターンで 共に少なくなるように閾値の配置を定める工程を含むことを特徴とする。
[0013] 他の形態では、ドットの記録データを生成するために用いられる複数のディザバタ ーンの製造方法において、ディザパターンにおける閾値の配置を定める工程を有し 、該工程は、前記複数のディザパターンそれぞれにおける閾値分布の第 1状態と、該 第 1状態力も移行する、前記複数のディザパターンそれぞれにおける閾値分布の第 2状態と、を当該工程中に含み、前記第 1状態から前記第 2状態に移行する際に、前 記閾値分布の低周波数成分が前記複数のディザパターンで共に少なくなるように閾 値の配置を定める工程を含むことを特徴とする。 [0014] また、複数のディザパターンを用いて複数種類のドットの記録データを生成するた めの量子化を行うデータ処理方法において、前記複数のディザパターンは、それら の 2つ以上を重ねた場合に、対応する閾値画素の閾値の平均値のパターン力 前記 2つ以上のディザパターンについて重ね位置をずらした場合の対応する閾値画素の 閾値の平均値のパターンより低周波数成分が少ないことを特徴とする。
[0015] さらに、複数のディザパターンを用いて複数種類のドットの記録データを生成する ための量子化を行うデータ処理装置において、前記複数のディザパターンは、それ らの 2つ以上を重ねた場合に、対応する閾値画素の閾値の平均値のパターン力 前 記 2つ以上のディザパターンについて重ね位置をずらした場合の対応する閾値画素 の閾値の平均値のパターンより低周波数成分が少ないことを特徴とする。
[0016] さらに、量子化のために用いられる複数のディザパターンにおいて、前記複数のデ ィザパターンは、それらの 2つ以上を重ねた場合に、対応する閾値画素の閾値の平 均値のパターン力 前記 2つ以上のディザパターンについて重ね位置をずらした場 合の対応する閾値画素の閾値の平均値のパターンより、低周波数成分が少ないこと を特徴とする。
[0017] 以上の構成によれば、記録の途中におけるグレインが原因で生じるビーディングに よる画質劣化を軽減できる。
図面の簡単な説明
[0018] [図 1]図 1は本発明の一実施形態に係る画像処理装置としての PCのハードウェアお よびソフトウェアの構成を主に示すブロック図である。
[図 2]図 2は本発明の一実施形態のインクジェット記録システムにおける、画像データ 変換処理の流れを説明するためのブロック図である。
[図 3]図 3は本発明の実施形態に適用可能なインクジェット記録装置を示した斜視図 である。
[図 4]図 4は本発明の第一の実施形態に係るディザパターン製法を説明する図である
[図 5]図 5は本発明の第一の実施形態に係るディザパターン製法の手順を示すフロ 一チャートである。 圆 6]図 6は本発明の実施形態に係る基本斥力ポテンシャル E (r)の関数を模式的に 示す図である。
[図 7A]図 7Aは本発明の第一の実施形態に力かる斥力ポテンシャルの付与と総エネ ルギ一の減衰処理を模式的に説明する図である。
[図 7B]図 7Bは本発明の第一の実施形態に力かる斥力ポテンシャルの付与と総エネ ルギ一の減衰処理を模式的に説明する図である。
[図 7C]図 7Cは本発明の第一の実施形態に力かる斥力ポテンシャルの付与と総エネ ルギ一の減衰処理を模式的に説明する図である。
[図 7D]図 7Dは本発明の第一の実施形態に力かる斥力ポテンシャルの付与と総エネ ルギ一の減衰処理を模式的に説明する図である。
[図 8]図 8は本実施形態のディザパターンの作成処理を示すフローチャートである。 圆 9]図 9は本発明の第一の実施形態に係るディザパターンの閾値の配置を示す図 である。
圆 10]図 10は本発明の第一の実施形態に係るディザパターンの閾値の配置を示す 図である。
圆 11]図 11は本発明の第一の実施形態に係るディザパターンの閾値の配置を示す 図である。
[図 12]図 12は本発明の第一の実施形態に係る 2つのディザパターンパターンの閾値 平均の配置を示す図である。
[図 13]図 13は本発明の第一の実施形態に係る 3つのディザパターンパターンの閾値 平均の配置を示す図である。
[図 14]図 14は本発明の第一の実施形態のディザパターンをずらしたときの 2つのディ ザパターンパターンの閾値平均の配置を示す図である。
[図 15]図 15は本発明の第一の実施形態のディザパターンをずらしたときの 3つのディ ザパターンパターンの閾値平均の配置を示す図である。
圆 16]図 16は本発明の第一の実施形態のディザパターンおよびそれをずらしたディ ザパターンそれぞれの 2つのディザパターンの閾値平均のパワースペクトルを示す図 である。 圆 17]図 17は本発明の第一の実施形態のディザパターンおよびそれをずらしたディ ザパターンそれぞれの 3つのディザパターンの閾値平均のパワースペクトルを示す図 である。
圆 18]図 18は本発明の第一の実施形態のディザパターンおよびそれをずらしたディ ザパターンそれぞれの閾値平均の低周波数成分の違いを示す図である。
[図 19]図 19は従来例に係るディザパターンの閾値の配置を示す図である。
[図 20]図 20は従来例に係る 2つのディザパターンパターンの閾値平均の配置を示す 図である。
[図 21]図 21は従来例に係る 3つのディザパターンパターンの閾値平均の配置を示す 図である。
圆 22]図 22は本発明の第一の実施形態のディザパターンおよび従来例のディザパ ターンそれぞれの 3つのディザパターンの閾値平均のパワースペクトルを示す図であ る。
圆 23]図 23は本発明の第一の実施形態のディザパターンおよび従来例のディザパ ターンそれぞれの閾値平均の低周波数成分の違いを示す図である。
[図 24]図 24は本実施形態の積層ディザパターン C、 Mを用いて均一画像を 2値化し て得られるドットパターンの論理積パターンを示す図である。
[図 25]図 25は従来例のディザパターン C、 Mを用いて均一画像を 2値化して得られる ドットパターンの論理積パターンを示す図である。
[図 26]図 26は他の従来例のディザパターン C、 Mを用いて均一画像を 2値ィ匕して得 られるドットパターンの論理積パターンを示す図である。
[図 27]図 27は本実施形態の積層ディザパターン C、 M、 Yを用いて均一画像を 2値 化して得られるドットパターンの論理積パターンを示す図である。
[図 28]図 28は本実施形態の積層ディザパターン C、 M、 Yを用いて均一画像を 2値 化して得られるドットパターンの [重ね合わせ]パターンを示す図である。
圆 29]図 29は本発明の第一の実施形態のディザパターンおよび従来例のディザパ ターンそれぞれの 2つのディザパターンパターンを用いて均一画像を 2値化して得ら れるドットパターンの [重ね合わせ]のパワースペクトルを示す図である。 [図 30]図 30は本発明の第一の実施形態のディザパターンおよび従来例のディザパ ターンそれぞれの 3つのディザパターンパターンを用いて均一画像を 2値化して得ら れるドットパターンの [重ね合わせ]のパワースペクトルを示す図である。
[図 31]図 31は本発明の第一の実施形態のディザパターンおよび従来例のディザパ ターンそれぞれの 3つのディザパターンパターンを用いて均一画像を 2値化して得ら れるドットパターン [重ね合わせ]の低周波数成分の違 、を示す図である。
[図 32]図 32は従来技術の問題点を説明する図である。
発明を実施するための最良の形態
[0019] 以下、図面を参照して本発明の実施形態を詳細に説明する。
[0020] 本発明の実施形態は、マルチパス記録で用いる 2値の画像データを生成するため のディザパターンの製造ないしそのディザパターンに関するものである。
[0021] 図 1は、本発明の一実施形態に係るホスト機器として機能するパーソナルコンビュ ータ(以下、単に PCとも言う)の主にハードウェアおよびソフトウェアの構成を示すブ ロック図である。このホスト機器は、プリンタ 104で記録する画像データを生成する。
[0022] 図 1において、ホストコンピュータである PC100は、オペレーティングシステム(OS) 102によって、アプリケーションソフトウェア 101、プリンタドライバ 103、モニタドライバ 105の各ソフトウェアを動作させる。アプリケーションソフトウェア 101は、ワープロ、表 計算、インターネットブラウザなどに関する処理を行う。モニタドライバ 105は、モニタ 106に表示する画像データを作成するなどの処理を実行する。
[0023] プリンタドライバ 103は、アプリケーションソフトウェア 101から OS102へ発行される 各種描画命令群 (イメージ描画命令、テキスト描画命令グラフィクス描画命令など)を 描画処理して、最終的にプリンタ 104で用いる 2値の画像データを生成する。詳しく は、図 2で後述される画像処理を実行することにより、プリンタ 104で用いる複数のィ ンク色それぞれの 2値の画像データを生成する。
[0024] ホストコンピュータ 100は、以上のソフトウェアを動作させるための各種ハードウェア として、 CPU108、ハードディスク(HD) 107、 RAM109、 ROM110などを備える。 すなわち、 CPU108は、ハードディスク 107や ROM110に格納されている上記のソ フトウエアプログラムに従つてその処理を実行し、 RAM 109はその処理実行の際に ワークエリアとして用いられる。
[0025] 本実施形態のプリンタ 104は、インクを吐出する記録ヘッドを記録媒体に対して走 查し、その間にインクを吐出して記録を行ういわゆるシリアル方式のプリンタである。 記録ヘッドは、 C、 M、 Y、 Κそれぞれのインクに対応して用意され、これらがキヤリツ ジに装着されることにより、記録用紙などの記録媒体に対して走査することができる。 それぞれの記録ヘッドは、吐出口の配列密度が 1200dpiであり、それぞれの吐出口 から 3. 0ピコリットルのインク滴を吐出する。また、それぞれの記録ヘッドの吐出口の 数は 512個である。
[0026] 図 2は、図 1に示した構成においてプリンタ 104で記録を行う際の PC100およびプ リンタ 104における主なデータ処理過程を説明するブロック図である。本実施形態の インクジェットプリンタ 104は、上述したようにシアン、マゼンタ、イェロー、ブラックの 4 色のインクによって記録を行うものであり、そのためにこれら 4色のインクを吐出する記 録ヘッド J0010を備える。
