WO2004024471A1 - 非対称トレッドパターンを有するタイヤおよびその装着方法 - Google Patents

非対称トレッドパターンを有するタイヤおよびその装着方法 Download PDF

Info

Publication number
WO2004024471A1
WO2004024471A1 PCT/JP2003/011163 JP0311163W WO2004024471A1 WO 2004024471 A1 WO2004024471 A1 WO 2004024471A1 JP 0311163 W JP0311163 W JP 0311163W WO 2004024471 A1 WO2004024471 A1 WO 2004024471A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
groove
width
vehicle
Prior art date
Application number
PCT/JP2003/011163
Other languages
English (en)
French (fr)
Inventor
Yasuo Ohsawa
Takafumi Sawada
Takanari Saguchi
Kazuto Fujita
Arata Tomita
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002253645A external-priority patent/JP4266600B2/ja
Priority claimed from JP2002254020A external-priority patent/JP4428914B2/ja
Priority claimed from JP2002254173A external-priority patent/JP4275372B2/ja
Priority claimed from JP2002254053A external-priority patent/JP4275371B2/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US10/526,084 priority Critical patent/US20050247388A1/en
Priority to EP03795277.7A priority patent/EP1541380B1/en
Publication of WO2004024471A1 publication Critical patent/WO2004024471A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/124Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern inclined with regard to a plane normal to the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/001Tyres requiring an asymmetric or a special mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49481Wheel making
    • Y10T29/49492Land wheel
    • Y10T29/49494Assembling tire to wheel body