[0027] ホスト PC100のアプリケーション 101を介して、ユーザはプリンタ 104で記録する画 像データを作成することができる。そして、記録を行うときはアプリケーション 101で作 成された画像データがプリンタドライバ 103に渡される。
[0028] プリンタドライバ 103は、その処理として、前段処 ¾[0002、後段処 ¾[0003、 y補 1^0004、 2値化処 ¾[0005、および印刷データ作 0006をそれぞれ実行する。 前段処 ¾[0002では、アプリケーションによる画面を表示する表示器が持つ色域を プリンタ 104の色域に変換する色域変換を行う。具体的には、 R、 G、 B夫々が 8ビット で表現された画像データ R、 G、 Bを 3次元 LUTにより、プリンタの色域内の 8ビットデ 一タ尺、 G、 Bに変換する。次いで、後段処 ¾[0003では、変換された色域を再現す る色をインク色に分解する。具体的には、前段処 ¾[0002にて得られた 8ビットデータ R、 G、 Bが表す色を再現するためのインクの組合せに対応した 8ビットデータ C、 M、 Y、 Κを求める処理を行う。 γ補 1^0004では、色分解で得られた CMYKのデータ 夫々について γ補正を行う。具体的には、色分解で得られた 8ビットデータ CMYK 夫々がプリンタの階調特性に線形的に対応づけられるような変換を行う。
[0029] 次!、で、 2値化処 ¾[0005では、 γ補正がなされた 8ビットデータ C、 M、 Y、 Κそれ ぞれを 1ビットデータ C、 Μ、 Υ、 Κに変換する量子化処理を行う。この処理では、後述 の各実施形態で説明されるディザパターンと用いた 2値ィ匕処理を行う。ここで用いる ディザパターンのデータは所定のメモリに予め格納しておく。なお、ディザパターンデ ータが所定のメモリに予め格納されておらず、 PC100がディザパターン製造のため のデータ処理装置として機能するときは、後述の各実施形態でそれぞれ説明される ディザパターン製造処理を実行する。そして、製造したディザパターンデータは、 PC 100の所定のメモリに格納される。
[0030] 最後に、印刷データ作成処 ¾[0006では、 2値ィ匕された 1ビットデータ C、 M、 K、 Υ を内容とする 2値の画像データに印刷制御データなどを付して印刷データを作成す る。ここで、 2値の画像データは、ドットの記録を示すドット記録データと、ドットの非記 録を示すドット非記録データを含む。なお、印刷制御データは、「記録媒体情報」、「 記録品位情報」、および給紙方法等のような「その他制御情報」とから構成されて 、る 。以上のようにして生成された印刷データは、プリンタ 104へ供給される。
[0031] 図 3は、インクジェットプリンタ 104を示す斜視図である。キャリッジ Μ4000は、記録 ヘッドおよびこれにシアン(C)、マゼンタ(Μ)、イェロー(Υ)、ブラック(Κ)それぞれの インクを供給するインクタンク H1900を搭載した状態で図の X方向(主走査方向)に 移動し、記録ヘッドの各ノズルは、 2値の画像データに基づき所定のタイミングでイン クを吐出する。
[0032] 以下では、上記の記録システムの 2値化処 ¾[0005で用いられあるいは上記の記 録システムで製造される、ディザパターンの製法およびそれによるディザパターンの いくつかの実施形態を説明する。
〔実施形態 1〕
(1)実施形態の概要
本発明の第一の実施形態に係るディザパターンによって 2値化されたデータは、特 に、色ごとのプレーンが重なったときのドット分布が、低周波成分が少ない良好に分 散したものとなる。なお、図 2にて上述した例は、ディザパターンを用いた 2値ィ匕処理 をホストコンピュータにお 、て行う構成に関するものであるが、プリンタなどの印刷装 置の処理負荷などに応じて、印刷装置において 2値ィ匕処理を行ってもよいことはもち ろんである。
[0033] 本実施形態の 2値化処理では、 C、 M、 Y、 Κに応じた 4つのプレーンにおける 2値 データ(ドット)力 本実施形態の 4つのディザパターンによって生成される。なお、以 下では、説明の簡略化のため、 Κを除いた C、 M、 Yの 3プレーンの 2値データを生成 するためのディザパターンについて説明する。
[0034] 本実施形態では、 3プレーンに対応したディザパターンの作成において、基本的に 、斥力ポテンシャルを用いる。これにより、それぞれのディザパターンを用いて得られ る 3プレーンのデータは、それぞれ 2つまたは 3つのプレーンを重ねたときのドット分 布が、低周波成分の少ない、良好に分散されたものとすることができる。
(2)ディザパターンの製法
本実施形態に係るディザパターンの具体的な製造方法を説明する前に、この製法 における斥力ポテンシャルの適用の仕方を説明する。
[0035] 本実施形態のディザパターンの製法では、最初に、ディザパターンの複数のプレー ンそれぞれについて初期ドットパターンを作成し、その際、斥力ポテンシャルを用いる ことにより、プレーン内および他のプレーンとの間でそれぞれのドットが分散性の高い 配置とする。また、この初期ドットパターンを初期値としてそれから順次ドットを間引き 、間引き後のドットパターンの位置に当該ドットパターンに対応した閾値を配置しディ ザパターンとして行く。その間引きの際に、斥力ポテンシャルのエネルギーの低いドッ ト配置を選ぶようにして間引いた後のドット配置の分散性を高くする。
[0036] 以下で説明する閾値作成アルゴリズムでは、各閾値を決定する際にその時々にお いてドットとそれに伴う斥力ポテンシャルを定義し、分散性が増すような設計を行う。よ つて閾値の分布にかんしてドットが分布していると捉えて述べる。
[0037] 図 4は、本実施形態に係るドットパターンの生成を概念的に示す図である。
[0038] ドットパターン生成では、 C、 M、 Yそれぞれのドットパターン C、 M、 Yを生成する。
このドットパターンの生成において、ドットパターン C、 M、 Yそれぞれのドットの配置 は、次のように行われる。
[0039] 図 5は、本実施形態に係わる配置移動法によるドットパターンにおけるドットの配置 決定処理を示すフローチャートである。 [0040] 先ず、ステップ S501で、ドットパターン C、 M、 Yそれぞれのプレーンのサイズに対 応した C、 M、 Yそれぞれの 50%濃度の画像を取得する。そして、ステップ S502で、 それぞれの画像にっ ヽて誤差拡散法などの 2値ィ匕手法を用いて 2値ィ匕を行う。これ により、ドットパターン C、 M、 Yそれぞれのプレーンについて、 1ビットのデータが" 1" であるドットがドットパターンの画素全体の 50%に配された初期配置を得ることができ る。なお、この 2値ィ匕の手法を用いてドットの初期配置を得るのは、その用いる 2値ィ匕 の手法に応じてある程度、初期状態で分散性のょ 、配置を得ることができるからであ り、これにより、その後の最終的な配置決定までの演算時間ないし収束時間を短くで きるからである。換言すれば、本発明を適用する上で初期配置を得る方法は本質で はなぐ例えば、ドットパターンのプレーンにおいて、 1ビットのデータ力 ' 1"であるドッ トをランダムに配置した初期配置であってもよい。また、例えば、 Cの 50%画像を第 1 プレーンとし、さらに、その画像を時計回りに 90度回転させた画像を Μの第 2プレー ンとし、同様に 180度回転させた画像を Υの第 3プレーンとするような初期配置を得て ちょい。
[0041] 次に、ステップ S503で、上記のようにして得たドットパターン C、 M、 Yそれぞれの プレーンの総てのドットについて斥力ポテンシャルを計算する。具体的には、
(i)同一プレーン内のドット間に距離に応じた斥力を与える。
[0042] (ii)さらに、異なるプレーン間のドットにも斥力を与える。
[0043] (iii)同一プレーンと異なるプレーン間に異なる斥力を与える。
[0044] (iv)異なるプレーンのドットの重なりを認め、ドットの重なり(2つのドット重なり、 3つ のドット重なり、 ···)同士も組み合わせに応じた斥力を与える。
[0045] 図 6は、本実施形態に係る基本斥力ポテンシャル E (r)の関数を模式的に示す図で ある。
[0046] 同図に示すように、本実施形態で規定する斥力関数は、その斥力が及ぶ範囲を r
= 16 (画素;ドットが配置されるドットパターンの画素)までとする。このような距離ととも に減衰するポテンシャルを用いることにより、基本的に、ドットが接近して配置されると エネルギーが高い状態、すなわち不安定な状態となり、収束計算の結果、接近した 配置はできるだけ選択されな 、ようにすることができる。 [0047] なお、この斥力の形状は、ドットパターン画素全体に対するドットの割合により決定 することがより望まし!/、。
[0048] また、複数色のインクを用いて記録を行う場合、インクドットを配置できる位置 (解像 度 1200場合の場合は、 1インチ四方に 1200 X 1200個の可能位置がある)以上に 重ねてインクドットを配置するため、各ドットについて斥力ポテンシャルを計算する際 には、ドットの上にドットが重なることを考慮する。このため、 r=0において有限の斥 力ポテンシャルを持つように関数を定義する。これにより、ドットの重なりをも考慮した 分散が可能となる
本実施形態では、同一プレーンのドット同士に関して a E (r)、異なるプレーン間の ドット同士に関して j8 E (r)、重なるドット同士に関して γ s (n) E (r)の斥力ポテンシャ ルを与えて計算を行う。つまり、あるドットが存在することによるポテンシャルは、距離 r 以内の範囲にある、同プレーンのドット、異なるプレーンのドット、さらには異なるプレ ーンの重なるドットについての斥力ポテンシャルが加算される。
[0049] なお、ドットパターンパターンのサイズは有限であるが(本実施形態の場合、 128 X 128画素となる)、ポテンシャル計算においては、 128 X 128画素の同じパターンが あた力も繰り返しているような周期境界条件を用いる。従って、ドットパターンの左端 は右端と隣接しており、下は上と隣接していることとなる。
[0050] 上記の斥力ポテンシャルにお 、て、係数 α、 β、 γは重み付け係数であり、本実施 形態では、 α = 3、 j8 = l、 γ = 3の値を用いる。この α、 β、 γの値によってドットの 分散性が影響を受ける。この a、 β、 γの値は、例えば、実際には実験を行い、ドット ノターンを用いて記録される記録画像を参照した最適化により求めることができる。
[0051] また、係数 s (η)は、重なるドットを分散させるために γに加えてさらに積算する係数 である。この係数 s (n)は、重なりが多いほどそれらのドットをより分散させるベく重なり の数に応じた値とするものである。本願発明者の実験によれば、次の 2つの式いずれ かによつて求められる s (n)を用いることにより、分散に関してよい結果を得ることがで きる。
[0052] [数 1] s ( n ) = ^ nCi また ίま s ( n ) = ^ nCi
i = 1 ; = 1
[0053] すなわち、 nを重なりの数とするとき、組合せの数の和を s (n)とするものである。詳 細には、斥力を計算する注目ドットに対して重なる(同じプレーンまたは異なるプレー ンにおける同じ位置の)ドットを調べるとともに、注目ドットから距離 rに位置するドット を調べる。この場合に、注目ドットおよびその画素と同じ位置で重なる他のプレーン のドットと、距離 rにある各プレーンのその画素で同じように重なるドットの共通する重 なりの数を nとする。そして、これら 2つの画素間の重なったドット同士による斥力を考 える。
[0054] この場合、例えば、ある 2画素間で第 1プレーン、第 2プレーンおよび第 3プレーン にそれぞれ共通にドットが存在する例を考えると、 n= 3となる。そして、それらの画素 間には 3つのドットの重なりに起因する斥力を作用させる。ここで、 3つのドットの重な りによる斥力を考えるとき、 3つのドットの重なりとともに、 2つのドットの重なり同士や 1 つのドット同士の斥力が多重的に作用すると考える。換言すれば、第 3プレーンを考 えなければ、第 1プレーンと第 2プレーンの 2つのドットの重なりと考えることができ、ま た、第 2プレーンを考えなければ第 1プレーンと第 3プレーンの 2つのドットの重なりと も考えられる。第 1プレーンを考えなければ第 2プレーンと第 3プレーンの重なりと考 えられる。このようなドットが重なることの多重的な効果を計算するために、重なりの組 合せによる斥力を定義し上記のような s (n)を用いる。これによれば、分散性のよいド ット配置を得ることができることが実験上確認されている。
[0055] 再び、図 5を参照すると、ステップ S503で、すべてのドットの斥力ポテンシャルを合 計したそうエネルギーがもとまつている。そして、この総エネルギーを減衰させる処理 を行う。
[0056] この処理では、すべてのドットについて順番に距離 rが 4以内の画素の中で、斥力 ポテンシャルが最も下がる画素にドットを移す。このような処理を繰り返していくことに よって(ステップ S504)、総てのドットの斥力ポテンシャルの合計値である総エネルギ 一を低下させて行く。
[0057] ステップ S505では、ステップ S504における総エネルギーの低下率を計算し、それ が所定値以下であると判断すると、エネルギー減衰処理を終了する。なお、この所定 値は、例えば、実際に印刷を行った結果をもとに、低周波数成分が適切に抑えられ た画像を記録できる低下率として求めることができる。
[0058] 最後にステップ S506で、上記のように総エネルギーの低下率が所定値以下となつ た状態の各プレーンを、図 8にて後述する処理の初期ドットパターン C、 M、 Yとして 設定する。
[0059] なお、本実施形態では、ステップ S505にお!/、て総エネルギーの低下率が所定値 以下となった力否かを判定し、低下率が所定値以下となったとき、ステップ S506へ 移行するようにしている。しかし、本実施形態はこの例に限られるものではない。例え ば、ステップ S505において総エネルギーが所定値以下となった力否かを判定し、総 エネルギーが所定値以下となったらステップ S506へ移行するようにしてもよ!、。
[0060] 図 7A〜Dは、上述した斥力ポテンシャルの計算と総エネルギーの減衰処理を模式 的に説明する図である。詳しくは、本実施形態に係る C、 M、 Yの 3プレーンを斜視図 で示し、また、特にドットの移動を平面図で示す図である。ここで、最小の正方形はド ットパターンの画素を示し、 3プレーンの重なりにお!/、て重なる画素がプレーン間で 同じ画素位置に対応する。
[0061] 図 7Αは、同一プレーンにドットが存在する場合にそれらドット間の斥力によってポ テンシャルが加えられる(増す)ことを説明する図である。図に示す例では、プレーン Cの注目画素のドット Doと同じプレーンで距離 r離れた画素にドットが 1個存在する例 であり、この場合、 α = 3が適用され、ドット Doのポテンシャルとして I X a E (r)のポ テンシャルが加えられる。
[0062] 図 7Bは、注目ドット Doとは異なるプレーン(プレーン M、 Y)にドットが存在する場合 に、それら 2個のドットとの関係でカ卩えられる斥力ポテンシャルを説明する図である。 異なるプレーン間のドットとの関係であるから、 β = 1が適用されドット Doのポテンシ ャルとしてドット 2個分の 2 X j8 E (r)のポテンシャルが加えられる。
[0063] 図 7Cは、上記の 2つの場合である、同一プレーンにドットが存在する場合と異なる プレーンにドットが存在する場合にカ卩え、異なるプレーンの同一画素にドットが存在し てドットの重なりが存在する場合に、それらのドットとの関係で加えられる斥力ポテン シャルを説明する図である。図 7Aおよび Bの場合に加え、注目ドット Doのプレーン C と異なるプレーン Yの同じ画素にドットが存在することにより、同プレーンの斥力ポテ ンシャル IX aE(r)と、同じ画素の異なるプレーンの 1個のドットによる斥力ポテンシャ ル IX j8E(0)と、異なるプレーンの 2個のドットによる斥力ポテンシャル 2 X j8E(r)と 、重なる数 n=2で γ =3が適用される、重なりによる斥力ポテンシャル γ s (2) XE(r) のポテンシャルが加えられる。この結果、図 7Cに示すドット配置において注目ドット D oが存在することによる斥力ポテンシャルの合計は、 IX J8E(0)+1X aE(r)+2X i8E(r) + ys(2) XE(r)となる。
[0064] 図 7Dは、図 7Cに示すドット配置において、ドット Doを移動させることにより、そのド ットの斥力ポテンシャルの合計が変化することを説明する図である。図 7Dに示すよう に、ドット Do (プレーン C1のドット)が同じプレーンの隣の画素に移ると、そのドット Do が存在することによる斥力ポテンシャルの合計は、距離力r2、重なり同士の数 nが 0と なることなどにより、 J8E(1)+1X AE(r2)+2X j8 E (r2)に変化する。そして、図 7 Cに示すドット配置の場合の斥力ポテンシャルの合計 1 X |8 E (0) + 2 X a E (r) + 1 X j8E(r) + 7s(2) XE(r)と、図 7Dのドット Doが移動したことによる斥力の合計とを 比較し、この移動前後の斥力ポテンシャルの合計の変化を知ることができる。
[0065] なお、この斥力ポテンシャルの合計は、上記の説明では、 2つの画素またはドット移 動させたときは 3つの画素のドットによるエネルギーの合計を求めるものとしている力 これは説明を簡易にするためであり、実際は、これらのドット以外に存在し得る他の画 素のドットを含めたドットとの関係に基づく斥力ポテンシャルの積分として求められるも のであることはもちろんである。
[0066] 図 7A〜Cに示したように斥力ポテンシャルの合計が計算される各ドットの中で、例 えば、ドット Doが斥力ポテンシャルの合計が最も大きい場合、図 7Dで説明したように その移動前後の斥力ポテンシャルの変化を求め、移動前後で最も斥力ポテンシャル の合計が低くなる画素にドット Doを移動させる。このような処理を繰り返すことによつ て 3プレーン全体の総エネルギーを下げることができる。すなわち、 3プレーンのドット ノ ターンの重なりにお 1、てドット分布が、低周波数成分が少なく良好に分散された配 置となる。以上説明した処理によって、ディザパターン生成の基となる分散性の高い 初期ドットパターンを得ることができる。
[0067] 図 8は、本実施形態に係るディザパターンの作成処理を示すフローチャートである
[0068] まず、ステップ S301で、初期ドットパターンとして、ある階調において分散性のよい 2値パターンを作成する。本実施形態では 50パーセント濃度のパターンを作成する。 具体的には、図 5で説明した方法によって、 128 X 128のサイズの 50パーセント濃度 の初期ドットパターンを作成する。このように作成されたそれぞれのプレーンのドット パターン C、 M、 Yを初期パターンとして保存する。
[0069] 次に、ステップ S302で、上記で得た 128階調の初期ドットパターンに対して斥力ポ テンシャルを適用しドット間引きを行 ヽ、低階調方向の 128階調の 1レベルごとに閾 値データを作って行く。具体的には、初期ドットパターンについて斥力ポテンシャルを 計算しながら、ドットを間引いていく。この処理では、先ず、ドットパターン Υの総てのド ットについて、図 5にて説明したのと同様に斥力ポテンシャルを計算し、最もエネルギ 一の高いドットを間引く。次に、ドットパターン Μについても同様に総てのドットについ て斥力のエネルギーを計算し、最も大きいドットを間引く。さらに、同様に、ドットバタ ーン Cについても総てのドットの斥力ポテンシャルを計算し最大エネルギーのドットを 間引く。
[0070] ここで、 8ビットのディザパターンを作るため、 128階調の 1つの階調レベル glごとに ドットパターンを求めて、そのパターンに従いディザパターンすなわち閾値の分布を 生成することができる。本実施形態では、ディザパターンは 128 X 128のサイズであ るため、各プレーン 128 X 128画素 ÷ 128階調 = 128画素 Z 1階調( 1階調レベル) となり、 1階調レベルにおいて各プレーンについて 128個のドットのドットを間引く。
[0071] すなわち、上記プレーンごとの間引きを行うと、この間引きの回数パラメータ nをイン クリメントするとともに (ステップ S303)、 nが 128に達した力否かを判断する(ステップ S304)。 128個分の間引きが終了するまでステップ S302、 S303の処理を繰り返し( ステップ S304)、終了すると、ステップ S305で、最終的に得られた各プレーンのドッ トパターンのドットをその諧調レベル glの値(階調値)で置き換えた閾値の配置パター ンとしてこれを保存する。なお、初期ドットパターンに対応する gl= 127の閾値パター ンは、その初期パターンに基づ 、て予め作成されて 、ることはもちろんである。