Definitions

  • the present invention relates to a tire suitable for a passenger car, particularly to a tire having high anti-hydroplaning performance on a wet road surface and low tire noise, and a method of mounting the same.
  • Non-Patent Document 1 As a general configuration method, the ratio of the groove area on the tread tread, that is, the negative ratio is reduced to increase the rigidity of the tread on the outside of the tread, and the negative ratio is increased on the contrary on the inside. The block rigidity is reduced.
  • one circumferential main groove is provided on the outside of the tread, and two on the inside.
  • the main groove and the inclined groove have been used to improve the reciprocal performance of wet performance, noise due to columnar tube resonance, and wear on the outside of the vehicle.
  • the general running performance on wet road surface was observed for the jet performance, and no particular mention was made of the anti-idling performance.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and has been developed to improve the hydroplaning resistance performance and suppress the tire noise in a high dimension, which had conventionally been contradictory.
  • the purpose is to propose a method to achieve both.
  • the inventors examined in detail the case where the suppression of tire noise and the anti-ide opening planing performance were not compatible.A common thing in this case is that the ground camber is given to the mounted vehicle. It was found that this was due to the fact that the ground contact shape of the tire was different from the case where the camber to ground was 0 °. As described above, conventionally, there has been a problem in that tire performance has not been optimized when the vehicle is mounted.
  • the inventors have eagerly studied means for ensuring the stability and abrasion resistance of the vehicle on a dry road surface in addition to improving the hydroplaning resistance and suppressing the tire noise.
  • the tires are mounted on the actual vehicle, and the usage conditions, especially the mounting position of the tires (camber angle, toe-in, etc.), the grounding shape at that time, and the flow of drainage and water (streamline) are focused on.
  • the following findings (a) to (d) were obtained.
  • the gist configuration of the present invention is as follows.
  • a tire having an asymmetric tread pattern wherein a circumferential groove closest to the tire equatorial plane in a region of a vehicle k rule is at least 10% narrower than an average groove width.
  • the circumferential groove closest to the tire equatorial plane which has one circumferential groove in the area outside the vehicle and is located in the area inside the vehicle, is one of the average groove widths.
  • the circumferential groove closest to the tire equatorial plane which has two circumferential grooves in the region outside the vehicle and is located in the region inside the vehicle, is one of the average groove widths.
  • a rib-shaped land portion extending along the tire equatorial plane is provided on or near the equator of the tire between the circumferential grooves.
  • the center of the tire land in the width direction of the tire is located on the side where the circumferential length of the tread contact area is extended when a negative key is applied to the tire from the equatorial plane of the tire, and crosses the tire equatorial plane.
  • a plurality of narrow grooves extending in the direction, the narrow grooves have a portion extending in a direction inclined with respect to the tire radial direction of the tread, and further, among the two circumferential grooves sandwiching the rib-shaped land portion, A tire having an asymmetrical tread pattern, characterized in that the circumferential groove located on the side where the circumferential length of the tread contact area is extended is wide.
  • the tie sandwiched between the circumferential grooves.
  • a rib-shaped land portion extending along the tire equatorial plane on or near the equator of the tire, the center of the rib-shaped land portion in the tire width direction giving a negative camber to the tire from the tire equatorial plane. It is located on the side where the circumferential length of the tread contact area is extended, and has a plurality of elliptical concave sinkers whose major axis is in the direction crossing the tire equatorial plane, and further sandwiches the rib-shaped land part.
  • a tire having an asymmetric tread pattern, wherein, among the circumferential grooves, a circumferential groove located on a side where the circumferential length of the tread contact area is extended is wide.
  • the dimple has an asymmetric tread pattern, wherein the major axis has an inclination of 5 to 45 ° with respect to the tire width direction.
  • a plurality of holes having a maximum depth of 1/3 or more of the depth of the circumferential groove are provided in the land portion inside the vehicle when the vehicle is mounted, independent of the circumferential groove, And an asymmetrical tread pattern in which the concave volume in the region on the tread end side of the line passing through the center in the tread width direction of the land is larger than the concave volume in the region on the opposite side of the tread end of the line passing through the center in the width direction.
  • the land portion inside the vehicle when the vehicle is mounted is divided into an outer portion in the tread width direction and an inner portion in the same width direction by a narrow circumferential groove, and the outer portion in the width direction is divided.
  • At least one of the centers of curvature of the curves constituting the contour of the side surface of the outer portion in the tread width direction is defined as:
  • an asymmetrical tread pattern is provided in which an opening dimension of a hole is increased as a distance from a tire equatorial plane is increased in a land portion which is mounted on a vehicle and is on an inner side. tire.
  • the vehicle has an asymmetrical tread pattern in which the depth of the hole is increased as the distance from the tire equatorial plane increases in the land portion which is mounted on the vehicle and which is on the inner side. tire.
  • the transmission rate of the radial force input to one end of the rim in the width direction to the axle is the same as the radial force input to the other end of the rim in the width direction.
  • the cross groove per unit width in the tread width direction of the horizontal groove that may be provided on the cross section that is mounted on the wheel and located on the side with the higher transmission rate
  • the total volume over the entire circumference of the tread is made smaller than the similar total volume of the lateral groove provided on the land at the other end of the tread, and the transmissibility is reduced.
  • At least one of the center of curvature of a curve forming a contour on a side surface of an outer portion in a tread width direction is a tire.
  • A, A is 1.0 ⁇ 1.4
  • a tire having an asymmetrical tread pattern as follows.
  • the circumferential groove provided closest to the tire equatorial plane maximizes the circumferential length of the contact area of the tread when a negative camber is applied to the tire.
  • a wheel equipped with a tire whose cross section in the width direction is symmetrical to the equatorial plane is attached to the shaft member, and each shoulder of the tire tread is vibrated radially at a plurality of different frequencies.
  • the transmissivity expressed as a ratio to the excitatory force of the shaft input generated in the shaft member based on the excitatory force is calculated, and the average value of the transmissivity for each frequency is calculated for each shoulder, and A method for measuring the vibration transmission characteristics of a wheel, which determines which of the average values of the transmissibility is greater.
  • the circumferential groove is a groove extending in the tread circumferential direction having a width of 2.5% or more of the tread width.
  • the lateral groove in the above (11) refers to a groove having an inclination of 20 ° or more with respect to the tread circumferential direction.
  • the volume of the concave portion is a value obtained by integrating all the volumes of the circumferential grooves, the lateral grooves, and the holes in each region over the entire circumference of the tire.
  • the tread width refers to the contact width when the tire is mounted on the applicable rim, filled with the specified air pressure, and loaded with a mass corresponding to the maximum load capacity.
  • the applicable rim refers to the rim specified in the following standard
  • the maximum load capacity refers to the maximum mass that can be applied to the tire in the following standard
  • the specified air pressure refers to the following: Refers to the air pressure specified in the standard corresponding to the maximum load capacity.
  • a rib-shaped land portion and a block-shaped land portion row are collectively referred to as a land portion without distinction.
  • the direction of the groove that can improve drainage is the direction in which water flows (streamline direction). It was found that it was almost the same as the normal direction of the grounding shape. Therefore, when traveling straight, the circumferential groove near the tread center contributes to the improvement of drainage, and near the ground end in the tread width direction, the width groove contributes to the improvement of drainage. Also, focusing on the front wheels, which are important for hydroplaning resistance, it was found that the load increases during braking and that the suspension strokes, resulting in a negative camber.
  • the circumferential groove forms a tube of the same length as the ground contact length with the road surface, and this tube becomes a noise source called columnar resonance that makes a sound like a whistle.
  • the results of measuring the columnar resonance of the tire showed the same groove cross-section and width (Fig. 2).
  • the pipe cross section and the ground contact length (pipe length)
  • the columnar tube resonance sound was large in the width direction of the tire, in other words, the sensitivity was different.
  • This sensitivity is lower on the inside of the tread and maximum at the outside of the tread. The decrease in sensitivity from the center of the tread to the inside of the wearing is greater than the increase in sensitivity from the center of the tread to the outside of the g wearing.
  • FIG. 3 shows a typical example of a tread pattern according to the present invention constructed based on such knowledge.
  • this tread pattern has at least two in the region inside the vehicle from the tire equatorial plane O when the vehicle is mounted, two circumferential grooves la and lb in the illustrated example, and at least one in the region outside the vehicle.
  • the groove has one circumferential groove 1c.
  • the circumferential groove 1b closest to the tire equatorial plane 0 is the total groove width of the tire (the circumferential groove arranged on the tread). Is defined as the value obtained by dividing the total number of circumferential grooves by the number of circumferential grooves.
  • the circumferential grooves 1a which are at least 20% wider than the average groove width, are located on the tread end side of the area inside the vehicle. It is important that the circumferential groove 1c has a width of 90 to 110% of the average groove width, and the circumferential groove 1c in a region outside the vehicle has a width which is at least 10% narrower than the average groove width.
  • the amount of water collected per unit contact width is more than 20% larger than that in the peripheral region.
  • the circumferential groove 1 b closest to the tire equatorial plane is larger than the average groove width. Drainage is significantly improved when the width is made 20% or more. If the groove width of the circumferential groove 1b is larger than 100% of the average groove width, the center of the circumferential groove 1b may be crushed at the time of grounding, and draining may be difficult. It is preferable that the increase of the width is limited to 100% of the average groove width as an upper limit.
  • the circumferential groove 1c on the outside of the vehicle has a high columnar resonance sensitivity, it is made 10% or more narrower than the average groove width to include the circumferential groove lb and the width of 1a. The ability to suppress noise can be improved. If the width of the circumferential groove 1c is less than 3 mm, the function as a groove may not be exhibited. Therefore, the lower limit is preferably set to 3 mm.
  • the circumferential groove 1a on the innermost shoulder side of the vehicle has low sensitivity to columnar tube resonance, so the effect on noise is small even if the groove width is widened or narrowed. Therefore, in order to further improve the anti-hydroplaning performance under the negative camber at the time of braking, it is sufficient to increase the average groove width up to 10%. On the other hand, in order to improve the anti-hide mouth play-eng performance when traveling straight, it is necessary to improve drainage by combining with the groove on the outside of the mounting. In addition, it is preferable to make the groove width smaller than the average groove width by 10%.
  • the circumferential groove when the difference between the maximum contact width and the contact circumferential length is small, that is, when the contact shape is slightly laterally long, for example, when the tire has a high flatness ratio or when the load is large, the circumferential groove The drainage efficiency is lower than when the maximum contact width is greater than the contact circumferential length. In other words, in the case of an extremely horizontally long ground contact shape, the drainage efficiency of the circumferential groove increases.
  • the sensitivity of columnar tube resonance is high outside the mounting area, it is often the case that a single circumferential groove in the area outside the mounting area has better anti-idling planing performance and noise performance.
  • the amount of water that accumulates in the central area per unit ground contact width is 20 to 45% larger than that in the peripheral area
  • the width of the circumferential width groove 1b inside the mounting area is 20 to 45% of the average groove width.
  • the hydroplaning resistance can be further improved.
  • the difference between the maximum contact width and the contact circumferential length is large, that is, in the case of a horizontally long contact shape, for example, when the tire aspect ratio is low or when the load is small
  • the drainage efficiency of the circumferential groove is The difference between the maximum contact width and the contact circumferential length is larger than when the difference is small. For this reason, providing two circumferential grooves on the outside of the mounting can improve the hydroplaning resistance performance more effectively.
  • the width of the circumferential groove 1b inside the mounting area is 25 to 55% of the average groove width.
  • the ground contact shape is the inner side of the tire's equatorial plane. Increases the contact length. At this time, the drainage efficiency of the circumferential groove is maximized at the position where the grounding length is the maximum, and As described above, is also the position inside the tire equatorial plane where the sensitivity of air column resonance decreases. Therefore, as shown in Fig. 4, the wider circumferential groove 1b overlaps with the position mL where the circumferential length of the tread contact area is maximized when a negative camber is applied to the tire, as shown in Fig. 4. It is advantageous to give.
  • overlap means that the position mL is included in the circumferential groove 1b, and the position mL does not necessarily need to be at the width center of the circumferential groove 1b.
  • the current situation is that the drainage performance on the wet road surface is incompatible with the Darlipka and steering stability when driving on dry road surface at high speed.
  • the tread center has high belt rigidity, so the circumferential distortion of the tread portion due to rotation becomes excessive, and the tread portion wears preferentially, so-called center wear. There is also a problem that it is easy to occur.
  • the tread pattern is being designed so that the various required performances described above can be realistically compromised.
  • FIG. 5 is a tread pattern of a passenger car tire according to the present invention.
  • the tire has four circumferential grooves 1 a to ld extending along the tire equatorial plane 0, and these circumferential grooves 1 a to Between ld and tread end T, land sections 2a and 2b with blocks on both sides of tread edge T, land sections 3a and 3b inside tire width direction, and tire equatorial plane O The upper part is divided into rib-shaped land parts 4.
  • the mating parts 3a and 3b have inclined grooves 5a and 5b which extend inclining with respect to the tire equatorial plane 0 and open outward in the tire width direction.
  • the rib-shaped land portion 4 has a plurality of narrow grooves 6 extending in a direction crossing the tire equatorial plane 0.
  • the contact shape when the negative chamber is provided to the tire is such that the center of the rib-shaped land portion 4 in the tire width direction S is more negative than the tire equatorial plane. It is important that the camber be located on the side where the circumferential length of the tread contact area is extended (the side where the tread contact length maximum position mL exists).
  • the rib-shaped land portion 4 is disposed in a high belt rigidity portion where a high belt tension is generated by the above-described trapping center portion due to the hold effect, and where the contact area increases due to the extension of the contact length. Can greatly improve the steering stability It is effective for
  • the provision of the narrow groove 6 reduces the rigidity of the rib-shaped land portion 4 in the width direction of the tire, and, in order to minimize the reduction in grip force, alleviate the strain at the time of contact with the ground.
  • lateral rigidity must be compatible.
  • the narrow groove 6 is provided at the tire radius of the tread so that the land portion defined by the narrow groove 6 can escape in the circumferential direction and interfere with each other in the width direction to maintain lateral rigidity. It is advantageous to have portions that extend in an oblique direction relative to the direction.
  • the narrow groove 6 has a portion extending in a direction inclined to the tire radial direction of the tread means that the narrow groove 6 does not extend uniformly in the tire radial direction and the width direction.
  • the narrow groove 6 is divided into three in the tire width direction, and the depth of each portion is It is preferable that the cut in the direction is inclined with respect to the radial direction of the tire, and that the adjacent portions have different directions. At this time, it is advantageous that the angle ⁇ ; formed by the cuts in each part is in the range of 5 to 30 °.
  • the grooves 6 formed by cutting the tread in a direction inclined with respect to the tire radial direction may be formed by twisting the notch and extending in a direction inclined with respect to the tire radial direction.
  • the cut from the surface extends in a different direction from the middle, or the cut from the tread surface is divided into multiple parts in the tire width direction from the middle and the extending direction differs between the divided parts.
  • the basic requirement is that the grooves be discontinuous in the tire width direction.
  • the narrow groove 6 extending in such a direction, the circumferential distortion While the grooves are prevented from continuing in the tire width direction, the grooves are restricted in the width direction of the tire, and deformation is suppressed by interference between adjacent walls, so that rigidity can be secured. .
  • the narrow groove 6 is inclined at 5 to 55 ° with respect to the tire width direction. Is preferred. That is, if the angle is less than 5 °, the narrow groove and the ground contact line may periodically coincide with each other during rotation of the tire, which may cause large pattern noise. On the other hand, if the angle exceeds 55 °, the rigidity in the width direction of the rib-shaped land portion 4 is reduced, which may adversely affect the steering stability.
  • the narrow groove 6 is open on the tread surface. The effect of reducing directional distortion can be sufficiently exhibited.
  • the narrow groove 6 is preferably closed on the tread surface from the viewpoint of improving the steering stability.
  • the above-described narrow groove 6 is formed instead of the above-mentioned narrow groove 6, as shown in FIG. 7, by forming a dimple 7 which is depressed in an elliptical shape whose major axis is in a direction crossing the tire equatorial plane ⁇ , the above-described narrow groove 6 is formed. Similar functions and effects can be obtained. In this case, it is preferable that the long axis center of the dimple 7 coincides with the center of the rib-shaped land portion 4 in the tire width direction.
  • the front wheels In general, in the case of pneumatic tires, the front wheels often have a problem with respect to wear of a portion that is mounted on a vehicle and is inside the vehicle. This is based on the original vehicle settings.
  • the contact length of the shoulder part on the inside of the mounting is longer than the contact length of the outside, so if a small slip angle of the toe-in or the toe is added in this state, the lateral displacement of the tire will increase.
  • a portion of the shoulder on the inner side of the mounting portion bears an extra lateral force, which causes uneven wear in which the shoulder portion on the inner side of the mounting portion is more worn on the outer shoulder portion.
  • the width is widened, and the widened area is dragged by the force in the braking direction, which also causes uneven wear. It becomes a factor.
  • the shoulder portion on the inner side of the mounting has a larger deflection and a smaller radius of rotation than the outer shoulder portion, so that it is dragged and receives a force in the braking direction.
  • the load of this force increases in the area closer to the ground contact, and uneven wear nuclei are likely to occur in this area.
  • uneven wear that occurs on the shoulder inside the mounting is difficult to see when the vehicle is mounted and it is difficult for the driver to notice, so if left unattended without appropriate measures, it will be uneven wear Has progressed, and in the worst case, it may cause a failure such as a tire burst.
  • FIG. 8 is a development view of a tread pattern shown in a front view of a tire in a mounting posture on a vehicle. Since the internal structure of this tire is the same as that of a general radial tire, illustration is omitted here.
  • Continuous on the tread TD in the circumferential direction At least two, in the figure, three circumferential grooves 1a, 1b and 1c are provided, and the land portions 2a and 2a defined by the circumferential grooves 1a and 1c and the tread edge T are provided.
  • the mating part 2a which is attached to the vehicle and is on the inside, is made into a rib shape, while the land part 2b, which is attached to the vehicle and is on the outside, is provided with a lateral groove 8 and the blocks are lined up.
  • the total volume per unit width in the tread width direction of the lateral groove (which is not provided in the illustrated example) that may be provided in the land portion 2a, This feature is smaller than the similar total volume of the lateral groove 8 provided on the land 2b on the tread edge side, and as a result, the circumferential rigidity of the land is larger on the land 2a than on the muddy 2b. is there.
  • the other two rows of land portions 3a and 3b defined between the three circumferential grooves are also provided with lateral grooves 9a and 9b, respectively, but are not limited to the illustrated example. Absent.
  • a plurality of holes 10 independent of the circumferential groove 1a are provided in the land portion 2a, and the concave volume in the region on the side of the trad end T from the center line Ci in the width direction of the land portion 2a is determined.
  • the volume of the concave portion in the region on the opposite side of the tread edge T of the center line Ci is made larger.
  • the land part 2a is compressed and deformed in the ground contact surface, and the ground contact length becomes longer. Since the lateral groove shrinks and the radius of gyration decreases, the shoulder in the land portion 2a, which has a large radius of gyration, receives a force in the direction opposite to the vehicle traveling direction, that is, a force in the braking direction, causing uneven wear. Can be prevented from occurring.
  • the land 2a may have fewer lateral grooves than the land 2b. Good.
  • the three land grooves 3a, 3b which are partitioned inward in the width direction from the land parts 2a, 2b, by three circumferential grooves la, lb, and lc, respectively, have lateral grooves 9a, By providing 9b, those groove edges can be effectively contributed to the increase of the braking force and the driving force, and at the same time, the drainage performance in the central region of the tread can be improved.
  • ? 10 reduces the shear stiffness of the area where they are provided, reduces the load on this area with respect to lateral force, suppresses the generation of reaction force, and pulls this area in the braking direction. In this case, it is also possible to suppress the occurrence of a reaction force against the braking force, thereby suppressing the occurrence of uneven wear.
  • the maximum depth of the hole 10 is at least 1/3 of the depth of the circumferential grooves la, 1b, and 1c, even if tire wear progresses, a plurality of holes 10 can be formed. The effect of suppressing the occurrence of uneven wear due to the provision can be ensured.
  • the depth of the circumferential grooves 1a, 1b and 1c are different, the depth of the circumferential groove (la in the illustrated example) adjacent to the hole 10 is used as a reference.
  • the upper limit of the maximum depth of the holes 10 is preferably set to a depth reaching 1 mm radially outward from the outermost layer of the belt in order to secure the rubber thickness between the belt layer and the groove bottom.
  • circumferential grooves 1a, 1 and 1 In order to improve the hydroplaning performance when traveling straight, the circumferential grooves la and lb should be deep, and in order to improve the hydroplaning performance when cornering, the circumferential groove 1c should be deep. desirable.
  • the concave volume larger in the tread end area than the center line Ci of the land portion 2a on the inner side of the mounting and in the area opposite to the tread end of the center line Ci, the tread that tends to cause uneven wear is formed. In the end region, the effect of suppressing uneven wear can be enhanced.
  • the land portion 2a which is mounted on the vehicle and becomes inner side is divided into a tread width direction outer portion 12 and a same width direction inner portion 13 by a narrow circumferential groove 11, and the width direction thereof is changed.
  • the width w of the outer portion 12 is made narrower than the width w 0 of the inner portion 13 in the width direction, and is not more than 1 Z 10 of the tread width W. According to this, it is possible to separate the widthwise outer portion 12 near the ground contact end where uneven wear is most likely to occur, and to suppress the progress of wear to the inner portion 13 therefrom.
  • the width w of the outer portion 12 in the width direction is smaller than the width w 0 of the inner portion 13 in the width direction and 1 t 10 or less of the tread width W to reduce uneven wear volume and improve appearance. Can be kept.
  • the uneven wear volume of the widthwise outer portion 12 near the ground end where the uneven wear is most likely to occur can be further reduced, and the appearance can be kept good.
  • the width w 10 of the narrow circumferential groove 11 is preferably gradually increased from the groove bottom toward the tread surface side.
  • At least a part of the region in which the plurality of holes 10 are arranged in the widthwise inner portion 13 of the contact portion 2a on the inner side of the mounting is provided. It is preferable to use a tread configuration that is grounded.
  • the opening dimension R of the hole 10 is increased as the distance from the tire equatorial plane increases. According to this, the effect of suppressing the occurrence and uneven development of uneven wear by providing the plurality of holes 10 described above can be increased as the lateral force and the braking force are closer to the ground contact end. it can. In addition, by arranging the holes 10 in the area that is effective in suppressing uneven wear and by arranging them as little as possible in other parts, the steering stability and tread durability are good in other parts. It becomes possible to keep.
  • the distance Q between the plurality of holes 10 is reduced as the distance from the tire equatorial plane increases.
  • the depth of the hole 10 is increased as the distance from the tire equatorial plane increases. Also according to this, the effect of suppressing uneven wear can be increased near the ground contact end, and a plurality of holes 10 are arranged only in an area effective for suppressing uneven wear to improve steering stability. Good thread durability can be maintained.
  • Factors that hinder the quietness of passenger cars include the direct sound generated from the tires and the solid-borne noise generated by transmission of tire vibrations into the vehicle.
  • the solid-borne noise is caused by the tire being vibrated as a whole due to the forced input due to the unevenness of the road surface, and the vibration is transmitted to the vehicle body via the axle, and the road noise and the tread pattern of the tire Tires vibrate due to their own geometric discontinuities, which propagate through the axle to the vehicle body and are roughly classified into pattern noise, which is sound in the vehicle.
  • the present inventors conducted various studies on the sound propagating through the structure, and as a result, obtained the knowledge that the vibration characteristics of the wheel are an important factor for increasing the sound propagating through the structure.
  • the vibration transmission of the tire to the vehicle is performed in the order of the tire tread, the left and right sidewalls, the left and right beads, the wheel rim, the wheel disc, and the axle, and is transmitted from each shoulder of the tire tread to the axle. It has become clear that the vibration transmission characteristics to be used differ from one another, and the mode is not due to the direction of the offset of the wheel disc with respect to the wheel rim, but to the dimensions and shape of the wheel itself. .
  • FIG. 10 is a developed view of a tread pattern shown in a front view when the tire mounted on the wheel and filled with air pressure is set in an assembling posture to the vehicle. Since the internal structure of the tire is the same as that of a general radial tire, it is not shown.
  • the tread TR is provided with at least three circumferential grooves la, 113 and 1 (which extend continuously in the circumferential direction, and is defined by the circumferential grooves 1 a and 1 c and the tread end T.
  • the side grooves (not shown in the example shown) that may be provided on the land section 2a, which is mounted on the wheel and located on the side with the higher transmission rate, are not provided.
  • the characteristic feature is that the total volume per unit width in the tread width direction over the entire circumference of the tread is smaller than the similar tread volume of the lateral groove 8 provided on the land 2b at the other end of the tread. is there.
  • the two rows of land sections 3a and 3b defined by the three circumferential grooves 1a, 1b and 1c are provided with inclined grooves 9a and 9b, respectively. Limited to example It is not something to be done.
  • the land portion 2a is provided with a narrow circumferential groove 11 extending linearly continuously in the tread circumferential direction.
  • the narrow circumferential groove 11 divides the land portion 2a into two in the tread width direction.
  • a portion 12 outside the narrow circumferential groove 11 in the tread width direction is used as a narrow rib
  • a portion 13 inside the narrow circumferential groove 11 in the tread width direction is provided with a circumferential groove 1a and a narrow groove.
  • a plurality of holes 10 independent of the width circumferential groove 11 are provided.
  • sipes 14 may be provided at equal intervals in the tread circumferential direction in the inner portion 13 in the tread width direction.
  • the total volume of the transverse groove of the land portion 2a is made smaller than the total volume of the transverse groove 8 of the mating portion 2b, so that the circumferential direction of the Lateral grooves, which are discontinuous components, can be relatively reduced, and pattern noise generated when the lateral grooves are grounded can be prevented.
  • the fact that the lateral groove is provided in the reciprocal part 2a means that the lateral groove may not be provided as in the illustrated example, and the total volume of the lateral groove in this case is, of course, zero.
  • the compression rigidity of the land portion 2a is reduced, thereby reducing input to the tire from unevenness of the road surface, Vibration transmitted to the axle can be suppressed, and road noise transmitted to the vehicle interior can be reduced.
  • the narrow peripheral groove 11 and the plurality of holes 10 do not become discontinuous portions in the circumferential direction of the tread, so that the occurrence of pattern noise can be suppressed.
  • the groove volume of the entire tread pattern can be secured, and the drainage performance of the jet can be secured.
  • the compression rigidity of the inner portion 13 in the width direction of the tread can be further reduced.
  • road noise can be further reduced.
  • the width w 1 of 1 is gradually increased from the groove bottom to the tread surface side.
  • the opening dimension R of the plurality of holes 10 formed in the inner portion 13 in the tread width direction is increased as the distance from the tire equatorial plane ⁇ increases, and the plurality of holes 10 It is preferable that the interval Q between them is made smaller as the distance from the tire equatorial plane ⁇ increases, and the depth of the plurality of holes 10 is increased as the distance from the tire equatorial plane O increases.
  • the compression rigidity in the tire radial direction of the tread width direction inner portion 13 provided with the plurality of holes 10 increases as the wheel mounted has a higher transmission rate and approaches the ground contact end. It is possible to reduce the input to the tire from the unevenness of the road surface, suppress the vibration transmitted to the axle, and reduce the road noise transmitted to the vehicle interior. In addition, holes are placed in areas that are effective in reducing road noise, and are not placed as much as possible in other parts of the tread, so that steering stability and tread durability are improved in other parts. It is possible to keep good.
  • the inside of the tread width direction W70 in the width direction of the tread under the load of 70% or more of the maximum load capacity of the tire It is preferable to adopt a tread configuration in which at least a part of the region including the region where the holes 10 are arranged is grounded.
  • the tread width inner part 1 At least a part of the region where the hole 10 is provided in 3 can be reliably grounded to ensure the effect of reducing the load noise. More preferably, as shown in FIG. 9, in the cross section in the tire width direction, at least one of the centers of curvature C 1 among the centers of curvature of the curves constituting the contour S 1 on the side surface of the outer side portion 12 in the direction of the tire. Is located outside the tire of the contour S1, and the center of curvature C2 of the curve constituting the contour S2 of the inner portion in the same width direction is located inside the tire of the contour S2.
  • the uneven wear volume of the outer portion 12 in the width direction can be reduced, and the appearance can be kept good.
  • FIG. 11 is a diagram schematically illustrating a method of measuring the vibration transmission characteristics of a wheel according to the present invention. By performing such a measurement, it is possible to easily and reliably specify the land portion which is mounted on the wheel and which is located on the side where the transmissibility is large.
  • the predetermined frequency band is set to 300 to 100 Hz.
  • the tires described above are mounted on the applicable rim, filled with the specified air pressure, and loaded with a mass equivalent to the maximum load capacity, and the effective contact area on either the inside or the outside of the vehicle is In the filling position with the specified air pressure, the radial distance from the tread outer surface tangent perpendicular to the equatorial plane of the tire to each tread contact edge is larger on the mounting side where the effective contact area is smaller.
  • the tire it is preferable to configure the tire so as to be larger than the other mounting side in order to suppress the conicity force, which is likely to occur in the tire having the asymmetric pattern, and in this case, the ratio of the effective contact area (S Large / S small) and the ratio of large / small radial distance (H large / H small)
  • A is 1.0 to 1.4
  • the rigidity of the land on the outer part of the tire tread is reduced by increasing the load on the tire outside the cornering, and the contact area also increases. It is widely practiced to increase the cornering force by making it larger than that.
  • the specific configuration for this is to increase the rigidity of the land by reducing the negative rate of the mounting part M part. In general, it is common to increase the negative rate of the inner part of the installation to ensure drainage.
  • the ground contact area of the outer part of the mounting becomes larger than that of the inner part of the mounting.
  • the widthwise shearing force that the tread surface receives from the road surface is greatly different between the inside and outside of the mounting, and this difference is caused by the conicity force as if a camber corner was added to the tire.
  • a lateral force is applied to the tire in the outward direction as a cause of the occurrence.
  • the shear force in the width direction generated on the tread tread is largest at the tread shoulder portion, and the shear force is the same as that of the tread tread. It was found that the larger the distance from the tire equator, the larger the distance, and that it was extremely sensitive to the distance.
  • the radius from the tangent to the outer surface of the tread which is perpendicular to the tire equatorial plane to the respective tread edge is Direction distance is set to be larger on the mounting side with a smaller effective contact area than on the other mounting side, and the shear force in the width direction generated by the tread shoulder part on the side with the larger radial distance is reduced on the side with the larger effective contact area.
  • A is between 1.0 and 1.4
  • the tread contact surface is attached to the applicable rim, as schematically shown in Fig. 12 (a).
  • the effective grounding of Area s Under the condition that the air pressure is filled and the mass corresponding to the maximum load capacity is applied, the effective grounding of Area s.
  • the specified air pressure filling state is shown in Fig. 12 (b). of as indicated in the width direction substantially line sectional view of the tire, from the tread outer surface tangent L which is perpendicular to the tire equatorial plane 0, each tread grounding edge EI, radial distance Hi n to EO, H. ut is the effective ground contact area smaller so as to increase in inner side (H in> H. ut) , it is effective to configure the connexion tires, for example selection of the inner surface shape of the pressurized ⁇ Mo one field.
  • the tire is configured so as to satisfy the following relationship.
  • the large effective contact area is S large
  • the small effective contact area is small S
  • the radial distance on the side where the effective contact area is large is H (S large side).
  • A, A is 1.0 to 1.4
  • Figure 1 is a diagram showing the difference in drainage capacity depending on the grounding shape
  • Figure 2 shows the distribution of tracheal resonance sensitivity in the trad width direction.
  • FIG. 3 is a diagram showing a tread pattern according to the present invention.
  • FIG. 4 is a view for explaining the mounting procedure of the tire of the present invention.
  • FIG. 5 shows a tread pad according to the invention
  • Figure 6 is a diagram showing the structure of the narrow groove
  • FIG. 7 is a diagram showing another tread pattern according to the present invention
  • FIG. 8 is a development view of a tread pattern showing an embodiment of the present invention in a front view of a tire mounted on a vehicle
  • FIG. 9 is a cross-sectional view in the width direction showing a part of the tread pattern of the present invention.
  • FIG. 10 is a development view of a tread pattern showing the embodiment of the present invention in a front view when the evening air-filled by mounting the wheel to the vehicle is in an assembling posture
  • FIG. FIG. 1 is a diagram schematically showing a method for measuring the vibration transmission characteristics of a wheel according to the present invention
  • FIG. 12 is a diagram showing a tire configuration for suppressing conicity force
  • FIG. 13 is a diagram showing various tread patterns used in Examples
  • FIG. 14 is a diagram showing various tread patterns used in the examples.
  • FIG. 15 is a diagram showing various tread patterns used in the examples.
  • Figure 16 shows a comparison tread pattern
  • FIG. 17 is a developed view of a tread pattern showing another embodiment of the present invention in a front view of a tire mounted on a vehicle,
  • FIG. 18 is a development view of a tread pattern showing the form of the comparative tire in a front view of the tire in a mounting posture to a vehicle.
  • FIG. 19 is a development view of a tread pattern showing another form of the comparative tire in a front view of the tire in a mounting posture to a vehicle,
  • FIG. 20 is a development view of a tread pattern showing another form of the comparative example tire in a front view of the tire in a mounting posture to a vehicle,
  • FIG. 21 is a development view of a tread pattern showing another form of the comparative tire in a front view of the tire in a mounting posture to a vehicle,
  • FIG. 22 is a development view of a tread pattern showing another form of the comparative tire in a front view of the tire in a mounting posture to a vehicle,
  • FIG. 23 is a development view of a tread pattern showing the form of the comparative tire in a front view when the tire, which is mounted on a wheel and filled with air pressure, is in an assembled posture to a vehicle
  • FIG. 24 is a development view of a tread pattern showing another form of the comparative example tire in a front view when the tire, which is mounted on the wheel and filled with air pressure, is in an assembling posture to a vehicle
  • FIG. 26 is a developed view showing a tread pattern of the comparative example tire 12.
  • Figure 13 Size 205/65 R15, 014: Size 205/55 R16 and Figure 1.5: Size 225/55 R16 passenger car radial tires with the tread patterns shown in Figures 13-15. It was manufactured under the specifications of. Note that the basic specifications are the same as the basic specifications for the configuration other than the circumferential groove, that is, the cross section defined between the circumferential grooves and between the tread ends, and the transverse groove and the inclined groove extending in the direction crossing the tire equatorial plane provided there. did. In addition, the grounding shapes shown by thick lines in each figure are obtained when the camber angle is given to the front wheels of the vehicle.
  • Each circumferential groove has a rectangular cross section with a groove width of 8 mm and a depth of 8 mm.
  • Example 1-2 In Conventional Example 1-2, all circumferential grooves were moved 5 mm to the inside of the mounting in comparison with Conventional Example 1-1. The groove width and depth are the same as in Conventional Example 1_1.
  • each circumferential groove is the same as Conventional Example 1-2, but the groove width is circumferential groove 1a: 8.0 mm from the inside of the mounting, circumferential groove lb: 9.6 mm, Circumferential groove 1c: 6.4 mm, groove depth 8 mm.
  • each circumferential groove is the same as that of Conventional Examples 1-2, but the groove width is circumferential groove la: 7.2 mm, circumferential groove lb: 9.6 mm, circumferential from the inside of the mounting.
  • the direction groove 1c was 7.2 mm, and the groove depth was 8 mm and had a rectangular cross section.
  • each circumferential groove is the same as in Conventional Examples 1-2, but the groove width is from the inside of the mounting to the circumferential groove 1a: 8.0mm, circumferential groove 1b: 8.8mm , Circumferential groove 1c: 7.2 mm, groove depth 8 mm.
  • each circumferential groove is the same as in Conventional Example 1-2, but the groove width is from the inside of the mounting to the circumferential groove 1a: 9.2mm, circumferential groove 1b: 9.6mm , Circumferential groove 1c: 5.2 mm, groove depth 8 mm.
  • each circumferential groove is the same as that of Conventional Example 1_2, but the groove width is from the inside of the mounting to the circumferential groove la: 6.8 mm, circumferential groove lb: 9.6 mm, circumferential direction Groove 1c: 7.6 mm, groove depth 8 mm.
  • Inventive examples 1 to 4 have the same center position of each circumferential groove as conventional example 1 to 2, but the groove width is from the inside of the mounting to the circumferential groove 1a: 7. mm, circumferential groove 1 b: 11.6 mm. , Circumferential groove 1c: 5.2 mm, groove depth 8 mm.
  • Comparative Example 1-4 Fig. 13
  • each circumferential groove is the same as in Conventional Examples 1-2, but the groove width is from the inside of the mounting to the circumferential groove 1a: 7.2mm, circumferential groove 1b: 12.0mm , Circumferential groove 1c: 4.8 mm, and the groove had a rectangular cross section of 8 mm.
  • the average groove width in the tread pattern of FIG. 13 was 8 mm in each case.
  • Each of the above tires was assembled on a 6J-15 rim, the internal pressure was adjusted to 220 kPa, and then mounted on a passenger car. And, with two passengers, the ground camper of the front wheels was 0.4 ° and the rear wheel was -0.8 °.
  • An acceleration test was performed with this vehicle in a pool at a depth of 6 mm from a speed of 50 km / h, and the test driver evaluated the hydroplaning generation speed. The evaluation results are expressed as an index of the hydroplaning generation rate, and the larger the index is, the better.
  • a braking test was performed on a wet road surface with a depth of 2 mm at 100 kmZh, and a hydroplaning performance evaluation during braking was performed.
  • the evaluation results are indicated by an index, and the larger the index, the better.
  • the noise evaluation was measured at the driver's ear. The larger the index, the better.
  • the circumferential groove width of the center was set to + 10% of the average groove width, but it cannot be denied that the hydroplaning resistance was insufficient. No.
  • the circumferential groove on the inner side of the mounting is set to 115% of the average groove width, and the hydroplaning resistance during braking is better than that of Invention Example 1-2.
  • the circumferential groove width on the outer side of the mounting is better. Becomes too small and the hydroplaning speed index deteriorates.
  • the circumferential groove width on the outer side of the mounting was -5% of the average groove width, and the groove width on the outer side of the mounting was wide, which was disadvantageous for noise.
  • each circumferential groove has four circumferential grooves 1a to ld, and the circumferential grooves 1b and 1c are arranged on both sides of a 20mm wide rib 2 with a center of width on the tire equatorial plane O.
  • the circumferential grooves 1a and 1d are arranged outside the land portions 3a and 3b with a width of 20mm.
  • Each circumferential groove has a rectangular cross section with a groove width of 8 mm and a depth of 8 mm.
  • Conventional Examples 1-4 are located at positions where all the circumferential grooves are moved 6 mm inward of the mounting in comparison with Conventional Examples 1-3.
  • the groove width and depth are the same as in Conventional Examples 1-3.
  • Inventive example 1-5 has the same center position of each circumferential groove as conventional example 1-4, but the groove width is circumferential groove la: 8.0mm, circumferential groove lb: 9.6mm, circumferential from the inside of the mounting.
  • each circumferential groove is the same as the conventional example 1_4, but the groove width is from the inside of the mounting to the circumferential groove 1a: 8.8mm, circumferential groove 1b: 9.6mm, circumference Direction groove 1 c: 6.8 mm, circumferential groove 1 d: 6.8 mm, groove depth 8 mm.
  • each circumferential groove is the same as that of Conventional Examples 1-4, but the groove width is from the inside of the mounting to the circumferential groove 1a: 8.8mm, circumferential groove lb: 8.8mm, The circumferential groove 1c: 7.2 mm, the circumferential groove 1d: 7.2 mm, and the groove depth was 8 mm and had a rectangular cross section.
  • each circumferential groove is the same as that of Conventional Example 114, but the groove width is from the inside of the mounting to the circumferential groove la: 9.2 mm, circumferential groove 1 b: 9.6 mm, The circumferential groove 1c was 6.6 mm, the circumferential groove 1d was 6.6 mm, and the groove had a rectangular cross section of 8 mm.
  • each circumferential groove is the same as in Conventional Example 114, but the groove width is circumferential groove la: 7.2 mm, circumferential groove lb: 9.6 mm, circumferential from the inside of the mounting.
  • the average groove width in the tread pattern of FIG. 14 is 8 mm.
  • Each of the above tires was assembled on a 6.5 J-16 rim, the internal pressure was adjusted to 220 kPa, and then mounted on a passenger car. With two passengers, the ground camper for the front wheels was -0.5 ° and the rear wheel was -0.8 °.
  • An acceleration test was performed with this vehicle in a pool with a depth of 6 mm from a speed of 50 km / h, and the test driver evaluated the occurrence speed of the opening planing. The evaluation results are expressed as an index of the occurrence rate of hide opening planing, and the larger the index, the better.
  • a braking test was performed on a wet road surface with a depth of 2 mm at a speed of 100 km / h, and the hydroplaning performance during braking was evaluated. The evaluation result is indicated by an index. The larger the index, the better.
  • the noise evaluation was measured at the driver's ear. The larger the index, the better.
  • circumferential grooves 1 a to ld are provided, and circumferential grooves 1 b and 1 c are arranged on both sides of a 20 mm wide rib 2 having a width center provided on the tire equatorial plane O, and on the outside thereof, Circumferential grooves 1a and 1d are arranged outside the 20mm wide land sections 3a and 3b.
  • Each circumferential groove has a rectangular cross section with a groove width of 8 mm and a depth of 8 mm.
  • Inventive Example 17 has the same center position of each circumferential groove as Conventional Example 1-6, but the groove width is circumferential groove 1a: 8.0 mm, circumferential groove 1 b: 10.4 mm from the inside of the mounting.
  • Inventive example 18 has the same center position of each circumferential groove as conventional example 1-6, but the groove width is circumferential groove 1a: 8.0 mm, circumferential groove 1 b: 12.4 from the inside of the mounting. mm, circumferential groove 1c: 5.8mm, circumferential groove Id: 5.8mm, and the groove had a rectangular cross section of 8mm.
  • each circumferential groove is the same as that of Conventional Example 1-6, but the groove width is from the inside of the mounting to the circumferential groove 1a: 8.8 mm, circumferential groove 1b: 13. 2mm, circumferential groove 1c: 5.4mm, circumferential groove Id: 5.4mm, groove depth 8mm, rectangular section.
  • the average groove width in the tread pattern in FIG. 15 is 8 mm.
  • Each of the above tires was assembled on a 7.5 J-16 rim, the internal pressure was adjusted to 210 kPa, and then mounted on a passenger car. With two passengers on the ground, the front ground camber was -0.3 ° and the rear wheel was -0.5 °.
  • An acceleration test was performed with this vehicle in a pool with a depth of 6 mm from a speed of 50 kmZh, and the test driver evaluated the speed of occurrence of the opening planing. The evaluation results are expressed as an index of the hydrid mouth planning generation rate, and the larger the index is, the better the index is.
  • a braking test was performed on a wet road surface with a depth of 2 mm at 100 kmZh, and a hydroplaning performance evaluation during braking was performed. The evaluation results are indicated by an index, and the larger the index, the better.
  • the noise evaluation was measured at the driver's ear. The larger the index, the better.
  • a prototype radial tire for passenger cars with a size of 205/65 R15 having the tread pattern shown in Fig. 5 was produced.
  • the depth of each of the four circumferential grooves is 8 thighs
  • the width is 8 in the circumferential grooves 1a and 1d
  • the contact length extension side due to the addition of a negative camber corner (vehicle
  • the circumferential groove lb on the inner side of the mounting is 9.6 thighs
  • the circumferential groove lc on the side where the contact length is reduced is 6.4 iM.
  • the offset amount of the land center S with respect to the tire equatorial plane is 5 bandages, and the contact shape shown by the bold line indicates the case where the negative camber angle is 0.5 ° with calo.
  • the narrow groove 6 is inclined by 15 ° in the tire width direction. As shown in FIG. 6, the narrow groove 6 extends over the entire width of the rib-shaped land portion 4 having a width of 18 thighs and a depth of 10 treads in the radial direction of the tire, and a width of ⁇ 22 in the radial direction of the tire. It was cut at an angle of 5 °.
  • the opening width of the narrow groove 6 is 0.4 thigh, and the interval between the narrow grooves 6 is 30 cm.
  • a prototype radial tire for passenger cars with a size of 205/65 R15 with the tread pattern shown in Fig. 7 was produced.
  • the tread pattern shown in FIG. 7 is the same as that of FIG. 5 except that dimples 7 whose major axis is inclined by 15 ° in the tire width direction are replaced with narrow grooves 6 on the rib-shaped land portions 4. .
  • the dimples 7 are 13 thighs on the long axis and 3 thighs on the short axis, and the distance between the dimples 7 is 30 bands.
  • Fig. 16 shows a comparative tread pattern.
  • the basic pattern is the same as that of the invention example 2-1.
  • the narrow groove 6 is not provided in the rib-shaped cross section 4 and the width center of the rib-shaped land section 4 is shown. It is different in that it is placed on the tire equatorial plane O.
  • the depth of the circumferential groove is 8 thighs, and the width of the circumferential grooves 1a and 1d is 8 ridges, and the width of the circumferential grooves 1b and 1c is 7 ridges.
  • Example 1 Mount the tire on a rim with a nominal size of 6 JX15, fill the tire with air pressure of 220 kPa, mount it on a test vehicle, run 30,000 km, The wear of the metal parts was measured, and the performance of suppressing uneven wear was evaluated. Table 5 shows the results.
  • the tread pattern of Invention Example 3_1 has at least two, and in the figure, three circumferential grooves 1a, lb, and 1c on the tread TR that extend continuously in the circumferential direction.
  • Width 1 a 8.0 mm
  • 1 b 9.6 mm
  • 1 c 6.4 mm
  • land part 2 a demarcated by circumferential grooves 1 a and 1 c and tread edge T
  • the land portion 2a which is mounted on the vehicle and which is on the inside, is made into a rib shape
  • the land portion 2b which is mounted on the vehicle and which is on the outside, is provided with a lateral groove 8 and land blocks where the blocks are arranged.
  • the circumferential rigidity of the land portion is made larger at the land portion 2a than at the muddy portion 2b.
  • the other two rows of land portions 3a and 3b defined between the three circumferential grooves are also provided with lateral grooves 9a and 9b.
  • a plurality of holes 10 independent of the circumferential groove la are provided in the land portion 2a, and the concave volume of the region on the trad edge T side from the center line C i of the land portion 2a is determined by the center line C i Larger than the volume of the concave portion in the region on the side opposite to the tread end.
  • the land portion 2a on the widthwise end side which is attached to the vehicle and located inside, is divided into a widthwise outer portion 12 and a widthwise inner portion 13 by a narrow circumferential groove 11, and the width is divided into two. Outside direction
  • the width of the minute 12 (10 mm) is smaller than the width (20 mm) of the width-direction inner part 13 and is not more than 1/10 of the tread width.
  • the depth of the narrow circumferential groove 11 is 5.0 mm
  • the width at the groove bottom is 1.5 mm
  • the width at the tread surface is 2.6 mm.
  • the width of the outer portion 12 in the width direction is 2 mm
  • the width of the inner portion 13 in the width direction is 18 mm.
  • a plurality of holes 10 independent of the circumferential groove 1a and the narrow circumferential groove 11 are provided in the land portion 2a which is mounted on the vehicle and which is located inside.
  • the plurality of holes 10 consist of two rows of holes, the outer hole in the width direction has a diameter of 2.5 mm, a depth of 6 mm, the center-to-center distance is 7.5 mm, and the inner hole in the width direction has a diameter of The depth is 1.5 mm, the depth is 6 mm, and the center-to-center distance is 7.5 mm.
  • the tread pattern of Invention Example 3_2 is based on Invention Example 3-1. No narrow circumferential groove is provided. At that position, the diameter is 2.5mm and the depth is 6mm. The distance between centers is about 0.5 mm.
  • the tread pattern of Comparative Example 3-1 did not have a lateral groove at the tread edge on the tread end side, and provided a lateral groove at the tread edge side at the inner side. Things.
  • the tread pattern of Comparative Example 3_2 is such that the tread pattern shown in Inventive Example 3-1 is reversed between the outside and inside of the mounting.
  • the tread pattern of Comparative Example 3-3 is based on Inventive Example 3-1.
  • the width of the outer portion 12 in the width direction is 14 mm, and the width of the inner portion 13 in the width direction is 6 mm.
  • the width direction inner part 13 is provided with a hole row having a diameter of 2.5 mm, a depth of 6 mm, and a center-to-center distance of 7.5 mm.
  • the tread pattern of Comparative Example 3_4 is based on Invention Example 3-1 without a narrow circumferential groove, with a diameter of 3.0 mm, a depth of 6 mm, and a center-to-center distance.
  • a 7.5 mm hole row, 2.0 mm diameter, 6 mm depth, 7.5 mm center-to-center hole row is 1.0 mm diameter, 6 mm depth, 6 mm center to center .5 mm hole array They are provided in this order from the inside in the width direction.
  • the tread pattern of Comparative Example 3-5 is based on Invention Example 3-1 and does not have a plurality of holes.
  • the performance evaluation was performed by measuring the difference between the amount of wear on the inside of the wearer and the amount of wear on the outer land, and evaluated with an index when the measurement result of Comparative Example 3-1 was 100. The smaller the value, the better.
  • Comparing Comparative Example 3-1 with Comparative Example 3_2 the lateral groove component of the land portion that is mounted on the vehicle and that is outside is reduced, and the land portion is provided with a narrow circumferential groove to form the outer portion in the width direction and the outer portion. It can be seen that if a hole is provided separately from the part, the lateral force during turning cannot be fully supported, and the uneven wear suppression performance will rather deteriorate. In this case, the outer portion of the narrow circumferential groove does not function against lateral force, and uneven wear occurs on the inner portion, resulting in a poor appearance.
  • a comparison between Invention Example 3-1 and Invention Example 3-2 shows that uneven wear is achieved by separating the land part, which is installed inside the vehicle and inside, into an outer part and an inner part in the width direction with a narrow circumferential groove. Can be further suppressed.
  • Comparing Invention Example 3-2 with Comparative Example 3_4 it can be seen that the arrangement of the holes is more effective in suppressing uneven wear by increasing the diameter of the holes outside in the direction.
  • Two types of tires (Comparative Examples 4-1 and 4-2) having tread pads shown in Figures 23 and 24 were mounted on the rear side (inside the vehicle when mounted) at a pressure of 200 kPa and a size of 14X6 JJ.
  • At least two, here three, circumferential grooves 52 extending continuously in the circumferential direction are provided on the tread 51, and the tread 51 is partitioned by the circumferential grooves 52.
  • the land part 53 at the end in the width direction and the mating part 54 at the other end in the width direction which are mounted and arranged on the side where the vibration transmission characteristics of the wheel are large, are total.
  • Horizontal grooves 55 and 56 are provided so that the volume is the same, and two rows of land portions 57 and 58 divided inward in the width direction by three circumferential grooves 52 are provided with inclined grooves 59 and 60, respectively. It is.
  • Comparative Example 4-2 is the same as Invention Example 4-1 except that the total volume of the lateral grooves is reduced and the narrow groove and holes are provided on the side of the wheel with the lower transmission rate. However, the number of lateral grooves on the land located on the side with the higher transmission rate of the wheel increased, and the geometric discontinuity increased, resulting in an increase in pattern noise. It turns out that the vehicle interior noise is worse.
  • Table 7 shows the results. A value of 1 indicates that the transmissibility of the front and back is the same, and a value greater than 1 indicates that the transmissivity of the back side is higher, and a value of less than 1 indicates that the transmissivity of the front side is higher. Table 7
  • the tire and wheel assemblies of the inventive tire and the comparative tire having a size of 205Z65R15 were measured for conicity force, and the steering stability and hydroplaning resistance were calculated. The results shown in Fig. 8 were obtained.
  • Inventive example 5-1 in the table has the tread contact surface shape shown in Fig. 12 (a), and has three circumferential main grooves each having a depth of 8 mm (the groove width is In order from the left side, 8.0 mm, 9.6 mm and 7.4 mm) are asymmetrically arranged on the inside and outside of the installation, and the effective contact area S on the outside of the installation with the tire equatorial plane 0 as a boundary. of ut, 1 the ratio of ground contact area S i n the inner side. 1 4 and then, also, the radial distance from the tread outer surface tangent L in 80% of the positions of the tread width W, or mounted outside 5. 8 mm and 6.2 mm inside the mounting.
  • Comparative Example 5-1 has the tread tread shape shown in FIG. 26, and three circumferential main grooves having a depth of 8 mm are arranged symmetrically with respect to the tire equator line. And make the effective contact area almost equal on the inside and outside where the tread is attached. The radial distance from the tread outer surface tangent L at 0% is also approximately equal on the inner and outer sides of the mounting.
  • the comparative tire 5-2 has the tread contact surface shape shown in Fig. 12 (a), but the radial distance from the tread outer surface tangent L at 80% of the tread width W is the inside and outside of the attachment. Are almost equal.
  • the steering stability was evaluated sensory by running on the test course, and the anti-hide opening planing performance was evaluated by sensory when running on a straight road surface with a water depth of 6 mm.
  • the conicity force was determined by averaging the measured values of ten tires each.
  • Inventive Example 5-1 provides high handling stability and anti-hide opening plating performance, but has the same conicity force as the symmetric pattern tire of Comparative Example 5-1. It can be seen that it can be suppressed up to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