[0072] 以上の処理 (ステップ S 302〜S304)を、直前のレベルで得られたドットパターンを 初期ドットパターンとして、階調レベル glが 0になるまで繰り返し (ステップ S302〜S 3 07)、低階調側のそれぞれの諧調値の閾値パターンを得ることができる。
[0073] 高階調側の閾値のノターンも同様に求めることができる。高階調側の場合は、ドット を付加して行き、斥力ポテンシャルを適用してエネルギー増加分を計算する。先ず、 ドットパターン Cの空白点に対してドットを付カ卩した場合のエネルギーの増加を総ての 空白点について計算する。そして、最もエネルギー増加が少ない点にドットを付加す る。この処理は、図 8に示した処理と同様にして行うことができる。ドットパターン M、 Y についても同様に、ドットを付加する。他の処理は低階調側と同じである。
[0074] 以上のようにして求められた階調ごとの各プレーンの閾値パターンは、合成されるこ とによって C、 M、 Y各プレーンのディザパターンとすることができる。
[0075] なお、ディザパターンのドットの配置の仕方は、上例のように 50%の濃度を初期値 としてドット間引くことおよび付加するものに限られない。例えば、初期値を 0%として 、何も配置されて 、な 、状態からドット(閾値)をカ卩えるように配置するようにしてもょ ヽ 。この付加する場合は、上述した、高階調側の閾値配置の求め方と同じである。 (3)ディザパターンの評価
ディザパターンにおける斥力ポテンシャルの重み付け係数 ,、 β、 の効 先ず、以上説明した本実施形態のディザパターン製法によって製造されたディザパ ターンに対して、斥力ポテンシャル計算の(距離の議論はしていない、係数の影響の みの)重み付け係数ひ、 /3、 γ 5 (η)それぞれがどのように影響しているかについて具 体的に説明する。上述したディザパターンの閾値作成アルゴリズムでは、各閾値を決 定する際にその時々においてドットとそれに伴う斥力ポテンシャルを定義し、分散性 が増すような設計を行った。よってここでも閾値の分布にかんしてドットが分布してい ると捉えて述べる。上述したように係数 αは同一プレーンにおけるドットの分散に影 響し、係数 j8は異なるプレーン間のドットの分散に影響し、また、 γ s (η)は異なるプ レーンのドットが同じ位置の画素にあって重なる場合のこの重なりの分散に影響して いる。 [0076] なお、本実施形態では、 E(r)として同じ関数(図 6)を総ての項に用いている力 異 なるポテンシャル関数をそれぞれの項に用いることもできる。この場合は、それぞれの 関数 E(r)と対応するそれぞれの重み付け係数ひ、 β y (n)の積である《E(r)、 β Ε(ν) γΕ(Γ)~の違いが、本質的に以下で説明する、分散の違いとなって影響を 及ぼすことはもちろんである。
[0077] 仮に、同一のプレーン内のドット間のみに斥力ポテンシャルを定義しエネルギーを 減衰させてドット分布を決める場合、すなわち、 aE(r)でひ =1、 = γ =0とする場 合、 1つのプレーンのドット分布は、それぞれプレーンにおけるドットの配置の分散性 がよい。これは aE(r)の効果によるものである。し力し、 2つ(複数)のプレーンを重ね たもの力 重なるドット (論理積、論理和)のパターンを抽出したものは、ドットの配置 に偏りがあり低周波数成分の多いものとなる。 2つのプレーン間でたまたま重なってし まうドットが発生してしまったり、 2つのプレーン間に関連がないために偏りが生じたり するためである。
[0078] 次に、 3プレーンの総てのドットに同じ斥力ポテンシャルをカ卩えた場合、すなわち、 a E(r)および |8E(r)において、 ひ = |8 =1、 γ =0の場合を仮定する。この場合は 、それぞれのプレーンのドット分布は、ある大きさの低周波数成分を持ち分布に偏り がある。一方、上記の 3色のプレーンを重ねたもののドット分布 (論理和)は分散がよ い。これは Q;、 j8が同じ値であることによって、同一プレーンのドットを分散させる効果 1S 他のプレーンのドットを分散させる効果と同じであるため、結果として、それぞれ のプレーンでは、ドット分布の分散が不十分になるからである。
[0079] そこで、同一プレーンと異なるプレーン間で斥力ポテンシャルを変えるベぐ例えば 、 α =3、 β =1とする。これにより、他のプレーンの影響を相対的に小さくでき同一プ レーン内の分散性がよくなる。さらに、 2つのプレーンを重ねたもののドット分布 (論理 和パターン)は、低周波数成分の少ない分散の良い分布となる。このように、同一プ レーン、異なるプレーンのドットの分散性の両方がよくなる。つまり、 αΕ(ι:;^|8Ε(ι:) の項を作用させ、力つ αと j8の値を異ならせること〖こより、同一プレーン内、異プレー ン内両方の分散性が良くなる。
[0080] 次に、ドットの重なりがある場合において、先ず、 γ s(n)E(r)の項を用いない場合 を考える。低周波数成分をもたないドット分布を持った 2つのプレーンを、 y s (n) E (r )の項を作用させずに、重ねて得られるもののドット分布力 重なりドットを抽出したも の (論理積)は、低周波数成分が多い分散の悪い分布となる。
[0081] これに対して、 γ s (n) E (r)の項をカ卩えた場合、先ず、それぞれのプレーンにつ!/ヽ て、低周波数成分をもたないドット分布が得られる。そして、これらのプレーンを重ね たもののドット分布力も重なりドットを抽出したもの (論理積)の分布も、低周波数成分 を持たな 、ドットの配置となる。
[0082] このように、 γ s (n) E (r)の項は、基本的に、重なるドット同士が良好に分散する効 果を与えるものであるが、図 7A〜Dにて説明したように、この項が、重なりが多いほど ポテンシャルが高くなるよう設定され、そのポテンシャルに応じてドットを 1つずつ移動 し、または配置してエネルギーを減らすことにより、エネルギーを減らす処理の過程で 重なりの数を減らす効果を与えている。これは、同じプレーンで隣接するドットについ て、 a E (r)が隣接するドットの数を減らす効果を与えることと同じことを意味している。 このように、 y s (n) E (r)の項は、単に重なるドット同士をできるだけ分散させるように するだけでなぐその重なりの数を減らす効果をも与えている。そして、この効果によ つて、隣接や重なりによるドットの塊におけるドットの数はできるだけ少なくし、結果とし て低周波数成分の少ないドット分布を得ることができる。
[0083] 以上の観点から、本実施形態では、上述したように α = 3、 |8 = 1、 γ = 3の値を用 いる。
[0084] なお、例えば、 α、 βくく γとして、複数のプレーンの重なりにおいて抽出される重な るドットに特に注目し、上記 y s (n) E (r)の項の効果によって、重なるドットが、特に低 周波数成分が少な 、分散が良 ヽものとすることも可能となる。
[0085] また、本実施形態では、プレーン間の斥力はすべて、 j8 E (r)としている力 相互作 用の大きさなどを考えて各プレーン間で相互作用を異ならせることは有効である。例 えば、プレーン数が多い場合になるべく近い時間に打ち込まれるインクに用いるディ ザパターンのプレーン間の斥力ポテンシャルを他の斥力ポテンシャルに対して大きく する、つまり j8 E (r)の係数や E (r)の形をプレーン間で変えることも有効である。また 、例えば、反応系を用いた定着において、反応液またはそのような成分を有したイン クを記録ヘッドによって吐出する場合に、その反応液等に用いるディザパターンのプ レーンとその反応液等と反応作用が大きいインクに用いるディザパターンのプレーン の斥力ポテンシャルを通常より多くすることも有効である。斥力ポテンシャルの関数を 変える具体例として、斥力が及ぶ範囲の距離 rを変える例を挙げることができる。例え ば、処理に力かる画像データの階調値が 50%階調のとき、上記のように r= 16とし、 階調値が 50%より大きくまたは小さくなるほど rを大きくするようにすることができる。
[0086] なお、本明細書では、ドットないしその重なりが均一に分散するほど、「より良好な分 散」もしくは「分散がより良いこと」を意味する。そして、「均一な分散」とは、上記の斥 力ポテンシャルの例で言えば総エネルギーを可能な限り低くした状態、すなわち、ド ットの重なりや隣接による塊があるときはそれらの重なりや隣接の数をできるだけ少な くした状態であり、さらに、このような状態で、ドットを可能な限り均等に配置することで ある。さらに、「低周波数成分が少なくなる(小さくなる)」とは、上記のように分散が良 いとき、その分布について後述されるパワースペクトルにおける、人間の視覚特性に おける感度の高い領域 (低周波数領域)の周波数成分が、その分散が良い程度に応 じて少なくなる (小さくなる)ことを意味する。
[0087] 本 ¾施形餱のディザパターン 従 例のディザパターン
図 9〜図 11は、上述した製法によって製造された本実施形態のディザパターン C、 M、Y (以下「積層ディザパターン」ともいう)それぞれの閾値配置パターンを閾値の値 に応じた濃度で示す図である。また、図 19は、特許文献 1や特許文献 2に記載される 従来例のディザパターンの同様のパターンを示す図である。
[0088] 図 9〜図 11および図 19に示される各ディザパターンパターンは、 128 X 128の画 素のエリアを有している。各パターンにおいて、濃度が薄いほど大きな閾値を表して いる。
[0089] これらの図に示すように、図 19に示す従来のディザパターンや本実施形態のディ ザパターンのパターン(図 9〜図 11)は、特に、係数 αの効果によって同一プレーン 内の分散性を考慮したドットが配置されているので、閾値が示す各濃度の分散に偏り が無ぐ全体的に滑らかな印象を受ける。