この発明は、乗用車用として好適なタイヤ、特にウェット路面に対する耐ハイドロプレーニング性能が高くかつタイヤ騒音の低い非対称トレッドパターンを有するタイヤに関して、車両装着時にタイヤ赤道面より車両内側の領域に少なくとも2本および同車両外側の領域に少なくとも1本は有するトレッドパターンにおいて、該車両内側の領域に配置した周方向溝のうち、タイヤ赤道面に最も近接した周方向溝は、該タイヤの平均溝幅より20%以上広い幅を有し、車両内側の領域のトレッド端側に配置した周方向溝は、平均溝幅の90~110%の幅を有し、車両外側の領域でタイヤ赤道面に最も近接した周方向溝は平均溝幅より10%以上狭い幅を有することによって、従来は背反の関係にあった、耐ハイドロプレーニング性とタイヤ騒音の抑制能とを、高次元で両立する。

Description

明 細 書 非対称トレッドパターンを有するタイヤおよびその装着方法 [技術分野]
この発明は、 乗用車用として好適なタイヤ、 特にウエット路面に対する耐ハイ ドロプレーニング性能が高くかつタイヤ騒音の低いタイヤとその装着方法に関す るものである。
[背景技術]
車両装着時に該車両の内外に対する向きが指定される、 非対称トレッドパター ンを有するタイヤについては、 種々の文献が散見される。
例えば、 販売されている非対称パターンを有するタイヤでは、 タイヤ赤道面を 挟む車両装着外側のトレツド部分を操縦性向上のために、 残る内側部分を排水性 向上のために、 それぞれ供する等、 機能を分けて構成されていることが、 非特許 文献 1に記載されている。 一般的な構成手法としては、 トレツドの車両装着外側 では、 トレッド踏面における溝面積の比、 つまりネガティブ比を小さくしてプロ ック剛性を大きくし、 一方内側ではその反対にネガティブ比を大きくしてプロッ ク剛性を小さくしている。
また、 「月刊タイヤ 2 0 0 1年 3月号、 新商品ハイライ卜」 に示されるように、 周方向主溝をトレツドの車両装着外側域に 1本と、 同内側域に 2本の周方向主溝 および傾斜溝とによって、 ウエット性能、 気柱管共鳴による騒音および車両装着 外側の磨耗という、 背反性能を改善しょうとした例もある。 この例では、 ゥエツ ト性能について湿潤路面での一般走行性能を見ており、 特に耐八ィドロプレー二 ング性能については言及されていない。
しかしながら、 実際にタイヤを使用した場合、 つまり車両にタイヤを装着した 状態において、 上記した構成のタイヤの性能を評価したところ、 タイヤ騒音の抑 制と耐ハイド口プレーニング性能とを両立できない場合が多かった。
なお、 特開平 1 0— 2 1 7 7 1 9号公報の実施例にはゥエツト性能について記 載されているが、 一般に、 ハイドロプレーニング現象が発生するケースは、 水深 の深い場合であり、 この例の一般の湿潤路面には含まれないと解釈される。
[発明の開示]
この発明は、 上記従来技術の有する問題点を解決することを課題としてなされ たものであり、 従来は背反の関係にあった、 耐ハイドロプレーニング性能の向上 とタイヤ騒音の抑制とを、 高次元で両立するための手法について提案することを 目的としている。
そこで、 発明者らは、 タイヤ騒音の抑制と耐八イド口プレーニング性能とを両 立できない場合について詳細に検討したところ、 この場合に共通していることは 装着車両に対地キャンバーが付与されている点にあり、 その際タイヤの接地形状 が対地キャンバー 0 ° の場合と異なっていることに起因することがわかった。 こ のように、 従来は車両装着状態においてタイヤ性能の最適ィ匕がなされていない点 が問題であった。
また、 発明者らは、 耐ハイドロプレーニング性能の向上およびタイヤ騒音の抑 制に加えて、 ドライ路面における車両の安定性並びに耐摩耗性能を確保する手段 についても、 鋭意究明した。 すなわち、 タイヤを実際の車両に装着し、 使用され る状況、 特にタイヤ装着姿勢 (キャンバー角やトーインなど) と、 その時の接地 形状と排水や水の流れ (流線) とに着目し、 これらについて詳細に解析した結果、 以下の (a ) 〜 (d ) の知見を得るに到った。
( a ) ほとんどの車両において、 僅かなトーインやネガティブキャンバーの下で タイヤが装着されていること、
( b ) その結果、 タイヤ赤道面から装着時の車両内側に接地の長い部分が移動す るため、 操縦安定性を向上するには、 接地面積とベルト剛性の観点から、 トレツ ドセンター部 (ベルト張力最大部) とトレッド接地周長最大部との中間に、 タイ ャ幅方向剛性の大きなパターンが必要になること、
( C ) 一方で、 トレッドセンター部分では、 ベルト剛性が高いために、 タイヤ幅 方向剛性の高い睦部において、 タイヤの回転に伴って発生する周方向歪みが大き く、 蹴りだし時に、 その歪みが開放されることに起因して摩耗が大きくなる。 こ のような現象を回避するには、 タイヤの幅方向剛性と周方向のゴムの逃げ場とを 立する必要があること、
( d) 耐ハイドロプレーニング性、 つまり排水性への周方向溝の寄与は、 トレツ ドの周方向接地長の最大部で最大となる。 従って、 耐ハイドロプレーニング性と 操縦安定性の向上とを両立するには、 上記 (a ) との関係から、 陸部位置と周方 向溝位置とをずらし、 かつ車両装着時にタイヤ赤道面の車両内側における周方向 溝を幅広にするのが有効であること、
を見出し、 ドライ路面における車両の安定性並びに耐摩耗性能を確保する手段に ついても導くに到った。
さらに、 発明者らは、 車両装着時に車両内側となるタイヤショルダー部分の偏 摩耗に関しても鋭意検討し、 それを抑制するための手段をも導くに到った。 この発明は、 上記の各知見に基づいて成されたものである。
すなわち、 この発明の要旨構成は、 次のとおりである。
( 1 ) 車両装着時に該車両の内外に対する向きが指定される、 非対称トレッドパ ターンを有するタイヤであって、 そのトレッド表面に、 タイヤ赤道面に沿って延 びる周方向溝を、 車両装着時にタイヤ赤道面より車両内側の領域に少なくとも 2 本および同車両外側の領域に少なくとも 1本は有し、 該車両内側の領域に配置し た周方向溝のうち、 タイヤ赤道面に最も近接した周方向溝は、 該タイヤの平均溝 幅より 2 0 %以上広い幅を有し、 車両内側の領域のトレッド端側に配置した周方 向溝は、 平均溝幅の 9 0〜1 1 0 %の幅を有し、 車両^ k則の領域でタイヤ赤道面 に最も近接した周方向溝は平均溝幅より 1 0 %以上狭い幅を有することを特徴と する非対称トレッドパターンを有するタイヤ。 (2) 上記 (1) において、 車両外側の領域に 1本の周方向溝を有し、 かつ車両 内側の領域に配置した、 タイヤ赤道面に最も近接した周方向溝は、 平均溝幅の 1
20〜145%の幅を有することを特徴とする非対称トレツドパターンを有する タイヤ。
(3) 上記 (1) において、 車両外側の領域に 2本の周方向溝を有し、 かつ車両 内側の領域に配置した、 タイヤ赤道面に最も近接した周方向溝は、 平均溝幅の 1
30〜160%の幅を有することを特徴とする非対称トレッドパターンを有する タイヤ。
(4) 上記 (1) ないし (3) のいずれかにおいて、 周方向溝に挟まれた、 タイ ャの赤道上または近傍に、 タイヤ赤道面に沿って延びるリブ状陸部を有し、 該リ ブ状陸部は、 そのタイヤ幅方向中心が、 タイヤ赤道面より、 タイヤにネガティブ キヤンバ一を付与した際にトレツド接地域の周方向長さが伸びる側に位置し、 か つタイヤ赤道面を横切る向きに延びる細溝を複数本有し、 該細溝は、 トレッドの タイヤ半径方向に対して傾いた向きに延びる部分を有し、 さらにリブ状陸部を挟 む 2本の周方向溝のうち、 上記トレッド接地域の周方向長さが伸びる側に位置す る周方向溝が幅広であることを特徴とする非対称トレツドパターンを有するタイ ャ。
(5) 上記 (4) において、 細溝は、 タイヤ幅方向に対して 5〜55° の傾きを 有することを特徴とする非対称トレッドパターンを有するタイヤ。
(6) 上記 (4) または (5) において、 細溝は、 トレッド表面において開口し ていることを特徴とする非対称トレッドパターンを有するタイヤ。
(7) 上記 (4) 、 (5) または (6) において、 細溝の開口幅が 2iM以下で あることを特徴とする非対称トレツドパターンを有するタイヤ。
(8) 上記 (4) または (5) において、 細溝は、 トレッド表面において閉口し ていることを特徴とする非対称トレツドパターンを有するタイヤ。
(9) 上記 (1) ないし (3) のいずれかにおいて、 周方向溝に挟まれた、 タイ ャの赤道上または近傍に、 タイヤ赤道面に沿って延びるリブ状陸部を有し、 該リ ブ状陸部は、 そのタイヤ幅方向中心が、 タイヤ赤道面より、 タイヤにネガティブ キャンバ一を付与した際にトレツド接地域の周方向長さが伸びる側に位置し、 か つタイヤ赤道面を横切る向きを長軸とする楕円状に窪んだディンカレを複数有し、 さらにリブ状陸部を挟む 2本の周方向溝のうち、 上記トレッド接地域の周方向長 さが伸びる側に位置する周方向溝が幅広であることを特徴とする非対称トレッド パターンを有するタイヤ。
(10) 上記 (9) において、 ディンプルは、 その長軸がタイヤ幅方向に対して 5〜45° の傾きを有することを特徴とする非対称トレッドパターンを有する夕 ィャ。
(11) 上記 (1) ないし (3) のいずれかにおいて、 周方向溝とトレッド端と の間に区画される陸部のうち、 車両装着時に車両内側となる陸部に設けられるこ とのある横溝の、 トレッド幅方向の単位幅あたりの、 トレッドの全周にわたるト 一タル容積を、 車両装着時に車両外側となる陸部の同様のトータル容積よりも小 さくしてなる非対称トレツドパターンを有するタイヤ。
(12) 上記 (11) において、 車両装着時に車両内側となる陸部に、 周方向溝 から独立した、 最大深さが周方向溝の深さの 1/3以上である複数の孔を設け、 かつ当該陸部のトレツド幅方向中心を通る線のトレツド端側の領域の凹部容積を、 同幅方向中心を通る線のトレツド端と逆側の領域の凹部容積より大きくしてなる 非対称トレツドパターンを有するタイヤ。
(13) 上記 (11) または (12) において、 車両装着時に車両内側となる陸 部を、 細幅周溝によりトレッド幅方向外側部分と同幅方向内側部分とに分割して、 その幅方向外側部分の幅を、 同幅方向内側部分の幅よりも狭くするとともに、 ト レツド幅の 1/10以下としてなる非対称トレツドパターンを有するタイヤ。
(14) 上記 (13) において、 タイヤ幅方向の断面内において、 トレッド幅方 向外側部分の側面の、 輪郭を構成する曲線の曲率中心のうちの少なくとも一つを、 タイヤの外側に位置させる一方、 同幅方向内側部分の輪郭を構成する曲線の曲率 中心を、 タイヤの内側に位置させてなる非対称トレツドパターンを有するタイヤ。
(15) 上記 (11) ないし (14) のいずれかにおいて、 その細幅周溝の幅を、 溝底からトレツド表面側にむかって漸次広くしてなる非対称トレツドパターンを 有するタイヤ。
(16) 上記 (11) ないし (15) のいずれかにおいて、 タイヤの最大負荷能 力の 70%以上の負荷の作用下で、 車両に装着されて内側となる陸部の、 複数の 孔を設けた領域の少なくとも一部が接地することを特徴とする非対称トレツドパ ターンを有するタイヤ。
(17) 上記 (11) ないし (16) のいずれかにおいて、 車両に装着されて内 側となる陸部において、 タイヤ赤道面から遠ざかるにつれて孔の開口寸法を大き くしてなる非対称トレツドパターンを有するタイヤ。
(18) 上記 (11) ないし (17) のいずれかにおいて、 車両に装着されて内 側となる陸部において、 タイヤ赤道面から遠ざかるにつれて複数の孔相互間の間 隔を小としてなる非対称トレッドパターンを有する夕ィャ。
(19) 上記 (11) ないし (18) のいずれかにおいて、 車両に装着されて内 側となる陸部において、 タイヤ赤道面から遠ざかるにつれて孔の深さを深くして なる非対称トレツドパターンを有するタイヤ。
(20) リムの幅方向の一方の端部分に入力される半径方向の力の、 車軸への伝 達率が、 リムの幅方向の他方の端部分に入力される半径方向の力の同様の伝達率 よりも大きいホイールに装着される、 上記 (1) ないし (3) のいずれかに記載 のタイヤであって、
周方向溝とトレッド端との間に区画される睦部のうち、 ホイールに装着されて 伝達率が大きい側に位置する睦部に設けられることのある横溝のトレツド幅方向 の単位幅あたりの、 トレツドの全周にわたるトータル容積を、 他方のトレツド端 側の陸部に設けた横溝の同様のトータル容積よりも小さくするとともに、 伝達率 が大きい側に位置する睦部を、 細幅周溝によりトレツド幅方向外側部分と同幅方 向内側部分とに分割し、 この幅方向内側部分に、 周方向溝および横溝から独立し た複数の孔を設けてなる非対称トレツドパターンを有するタイヤ。
(21) 上記 (20) において、 細幅周溝の幅を溝底からトレッド表面側にむか つて漸次広くしてなる非対称トレツドパターンを有するタイヤ。
(22) 上記 (20) または (21) において、 トレッド幅方向内側部分に設け た複数の孔の開口寸法を、 タイヤ赤道面から遠ざかるにつれて大きくしてなる非 対称トレッドパターンを有するタイヤ。
(23) 上記 (20) ないし (22) のいずれかにおいて、 トレッド幅方向内側 部分に設けた複数の孔の相互間隔を、 タイヤ赤道面から遠ざかるにつれて小とし てなる非対称トレッドパターンを有するタイヤ。
(24) 上記 (20) ないし (23) のいずれかにおいて、 トレッド幅方向内側 部分に設けた複数の孔の深さを、 タイヤ赤道面から遠ざかるにつれて深くしてな る非対称トレツドパターンを有するタイヤ。
(25) 上記 (20) ないし (24) のいずれかにおいて、 タイヤの最大負荷能 力の 70%以上の負荷の作用下で、 トレッド幅方向内側部分の、 複数の孔を設け た領域の少なくとも一部が接地することを特徴とする非対称トレツドパターンを 有するタイヤ。
(26) 上記 (20) ないし (25) のいずれかにおいて、 タイヤ幅方向の断面 内において、 トレッド幅方向外側部分の側面の、 輪郭を構成する曲線の曲率中心 のうちの少なくとも一つを、 タイヤの外側に位置させる一方、 同幅方向内側部分 の輪郭を構成する曲線の曲率中心を、 タイヤの内側に位置させてなる非対称トレ ッドパターンを有するタイヤ。
(27) 上記 (1) ないし (3) のいずれかに記載のタイヤを、 適用リムに組付 けて規定の空気圧を充填し、 かつ最大負荷能力に相当する質量を負荷した状態に おいて、 装着内側もしくは外側のいずれか一方の有効接地面積が他方のそれより 大きくなり、 また、 規定の空気圧の充填姿勢で、 タイヤ赤道面と直交するトレツ ド外表面接線からそれぞれのトレツド接地縁までの半径方向距離が、 有効接地面 積の小さい装着側で、 他方の装着側より大きくしてなる非対称トレッドパターン を有するタイヤ。
(28) 上記 (27) において、 有効接地面積の大小の比 (S大 ZS小) と、 半 径方向距離の大小の比 (H大 /H小) との関係を、
(S大 ZS小) =AX (H大 ZH小)
伹し、 Aは 1. 0〜1. 4
としてなる非対称トレツドパターンを有するタイヤ。
(29) 常時または随時にネガティブキャンバーが付与されるサスペンションを 介して、 車両に上記 (1) ないし (28) のいずれかに記載のタイヤを装着する に当たり、
車両装着時にタイヤ赤道面より車両内側の領域において、 タイヤ赤道面に最も 近接して設けた周方向溝が、 タイヤにネガティブキャンバーを付与した際にトレ ッド接地域の周方向長さが最大となる位置に重なる、 使用形態となることを特徴 とする非対称トレツドパターンを有するタイヤの装着方法。
(30) 幅方向断面形状が赤道面に対して左右対称であるタイヤを装着したホイ 一ルを軸部材に取付け、 タイヤトレツドの各ショルダー部を異なる複数の周波数. にて半径方向に加振し、 加振力に基づいて軸部材に生じる軸入力の、 加振力に対 する比率として表わされる伝達率をそれぞれ求め、 各周波数ごとの伝達率の平均 値を各ショルダー部ごとに求めて、 それぞれの伝達率の平均値のいずれが大きい かを判定する、 ホイールの振動伝達特性の測定方法。
(31) 上記 (30) において、 加振される周波数の帯域が 300〜1000H zであるホイールの振動伝達特性の測定方法。
ここで、 周方向溝とは、 トレッド幅の 2. 5%以上の幅を持つトレッド周方向 に延びる溝である。 また、 上記 (1 1 ) における横溝とは、 トレッド周方向に対して 2 0 ° 以上の 傾斜を有するものをいう。
さらに、 上記 (1 1 ) において、 凹部容積とは、 各領域内の周方向溝、 横溝、 孔の全ての容積をタイヤの全周にわたって積算したものである。
同様に、 上記 (1 2 ) において、 トレッド幅とは、 タイヤを適用リムに装着す るとともに、 規定の空気圧を充填し、 そこに最大負荷能力に対応する質量を負荷 したときの接地幅をいうものとする。 ここで適用リムとは下記の規格に規定され たリムをいい、 最大負荷能力とは、 下記の規格でタイヤに負荷することが許され る最大の質量をいい、 規定の空気圧とは、 下記の規格において、 最大負荷能力に 対応して規定される空気圧をいう。
そして規格とは、 タイヤが生産又は使用される地域に有効な産業規格に よつ て決められている。 例えば、 アメリカ合衆国では" The Tire and Rim Associat ion Inc.の Year Book"であり、 欧州では" The European Tire and Rim Technical Organizat ionの Standards Manual"であり、 日本では日本自動車タイ ャ協会の" JATMA Year Book"である。
なお、 この明細書では、 リブ状陸部およびブロック状陸部列を区別することな く、 陸部と総称する。
さて、 様々なタイヤにおいて、 ハイドロプレーニング現象を数値解析して詳細 な検討を加えたところ、 排水性を向上できる溝の向きは、 水の流れる方向 (流線 方向) であり、 この流線方向は接地形状の法線方向とほぼ同じであることがわか つた。 このため直進時はトレツドセンター付近における周方向溝が排水性の向上 により寄与し、 トレツド幅方向の接地端付近では幅方向溝が排水性の向上に寄与 することになる。 また、 耐ハイドロプレーニング性能にとって重要である前輪に 注目すると、 制動時は荷重が増え、 サスペンションがストロークする結果、 ネガ ティブキャンバ一が付きやすいこともわかった。 このとき、 接地形状の法線が周 方向を向くタイヤ幅方向位置は、 タイヤ装着時の車両内側へと移動することもわ かった。 従って、 装着内側に周方向溝を設けると排水性をより向上できることが、 新たに判明したのである。
ここで、 扁平率が異なるなどで接地形状が異なるタイヤを種々観察したところ、 実際に使用されている条件での接地形状における最大幅と最大周方向長とを比較 したとき、 例えば図 1に周方向溝 1 a〜l dを有するトレツドパターン上に接地 形状を太線で示すように、 同図 (a) の最大幅の方が最大周長より大きい場合は、 その逆の同図 (b ) に示す場合に比べて、 周方向溝がより多くの水を排水してい ることかわかった。 すなわち、 図示の場合は、 同図 (a ) では周方向溝 l a〜l dの 4本で全体の排水量の 8 0 %に達するのに対し、 同図 (b ) では周方向溝 1 a〜l dの合計で全体の排水量の 6 0 %である。
従って、 この接地最大幅が最大周長より大きい同図 (a) に例示したタイヤの 場合、 トレツドセンタ一部付近で周方向溝を多くすることでより排水性が向上し、 耐ハイドロプレーニング性能を向上できるのである。
一方で、 周方向溝は接地長と同じ長さの管を路面との間で形成し、 この管が、 あたかも笛のように音を出す気柱管共鳴という騒音源になる。 ところが、 1本だ けの周方向溝をタイヤ幅方向の色々な位置に設けた、 各タイヤについて、 その気 柱管共鳴音を測定した結果を図 2に示すように、 同じ溝断面および幅 (管断面) そして接地長さ (管長) の場合でも、 気柱管共鳴音はタイヤの幅方向位置で大き さ、 言い換えると感度が異なることかわかった。 この感度は、 トレッドの装着内 側の方が低く、 装着外側で最大になる。 トレッドセンタ一から装着内側に向かう 感度低下は、 同センタ一から g着外側に向かう感度増加より大きい。
以上より、 耐八イド口プレーニング性能を向上するためには、 周方向溝を適正 に活用することが有効であり、 その溝からの騷音を低減するためにはトレツドセ ン夕一より装着内側に溝を多く設けることが良いことがわかった。
かような知見に基づいて構成された、 この発明に従うトレツドパターンの典型 例を、 図 3に示す。 すなわち、 このトレッドパターンは、 車両装着時にタイヤ赤道面 Oより車両内 側の領域に少なくとも 2本、 図示例で 2本の周方向溝 l aおよび l bと、 同車両 外側の領域に少なくとも 1本、 図示例で 1本の周方向溝 1 cとを有するものであ る。
ここで、 車両内側の領域に配置した周方向溝 1 aおよび 1 bのうち、 タイヤ赤 道面 0に最も近接した周方向溝 1 bは、 タイヤの総溝幅 (トレッドに配置した周 方向溝の合計幅) を周方向溝の本数で除した値で定義される、 平均溝幅より 2 0 %以上広い幅を有し、 車両内側の領域のトレッド端側に配置した周方向溝 1 a は、 平均溝幅の 9 0〜1 1 0 %の幅を有し、 車両外側の領域の周方向溝 1 cは平 均溝幅より 1 0 %以上狭い幅を有することが肝要である。
すなわち、 トレッドの幅方向中央領域では、 単位接地幅当たりに溜まる水の量 は周辺領域よりも 2 0 %以上多いため、 最もタイヤ赤道面に近い周方向溝 1 bは、 平均溝幅より、 その 2 0 %以上広くすると排水性が極めて向上する。 なお、 周方 向溝 1 bの溝幅が平均溝幅の 1 0 0 %をこえて広がると、 接地時に周方向溝 1 b 中央部がつぶれて排水が困難になる、 おそれがあるため、 溝幅の増加は平均溝幅 の 1 0 0 %を上限とすることが好ましい。
一方、 車両外側の周方向溝 1 cは、 気柱管共鳴感度が高いので平均溝幅より 1 0 %以上狭くすることにより、 周方向溝 l bさらには 1 aの幅を広げた分を含め て騒音の抑制能を改良できる。 なお、 周方向溝 1 cの幅が 3 mm未満になると、 溝としての機能を発揮できなくなる、 おそれがあるため、 下限を 3 mmとするこ とが好ましい。
装着時車両内側の最もショルダー側の周方向溝 1 aは、 気柱管共鳴の感度が低 いため、 溝幅を広げても狭めても騷音に対する影響は少ない。 従って、 制動時ネ ガティブキャンバ一下の耐ハイドロプレーニング性能をより向上させるには、 平 均溝幅より 1 0 %まで広くすれば十分である。 一方、 直進時の耐ハイド口プレー エング性能を向上させるには、 装着外側の溝と合わせて排水性を向上させるよう に、 溝幅を 1 0 %まで平均溝幅より狭くすると良い。 換言すると、 車両装着時に 車両外側の周方向溝の幅を平均溝幅の 1 0 %減近くにすることによって、 同様に 1 0 %より大きく狭まった場合に比して、 装着外側の排水性も向上できる。
ここで、 接地最大幅と接地周方向長の差が少ないとき、 つまり少し横長の接地 形状である場合、 例えばタイヤのへん平比が高めである場合や、 荷重負荷が大き い場合、 周方向溝の排水効率は接地最大幅が接地周方向長より大きい時よりも小 さくなる。 換言すると、 極端に横長の接地形状の場合は、 周方向溝の排水効率が 大きくなる。 また、 装着外側では気柱管共鳴の感度が大きいので、 装着外側領域 の周方向溝は 1本の方が耐八ィドロプレーニング性能、 騒音性能ともに良くなる 場合が多い。 この場合、 単位接地幅あたりに中央領域に溜まる水の量は周辺領域 よりも 2 0〜 4 5 %多いため、 装着内側の周方幅溝 1 bの幅は平均溝幅の 2 0〜 4 5 %広くすることによって、 耐ハイドロプレーニング性能をさらに向上できる。 また、 接地最大幅と接地周方向長との差が大きいとき、 つまり横長の接地形状 である場合、 例えばタイヤのへん平比が低い場合や、 荷重負荷が小さい場合、 周 方向溝の排水効率は接地最大幅と接地周方向長との差が小さい時よりも大きくな る。 このため、 装着外側に 2本の周方向溝を設けた方が耐ハイドロプレーニング 性能をより効果的に向上できる。 また、 単位接地幅あたりに中央領域に溜まる水 の量は周辺領域よりも 2 5〜 5 5 %多いため、 装着内側の周方向溝 1 bの幅は平 均溝幅の 2 5〜5 5 %広くすることによって、 耐ハイドロプレーニング性能をさ らに向上できる。
次に、 上記のトレツドパターンを有するタイヤを実際に車両に装着する方法に ついて、 詳しく説明する。
車両装着時にネガティブキヤンバ一が付いて使用される場合や乗車人員貨物の 変化、 制駆動変化などの荷重変化でネガティブキヤンバーが付与されて使用され る場合、 接地形状はタイヤ赤道面より装着内側で接地長が長くなる。 この時は接 地長が最大になる位置では周方向溝の排水効率が最大になり、 さらに、 この位置 はタイヤ赤道面より内側で気柱管共鳴の感度が低くなる位置でもあることは、 既 に述べたとおりである。 従って、 上記において幅広とした周方向溝 1 bが、 図 4 に示すように、 タイヤにネガティブキャンバーを付与した際にトレッド接地域の 周方向長さが最大となる位置 mLに重なる、 装着姿勢を与えることが有利である。 ここで、 「重なる」 とは、 周方向溝 1 b内に位置 mLが含まれる配置であればよ く、 必ずしも位置 mLが周方向溝 1 bの幅中心にある必要はない。
このように装着がなされることによって、 耐ハイドロプレーニング性能の向上 と気柱管共鳴騒音の低減とを両立することが可能になる。
次に、 上記に従ってゥエツト路面に対する耐ハイドロプレーニング性能を高く 維持してなお、 ドライ路面における車両の安定性並びに耐摩耗性能を確保した、 高運動性能タイヤについて説明する。
ところで、 ラジアルタイヤにおいて、 高速走行性能を高めるためには、 タイヤ の扁平化による、 トレツド部ゃトレツド部内側のベルト部の強度上昇等が有効と されているが、 このタイヤにゥエツト路面での操縦安定牲をも持たせるためには、 扁平ィヒに伴って幅広化されているトレッド部での排水性を高めることが必要にな つてくる。 この場合、 いわゆる耐ハイドロプレーニング性能を上げるために、 ト レッド陸部の接地率を下げたり、 排水時に水が流れる方向 (流線) と沿うように トレツド部の幅方向中央部に広幅の周方向溝を設けたり、 ショルダー部では斜め の流線に合わせ、 タイヤの赤道に対して斜め方向に延びる傾斜溝を設け、 排水の 効率を上げるといったことが行われている。
一方で、 ドライ路面を高速走行する場合等のダリップ力および操縦安定性を発 現させることを所期して、 いわゆる箍 (たが) 効果によるセンタ一部での高いベ ルト張力並びに高い剛性を利用するために、 トレツドセンタ一部にあまり溝等を 設けないリブ基調のトレツドパターンが採用されている。
従って、 ゥエツト路面での排水性とドライ路面を高速走行する場合等のダリッ プカおよび操縦安定性とは、 どうしても背反してしまうのが現状である。 加えて、 トレッドセンター部は、 前述のように高いベルト剛性を持っため、 回転に伴うト レツドセン夕一部の周方向歪みが過大となり、 セン夕一部が優先して摩耗してし まう、 いわゆるセンタ一摩耗が生じやすくなるといった問題もある。
かような状況を踏まえて、 上記した種々の要求性能を現実的に妥協できるとこ ろとして、 卜レッドパターンの設計が行われているのが現状である。 しかしなが ら、 どうしても多くを満足する結果は得ることができなかった。
そこで、 この発明では、 従来は背反の関係にあった、 耐八イド口プレーニング 性と操縦安定性及び耐摩耗性能とを、 高次元で両立するための手法を、 上記
( 4 ) 〜 (1 0 ) に示したように確立した。
以下に、 この手法について、 図面に基づいて詳しく説明する。
図 5は、 この発明に従う乗用車用タイヤのトレッドパターンであり、 この例で は、 タイヤ赤道面 0に沿って延びる周方向溝 1 a〜l dを 4本有し、 これら周方 向溝 1 a〜l d間およびトレッド端 Tとの間に、 両トレツド端 T側にブロックを 連おた陸部 2 aおよび 2 b、 そのタイヤ幅方向内側に陸部 3 aおよび 3 b、 そし てタイャ赤道面 O上にリブ状陸部 4を、 それぞれ区画して成る。
また、 睦部 3 aおよび 3 bは、 タイヤ赤道面 0に対して傾斜して延びかつタイ ャ幅方向外側に開口する傾斜溝 5 aおよび 5 bを有する。 さらに、 リブ状陸部 4 は、 タイヤ赤道面 0を横切る向きに延びる細溝 6を複数本有する。
ここで、 図 5にタイヤにネガティブキヤンバーを付与した際の接地形状を太線 で示すように、 リブ状陸部 4は、 そのタイヤ幅方向中心 Sが、 タイヤ赤道面〇よ り、 タイヤにネガティブキャンバーを付与した際のトレッド接地域の周方向長さ が伸びる側 (トレッド接地長最大位置 mLの存在する側) に位置させることが肝 要である。
すなわち、 上述したトレツドセンター部での箍効果による高いベルト張力が発 生する高ベルト剛性部であり、 かつ接地長の延びによって接地面積が拡大する部 分に、 リブ状陸部 4を配置することができるため、 操縦安定性を大幅に高めるの に有効である。
また、 高いベルト剛性によりトレツドセンタ一部にあるリブ状陸部 4に磨耗が 集中しないように、 上記したように、 リブ状陸部 4に細溝 6を設けることも必要 である。 すなわち、 細溝 6によって、 タイヤ回転に伴う周方向歪みを緩和するこ とができるため、 蹴り出し時に生じる歪みが開放される際の磨耗が抑制されるの である。
一方で、 細溝 6を設けることはリブ状陸部 4のタイヤ幅方向剛性の低下を招く こと力 ら、 これによるグリップ力の低下を最小限に抑えるために、 接地時のひず みの緩和と横方向剛性とを両立させる必要がある。 すなわち、 接地域において、 細溝 6によって区画される陸部が周方向には逃げつつ、 幅方向には互いに干渉し 合って横方向剛性を保持できるように、 細溝 6は、 トレッドのタイヤ半径方向に 対して傾いた向きに延びる部分を有することが有利である。
ここで、 細溝 6が、 トレッドのタイヤ半径方向に対して傾いた向きに延びる部 分を有するとは、 細溝 6がタイヤ半径方向および幅方向に一様に延びていないこ とを意味し、 具体的には、 図 6にリブ状陸部 4における細溝 6の深さ方向におけ る立体図を示すように、 例えば細溝 6をタイヤ幅方向に 3分割し、 各部分の深さ 方向への切り込みをタイヤ半径方向に対して傾けると共に、 隣接部分相互で互い 違いの向きを与えることが好ましい。 このとき、 各部分の切り込み相互がなす角 度 ο;を、 5〜3 0 ° の範囲とすることが有利である。
また、 トレツドのタイヤ半径方向に対して傾いた向きの切り込みによる細溝 6 は、 図 6に示した例以外にも、 切り込みが捩じれながら、 タイヤ半径方向に対し て傾いた向きに延びるもの、 トレツド表面からの切り込みが途中から異なる向き に延びるもの、 またはトレツド表面からの切り込みが途中からタイヤ幅方向に複 数分割して延在方向を分割部分間で異ならせたもの等、 要は、 各細溝がタイヤ幅 方向に不連続であることを基本としていればよい。
なぜなら、 かような向きに延びる細溝 6を設けることによって、 周方向の歪み は逃す一方、 タイヤ幅方向に溝の連続することが回避される結果、 溝をタイヤ幅 方向で区画規制する、 隣り合う壁による干渉によって変形を抑制し、 剛性を確保 することができるからである。
かくして、 両立の難しかった耐ハイドロプレーニング性と操縦安定性及び耐磨 耗性能との背反性能を高次元で両立することができるのである。
また、 タイヤ転動時の踏み込み時に路面と陸部とが接地して発生する、 いわゆ るパターンノイズを小さくするため、 細溝 6はタイヤ幅方向に対して 5〜 5 5 ° の範囲で傾けることが好ましい。 すなわち、 この角度が 5 ° 未満では、 タイヤの 回転時に細溝と接地形状ラインが周期的に一致して大きなパターンノイズの発生 原因になる、 おそれがある。 一方、 5 5 ° をこえると、 リブ状陸部 4の幅方向剛 性が低下して操縦安定性に悪影響を及ぼす、 おそれがある。
さらに、 細溝 6は、 トレッドセンタ一部の磨耗を抑制する観点からは、 トレツ ド表面において開口していることが好ましく、 具体的には開口幅が 2腿以下で 開口していれば、 周方向ひずみ低減効果を十分に発揮することができる。
同様に、 細溝 6は、 操縦安定性を向上する観点からは、 トレッド表面において 閉口していることが好ましい。
なお、 上記の細溝 6に換えて、 図 7に示すように、 タイヤ赤道面〇を横切る向 きを長軸とする楕円状に窪んだディンプル 7を形成することによって、 上記した 細溝 6と同様の作用効果を得ることができる。 この場合、 ディンプル 7の長軸中 心を、 リブ状陸部 4のタイヤ幅方向中心に一致させることが好ましい。
また、 上記に従ってゥエツト路面に対する耐八ィドロプレーニング性能を高く 維持し、 かつ騒音を低減したタイヤにおいて、 さらに偏摩耗を抑制する技術を付 与する場合について説明する。
さて、 一般に空気入りタイヤでは、 車両に装着されて装着の内側となる部分の 摩耗に関しては、 前輪で問題になる場合が多い。 これはもともとの車両設定がネ
-であるものが比較的多いことに加えて、 制動時に前輪の荷重 が増加し、 前輪のァライメントがネガティブキヤンバ一でかつトーアウトに増加 することが大きな要因となっている。
ネガティブキャンバーの場合、 装着内側となるショルダー部の接地長が、 外側 の接地長よりも長くなるので、 この状態でトーインもしくはトーァゥ卜の微小な スリップ角が加わった場合、 タイヤの横ずれが大きくなつて、 装着内側となるシ ョルダ一部が横力を余計に負担することになり、 これが装着内側となるショルダ —部が外側のショルダー部に対してより多く摩耗する偏摩耗の要因となる。 また、 装着内側となるショルダ一部の縦たわみが外側のショルダ一部よりも大 きくなるので、 幅が広がり、 その幅が広がった領域が引きずられて制動方向の力 を受けこれも偏摩耗の要因となる。
しかも装着内側となるショルダー部は、 外側のショルダー部に較べて撓みが大 きく回転半径が小さくなるので、 引きずられて制動方向の力を受ける。 この力の 負担は接地端に近い領域ほど大きくなり、 偏摩耗核はこの領域に発生しやすい。 このようにして装着内側となるショルダ一部に発生する偏摩耗は、 車両への装 着状態においては見えにくく、 運転者が気づきにくいので、 適切な処置をしない ままに放置した場合には偏摩耗が進展して、 最悪の場合、 タイヤバースト等の故 障の原因ともなるおそれがあった。
そこで、 この発明では、 車両に 着されて車両内側となる側のショルダー部分 の偏摩耗をより効果的に抑制するための手法を、 上記 (1 1 ) 〜 (1 9 ) に示し たように確立した。
この手法について、 図面に基づいて詳しく説明する。 なお、 図 8以降の図面で は、 主に陸部構成について説明することから、 周方向溝の幅を正確に示したもの ではなく、 溝幅については、 この発明の要件の下に、 適宜の変更が可能である。 すなわち、 図 8に、 車両への装着姿勢のタイヤの正面視で示すトレッドパター ンの展開図を示す。 このタイヤの内部構造は、 一般的なラジアルタイヤのそれと 同様であるので、 ここでは図示を省略する。 トレッド T Dに、 その周方向に連続 して延びる少なくとも二本、 図では三本の周方向溝 1 a、 1 bおよび 1 cを設け、 それら周方向溝 1 aおよび 1 cとトレツド端 Tとにより区画される陸部 2 aおよ び 2 bについて、 車両に装着されて内側となる睦部 2 aをリブ状にする一方、 車 両に装着されて外側となる陸部 2 bには横溝 8を設けてブロックが並ぶ睦部列と することによって、 陸部 2 aに設けられることのある横溝 (図示例では横溝を設 けていない) の、 トレッド幅方向の単位幅あたりの、 トレッドの全周にわたるト —タル容積を、 他方のトレツド端側の陸部 2 bに設けた横溝 8の同様のトータル 容積よりも小さし、 結果として陸部の周方向剛性を睦部 2 bより陸部 2 aで大き くしたところに特徴がある。 なお、 三本の周方向溝間に区画される他の二列の陸 部 3 aおよび 3 bのそれぞれにも、 横溝 9 aおよび 9 bを設けてあるが、 図示例 に限定されるものではない。
さらに、 陸部 2 aに、 周方向溝 1 aから独立した複数の孔 1 0を設け、 陸部 2 aの幅方向の中心線 C iより卜レツド端 T側の領域の凹部容積を、 その中心線 C iのトレツド端 Tと逆側の領域の凹部容積よりも大きくする。
これによれば、 睦部 2 aの周方向剛性を、 陸部 2 bの周方向剛性よりも大きく することにより、 陸部 2 aが接地面内で圧縮変形されて、 接地長さが長くなり、 横溝が縮んで、 回転半径が小さくなつて、 回転半径の大きい陸部 2 aのショルダ —部に対して、 車両進行方向とは逆方向側の力つまり制動方向の力を受け、 偏摩 耗が発生することを防止することができる。
ここで、 陸部 2 aにおいて横溝が設けられることがあるということは、 図示例 のように設けられない場合もあるということであり、 その場合の横溝のトータル 容積は勿論ゼロである。
なお、 図示例では、 陸部 2 aに横溝はないが、 陸部 2 aには陸部 2 bより周方 向剛性が大きい条件の下、 陸部 2 bより少ない本数の横溝を設けてもよい。
その際、 陸部 2 aの、 横溝本数を低減することにより、 周方向の幾何学的な不 連続部分を少なくして、 周方向の不均一摩耗であるヒールアンドトウ摩耗をも抑 制することができる。
また、 三本の周方向溝 l a、 l bおよび l cにより、 陸部 2 a、 2 bより幅方 向内側に区画される二列の陸部列 3 a、 3 bにも、 それぞれ横溝 9 a、 9 bを設 けることにより、 それらの溝縁を制動力および駆動力の増加に有効に寄与させる ことができ、 併せて、 トレッド中央域の排水性能を向上することができる。
一方、 ?し 1 0は、 それらを設けた領域のせん断剛性を低減させて、 横力に対す るこの領域の負担を小さくして、 反力の発生を抑制し、 また、 この領域が制動方 向に引きずられた場合にも、 制動力に対する反力の発生を抑制して、 偏摩耗の発 生を抑制することができる。
また、 孔 1 0の最大深さを、 周方向溝 l a、 1 bおよび 1 cの深さの 1 / 3以 上とすることにより、 タイヤの摩耗が進展した場合でも、 複数の孔 1 0を設ける ことによる偏摩耗の発生の抑制効果を確保することができる。 なお、 周方向溝 1 a、 1 bおよび 1 cの深さが異なる場合は、 孔 1 0に隣接する周方向溝 (図示例 で l a ) の深さを基準とする。 一方、 孔 1 0の最大深さの上限は、 ベルトの最外 層より 1 mm径方向外側に達する深さまでにすることが、 ベルト層と溝底とのゴ ム厚みを確保する上で好ましい。 ちなみに、 周方向溝 1 a、 1 ぉょび1。の深 さについて、 直進時のハイドロプレーニング性能を向上させるためには、 周方向 溝 l a、 l bを深く、 コーナリング時のハイドロプレーニング性能を向上させる ためには、 周方向溝 1 cを深くすることが望ましい。
さらに、 凹部容積を装着内側の陸部 2 aの中心線 C iよりトレッド端側領域で、 中心線 C iのトレッド端と逆側の領域より大きくすることで、 偏摩耗の発生しや すいトレツド端側領域で、 偏摩耗の抑制効果を高めることができる。
また、 好ましくは、 車両に装着されて内側となる陸部 2 aを、 細幅周溝 1 1に よりトレッド幅方向外側部分 1 2と同幅方向内側 1 3とに分割して、 その幅方向 外側部分 1 2の幅 wを、 幅方向内側部分 1 3の幅 w 0よりも狭くするとともに、 トレツド幅 Wの 1 Z 1 0以下とする。 これによれば、 もっとも偏摩耗が発生しやすい接地端近傍の幅方向外側部分 1 2を分離して、 それより内側の部分 1 3への摩耗の進展を抑制することができる。 また、 幅方向外側部分 1 2の幅 wを、 幅方向内側部分 1 3の幅 w 0よりも狭く、 かつトレッド幅 Wの 1 Z 1 0以下とすることにより、 偏摩耗体積を減らし外観を 良好に保つことができる。
さらに好ましくは、 図 9に示すように、 タイヤ幅方向の断面内において、 幅方 向外側部分 1 2の側面の、 輪郭 S 1を構成する曲線の曲率中心のうちの少なくと も一つの曲率中心 C 1を、 その輪郭 S 1のタイヤ外側に位置させる一方、 同幅方 向内側部分 1 3の輪郭 S 2を構成する曲線の曲率中心 C 2を、 輪郭 S 2のタイヤ 内側に位置させる。
これによれば、 もっとも偏摩耗が発生しやすい接地端近傍の幅方向外側部分 1 2の偏摩耗体積を一層減らして、 外観を良好に保つことができる。
ここで、 図 9に示すように、 細幅周溝 1 1の幅 w 1 0は、 その溝底からトレツ ド表面側にむかって漸次広くすることが好ましい。
これによれば、 細幅周溝 1 1が路面上の小石等の異物をかみこんだ場合でも、 その異物を外れやすくして、 異物を抱き込んだまま走行することにより、 偏摩耗 核が幅方向内側部分 1 3に発生することを防止することができる。
さらに、 タイヤの最大負荷能力の 7 0 %以上の負荷の作用下で、 装着内側の睦 部 2 aの幅方向内側部分 1 3の、 複数の孔 1 0を配置された領域の少なくとも一 部が接地する、 トレツド構成とすることが好ましい。
これによれば、 例えば前輪駆動車 (F F車) の後輪のように、 前輪に比して低 荷重となり接地幅が小さくなる場合でも、 前述した複数の孔 1 0の形成領域を接 地させることによって偏摩耗の発生および進展の抑制の効果を担保することがで さる。
さらに好ましくは、 装着内側の陸部 2 aの幅方向内側部分 1 3において、 タイ ャ赤道面から遠ざかるにつれて孔 1 0の開口寸法 Rを大きくする。 これによれば、 前述した複数の孔 1 0を設けることによる、 偏摩耗の発生およ び進展の抑制の効果を、 横力や制動力の負担が大きい接地端に近づくにつれて大 きくすることができる。 また、 偏摩耗の抑制に対し効果的な領域に孔 1 0を配置 して、 それ以外の部分になるべく配置しないようにする事により、 それ以外の部 分で操縦安定性やトレツド耐久性を良好に保つことが可能となる。
また好ましくは、 装着内側の陸部 2 aの幅方向内側部分 1 3において、 タイヤ 赤道面から遠ざかるにつれて複数の孔 1 0相互間の間隔 Qを小とする。
これによつても、 偏摩耗の抑制効果を、 接地端近傍で大きくすることができ、 偏摩耗の抑制に対し効果的な領域のみに複数の孔を配置して、 操縦安定性やトレ ッド耐久性を良好に保つことができる。
また好ましくは、 タイヤ赤道面から遠ざかるにつれて孔 1 0の深さを深くする。 これによつても、 偏摩耗の抑制効果を、 接地端近傍で大きくすることができ、 偏 摩耗の抑制に対し効果的な領域のみに複数の孔 1 0を配置して、 操縦安定性ゃト レツド耐久性を良好に保つことができる。
さらに、 上記に従ってゥエツト路面に対する耐八ィドロプレーニング性能を高 く維持し、 かつ騒音を低減したタイヤにおいて、 さらにタイヤを装着するホイ一 ルとの関連のもとに車内の静粛性を向上させる技術を付与する場合について説明 する。
さて、 乗用車の車内の静粛性を阻害する要因としては、 タイヤから発生する直 接音とタイヤの振動が車内へ伝達されて発生する固体伝播音とが挙げられる。 こ のうち固体伝播音は、 タイヤが路面の凹凸により強制入力を受けて全体的に振動 し、 その振動が車軸を介して車体に伝播し、 車内において音になるロードノイズ と、 タイヤのトレッドパターン自体が有する幾何学的不連続によりタイャが振動 しそれが車軸を介して車体へ伝播し、 車内において音となるパターンノイズに大 別される。
これらの騷音のうち、 固体伝播音の増加は、 従来はタイヤの弾性振動の増大に 原因をおくと考えられていたので、 その低減のために、 タイヤそれ自体に各種の 対策が講じられてきたが、 結果は必ずしも満足できるものではなかった。
これがため、 発明者らは固体伝播音についての種々の研究を行ったところ、 そ の結果、 ホイールの振動特性が固体伝播音を増大させる重要な要素であると言う 知見を得た。 また、 タイヤの車両への振動伝達は、 タイヤのトレッド部、 左右の サイドウォール部、 左右のビード部、 ホイールリム、 ホイールディスク、 車軸の 順番に行われ、 タイヤトレッドの各ショルダー部から車軸に伝達される振動伝達 特性はそれぞれ異なり、 その態様はホイ一ルディスクのホイールリムに対するォ フセットの方向に起因するものではなく、 ホイールそのものの寸法形状によるも のであることも明らかになつてきた。 .