[0090] 図 12は、図 9および図 10に示した本実施形態の積層ディザパターン C、 Mの同じ 画素の閾値の平均をその値に応じた濃度のパターンを示す図である。また、図 13は 、図 9、図 10および図 11に示した本実施形態の積層ディザパターン C、 M、 Yの閾値 の平均をその値に応じた濃度のパターンを示す図である。一方、図 20は、図 19に示 した従来のディザパターン Cと、それをずらして得たディザパターン Μの同じ画素の 閾値の平均をその値に応じた濃度のパターンを示す図である。また、図 21は、図 19 に示した従来のディザパターン Cと、それをずらして得たそれぞれディザパターン Μ、 Υの同じ画素の閾値の平均をその値に応じた濃度のパターンを示す図である。これ らのパターンは前述した周期境界条件を満たしているため容易に重なりをずらす設 定ができる。
[0091] 図 12および図 13に示すように、本実施形態の 2つまた 3つのディザパターンを重ね た場合の閾値平均の配置は、ともに分散がよくざらつき感のないものとなっている。こ れは、上述したように、 2つのプレーン相互でドットの分散を考慮 (係数 |8 )するととも に、重なり自体の分散を考慮 (係数 γ s (n) ) LTV、るからである。これに対し、図 20お よび図 21に示す従来のディザパターンの閾値平均の配置パターンは、分散性が低 下してざらつき感を呈したものとなる。
[0092] 図 22は、本実施形態の積層ディザパターンと従来の積層ディザパターンそれぞれ を重ねたときの閾値平均の配置パターンのパワースペクトルの比較を示す図である。 ここで、パワースペクトルは、 2次元空間周波数を 1次元として扱える、「T. Mitsa and K. J. Parker, Digital Halftoning using a Blue Noise Mask , Proc. SPIE 1452, pp.47— 56 (1991 J」に己載の radially averaged power spectrumである。
[0093] この図からも明らかなように、他のプレーンとの間の分散を考慮していない従来の閾 値平均の配置パターンは、周波数領域の全体でより大きなパワーを持つとともに、低 周波数領域でも本実施形態のものより成分が大き ヽ。
[0094] 図 23は、本実施形態の積層ディザパターンと従来のディザパターンそれぞれの閾 値平均配置パターンのパワースペクトルにおける低周波数成分の量を比較して示す 図である。この図からも明らかなように、ディザパターンを重ねたものは、従来のパタ ーンのほうが低周波数成分が多 、ものとなって 、る。
[0095] ディザパターンの性能評価として、ディザパターンのパワースペクトルが存在する周 波数領域のうち、およそ半分より低周波数側にある「低周波数成分」に着目すること が本発明の大きな特徴である。ディザパターンの低周波数成分が低く抑えられている 状況において、上述したようにグレインの分布に起因するビーディングは現れにくく、 また視認されにくい。結果として、記録した画像は視覚的にはザラツキが気にならな いものとなる。また、特に、ディザパターンは、 1つのパターンが記録画像に対して 2 次元的に繰り返し用いられる。 1つのディザパターンを繰り返し用いた場合は、ディザ パターンの低周波数成分が多ければ多 、ほど、その繰り返しパターンの模様が人の 目に認識されやすい。繰り返しになるが、その模様はビーディングの発生および見え 方に大きく影響する。このため、ディザの周期に関連したザラツキ感が発生する。そこ で、繰り返しパターンに着目し、ディザパターンの低周波数成分側を抑える設計が重 要となる。つまり本発明では、視覚的にザラツキなどが気になる低周波数領域に焦点 をあてて、その低周波域の成分を低く抑えるようにしている。また、本発明のディザパ ターンはそのような低周波数のパワーが低く抑えられていることが特徴である。
[0096] また、人間の目の感度に関する周波数特性は、プリント物と人の目の距離などに依 存し、例えば、ドーリイ(Dooley)の文献(「R.P. Dooley: Prediction Brightness Appeara nce at Edges Using Linear and Non-Liner Visual Describing Functions, SPES annual Meeting (1975)」)などによってこれまで多く論じられている。様々な実験力もプリント 物を見る場合には、およそ lOcycles/mmより低い周波数領域の成分が人の目に認 識しゃすいと言われている。このことに関して、本発明者も実験的に確認している。そ こで、 lOcycles/mmより低周波数側を含む領域 (低周波数領域)に着目することが 重要といえる。実際には記録物に目をさらに近づける場合もあるため、本発明者は、 およそ 20Cycles/mmより低周波数側に着目し設計することが重要と考える。なお、 後述する各実施形態のディザ評価 (例えば、図 16)で着目して ヽる低周波数領域は 、おおよそこれらの範囲と重なっている。
[0097] ずらしによる評価
本発明の実施形態に係るディザパターンが従来の 1つのプレーンのみを考慮して 得られるディザパターン (特許文献 1、特許文献 2に記載のディザパターン)と異なる 点の 1つは、異なるプレーンのディザパターンを正規の位置で重ねた場合と正規で はな 、位置で重ねた場合の分散特性の変化である。本発明の実施形態に係るディ ザパターンは、異なるプレーンのディザパターンの重ね方を意図的にずらした場合、 閾値配置パターンの分散性が大きく低下する。すなわち、本実施形態では、異なる プレーン間でも分散を考慮していることから、その分散を考慮するときの正規の重ね 方とは異なる重ね方をすると分散性が大きく低下する。一方、従来例に係るディザパ ターンの場合、異なるプレーン間での分散性は考慮していないため、正規の重ね方 とは異なる重ね方をしても分散性に変化はない。
[0098] このずれの評価は次のように行う。上述した製法によって作成したパターン C、 M、 Yを、それぞれから各色ラスター方向にランダムにずらす。このときディザパターン自 体は周期的に並ぶためずらすことが可能となる。
[0099] 図 14は、ずらした本実施形態の積層ディザパターン C、 Mを重ねたときの閾値平均 の閾値配置パターンを示す図であり、また、図 15は、ずらした積層ディザパターン C、 M、 Yを重ねたときの閾値平均の閾値配置パターンを示す図である。これらの図から 明らかなように、本実施形態の積層ディザパターンの重ね位置をずらした閾値平均 ノターンは分散性が低下し、ノターンを観察したときのざらつき感が増して!/ヽる。
[0100] 図 16および図 17は、重ね位置をずらした場合と重ね位置をずらさない場合(つまり 、正規の位置で重ねた場合)のパワースペクトルを比較した図であり、それぞれ本実 施形態の積層ディザパターン C、 M、または積層ディザパターン C、 M、 Yの閾値平 均の配置パターンのパワースペクトルを示す図である。
[0101] これらの図に示す本実施形態の積層ディザパターンは、ずらした場合総ての周波 数範囲でパワーが増すとともに、低周波数成分もずらし無しの場合に較べて大きくな る。これは、上述したように、積層ディザパターンは、異なるプレーン間でも分散を考 慮して 、ることから、その分散を考慮するときの正規の重ね方とは異なる重ね方とした ときは、分散性が大きく低下するからである。
[0102] 図 18は、以上のずらしによる評価を低周波数成分の量で表した図であり、本実施 形態の積層ディザパターンの閾値平均の配置パターンについてずらした場合とずら さな 、場合 (正規の場合)それぞれパワースペクトルにおける低周波数成分の量の比 較を示している。 [0103] 図 18に示すように、本実施形態の積層ディザパターンの場合、ずらしたものは、デ ィザパターン C、 Mおよびディザパターン C、 M、 Yのパターンのいずれにおいても、 ずらしていない場合と比較して、低周波数成分の量が多くなることがわかる。
[0104] 画像による評価
図 24は、本実施形態の積層ディザパターン C、 Mを用いて実際に濃度 64の均一 画像を 2値ィ匕して得られるドットパターンの論理積パターンを示す図である。また、図 27は、本実施形態の積層ディザパターン C、 M、 Yを用いて濃度 64の均一画像を 2 値ィ匕して得られるドットパターンの論理積パターンを示す図である。さらに、図 25およ び図 26は、それぞれ従来例に係るランダムにずらして得られる 2つのディザパターン C、 Mおよび従来例に係る 1画素だけずらして得られる 2つのディザパターン C、 Mを 用いてそれぞれ濃度 64の均一画像を 2値ィ匕して得られるドットパターンの論理積バタ ーンを示す図である。
[0105] 図 24および図 27に示すように、本実施形態の 2つまたは 3つのディザパターンを重 ねた場合のドットの配置の中からドットが重なったものを抽出したものの配置 (論理積 )は、分散がよくざらつき感のないものとなっている。これは、上述したように、 2つのデ ィザプレーン相互でドットの分散を考慮 (係数 β )するとともに、重なり自体の分散を考 慮 (係数 γ s (n) ) LTV、るからである。
[0106] これに対し、特許文献 1や特許文献 2に開示されるディザパターンによるドットバタ ーンを重ねたときの論理積は、ずらし方によらず本実施形態のパターン(図 24)と較 ベて分散がよくないものとなっている。これは、上述したように特許文献 1などでは、同 じプレーン内の分散は考慮して 、るものの、プレーン相互のドットの分散 (係数 β )や ドットの重なりの分散 (係数 γ s (η) )を考慮して ヽな 、からである。
[0107] ここで、ディザパターンパターンの他の評価方法として、「重ね合わせ」パターンを 用いたものを定義する。この「重ね合わせ」パターンは、複数のディザパターンを用い て、例えば、濃度 64の均一画像を 2値ィ匕して得られるそれぞれのドットパターンの画 素にドット("1")が存在するとき、その対応する画素にドットを示すデータ" 1"が存在 し、かつドットが同じ画素で重なるときはその数に応じたデータが存在するパターンで ある。たとえば重なりが 2である場合は" 2"、 3である場合には" 3"というようにする。そ して、以下の図 28に示すパターンはそのデータが示す数に応じた濃度で表される。 すなわち、この重ね合わせパターンは、異なるプレーンそれぞれのドットの配置を 1つ のプレーンで示すとともに、ドットの重なりの配置をその重なりの程度とともに示すこと ができる。
[0108] 図 28は、本実施形態の積層ディザパターンを 3つ用いて濃度 64の均一画像を 2値 化して得られるそれぞれのドットパターンを重ねたときの「重ね合わせ」パターンを示 す図である。この図 28に示すパターンは、本実施形態のディザパターンを用いて記 録を行うときの重ね合わせのインクドットのパターンに近いものを表している。従って、 これらのパターンからも、重ね合わせのインクドットやそれらの重なりが良好に分散し ていることがわ力る。