そこで、 この発明では、 ホイールの種類ごとの振動伝達特性を考慮した上で、 固体伝播音の低減対策を施して、 車内の静粛性を向上する手法を、 上記 (2 0 ) 〜 (2 6 ) に示したように確立した。
この手法について、 図面に基づいて詳しく説明する。
すなわち、 図 1 0は、 ホイールに装着して空気圧を充填したタイヤを車両への 組付姿勢としたときの正面視で示すトレッドパターンの展開図である。 タイヤの 内部構造は、 一般的なラジアルタイヤのそれと同様であるので図示を省略する。 ここでは、 トレッド T Rに、 その周方向に連続して延びる少なくとも三本の周 方向溝 l a、 1 13ぉょび1 ( を設け、 それら周方向溝 1 aおよび 1 cとトレッド 端 Tとにより区画される陸部 2 aおよび 2 bについて、 ホイールに装着されて伝 達率が大きい側に位置することになる陸部 2 aに設けられることのある横溝 (図 示例では横溝を設けていない) の、 トレッド幅方向の単位幅あたりの、 トレッド の全周にわたるトータル容積を、 他方のトレツド端側の陸部 2 bに設けた横溝 8 の同様のト一夕ル容積よりも小さくしたところに特徴がある。
なお、 三本の周方向溝 1 a、 1 bおよび 1 cにより区画される二列の陸部 3 a、 3 bには、 それぞれ傾斜溝 9 a、 9 bを設けてあるが、 特にこの図示例に限定さ れるものではない。
また、 陸部 2 aに、 トレツド周方向に連続して直線状に延びる細幅周溝 1 1を 設け、 この細幅周溝 1 1により陸部 2 aをトレッド幅方向に二分割する。 ここで は細幅周溝 1 1よりトレッド幅方向外側の部分 1 2を狭幅リブとするとともに、 細幅周溝 1 1よりトレッド幅方向内側の部分 1 3に、 周方向溝 1 aおよび細幅周 溝 1 1から独立した複数の孔 1 0を設ける。 さらに、 トレッド幅方向内側部分 1 3にはトレツド周方向に等間隔にてサイプ 1 4が設けられることもある。
これによれば、 陸部 2 aの横溝のトータル容積を、 睦部 2 bの横溝 8のトータ ル容積よりも小さくすることにより、 振動伝達特性が大きい側の睦部 2 aの周方 向の不連続成分となる横溝を相対的に少なくすることができ、 横溝が接地する際 に発生するパターンノイズの発生を防止することができる。
ここで、 睦部 2 aにおいて横溝が設けられることがあるということは、 図示例 のように設けられない場合もあるということであり、 その場合の横溝のトータル 容積は勿論ゼロである。
また、 陸部 2 aに、 細幅周溝 1 1および複数の孔 1 0を設けることにより、 陸 部 2 aの圧縮剛性を低下させることで、 路面凹凸からタイヤへの入力を減少させ て、 車軸へ伝達される振動を抑制し、 車室内に伝達されるロードノイズを低減す ることができる。 この際、 細幅周溝 1 1および複数の孔 1 0は、 横溝とは異なり、 トレツド周方向に対しての不連続部分とはならないため、 パターンノイズの発生 をも抑制することができる。
一方、 陸部 2 bには横溝 8を設けることにより、 トレッドパターン全体での溝 容積は確保でき、 ゥエツト排水性能を確保することができる。
また、 トレツド幅方向内側部分 1 3に複数の孔 1 0を設けた上で、 さらにサイ プ 1 4を設けることで、 トレツド幅方向内側部分 1 3の圧縮剛性をさらに下げる ことができ、 これにより、 ロードノイズをさらに低減することができる。
また、 好ましくは、 先に図 9に示したところから明らかなように、 細幅周溝 1 1の幅 w 1 0を、 溝底からトレッド表面側にむかつて漸次広くする。
これによれば、 細幅周溝 1 1が路面上の小石等の異物をかみこんだ場合でも、 その異物を外れやすくして、 異物を抱き込んだまま走行することにより、 偏摩耗 核が細幅周溝 1 1のトレツド幅方向内側部分 1 3に発生することを防止すること ができる。
さらに、 好ましくは、 図 1 0に示すように、 トレッド幅方向内側部分 1 3に設 けた複数の孔 1 0の開口寸法 Rを、 タイヤ赤道面〇から遠ざかるにつれて大きく し、 複数の孔 1 0相互間の間隔 Qを、 タイヤ赤道面〇から遠ざかるにつれて小と し、 複数の孔 1 0の深さを、 タイヤ赤道面 Oから遠ざかるにつれて深くすること が好ましい。
これによれば、 複数の孔 1 0を設けた卜レッド幅方向内側部分 1 3のタイヤ半 径方向の圧縮剛性を、 装着されるホイールの伝達率の大きい側の、 接地端に近づ くにつれて低下させることができ、 より効果的に、 路面凹凸からタイヤへの入力 を減少させて、 車軸へ伝達される振動を抑制し、 車室内に伝達されるロードノィ ズを低減することができる。 また、 ロードノイズの低減に対し効果的な領域に孔 を配置して、 トレツドのそれ以外の部分にはなるべく配置しないようにする事に より、 それ以外の部分では操縦安定性やトレツド耐久性を良好に保つことが可能 となる。
さらに、 図 1 0に示すように、 タイヤの最大負荷能力の 7 0 %以上の負荷の作 用下でのトレツドの接地幅 W 7 0の幅方向内側に、 トレツド幅方向内側部分 1 3 の複数の孔 1 0が配置された領域を含めて、 その領域の少なくとも一部が接地す るトレツド構成とすることが好ましい。
これによれば、 例えば前輪駆動車 (F F車) の制動時の後輪のように、 前輪に 比して後輪荷重が小さくなりトレツドの接地幅が小さくなる場合でも、 トレッド 幅方向内側部分 1 3に孔 1 0を設けた領域の少なくとも一部は確実に接地させて、 ロードノィズの低減効果を担保することができる。 さらに好ましくは、 図 9に示したように、 タイヤ幅方向の断面内において、 方向外側部分 1 2の側面の、 輪郭 S 1を構成する曲線の曲率中心のうちの少なく とも一つの曲率中心 C 1を、 その輪郭 S 1のタイヤ外側に位置させる一方、 同幅 方向内側部分の輪郭 S 2を構成する曲線の曲率中心 C 2を、 輪郭 S 2のタイヤ内 側に位置させる。
これによれば、 幅方向外側部分 1 2の偏摩耗容積を減らし、 外観を良好に保つ ことができる。
図 1 1は、 この発明の、 ホイールの振動伝達特性を測定する方法を模式的に表 わす図である。 かような測定を実施することにより、 上記したホイールに装着さ れて伝達率が大きい側に位置することになる陸部の特定を容易かつ確実に行うこ とができる。
幅方向断面形状がタイヤ赤道面に対して左右対称であるタイヤ 1 5を装着した ホイール 1 6をロードセル 1 7を装着した軸部材 1 8に取付け、 タイヤトレッド の各ショルダー部 1 9、 2 0を異なる複数の周波数にて加振し、 それらの加振力 を入力 F l、 F 2として、 軸部材への入力 F 3を測定し、 3を? 1、 F 2でそ れぞれ除して求められる、 伝達率 a l、 α 2を各周波数ごとに求め、 それらの伝 達率 α 1、 2をそれぞれ平均して、 伝達率 1、 2の平均値をそれぞれ求め て、 それぞれの伝達率の平均値のいずれが大きいかを判定する。
これによれば、 所定の周波数帯域における、 タイヤトレッドの各ショルダー部 1 9、 2 0のどちらが、 軸部材 1 8への入力に対して寄与が大きいかを正確に判 定して、 ホイールの振動伝達特性の大きい側を特定することができ、 固体伝播音 を抑制するためのタイヤ側の各種の解決手段を、 ホイールに対し効果的に位置さ せて適用することが可能となる。
さらに好ましくは、 所定の周波数帯域を 3 0 0〜1 0 0 0 H zとする。
これによれば、 さらに正確に、 ホイールの伝達率の大きい側を特定することが できる。 以上に述べたタイヤは、 適用リムに取付けて、 規定の空気圧を充填し、 最大負 荷能力に相当する質量を負荷したタイヤ状態で、 車両装着内側もしくは同外側の いずれか一方の有効接地面積が他方のそれより大きくなり、 また、 規定の空気圧 の充填姿勢で、 タイヤの赤道面と直交するトレツド外表面接線からそれぞれのト レッド接地縁までの半径方向距離が、 有効接地面積の小さい装着側で、 他方の装 着側より大きくなるように構成することが、 非対称パターンを有するタイヤに発 生し易い、 コニシティフォースを抑制する上で好ましく、 この場合は、 有効接地 面積の大小の比 (S大 / S小) と、 半径方向距離の大小の比 (H大 /H小) との 関係を
( 大/ 小) =A X (H大 /H小)
但し Aは、 1 . 0〜1 . 4
となるように構成することが一層好ましい。
すなわち、 車両の旋回走行に当っては、 コーナリングの外側に存在するタイヤ の、 とくに負荷が大きくなるとともに、 接地面積もまた増加する、 タイヤトレツ ドの装着外側部分の陸部剛性を、 装着内側部分のそれより大きくすることによつ て、 コーナリングフォースを高めることが広く行われており、 これがための具体 的構成としては、 装着タ M 部分のネガティブ率を小さくして陸部剛性を高める一 方で、 装着内側部分のネガティブ率を大きくして排水性を確保することが一般的 である。
しかるに、 このような構成のいわゆる非対称トレツドパターンを採用した場合 には、 装着外側部分の接地面積が装着内側部分のそれより大きくなるため、 たと えば車両の直進走行に当って、 タイヤの接地面内で、 トレッド踏面が路面から受 ける幅方向剪断力が装着内側部分と外側部分との間で大きく相違することになり、 この相違が、 タイヤにキャンバ一角を付与したかの如くのコニシティフォースの 発生原因となって、 タイヤに装着外側方向に向く横力を発生させることが明らか になった。 ところで、 このようなコニシティフォースにっき、 種々の検討を行った結果、 トレツド踏面に発生する幅方向剪断力は、 トレツドショルダー部で最も大きくな り、 しかも、 この剪断力は、 トレッド踏面の、 タイヤ赤道線からの離隔距離が大 きくなるほど大きくなり、 また、 その離隔距離に極めて敏感であるとの知見を得 た。
そこでここでは、 装着内側もしくは外側のいずれか一方の有効接地面積が他方 のそれより大きくなる非対称トレッドパターンとしたところにおいて、 タイヤ赤 道面と直交するトレツド外表面接線からそれぞれのトレツド接地縁まで半径方向 距離を、 有効接地面積の小さい装着側で、 他方の装着側より大きくなるよう構成 して、 半径方向距離の大きい側のトレッドショルダー部が発生する幅方向剪断力 を、 有効接地面積が大きい側に発生するコニシティフォースの打消しに寄与させ て、 とくには小舵角時の操縦安定性の向上をもたらす
ところで、 この場合は、 有効接地面積の大小の比 (S大 ZS小) と、 半径方向 距離の大小の比 (H大 ZH小) との関係を、
( S大 Z S小) =A X (H大/ H小)
Aは、 1 . 0〜1 . 4
とすることが、 コニシティフォースを、 より効果的に打ち消す上で好ましい。 ここで、 Aを 1 . 0より小さくすると、 逆方向のコニシティフォースが発生し やすくなり、 1 . 4より大きくすると、 コニシティフォースの打消し効果が小さ くなる。
さらに、 上記したコニシティフォースを抑制する手法について、 図面を参照し て具体的に説明する。
たとえば、 トレツド踏面の装着内側部分と装着外側部分とのネガティブ率を相 違させることによって、 図 1 2 ( a) にトレッド接地面を模式的に例示するよう に、 適用リムに組付けて、 規定の空気圧を充填し、 そして最大負荷能力に相当す る質量を負荷した状態の下で、 装着外側部分の、 図に斜線を施して示す有効接地 面積 s。utを、 装着内側部分の有効接地面積 sinより大きくしたときの、 装着外 側方向に向くコニシティフォースの発生を抑制するためには、 図 1 2 (b) に、 規定の空気圧の充填状態のタイヤの幅方向略線断面図で示すように、 タイヤ赤道 面 0と直交するトレツド外表面接線 Lから、 それぞれのトレツド接地縁 E I , E Oまでの半径方向距離 Hi n, H。utが、 有効接地面積の小さい装着内側で大きく なるように (Hi n>H。ut) 、 たとえば加硫モ一ルドの内表面形状の選択等をも つてタイヤを構成することが有効である。
そしてこのことは、 有効接地面積の大小関係を上述したところとは逆に設定し た場合 (S i n〉S。ut) にも同様であり、 このときは、 それぞれの半径方向距離 Hi n, Hou tが、
Hou tノ H i n
の関係を満足するようにタイヤを構成する。
ところで、 この場合にあって、 より好適には、 大きい有効接地面積を S大、 小 さい有効接地面積を S小とし、 また、 有効接地面積が大きい側の半径方向距離を H (S大側) 、 小さい側の半径方向距離を H (S小側) としたときに、
大 Z o小 =AX Hi (s小側) II (s大側) )
伹し、 Aは 1. 0〜1.4
の関係を満たすものとする。
[図面の簡単な説明]
図 1は、 接地形状による排水能力の差異を示す図、
図 2は、 気柱管共鳴音感度のトレツド幅方向分布を示す図、
図 3は、 この発明に従うトレッドパターンを示す図、
図 4は、 この発明タイヤの装着要領を説明する図、
図 5は、 この発明に従うトレッドパ夕一ンを示す図、
図 6は、 細溝の構造を示す図、
図 7は、 この発明に従う別のトレッドパターンを示す図、 図 8は、 この発明の実施の形態を、 車両への装着姿勢のタイヤの正面視で示す トレツドパターンの展開図、
図 9は、 この発明のトレツドパターンの一部を示す幅方向断面図、
図 1 0は、 この発明の実施の形態を、 ホイールに装着して空気圧を充填した夕 ィャを車両への組付姿勢としたときの正面視で示すトレッドパターンの展開図、 図 1 1は、 この発明のホイールの振動伝達特性を測定する方法を模式的に表わ す図、
図 1 2は、 コニシティフォースを抑制するためのタイヤ構成を示す図、 図 1 3は、 実施例に用いた種々のトレツドパターンを示す図、
図 1 4は、 実施例に用いた種々のトレツドパターンを示す図、
図 1 5は、 実施例に用いた種々のトレツドパターンを示す図、
図 1 6は、 比較のトレツドパターンを示す図、
図 1 7は、 この発明の他の実施の形態を、 車両への装着姿勢のタイヤの正面視 で示すトレッドパターンの展開図、
図 1 8は、 比較例タイヤの形態を、 車両への装着姿勢のタイヤの正面視で示すト レツドパターンの展開図、
図 1 9は、 比較例タイヤの他の形態を、 車両への装着姿勢のタイヤの正面視で 示すトレッドパターンの展開図、
図 2 0は、 比較例タイヤの他の形態を、 車両への装着姿勢のタイヤの正面視で 示すトレッドパターンの展開図、
図 2 1は、 比較例タイヤの他の形態を、 車両への装着姿勢のタイヤの正面視で 示すトレッドパターンの展開図、
図 2 2は、 比較例タイヤの他の形態を、 車両への装着姿勢のタイヤの正面視で 示すトレッドパターンの展開図、
図 2 3は、 比較例タイヤの形態を、 ホイールに装着して空気圧を充填したタイ ャを車両への組付姿勢としたときの正面視で示すトレッドパターンの展開図、 図 24は、 比較例タイヤの他の形態を、 ホイールに装着して空気圧を充填した タイヤを車両への組付姿勢としたときの正面視で示すトレッドパターンの展開図、 図 25は、 ホイールの断面形状を模式的に表わした図、
図 26は、 比較例タイヤ 12のトレツドパターンを示す展開図である。
[発明を実施するための最良の形態]
(実施例 1)
図 13〜15に示すトレッドパターンを有する、 図 13 :サイズ 205/65 R 15、 014 :サイズ 205/55 R 16および図 1.5 :サイズ 225/5 5 R16の乗用車用ラジアルタイヤを、 以下に示す種々の仕様の下に作製した。 なお、 周方向溝以外の構成、 つまり周方向溝相互及びトレッド端の間に区画され る睦部や、 そこに設けたタイヤ赤道面を横切る向きに延びる、 横溝および傾斜溝 は、 基本仕様を同じくした。 また、 各図に太線で示した接地形状は、 それぞれ車 両前輪においてキャンバー角を付与した際のものである。
実施例 1一 1
(A) 従来例 1 _ 1 :図 13 (a)
3本の周方向溝 1 a〜l cを有し、 周方向溝 1 bをタイヤ赤道面 0上に配置し、 その両側の同じ離間位置に周方向溝 1 aおよび 1 cを配置して成る。 いずれの周 方向溝も、 溝幅 8 mmおよび深さ 8 mmの矩形断面を有する。
(B) 従来例 1一 2 :図 13 (b)
従来例 1— 2は、 従来例 1一 1対比で全ての周方向溝を装着内側へ 5 mm移動 した位置にある。 溝幅および深さは、 従来例 1_ 1と同じである。
(C) 発明例 1_ 1 :図 13 (c)
発明例 1—1は、 各周方向溝の中心位置は従来例 1—2と同じだが、 溝幅が装 着内側から周方向溝 1 a: 8. 0mm, 周方向溝 l b : 9. 6mm, 周方向溝 1 c : 6. 4 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
(D) 発明例 1一 2 :図 13 (c) 発明例 1一 2は、 各周方向溝の中心位置は従来例 1一 2と同じだが、 溝幅が装 着内側から周方向溝 l a : 8. 8mm, 周方向溝 1 b : 9. 6mm, 周方向溝 1 c : 5. 6 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
(E) 発明例 1一 3 :図 13 (c)
発明例 1—3は、 各周方向溝の中心位置は従来例 1一 2と同じだが、 溝幅が装 着内側から周方向溝 l a : 7. 2mm, 周方向溝 l b : 9. 6mm, 周方向溝 1 c : 7. 2 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
(F) 比較例 1— 1 :図 13 (c)
比較例 1一 1は、 各周方向溝の中心位置は従来例 1—2と同じだが、 溝幅が装 着内側から周方向溝 1 a: 8. 0mm, 周方向溝 1 b: 8. 8mm, 周方向溝 1 c : 7. 2 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
(G) 比較例 1—2 :図 13 (c)
比較例 1一 1は、 各周方向溝の中心位置は従来例 1一 2と同じだが、 溝幅が装 着内側から周方向溝 1 a: 9. 2mm, 周方向溝 1 b: 9. 6mm, 周方向溝 1 c : 5. 2 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
(H) 比較例 1—3 :図 13 (c)
比較例 1一 3は、 各周方向溝の中心位置は従来例 1_ 2と同じだが、 溝幅が装 着内側から周方向溝 l a : 6. 8mm, 周方向溝 l b : 9. 6mm, 周方向溝 1 c : 7. 6 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
( I ) 発明例 1 _ 4 :図 13 ( c )
発明例 1一 4は、 各周方向溝の中心位置は従来例 1一 2と同じだが、 溝幅が装 着内側から周方向溝 1 a : 7. mm, 周方向溝 1 b: 11. 6mm, 周方向溝 1 c : 5. 2 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。 (J) 比較例 1—4 :図 13 (c)
比較例 1一 4は、 各周方向溝の中心位置は従来例 1一 2と同じだが、 溝幅が装 着内側から周方向溝 1 a : 7. 2mm, 周方向溝 1 b : 12. 0mm, 周方向溝 1 c : 4. 8 mmであり、 溝深さは 8 mmの矩形断面を有するものとした。
なお、 図 1 3のトレッドパターンにおける平均溝幅は、 いずれも 8 mmである。 上記の各タイヤを 6 J - 1 5のリムに組み付けて内圧を 2 2 0 k P aに調整し たのち、 乗用車に装着した。 そして、 2名乗車した状態で前輪の対地キャンパー は一 0 . 4 ° および後輪は— 0 . 8 ° であった。 この車両で水深 6 mmのプール 内で速度 5 0 km/hから加速試験を行い、 テストドライバ一によるハイドロプ レーニング発生速度の評価を行った。 その評価結果は、 ハイドロプレーニング発 生速度の指数で表現し、 この指数が大きいほど良好であることを示している。 また、 1 0 0 kmZhで水深 2 mmの湿潤路面に入り制動試験を行い、 制動時 のハイドロプレーニング性能評価も実施した。 その評価結果は指数で示し、 この 指数が大きいほど良好であることを示している。 さらに、 平滑な路面上を速度 6 0 kmZhで走行した際に、 運転者の耳元にて騒音の評価を計測した。 この指数 が大きいほど良好であることを示している。
これらの評価結果を、 表 1にまとめて示す。
Figure imgf000034_0001
表 1に示したように、 比較例 1一 1 では、 センターの周方向溝幅を平均溝幅の + 1 0 %としているが、 耐ハイドロプレーニング性が不足していることは否めな い。 同様に、 比較例 1—2では装着内側の周方向溝を平均溝幅の 115%として、 制動時の耐ハイドロプレーニング性は発明例 1 _ 2対比で良くなるが、 装着外側 の周方向溝幅が小さくなりすぎてハイドロプレーニング速度指数が劣化する。 さ らに、 比較例 1—3では、 装着外側の周方向溝幅が平均溝幅の— 5%であり、 装 着外側の溝幅が広いため騒音に不利であり、 装着内側の周方向溝の幅が狭いため 制動時の耐ハイドロプレーニング性が悪い。 最後に、 比較例 1一 4では、 装着内 側の周方向溝が平均溝幅の +50%であり、 装着外側溝が狭くなりすぎて耐ハイ ド口プレーニング性が悪化した。
実施例 1一 2
(A) 従来例 1—3 :図 14 (a)
4本の周方向溝 1 a〜l dを有し、 タイヤ赤道面 O上に幅中心を設けた幅 20 mmのリブ 2の両側に周方向溝 1 bおよび 1 cを配置し、 その外側に設けた幅 2 0mmの陸部 3 a, 3 bの外側に、 周方向溝 1 aおよび 1 dを配置して成る。 い ずれの周方向溝も、 溝幅 8 mmおよび深さ 8 mmの矩形断面を有する。
(B) 従来例 1一 4 :図 14 (b)