[0109] 図 29および図 30は、本実施形態の積層ディザパターン、上述した 2つの従来例に 係るディザパターンをそれぞれ 2つおよび 3つ重ねたときに、上述のようにして得られ る「重ね合わせ」パターンのパワースペクトルを比較して示す図である。
[0110] 3つの曲線を比較すると、従来の 2つのディザパターンによる重ね合わせパターン は、本実施形態の積層ディザパターンによる重ね合わせパターンに比べ、低周波数 成分が多くなつている。すなわち、分散が悪くなりパターンのざらつき感が増す。
[0111] 図 31は、本実施形態の積層ディザパターン、上述した 2つの従来例に係るディザ パターンをそれぞれ 2つおよび 3つ重ねたときに、上述のようにして得られる「重ね合 わせ」パターンのパワースペクトルにおける低周波数成分の量を比較して示す図であ る。
[0112] 図に示すように、従来の 2つのディザパターンによる重ね合わせパターンは、本実 施形態の積層ディザパターンによる重ね合わせパターンに比べ、低周波数成分が多 くなつている。すなわち、分散が悪くなりパターンのざらつき感が増すことがわかる。 〔実施形態 2〕
階調値に応じてディザパターンを切り替えても良い。すなわち、上記の実施形態の ようにディザパターンを作成した場合、例えば、 3つのプレーンの被覆率がすべて 50 %のものは、比較的きれいになる。し力し、それぞれのプレーンの被覆率が 50%、 2 5%, 25%のものを比較すると画質が低下することがある。これは、例えばマゼンタ 2 5%の閾値のドット分布は、他の色も総て 25%プレーンで印刷したときの斥力の影響 を受けながら作られるからである。
[0113] そこで、デューティーに応じて、別々のディザパターンを作製しておき切り替えて用 いるようにする。具体的には、 3つのプレーンを 2段階にわけてディザパターンを作成 する。まず、第一に、 1プレーン 255として 4分害 ijする。このとき、 0〜127、 128〜255 の 2段階にする。そうすると、組み合わせとして、各プレーンの最大グレー値に対して 、残りの 2プレーンがその半値以上であるかを直ちに計算することができる。
[0114] 処理に係る画像の階調値の平均値が第 1プレーン、第 2プレーン、第 3プレーン = 200、 150、 50であるとすると、(1, 1, 0)のディザを選択する。ここで、 (1, 1, 0)の ディザとは、初期ドットパターンを、第 1プレーンが 128/255レベルから作った初期 2値画像、第 2プレーンも 128Z255レベル力も作った初期 2値画像、第 3プレーンが 64Z255レベルから作った初期 2値画像でディザパターンをつくったものである。そ して、斥力ポテンシャルを適用してドットの配置をしたあと、第 1プレーンと第 2プレー ンで、 2ドット間引くのに対し、第 3プレーンは 1ドット間引くようにする。
〔他の実施形態〕
本発明は、記録装置で用いる複数種類のインク全てについて、上述の実施形態で 説明した積層ディザパターンを適用してもよいし、あるいは、記録装置で用いる複数 種類のインクの一部のインクの組み合わせについて、積層ディザパターンを適用して ちょい。
[0115] 例えば、シアン(C)、マゼンタ(M)、イェロー(Y)、ブラック (K)、淡シアン(Lc)、淡 マゼンタ (Lm)の 6色インクを用いる場合、これら 6色全てに対して積層ディザパター ンを適用してもよい。この場合、 6色分の積層ディザパターンを上記実施形態で説明 した製法によって生成することになる。
[0116] 一方、これら 6色のうち一部の色(2色、 3色、 4色、 5色)の組み合わせについて積 層ディザパターンを適用してもよい。この場合、 2つの形態が考えられる。第 1の形態 は、上記一部の色分だけ積層ディザパターンを生成し、それ以外の色についてのデ ィザパターン製法を問わない形態である。例えば、 6色のうち 3色 (例えば、 CMY)に ついては上述の実施形態で説明した製法によって積層ディザパターンを生成し、そ れ以外の 3色 (KLcLm)につ 、ては周知の製法によってディザパターンを生成する。 第 2の形態は、上記一部の色分だけ積層ディザパターンを生成し、それ以外の色に ついては上記一部の色のために生成した積層ディザパターンの中力も選択したもの を割り当てる形態である。例えば、 6色のうち CMYの 3色については上述の実施形態 で説明した製法によって積層ディザパターンを生成し、それ以外の 3色 (KLcLm)に っ ヽては CMYのために生成した積層ディザパターンの中なら選択したものを適用す る。
[0117] また、上述の実施形態では、異なるインク色の組み合わせについて積層ディザパタ ーンを適用する場合について説明した力 本発明は、この形態に限られるものではな V、。同じ色で径の異なるドット(吐出体積の異なる同色インク)を用いて記録を行う形 態にも適用可能である。この場合、同色で径の異なるドット (例えば、大ドット、小ドット )について上述の積層ディザパターンを適用してもよい。例えば、大シアン、小シアン 、大マゼンタ、小マゼンタ、イェロー、ブラックの 6種類のドットを用いる場合を考える。 この場合、大シアンと小シアン、あるいは大マゼンタと小マゼンタについて、上述の実 施形態で説明した製法により積層ディザパターンを生成する。
[0118] さらには、同色で径の異なるドット(例えば、大ドット、小ドット)を用いる形態におい て、異色ドットの組み合わせについては上述の積層ディザパターンを適用し、径の異 なる同色ドットの組み合わせについては同じディザパターンを適用する形態であって もよい。例えば、上述の 6種類のドットを用いる場合において、大シアンと大マゼンタ について上記実施形態で説明した製法により積層ディザパターンを生成し、且つ小 シアンについては大シアンと同じディザパターンを適用し、小マゼンタについては大 マゼンタと同じディザパターンを適用するのである。
[0119] なお、同色で径の異なるドットの種類数は、大小 2種類に限られるものではなぐ大 中小の 3種類であってもよいし、それ以上であってもよい。また、本発明は、色および 大きさの少なくとも一方が異なるドットについて適用した場合においてのみ効果を発 揮するものではなぐ例えば、離間したノズル群力も異なるタイミングで吐出される同 色インクについて適用しても効果を発揮する。例えば、ヘッドの主走査方向に沿って CMYMCの順でノズル群が配列されて!、る形態にあっては、離間した同色ノズル群 (Cノズル群、 Mノズル群)に対して上記製法によって製造した積層ディザパターンを 適用する。
[0120] また、本発明は、上述した通り、インク以外の液体を用いる形態においても適用可 能である。インク以外の液体としては、インク中の色材を凝集あるいは不溶化させる反 応液が挙げられる。この場合、少なくとも、ある 1種のインクと反応液について、上記 実施形態で説明した製法により積層ディザパターンを生成することになる。
[0121] なお、本発明では、色材として染料を含有する染料インク、色材として顔料を含有 する顔料インク、色材として染料および顔料を含有する混合インクの ヽずれにっ ヽて も適用可能である。
〔他の実施形態〕
本発明の実施形態におけるディザパターンのずらしによる評価において、そのサイ ズは、横: 128画素 X縦: 128画素のサイズである。し力し、縦横のサイズが異なるデ ィザパターンもあり得る。このようなパターンについて周波数成分を求めるときは、ディ ザパターンの縦横サイズを揃えて力も周波数成分を求めるようにする。例えば、 256 X 128で縦が短い場合に、縦横サイズを長手方向のサイズ (この例の場合、横方向 の 256画素)に揃えるため、縦にパターンを繰り返し、 256画素 X 256画素のパター ンとして周波数成分を評価する。
[0122] その他のサイズの場合も同様であり、縦横サイズを長手方向のサイズに揃えたパタ ーンについて周波数成分を評価する。具体的には、パターンの短手方向のサイズが 長手方向のサイズ以上になるまで短手方向にパターンを繰り返し、その中力 パター ンを切り出し、その切り出したパターンについて評価する。その際、周波数変換を行う ときに高速フーリエ変換を使えるよう、縦横サイズは 2の n乗 (nは正の整数)であること が好ましい。 2の n乗でない場合には、長手方向のサイズに最も近い 2の n乗を特定し 、その特定した 2の n乗のサイズで切り出せるようにパターンを縦横に繰り返す。そし て、この繰り返しにより生成されたパターンの中から、上記特定した 2の n乗のサイズ のパターンを切り出し、その切り出したパターンについて評価を行う。例えば、ディザ パターンが横: 500画素 X縦: 320画素であった場合について考える。この場合、長 手方向のサイズは「500」なので、この「500」に最も近い 2の n乗を特定する。最も近 い 2の n乗は「512」と特定される。そこで、 512画素 X 512画素のパターンを切り出す ために、横方向と縦方向に 1回ずつパターンを繰り返し、 1000画素 X 640画素のノ ターンを生成する。こうして生成された 1000画素 X 640画素のパターンの中力 51 2画素 X 512画素のパターンを切り出し、切り出したパターンにつ 、て評価を行う。 本願は 2004年 7月 6日に出願された日本国特許出願第 2004— 199623号および 2005年 7月 6日に出願された日本国特許出願第 2005— 197874号に基づいて優 先権を主張し、前記日本国特許出願は、この参照によって本明細書に含まれる。

Claims

請求の範囲
[1] 記録画像を構成する複数種類のドットを形成するため、当該複数種類のドットの記 録データを生成するのに用いられる複数のディザパターンの製造方法において、 前記複数種類の記録ドットに対応した複数のディザパターンそれぞれにおける閾 値の配置を定める工程を有し、
該工程は、前記複数のディザパターンそれぞれにおける閾値分布の低周波数成分 力 当該複数のディザパターンで共に少なくなるように閾値の配置を定める工程を含 むことを特徴とするディザパターン製造方法。
[2] 前記閾値の配置を定める工程は、
前記複数のディザパターンのそれぞれにつ 、て、所定の階調値に応じた数の閾値 を初期パターンで配置する第 1工程と、
前記複数のディザパターンのそれぞれに配置された閾値それぞれにつ 、て、その 閾値と、それが配置されたディザパターンを含めた前記複数のディザパターンに配 置された他の閾値との間で斥力ポテンシャルを計算し、その合計である総ポテンシャ ルエネルギーを求める第 2工程と、
前記斥力ポテンシャルが計算されたそれぞれの閾値を、より斥力ポテンシャルが下 がる位置に移動させる第 3工程と、
前記第 2工程と前記第 3工程を繰り返すことにより、前記総ポテンシャルエネルギー を低下させる第 4工程と、
前記総ポテンシャルエネルギーが所定値以下となったときそれぞれのディザパター ンにおける閾値の配置を最終の配置として定める第 5工程と、
該第 5工程で求められた配置を初期配置として、閾値の配置について、該配置の 閾値それぞれにつ 、て求められる斥力ポテンシャルの最も高 、ポテンシャルの閾値 を間引き、また、閾値を付加しょうとするときそれについて求められる斥力ポテンシャ ルの最も低い位置に閾値を付加する第 6工程と、
前記第 5工程と前記第 6工程を、階調値を減じるごとに間引き、また、階調値を増す ごとに付加することを繰り返すことにより、閾値の配置を定める第 7工程と、 を含むことを特徴とする請求項 1に記載のディザパターン製造方法。
[3] 前記閾値の配置を定める工程は、
前記複数のディザパターンのそれぞれに対して 1つの閾値を配置する工程であつ て、その閾値を配置するとしたときに、その位置の閾値と、その閾値のディザパターン を含めた前記複数のディザパターンに配置された他の閾値との間で斥力ポテンシャ ルを計算する第 1工程と、
前記斥力ポテンシャルが計算されたそれぞれの閾値にっ 、て、当該閾値をその斥 力ポテンシャルが最小となる位置に配置する第 2工程と、
前記第 1工程と前記第 2工程を、階調値を増すごとに繰り返し、前記複数のディザ ノターンのそれぞれについて、当該パターンの階調値に応じた数の閾値を配置する 第 3工程と、
を含むことを特徴とする請求項 1に記載のディザパターン製造方法。
[4] 前記複数種類の記録ドットは、記録ドットの色の種類が異なることを特徴とする請求 項 1な 、し 3の 、ずれかに記載のディザパターン製造方法。
[5] 前記複数種類の記録ドットは、記録ドットのサイズの種類が異なることを特徴とする 請求項 1な!、し 4の 、ずれかに記載のディザパターン製造方法。
[6] 量子化のために用いられる複数のディザパターンの製造方法にぉ 、て、
ディザパターンにおける閾値の配置を定める工程を有し、該工程は、
前記複数のディザパターンそれぞれにおける閾値分布の第 1状態と、該第 1状態か ら移行する、前記複数のディザパターンそれぞれにおける閾値分布の第 2状態と、を 当該工程中に含み、前記第 1状態から前記第 2状態に移行する際に、前記閾値分布 の低周波数成分が前記複数のディザパターンで共に少なくなるように閾値の配置を 定める工程を含むことを特徴とするディザパターン製造方法。
[7] 請求項 1な!ヽし 6の ヽずれかに記載の製造方法で製造されたディザパターンを用い て量子化処理を行うことを特徴とするデータ処理方法。
[8] 複数のディザパターンを用いて複数種類のドットの記録データを生成するための量 子化を行うデータ処理方法にぉ 、て、
前記複数のディザパターンは、それらの 2つ以上を重ねた場合に、対応する閾値画 素の閾値の平均値のパターン力 前記 2つ以上のディザパターンについて重ね位置 をずらした場合の対応する閾値画素の閾値の平均値のパターンより低周波数成分が 少な!/ヽことを特徴とするデータ処理方法。
[9] 前記複数種類の記録ドットは、記録ドットの色の種類が異なることを特徴とする請求 項 8に記載のデータ処理造方法。
[10] 前記複数種類の記録ドットは、記録ドットのサイズの種類が異なることを特徴とする 請求項 8に記載のデータ処理方法。
[11] 請求項 1な ヽし 6の ヽずれかに記載の製造方法で製造されたディザパターンを用い て量子化処理を行うことを特徴とするデータ処理装置。
[12] 複数のディザパターンを用いて複数種類のドットの記録データを生成するための量 子化を行うデータ処理装置において、
前記複数のディザパターンは、それらの 2つ以上を重ねた場合に、対応する閾値画 素の閾値の平均値のパターン力 前記 2つ以上のディザパターンについて重ね位置 をずらした場合の対応する閾値画素の閾値の平均値のパターンより低周波数成分が 少な!/ヽことを特徴とするデータ処理装置。
[13] 前記複数種類の記録ドットは、記録ドットの色の種類が異なることを特徴とする請求 項 12に記載のデータ処理造装置。
[14] 前記複数種類の記録ドットは、記録ドットのサイズの種類が異なることを特徴とする 請求項 12に記載のデータ処理装置。
[15] 複数種類のドットの記録データを生成するための量子化を行うために用いられる複 数のディザパターンにおいて、
前記複数のディザパターンは、それらの 2つ以上を重ねた場合に、対応する閾値画 素の閾値の平均値のパターン力 前記 2つ以上のディザパターンについて重ね位置 をずらした場合の対応する閾値画素の閾値の平均値のパターンより、低周波数成分 が少な!/ヽことを特徴とするディザパターン。
PCT/JP2005/012513 2004-07-06 2005-07-06 ディザパターン製造方法 WO2006004164A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/618,979 US7920294B2 (en) 2004-07-06 2007-01-02 Data processing method, data processing apparatus, method for generating dither pattern, and dither pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-199623 2004-07-06
JP2004199623 2004-07-06
JP2005197874A JP4574470B2 (ja) 2004-07-06 2005-07-06 データ処理装置およびディザパターン製造方法
JP2005-197874 2005-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/618,979 Continuation US7920294B2 (en) 2004-07-06 2007-01-02 Data processing method, data processing apparatus, method for generating dither pattern, and dither pattern

Publications (1)

Publication Number Publication Date
WO2006004164A1 true WO2006004164A1 (ja) 2006-01-12

Family

ID=35782965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012513 WO2006004164A1 (ja) 2004-07-06 2005-07-06 ディザパターン製造方法

Country Status (3)

Country Link
US (1) US7920294B2 (ja)
JP (1) JP4574470B2 (ja)
WO (1) WO2006004164A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4280732B2 (ja) * 2004-07-06 2009-06-17 キヤノン株式会社 記録装置、データ処理装置、マスク製造方法およびマスクパターン
US7948652B2 (en) 2006-04-11 2011-05-24 Canon Kabushiki Kaisha Processor, method, and program for processing data using a mask pattern to print dots in each area in a non-periodic arrangement by using an integral multiple of the areas
JP5211481B2 (ja) * 2006-06-27 2013-06-12 セイコーエプソン株式会社 ディザマトリックスの生成
CN101432141B (zh) * 2006-08-28 2012-01-18 佳能株式会社 图像数据生成设备、图像打印设备和图像数据生成方法
JP5121726B2 (ja) 2006-12-19 2013-01-16 キヤノン株式会社 画像処理装置および画像処理方法
JP5087796B2 (ja) * 2007-04-06 2012-12-05 キヤノン株式会社 インクジェット記録方法およびインクジェット記録装置
JP2008311979A (ja) * 2007-06-15 2008-12-25 Konica Minolta Holdings Inc 閾値マトリクス作成方法および閾値マトリクス作成装置ならびに閾値マトリクス作成プログラム
JP5407602B2 (ja) 2008-09-16 2014-02-05 株式会社リコー 画像処理装置、画像処理方法、コンピュータが実行可能なプログラム、およびコンピュータが読み取り可能な記録媒体
JP5388655B2 (ja) * 2009-03-31 2014-01-15 キヤノン株式会社 記録装置及び記録方法
US20110019208A1 (en) * 2009-07-23 2011-01-27 Canon Kabushiki Kaisha Image data generating apparatus, printing apparatus, and image data generation method
WO2013038929A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
US9142785B2 (en) 2011-09-12 2015-09-22 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
KR101891308B1 (ko) 2011-09-12 2018-08-23 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