従来例 1一 4は、 従来例 1 _ 3対比で全ての周方向溝を装着内側へ 6 mm移動 した位置にある。 ネガティブキャンバー 0. 5° で車両に装着された時の最大接 地長位置に周方向溝 1 bがある。 溝幅および深さは、 従来例 1—3と同じである。
(C) 発明例 1一 5 :図 14 (c)
発明例 1一 5は、 各周方向溝の中心位置は従来例 1 - 4と同じだが、 溝幅が装 着内側から周方向溝 l a : 8. 0mm, 周方向溝 l b: 9. 6mm, 周方向溝 1 c : 7. 2mm, 周方向溝 1 d : 7. 2mmであり、 溝深さは 8mmの矩形断面 を有するものとした。
(D) 発明例 1— 6 :図 14 (c)
発明例 1一 6は、 各周方向溝の中心位置は従来例 1_4と同じだが、 溝幅が装 着内側から周方向溝 1 a : 8. 8mm, 周方向溝 1 b: 9. 6mm, 周方向溝 1 c : 6. 8mm, 周方向溝 1 d: 6. 8mmであり、 溝深さは 8mmの矩形断面 を有するものとした。
(E) 比較例 1—5 :図 14 (c)
比較例 1—5は、 各周方向溝の中心位置は従来例 1一 4と同じだが、 溝幅が装 着内側から周方向溝 1 a : 8. 8mm, 周方向溝 l b : 8. 8mm, 周方向溝 1 c : 7. 2mm, 周方向溝 1 d : 7. 2 mmであり、 溝深さは 8 mmの矩形断面 を有するものとした。
(F) 比較例 1—6 :図 14 (c)
比較例 1一 6は、 各周方向溝の中心位置は従来例 1一 4と同じだが、 溝幅が装 着内側から周方向溝 l a : 9. 2mm, 周方向溝 1 b: 9. 6mm, 周方向溝 1 c : 6. 6 mm, 周方向溝 1 d: 6. 6 mmであり、 溝深さは 8 mmの矩形断面 を有するものとした。
(G) 比較例 1一 7 :図 14 (c)
比較例 1一 7は、 各周方向溝の中心位置は従来例 1一 4と同じだが、 溝幅が装 着内側から周方向溝 l a : 7. 2mm, 周方向溝 l b : 9. 6mm, 周方向溝 1 c : 7. 6mm, 周方向溝 1 d: 7. 6 mmであり、 溝深さは 8 mmの矩形断面 を有するものとした。
なお、 図 14のトレッドパターンにおける平均溝幅は、 8mmである。
上記の各タイヤを 6. 5 J— 16のリムに組み付けて内圧を 220 kP aに調 整したのち、 乗用車に装着した。 そして、 2名乗車した状態で前輪の対地キャン パーは— 0. 5° および後輪は一 0. 8° であった。 この車両で水深 6mmのプ —ル内で速度 50 km/hから加速試験を行い、 テストドライバーによるハイド 口プレーニング発生速度の評価を行った。 その評価結果は、 ハイド口プレーニン グ発生速度の指数で表現し、 この指数が大きいほど良好であることを示している。 また、 100 km/hで水深 2 mmの湿潤路面に入り制動試験を行い、 制動時 のハイドロプレーニング性能評価も実施した。 その評価結果は指数で示し、 この 指数が大きいほど良好であることを示している。 さらに、 平滑な路面上を速度 6 0 kmZhで走行した際に、 運転者の耳元にて騒音の評価を計測した。 この指数 が大きいほど良好であることを示している。
これらの評価結果を、 表 2にまとめて示す。
表 2
Figure imgf000037_0001
表 2に示したように、 比較例 1—5では、 センタ一の周方向溝幅を平均溝幅の + 1 0 %としているが、 耐八ィドロプレーニング性が従来例 1—4より不足して いる。 同様に、 比較例 1 _ 6では装着内側の周方向溝を平均溝幅の 1 1 5 %とし て、 制動時の耐ハイドロプレーニング性は発明例 1 _ 6対比で良くなるが、 装着 外側の周方向溝幅が小さくなりすぎてハイド口プレーニング速度指数が劣化する。 さらに、 比較例 1—7では、 装着外側の周方向溝幅が平均溝幅の— 5 %であり、 装着外側の溝幅が広いため騒音に不利であり、 装着内側の周方向溝の幅が狭いた め制動時の耐ハイド口プレーニング性が悪い。
実施例 1一 3
(A) 従来例 1一 5 :図 1 5 ( a )
4本の周方向溝 1 a〜l dを有し、 タイヤ赤道面 O上に幅中心を設けた幅 2 0 mmのリブ 2の両側に周方向溝 1 bおよび 1 cを配置し、 その外側に設けた幅 2 0 mmの陸部 3 a, 3 bの外側に、 周方向溝 1 aおよび 1 dを配置して成る。 い ずれの周方向溝も、 溝幅 8 mmおよび深さ 8 mmの矩形断面を有する。 (B) 従来例 1— 6 :図 15 (b)
従来例 1 _ 6は、 従来 1— 5対比で全ての周方向溝を装着内側へ 6 mm移動し た位置にある。 ネガティブキャンバ一0. 5° で車両に装着された時の最大接地 長位置に周方向溝 1 bがある。 溝幅および深さは、 従来例 1—5と同じである。
(C) 発明例 1_7 :図 15 (c)
発明例 1一 7は、 各周方向溝の中心位置は従来例 1一 6と同じだが、 溝幅が装 着内側から周方向溝 1 a: 8. 0mm, 周方向溝 1 b: 10. 4mm, 周方向溝 1 c : 6. 8mm, 周方向溝 1 d : 6. 8mmであり、 溝深さは 8mmの矩形断 面を有するものとした。
(D) 発明例 1一 8 :図 15 (c)
発明例 1一 8は、 各周方向溝の中心位置は従来例 1一 6と同じだが、 溝幅が装 着内側から周方向溝 1 a : 8. 0mm, 周方向溝 1 b: 12. 4 mm, 周方向溝 1 c : 5. 8mm, 周方向溝 I d: 5. 8mmであり、 溝深さは 8mmの矩形断 面を有するものとした。
(E) 比較例 1—8 :図 15 (c)
比較例 1一 8は、 各周方向溝の中心位置は従来例 1—6と同じだが、 溝幅が装 着内側から周方向溝 1 a : 8. 8 mm, 周方向溝 1 b: 13. 2mm, 周方向溝 1 c : 5. 4mm, 周方向溝 I d: 5. 4mmであり、 溝深さは 8mmの矩形断 面を有するものとした。
なお、 図 15のトレッドパターンにおける平均溝幅は、 8mmである。
上記の各タイヤを 7. 5 J - 16のリムに組み付けて内圧を 210 kP aに調 整したのち、 乗用車に装着した。 そして、 2名乗車した状態で前輪の対地キャン パ一は—0. 3° および後輪は一 0. 5° であった。 この車両で水深 6 mmのプ ール内で速度 50 kmZhから加速試験を行い、 テストドライバーによるハイド 口プレーニング発生速度の評価を行った。 その評価結果は、 ハイド口プレ一ニン グ発生速度の指数で表現し、 この指数が大きいほど良好であることを示している。 また、 1 0 0 kmZhで水深 2 mmの湿潤路面に入り制動試験を行い、 制動時 のハイドロプレーニング性能評価も実施した。 その評価結果は指数で示し、 この 指数が大きいほど良好であることを示している。 さらに、 平滑な路面上を速度 6 0 kmZhで走行した際に、 運転者の耳元にて騒音の評価を計測した。 この指数 が大きいほど良好であることを示している。
これらの評価結果を、 表 3にまとめて示す。
表 3
Figure imgf000039_0001
表 3に示したように、 比較例 1—8では、 センタ一の周方向溝幅を平均溝幅の + 6 5 %としているが、 装着外側の周方向溝幅が小さくなりすぎて、 耐ハイド口 プレーニング性が従来例 1― 6より不足している。
(実施例 2 )
発明例 2— 1
図 5に示したトレツドパターンを有する、 サイズが 2 0 5 / 6 5 R 1 5の乗用 車用ラジアルタイヤを試作した。 図 5に示したトレッドパターンにおいて、 4本 の周方向溝の深さはいずれも 8腿、 幅は周方向溝 1 aおよび 1 dが 8誦、 ネガテ イブキャンバ一角の付加による接地長伸び側 (車両装着内側に当たる) の周方向 溝 l bが 9 . 6腿、 そして同接地長減少側 (車両装着外側に当たる) の周方向溝 l cが 6 . 4 iMである。 また、 タイヤ赤道面〇に対する陸部中心 Sのオフセッ ト量は 5匪、 また太線で示す接地形状はネガティブキャンバー角が 0 . 5 ° 付カロ 時を示している。 さらに、 細溝 6は、 タイヤ幅方向に 1 5 ° 傾けてある。 そして、 細溝 6は、 図 6に示したように、 幅が 1 8腿 のリブ状陸部 4の全幅にわたる、 タイヤ半径方 向深さ 1 0腿 の範囲に、 タイヤ半径方向に ± 2 2 . 5 ° の傾斜角度で切り込ん だものである。 また、 細溝 6の開口幅は、 0 . 4腿 であり、 細溝 6相互の間隔 は 3 0讓である。
発明例 2— 2
図 7に示したトレツドパターンを有する、 サイズが 2 0 5 / 6 5 R 1 5の乗用 車用ラジアルタイヤを試作した。 図 7に示したトレッドパターンは、 リブ状陸部 4に、 長軸がタイヤ幅方向に 1 5 ° 傾くディンプル 7を、 細溝 6に換えて設けた 以外は、 図 5の場合と同様である。 なお、 ディンプル 7は、 長軸 1 3腿および 短軸 3腿であり、 ディンプル 7の相互の間隔は 3 0匪である。
比較例 2一 1
図 1 6は比較のトレッドパターンであり、 基本のパターンは発明例 2— 1と同 じであるが、 リブ状睦部 4に細溝 6を設けない点、 リブ状陸部 4の幅中心をタイ ャ赤道面 O上に置く点、 において異なる。 なお、 周方向溝の深さは共に 8腿 お よび幅は周方向溝 1 aおよび 1 dが 8讓、 周方向溝 1 bおよび 1 c力 7讓であ る。
上記の各タイヤを標準リムに組み込み内圧を 2 2 0 k P aに調整してから、 テ ストコースにて直進時耐ハイドロプレーニング性能と操縦安定性とを官能評価し、 またセンター磨耗については、 2万 kmにわたり車両を走行させ、 トレッドセン 夕一部の摩耗量を評価した。 その結果は、 比較例 1の結果を 1 0 0とする指数に て表 4に示し、 この指数が大きいほど良好であることを示している。 表 4
Figure imgf000041_0001
(実施例 3 )
この発明の一実施形態たる空気入りタイヤの、 偏摩耗の抑制性能を評価する目 的で、 サイズが 2 0 5 / 6 5 R 1 5の、 二種類の発明例タイヤと、 五種類の比 較例タイヤとを、 呼びが 6 J X 1 5のリムに装着して、 タイヤへの充填空気圧を 2 2 0 k P aとし、 テスト車両に装着し、 3万 km走行した後、 装着内側のトレ ッド部の摩耗を測定し、 偏摩耗の抑制性能の評価を行った。 その結果を表 5に示 す。
発明例 3 _ 1のトレッドパターンは、 図 8に示すように、 トレッド T Rに、 そ の周方向に連続して延びる少なくとも二本、 図では三本の周方向溝 1 a、 l bお よび 1 c (幅 1 a: 8 . O mm、 1 b: 9 . 6 mmおよび 1 c : 6 . 4mm) を 設け、 それら周方向溝 1 aおよび 1 cとトレツド端 Tとにより区画される陸部 2 aおよび 2 bについて、 車両に装着されて内側となる陸部 2 aをリブ状にする一 方、 車両に装着されて外側となる陸部 2 bには横溝 8を設けてプロックが並ぶ陸 部列として、 両陸部間での横溝のト一タル容積を陸部 2 aで小さくすることによ つて、 陸部の周方向剛性を睦部 2 bより陸部 2 aで大きくしてなる。 また、 三本 の周方向溝間に区画される他の二列の陸部 3 aおよび 3 bのそれぞれにも、 横溝 9 aおよび 9 bを設けてある。 さらに、 陸部 2 aに、 周方向溝 l aから独立した 複数の孔 1 0を設け、 陸部 2 aの中心線 C iよりトレツド端 T側の領域の凹部容 積を、 その中心線 C iのトレッド端と逆側の領域の凹部容積よりも大きくする。 さらに、 車両に装着されて内側となる幅方向端側の陸部 2 aを、 細幅周溝 1 1に より幅方向外側部分 1 2と幅方向内側部分 1 3とに分割して、 その幅方向外側部 分 12の幅 (10mm) を、 幅方向内側部分 13の幅 (20mm) よりも狭く、 かつトレッド幅の 1ノ10以下としてなる。
ここで、 細幅周溝 1 1の深さは 5. 0 mm、 溝底での幅は 1. 5 mm、 トレツ ド表面での幅は 2. 6 mmとしている。 また、 幅方向外側部分 12の幅は 2 mm、 幅方向内側部分 13の幅は 18 mmとしている。
車両に装着されて内側となる陸部 2 aに、 周方向溝 1 aおよび細幅周溝 11か ら独立した複数の孔 10を設ける。 複数の孔 10は二列の孔列からなり、 幅方向 外側の孔は、 直径は 2. 5mm、 深さは 6mm、 中心間距離は 7. 5 mmとし、 幅方向内側の孔は、 直径は 1. 5 mm, 深さは 6mm、 中心間距離は 7. 5 mm としている。
発明例 3 _ 2のトレツドパターンは、 図 17に示すように、 発明例 3— 1を基 本とし、 細幅周溝を設けず、 その位置に、 直径が 2. 5mm、 深さは 6mm、 中 心間距離は Ί . 5 mmの孔列を設けたものである。
比較例 3— 1のトレツドパターンは、 図 18に示すように、 装着外側の卜レツ ド端側の睦部には横溝を設けず、 装着内側のトレッド端側の睦部に横溝を設けた ものである。
比較例 3 _ 2のトレツドパターンは、 図 19に示すように、 発明例 3— 1に示 すトレツドパターンを装着外側と内側とで逆としたものである。
比較例 3— 3のトレツドパターンは、 図 20に示すように、 発明例 3— 1を基 本とし、 幅方向外側部分 12の幅を 14mm、 幅方向内側部分 13の幅を 6 mm とし、 幅方向内側部分 13に、 直径が 2. 5mm、 深さは 6mm、 中心間距離は 7. 5 mmの孔列を設けたものである。
比較例 3 _ 4のトレツドパターンは、 図 21に示すように、 発明例 3— 1を基 本とし、 細幅周溝を設けず、 直径が 3. 0mm、 深さは 6mm、 中心間距離は 7. 5 mmの孔列と、 直径が 2. 0mm、 深さは 6mm、 中心間距離は 7. 5 mmの 孔列と、 直径が 1. 0mm、 深さは 6mm、 中心間距離は 7. 5 mmの孔列とを、 幅方向内側からこの順番にて設けたものである。
比較例 3— 5のトレツドパターンは、 図 2 2に示すように、 発明例 3— 1を基 本とし、 複数の孔を設けないものである。
性能評価は、 装着内側の睦部での磨耗量と同外側陸部での磨耗量との差を測定 し、 比較例 3— 1の測定結果を 1 0 0としたときの指数で評価した。 数値は小さ いほど良好であることを示す。
表 5
Figure imgf000043_0001
表 5において、 比較例 3 - 1と発明例 3— 1とを比較すると、 発明例 3— 1は、 比較例 3— 1に較べ、 車両に装着されて内側となる陸部の偏摩耗を大幅に防止で きていることが分かる。
比較例 3— 1と比較例 3 _ 2とを比較すると、 車両に装着されて外側となる陸 部の横溝成分を小さくし、 該陸部を細幅周溝を設けて幅方向内側部分と外側部分 とに分離して、 孔を設けると、 旋回時の横力を負担しきれず、 偏摩耗抑制性能は かえって悪くなる事がわかる。 この場合、 細幅周溝の外側部分が横力に対しては 機能せず、 内側部分に偏摩耗が発生するため、 外観も悪くなる。
発明例 3— 1と比較例 3— 5とを比較すると、 陸部の幅方向内側部分に孔を設 けることにより、 偏摩耗をさらに抑制できていることが分かる。
発明例 3— 1と発明例 3— 2とを比較すると、 車両に装着されて内側となる陸 部を細幅周溝により幅方向外側部分と内側部分とに分離することにより、 偏摩耗 をさらに抑制できることが分かる。
発明例 3— 1と比較例 3— 3とを比較すると、 幅方向外側部分の幅が大きすぎ ると、 偏摩耗の抑制効果が小さいことが分かる。
発明例 3— 2と比較例 3 _ 4とを比較すると、 孔の配列は、 方向外側の孔の 直径を大きくするほうが、 偏摩耗を抑制するに際し効果的であることが分かる。
(実施例 4)
実施例 4 _ 1
この発明に係る、 空気入りタイヤの、 車室内騒音の低減効果を測定する目的で、 サイズが 205Z65R 15の、 図 10に示すトレッドパターンを有する一種 類のタイヤ (発明例 4一 1) と、 図 23および 24に示すトレッドパ夕一ンを有 する二種類のタイヤ (比較例 4一 1および 4— 2) とを、 空気圧 200 kP aに て、 サイズが 14X6 J Jで裏側 (装着時車両内側) のほうが表側 (装着時車両 外側) より伝達率の大きいアルミホイール (伝達率:オーバーオール (総合音圧 レベル) で +3dB) に装着し、 国産 2000 c cの FF車に装着して、 粗路面 を 60 kmZhで走行試験を行い、 運転者の左耳の位置での 300〜 800Hz の帯域値の騒音レベルを測定した。 なお、 いずれのタイヤも、 周方向溝は、 図に おいて左側から順に、 8. 0mm、 9. 6 mmおよび 7. 4 mmである。
その結果を表 6に示す。
比較例 4一 1は、 図 23に示すように、 トレッド 51に、 その周方向に連続し て延びる少なくとも二本、 ここでは三本の周方向溝 52を設け、 それらの周方向 溝 52により区画される陸部のうち、 装着されてホイールの振動伝達特性の大き い側に配置される、 幅方向端側の陸部 53と、 他方の幅方向端側の睦部 54にそ れぞれトータル容積が同じとなるように横溝 55、 56を設け、 三本の周方向溝 52により幅方向内側に区画される二列の陸部 57, 58には、 それぞれ傾斜溝 59、 60を設けたものである。
比較例 4— 2は、 図 24に示すように、 発明例 4一 1をホイールに対しパター ンの向きを逆にして装着したものである (
表 6
Figure imgf000045_0001
表 6において、 比較例 4— 1および 4— 2と発明例 4— 1とを比較すると、 発 明例 4一 1は、 ホイールの伝達率の大きい側に、 横溝のトータル容積を小さくし て細幅周溝と孔を設けた陸部を位置させてホイールに装着することにより、 その 陸部の圧縮剛性を低下させてロードノイズを低減し、 陸部の幾何学的不連続を少 なくしてパターンノイズを低減し、 固体伝播音を低減させて、 車室内騒音を低減 できることが分かる。
比較例 4 - 2は発明例 4— 1を、 ホイールの伝達率の小さい側に、 横溝のトー タル容積を小さくして細幅周溝と孔を設けた睦部を位置させてホイールに装着さ せたものであるが、 ホイールの伝達率の大きい側に配置される陸部の横溝が多く なり、 幾何学的不連続が増加することにより、 パターンノイズが増加し、 比較例 4一 1と較べて車室内騒音がかえって悪化することが分かる。
実施例 4一 2
各種のホイールの伝達率の大きい側を特定する目的で、 幅方向断面形状がタイ ャ赤道面に対して左右対称であるタイヤを装着した、 サイズが 1 4 X 6 J Jのリ ムに対するディスクのオフセット値が 4 5 mmである、 図 2 5に示す断面形状の、 三種類のホイール A、 B、 Cを、 ロードセルを内装した車軸部分に装着し、 加振 機によりタイヤトレツドの両ショルダ一部をそれぞれ加振し、 それらの加振力を 入力とし、 車軸部分で測定される力を出力として測定し、 伝達率の周波数応答関 数をホイールの表側と裏側とについてそれぞれ求め、 各周波数ごとに伝達率の比 (裏/表) を求め、 3 0 0〜1 0 0 0 H zでの周波数帯域にて平均して、 ホイ一 ルの振動伝達特性の大きい側を特定した。 その結果を表 7に示す。 数値は 1であ れば表と裏の伝達率は同じであることを示し、 1より大きければ、 裏側のほうが 伝達率が大きく、 1より小さければ、 表側のほうが伝達率が大きいことを示す。 表 7
Figure imgf000046_0001
これによれば、 ホイールの振動伝達の大きい側を正確に特定することができ、 固体伝播音を抑制するための各種の解決手段を、 効果的に適用することが可能と なる。
(実施例 5 )
サイズが 2 0 5 Z 6 5 R 1 5の発明例タイヤおよび比較例タイヤのそれぞれ の、 タイヤ ·ホイール組立体についてコニシティフォースを測定するとともに、 操縦安定性および耐ハイドロプレーニング性能を求めたところ表 8に示す結果を 得た。
表中の発明例 5—1は、 図 1 2 ( a ) に示すトレッド接地面形状を有するもの であり、 ともに 8 mmの深さを有する三本の周方向主溝 (溝幅は、 図において左 側から順に、 8 . 0 mm、 9 . 6 mmおよび 7 . 4 mm) を装着の内外側に非対 称に配設し、 タイヤ赤道面 0を境として装着外側の有効接地面積 S。u tの、 装着 内側の接地面積 S i nに対する比を 1 . 1 4とし、 また、 トレッド幅 Wの 8 0 % の位置でのトレツド外表面接線 Lからの半径方向距離を、 装着外側で 5 . 8 mm、 装着内側で 6 . 2 mmとしたものである。
比較例 5— 1は、 図 2 6に示すトレツド接地面形状を有するものであり、 とも に 8 mmの深さを有する三本の周方向主溝をタイヤ赤道線に対して対称に配設し て、 有効接地面積を装着する内外側でほぼ等しくし、 また、 トレッド幅 Wの 8 0 %の位置でのトレツド外表面接線 Lからの半径方向距離を、 これも装着の内外 側でほぼ等しくしたものである。
そして比較タイヤ 5— 2は、 図 1 2 ( a) に示すトレッド接地面形状を有する も、 トレツド幅 Wの 8 0 %の位置でのトレツド外表面接線 Lからの半径方向距離 を装着の内外側でほぼ等しくしたものである。
ここで、 操縦安定性は、 テストコースの走行によって官能評価し、 耐ハイド口 プレーニング性能は、 水深 6 mmの直進路面上を走行時の官能により評価した。 なお、 これらについての表中の指数値は大きいほどすぐれた結果を示すものとし た。
また、 コニシティフォースは、 各十本ずつのタイヤの実測値を平均することに より求めた。
表 8
Figure imgf000047_0001
表 8によれば、 発明例 5—1は、 高い操縦安定性および耐ハイド口プレ一ニン グ性能をもたらす一方で、 コニシティフォースを、 比較例 5— 1の、 対称パタ一 ンタイヤと同程度にまで、 抑制できることが解る。
[産業上の利用可能性]
この発明によれば、 従来は背反の関係にあった、 耐ハイドロプレーニング性と タイヤ騒音の抑制能とを、 高次元で両立した、 タイヤを提供することができる。