CN103988329B (zh) 2011-12-12 2016-07-13 新日铁住金化学株式会社 有机场致发光元件用材料和使用其的有机场致发光元件
US9985219B2 (en) 2012-03-12 2018-05-29 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US8526012B1 (en) 2012-04-17 2013-09-03 Laser Design, Inc. Noncontact scanning system
US9761811B2 (en) 2012-06-28 2017-09-12 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescence element and material for organic electroluminescence element
EP2876699B1 (en) 2012-07-19 2018-02-14 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
TWI599570B (zh) 2012-09-28 2017-09-21 新日鐵住金化學股份有限公司 Compounds for organic electroluminescent devices and organic electroluminescent devices
JP6357422B2 (ja) 2012-12-17 2018-07-11 新日鉄住金化学株式会社 有機電界発光素子
JP6074307B2 (ja) 2013-04-05 2017-02-01 凸版印刷株式会社 カラー画像処理装置
JP6292776B2 (ja) 2013-06-28 2018-03-14 キヤノン株式会社 記録装置および記録方法
JP6312397B2 (ja) 2013-10-01 2018-04-18 キヤノン株式会社 ディザパタン作成方法
US9210292B2 (en) 2013-10-01 2015-12-08 Canon Kabushiki Kaisha Image processing apparatus and method using different dither patterns for different inks and selecting a quantization process for each ink
US9704074B2 (en) * 2015-01-21 2017-07-11 Canon Kabushiki Kaisha Image processing apparatus and method for quantizing first and second multi-valued data
WO2016185828A1 (ja) * 2015-05-15 2016-11-24 富士フイルム株式会社 画像形成方法
EP3770985A4 (en) 2018-03-19 2021-12-22 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESC ELEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150652A (ja) * 1997-11-14 1999-06-02 Canon Inc 画像処理装置及び画像処理方法
JP2001298617A (ja) * 2000-04-13 2001-10-26 Canon Inc 閾値マトリクス、及びそれを利用した階調再現方法とその装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089239B2 (ja) * 1990-05-11 1996-01-31 株式会社日立製作所 カラー画像記録方法および装置
US5111310A (en) 1990-12-04 1992-05-05 Research Technologies Corporation, Inc. Method and apparatus for halftone rendering of a gray scale image using a blue noise mask
US5341228A (en) 1990-12-04 1994-08-23 Research Corporation Technologies Method and apparatus for halftone rendering of a gray scale image using a blue noise mask
US5323247A (en) 1990-12-04 1994-06-21 Research Corporation Technologies Method and apparatus for halftoning and inverse halftoning and the transmission of such images
US5535020A (en) 1992-10-15 1996-07-09 Digital Equipment Corporation Void and cluster apparatus and method for generating dither templates
EP0665673A3 (en) 1994-02-01 1996-06-12 Dainippon Screen Mfg Method and apparatus for producing a halftone image using a threshold matrix.
JP2905106B2 (ja) * 1994-12-02 1999-06-14 大日本スクリーン製造株式会社 閾値マトリクスの作成方法並びにカラー画像の2値化方法
US6476934B1 (en) * 1997-01-02 2002-11-05 Canon Kabushiki Kaisha Geometrically reducing influence halftoning
US6356363B1 (en) * 1997-09-30 2002-03-12 Lexmark International, Inc. Method for halftoning using interlocked threshold arrays or interlocked dot profiles
JP4931164B2 (ja) * 2000-08-30 2012-05-16 キヤノン株式会社 マスクパターンの製造方法
JP2003125219A (ja) * 2001-10-12 2003-04-25 Canon Inc 閾値マトリックス、およびそれを利用した階調再現方法とその装置
JP2003202848A (ja) * 2002-01-08 2003-07-18 Seiko Epson Corp 画像処理方法、画像処理装置、画像処理プログラムおよびコンピュータ読み取り可能な記録媒体
JP4280732B2 (ja) 2004-07-06 2009-06-17 キヤノン株式会社 記録装置、データ処理装置、マスク製造方法およびマスクパターン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150652A (ja) * 1997-11-14 1999-06-02 Canon Inc 画像処理装置及び画像処理方法
JP2001298617A (ja) * 2000-04-13 2001-10-26 Canon Inc 閾値マトリクス、及びそれを利用した階調再現方法とその装置

Also Published As

Publication number Publication date
US7920294B2 (en) 2011-04-05
JP4574470B2 (ja) 2010-11-04
US20070109604A1 (en) 2007-05-17
JP2006050596A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
WO2006004164A1 (ja) ディザパターン製造方法
JP4280732B2 (ja) 記録装置、データ処理装置、マスク製造方法およびマスクパターン
US8451493B2 (en) Processor, method and program for processing data using a mask pattern with print permission parts arranged at a distance of corresponding integral multiple areas
US20080137146A1 (en) Image data generating apparatus, image printing apparatus, and image data generating method
JP4804583B2 (ja) データ処理装置およびディザパターン製造方法
JP4519876B2 (ja) データ処理装置、データ処理方法およびプログラム
US8001720B2 (en) Data processing apparatus, printing apparatus and method of creating mask pattern
JP4564979B2 (ja) データ処理装置、記録装置およびマスクパターンの製造方法
JP5183688B2 (ja) データ処理装置およびデータ生成方法
JP2011042166A (ja) 画像データ生成装置、記録装置および画像データ生成方法
JP5268875B2 (ja) 画像形成装置及び画像形成方法
JP6358417B2 (ja) 印刷装置および印刷方法
JP5901584B2 (ja) 量子化方法及び画像処理装置
JP4597159B2 (ja) データ処理装置、マスクパターン製造方法およびデータ処理方法
JP2003237142A (ja) 記録装置、その記録方法及びそのプログラム
JP2018138392A (ja) 印刷装置、印刷方法、シリアルプリンター

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11618979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11618979

Country of ref document: US

122 Ep: pct application non-entry in european phase