Claims

請 求 の 範 囲
1 . 車両装着時に該車両の内外に対する向きが指定される、 非対称トレツドパ夕 ーンを有するタイヤであって、 そのトレッド表面に、 タイヤ赤道面に沿って延 びる周方向溝を、 車両装着時にタイヤ赤道面より車両内側の領域に少なくとも 2本および同車両外側の領域に少なくとも 1本は有し、 該車両内側の領域に配 置した周方向溝のうち、 タイヤ赤道面に最も近接した周方向溝は、 該タイヤの 平均溝幅より 2 0 %以上広い幅を有し、 車両内側の領域のトレツド端側に配置 した周方向溝は、 平均溝幅の 9 0〜1 1 0 %の幅を有し、 車両外側の領域で夕 ィャ赤道面に最も近接した周方向溝は平均溝幅より 1 0 %以上狭い幅を有する ことを特徴とする非対称トレツドパターンを有するタイヤ。
2 . 請求項 1において、 車両外側の領域に 1本の周方向溝を有し、 かつ車両内側 の領域に配置した、 タイヤ赤道面に最も近接した周方向溝は、 平均溝幅の 1 2 0〜1 4 5 %の幅を有することを特徴とする非対称トレツドパターンを有する タイヤ。
3 . 請求項 1において、 車両外側の領域に 2本の周方向溝を有し、 かつ車両内側 の領域に配置した、 タイヤ赤道面に最も近接した周方向溝は、 平均溝幅の 1 3 0〜1 6 0 %の幅を有することを特徴とする非対称トレッドパタ一ンを有する タイヤ。 ·
4. 請求項 1ないし 3のいずれかにおいて、 周方向溝に挟まれた、 タイヤの赤道 上または近傍に、 タイヤの赤道に沿って延びるリブ状陸部を有し、 該リブ状陸 部は、 そのタイヤ幅方向中心が、 タイヤ赤道面より、 タイヤにネガティブキヤ ンバ一を付与した際にトレッド接地域の周方向長さが伸びる側に位置し、 かつ タイヤ赤道面を横切る向きに延びる細溝を複数本有し、 該細溝は、 トレッドの タイヤ半径方向に対して傾いた向きに延びる部分を有し、 さらにリブ状睦部を 挟む 2本の周方向溝のうち、 上記トレッド接地域の周方向長さが伸びる側に位 置する周方向溝が幅広であることを特徴とする非対称トレツドパターンを有す るタイヤ。
. 請求項 4において、 細溝は、 タイヤ幅方向に対して 5〜5 5 ° の傾きを有す ることを特徴とする非対称トレツドパターンを有するタイヤ。
. 請求項 4または 5において、 細溝は、 トレッド表面において開口しているこ とを特徴とする非対称トレッドパターンを有するタイヤ。
. 請求項 4、 5または 6において、 細溝の開口幅が 2讓以下であることを特 徴とする非対称トレツドパターンを有するタイヤ。
. 請求項 4または 5において、 細溝は、 トレッド表面において閉口しているこ とを特徴とする非対称卜レツドパターンを有するタイヤ。
. 請求項 1ないし 3のいずれかにおいて、 周方向溝に挟まれた、 タイヤの赤道 上または近傍に、 タイヤの赤道に沿って延びるリブ状陸部を有し、 該リブ状陸 部は、 そのタイヤ幅方向中心が、 タイヤ赤道面より、 タイヤにネガティブキヤ ンバーを付与した際にトレッド接地域の周方向長さが伸びる側に位置し、 かつ タイヤ赤道面を横切る向きを長軸とする楕円状に窪んだディンプルを複数有し、 さらにリブ状陸部を挟む 2本の周方向溝のうち、 上記卜レツド接地域の周方向 長さが伸びる側に位置する周方向溝が幅広であることを特徴とする非対称トレ ッドパ夕一ンを有するタイヤ。
0 . 請求項 9において、 ディンプルは、 その長軸がタイヤ幅方向に対して 5〜 4 5 ° の傾きを有することを特徴とする非対称トレッドパターンを有するタイ ャ。
1 . 請求項 1ないし 3のいずれかにおいて、 周方向溝とトレッド端との間に区 画される陸部のうち、 車両装着時に車両内側となる陸部に設けられることのあ る横溝の、 トレツド幅方向の単位幅あたりの、 トレツドの全周にわたるト一夕 ル容積を、 車両装着時に車両外側となる陸部の同様のト一タル容積よりも小さ <してなる非対称トレツドパターンを有するタイヤ。
2. 請求項 1 1において、 車両装着時に車両内側となる陸部に、 周方向溝から 独立した、 最大深さが周方向溝の深さの 1 Z 3以上である複数の孔を設け、 か つ当該陸部のトレツド幅方向中心を通る線のトレツド端側の領域の凹部容積を、 同幅方向中心を通る線のトレツド端と逆側の領域の凹部容積より大きくしてな る非対称トレッドパターンを有するタイヤ。
3. 請求項 1 1または 1 2において、 車両装着時に車両内側となる陸部を、 細 幅周溝によりトレッド幅方向外側部分と同幅方向内側部分とに分割して、 その 幅方向外側部分の幅を、 同幅方向内側部分の幅よりも狭くするとともに、 トレ ッド幅の 1 Z 1 0以下としてなる非対称トレツドパターンを有するタイヤ。4. 請求項 1 3において、 タイヤ幅方向の断面内において、 トレッド幅方向外 側部分の側面の、 輪郭を構成する曲線の曲率中心のうちの少なくとも一つを、 タイヤの外側に位置させる一方、 同幅方向内側部分の輪郭を構成する曲線の曲 率中心を、 タイヤの内側に位置させてなる非対称トレツドパターンを有するタ ィャ。
5. 請求項 1 1ないし 1 4のいずれかにおいて、 その細幅周溝の幅を、 溝底か らトレツド表面側にむかって漸次広くしてなる非対称トレツドパターンを有す るタイヤ。
6 . 請求項 1 1ないし 1 5のいずれかにおいて、 タイヤの最大負荷能力の 7 0 %以上の負荷の作用下で、 車両に装着されて内側となる陸部の、 複数の孔を 設けた領域の少なくとも一部が接地することを特徵とする非対称トレツドパタ —ンを有するタイヤ。
7 . 請求項 1 1ないし 1 6のいずれかにおいて、 車両に装着されて内側となる 睦部において、 タイヤ赤道面から遠ざかるにつれて孔の開口寸法を大きくして なる非対称トレッドパターンを有するタイヤ。
8. 請求項 1 1ないし 1 7のいずれかにおいて、 車両に装着されて内側となる 陸部において、 タイヤ赤道面から遠ざかるにつれて複数の孔相互間の間隔を小 としてなる非対称トレッドパターンを有するタイヤ。
9 . 請求項 1 1ないし 1 8のいずれかにおいて、 車両に装着されて内側となる 陸部において、 タイヤ赤道面から遠ざかるにつれて孔の深さを深くしてなる非 対称トレッドパターンを有するタイヤ。
0 . リムの幅方向の一方の端部分に入力される半径方向の力の、 車軸への伝達 率が、 リムの幅方向の他方の端部分に入力される半径方向の力の同様の伝達率 よりも大きいホイールに装着される、 請求項 1ないし 3のいずれかに記載の夕 ィャであって、
周方向溝とトレッド端との間に区画される陸部のうち、 ホイールに装着され て伝達率が大きい側に位置する陸部に設けられることのある横溝のトレツド幅 方向の単位幅あたりの、 トレッドの全周にわたる! タル容積を、 他方のトレ ッド端側の陸部に設けた横溝の同様のト一タル容積よりも小さくするとともに、 伝達率が大きい側に位置する陸部を、 細幅周方向溝によりトレッド幅方向外側 部分と同幅方向内側部分とに分割し、 この幅方向内側部分に、 周方向溝および 横溝から独立した複数の孔を設けてなる非対称トレッドパターンを有するタイ ャ。
1 . 請求項 2 0において、 細幅周溝の幅を溝底からトレツド表面側にむかって 漸次広くしてなる非対称トレツドパターンを有するタイヤ。
2 . 請求項 2 0または 2 1において、 トレッド幅方向内側部分に設けた複数の 孔の開口寸法を、 タイヤ赤道面から遠ざかるにつれて大きくしてなる非対称ト レツドパターンを有するタイヤ。
3 . 請求項 2 0ないし 2 2のいずれかにおいて、 トレツド幅方向内側部分に設 けた複数の孔の相互間隔を、 タイヤ赤道面から遠ざかるにつれて小としてなる 非対称トレツドパターンを有するタイヤ。
4. 請求項 2 0ないし 2 3のいずれかにおいて、 トレツド幅方向内側部分に設 けた複数の孔の深さを、 タイヤ赤道面から遠ざかるにつれて深くしてなる非対 称トレツドパターンを有するタイヤ。
5 . 請求項 2 0ないし 2 4のいずれかにおいて、 タイヤの最大負荷能力の 7 0 %以上の負荷の作用下で、 トレッド幅方向内側部分の、 複数の孔を設けた領 域の少なくとも一部が接地することを特徴とする非対称トレツドパターンを有 するタイヤ。
6 . 請求項 2 0ないし 2 5のいずれかにおいて、 タイヤ幅方向の断面内におい て、 トレッド幅方向外側部分の側面の、 輪郭を構成する曲線の曲率中心のうち の少なくとも一つを、 タイヤの外側に位置させる一方、 同幅方向内側部分の輪 郭を構成する曲線の曲率中心を、 タイヤの内側に位置させてなる非対称トレツ ドパターンを有するタイヤ。
7 . 請求項 1ないし 3のいずれかに記載のタイヤを、 適用リムに組付けて規定 の空気圧を充填し、 かつ最大負荷能力に相当する質量を負荷した状態において、 装着内側もしくは外側のいずれか一方の有効接地面積が他方のそれより大きく なり、 また、 規定の空気圧の充填姿勢で、 タイヤ赤道面と直交する卜レッド外 表面接線からそれぞれのトレツド接地縁までの半径方向距離が、 有効接地面積 の小さい装着側で、 他方の装着側より大きくしてなる非対称トレツドパターン を有するタイヤ。
8 . 請求項 2 7において、 有効接地面積の大小の比 (S大 Z S小) と、 半径方 向距離の大小の比 (H大 ZH小) との関係を、
大/ 小) = A X (H大 ZH小)
但し、 Aは 1 . 0〜1 . 4
としてなる非対称トレツドパターンを有するタイヤ。
9 . 常時または随時にネガティブキャンバーが付与されるサスペンションを介 して、 車両に請求項 1ないし 2 8のいずれかに記載のタイヤを装着するに当た り、
車両装着時にタイヤ赤道面より車両内側の領域において、 タイヤ赤道面に最 も近接して設けた周方向溝が、 タイヤにネガティブキャンバーを付与した際に トレツド接地域の周方向長さが最大となる位置に重なる、 使用形態となること を特徴とする非対称トレツドパターンを有するタイヤの装着方法。
0 . 幅方向断面形状が赤道面に対して左右対称であるタイヤを装着したホイ一 ルを軸部材に取付け、 タイヤトレツドの各ショルダー部を異なる複数の周波数 にて半径方向に加振し、 加振力に基づいて軸部材に生じる軸入力の、 加振力に 対する比率として表わされる伝達率をそれぞれ求め、 各周波数ごとの伝達率の 平均値を各ショルダー部ごとに求めて、 それぞれの伝達率の平均値のいずれが 大きいかを判定する、 ホイールの振動伝達特性の測定方法。
1 . 請求項 3 0において、 加振される周波数の帯域が 3 0 0〜1 0 0 0 H zで あるホイールの振動伝達特性の測定方法。
PCT/JP2003/011163 2002-08-30 2003-09-01 非対称トレッドパターンを有するタイヤおよびその装着方法 WO2004024471A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/526,084 US20050247388A1 (en) 2002-08-30 2003-09-01 Tire with asymmetric tread pattern and method of mounting the tire
EP03795277.7A EP1541380B1 (en) 2002-08-30 2003-09-01 Tire with asymmetric tread pattern and method of mounting the tire

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002253645A JP4266600B2 (ja) 2002-08-30 2002-08-30 非対称トレッドパターンを有するタイヤ
JP2002254020A JP4428914B2 (ja) 2002-08-30 2002-08-30 非対称トレッドパターンを有するタイヤおよびその装着方法
JP2002254173A JP4275372B2 (ja) 2002-08-30 2002-08-30 空気入りタイヤ
JP2002-254053 2002-08-30
JP2002254053A JP4275371B2 (ja) 2002-08-30 2002-08-30 空気入りタイヤ
JP2002-254020 2002-08-30
JP2002-254173 2002-08-30
JP2002-253645 2002-08-30

Publications (1)

Publication Number Publication Date
WO2004024471A1 true WO2004024471A1 (ja) 2004-03-25

Family

ID=31999408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011163 WO2004024471A1 (ja) 2002-08-30 2003-09-01 非対称トレッドパターンを有するタイヤおよびその装着方法

Country Status (4)

Country Link
US (1) US20050247388A1 (ja)
EP (1) EP1541380B1 (ja)
CN (1) CN1684844A (ja)
WO (1) WO2004024471A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267135B2 (en) * 2004-09-24 2012-09-18 Bridgestone Corporation Pneumatic tire with tread having circumferential grooves and lug grooves
JP2017056782A (ja) * 2015-09-15 2017-03-23 住友ゴム工業株式会社 空気入りタイヤ
US10933697B2 (en) 2015-07-27 2021-03-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
EP4067115A1 (en) * 2021-03-30 2022-10-05 Sumitomo Rubber Industries, Ltd. Tire

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005068225A1 (ja) * 2004-01-16 2007-12-27 株式会社ブリヂストン 空気入りタイヤ
JP4229965B2 (ja) * 2006-11-14 2009-02-25 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP4195054B2 (ja) * 2006-11-24 2008-12-10 横浜ゴム株式会社 ブレーキ制御方法およびブレーキ制御装置
JP5190463B2 (ja) * 2007-11-02 2013-04-24 株式会社ブリヂストン 空気入りラジアルタイヤ
JP5012675B2 (ja) * 2008-06-04 2012-08-29 横浜ゴム株式会社 タイヤの姿勢制御装置および方法
DE102008044921A1 (de) 2008-08-29 2010-03-04 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
FR2962372B1 (fr) 2010-07-06 2014-05-02 Michelin Soc Tech Dispositif de protection de bande de roulement
CN102398481A (zh) * 2010-09-14 2012-04-04 青岛黄海橡胶股份有限公司 轿车子午线轮胎胎面花纹
DE102011056234A1 (de) * 2011-12-09 2013-06-13 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
DE102012110567A1 (de) * 2012-11-05 2014-05-08 Continental Reifen Deutschland Gmbh Laufstreifenprofil eines Fahrzeugreifens
JP5478745B1 (ja) 2013-02-20 2014-04-23 株式会社ブリヂストン 空気入りタイヤ及びその製造方法
JP5478746B1 (ja) * 2013-02-20 2014-04-23 株式会社ブリヂストン 空気入りタイヤ及びその製造方法
JP6496208B2 (ja) * 2015-08-04 2019-04-03 住友ゴム工業株式会社 空気入りタイヤ
JP6772615B2 (ja) * 2016-07-19 2020-10-21 横浜ゴム株式会社 空気入りタイヤ
FR3058928A1 (fr) * 2016-11-22 2018-05-25 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneu pour engin de genie civil comportant des creux de ventilation ameliores
JP6891515B2 (ja) * 2017-01-31 2021-06-18 住友ゴム工業株式会社 タイヤ
DE102017203011A1 (de) * 2017-02-24 2018-08-30 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
CN106864177B (zh) * 2017-02-24 2019-03-26 建大橡胶(中国)有限公司 一种休旅车非对称花纹轮胎
JP7056392B2 (ja) * 2018-06-13 2022-04-19 住友ゴム工業株式会社 タイヤ
CN109203867B (zh) * 2018-11-09 2020-10-27 青岛双星轮胎工业有限公司 胎面花纹及轮胎
JP7205241B2 (ja) * 2019-01-15 2023-01-17 住友ゴム工業株式会社 タイヤ
EP4084970A1 (en) * 2019-12-31 2022-11-09 Compagnie Generale Des Etablissements Michelin Tire having corkscrew sculpture with inverted central rib features

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648120A (ja) * 1992-01-08 1994-02-22 Bridgestone Corp 空気入りタイヤ
JPH0848113A (ja) * 1994-06-10 1996-02-20 Continental Ag 対称下部構造と非対称タイヤトレッドを有する車両用空気タイヤ
JPH0885308A (ja) * 1994-09-20 1996-04-02 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH10217719A (ja) 1997-02-06 1998-08-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019776A (en) * 1961-12-18 1966-02-09 Ciba Ltd Basic ethers and process for preparing same
JPS53133802A (en) * 1977-04-26 1978-11-22 Bridgestone Corp Wear resistant radial pneumatic type for heavy load
JPH01314609A (ja) * 1988-06-15 1989-12-19 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0657485B2 (ja) * 1989-03-27 1994-08-03 株式会社ブリヂストン ラジアルタイヤ対
DE69022158T2 (de) * 1989-10-12 1996-04-04 Bridgestone Corp Radialer Luftreifen.
JPH03220004A (ja) * 1990-01-25 1991-09-27 Bridgestone Corp 空気入りラジアルタイヤ
US5360043A (en) * 1991-07-26 1994-11-01 The Goodyear Tire & Rubber Company Asymmetric tread for a tire
JPH05330313A (ja) * 1992-05-29 1993-12-14 Yokohama Rubber Co Ltd:The 空気入りタイヤ
US5603785A (en) * 1994-05-06 1997-02-18 The Goodyear Tire & Rubber Company Tire including two aquachannels on one side
US5735979A (en) * 1995-07-24 1998-04-07 Dunlop Tire Corporation Pneumatic tire with asymmetric tread profile
ATE265945T1 (de) * 1999-02-20 2004-05-15 Continental Ag Fahrzeugluftreifen
WO2001002194A1 (en) * 1999-06-30 2001-01-11 Pirelli Pneumatici S.P.A. High-performance tyre for a motor vehicle
JP3443400B2 (ja) * 2000-12-06 2003-09-02 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648120A (ja) * 1992-01-08 1994-02-22 Bridgestone Corp 空気入りタイヤ
JPH0848113A (ja) * 1994-06-10 1996-02-20 Continental Ag 対称下部構造と非対称タイヤトレッドを有する車両用空気タイヤ
JPH0885308A (ja) * 1994-09-20 1996-04-02 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH10217719A (ja) 1997-02-06 1998-08-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541380A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8267135B2 (en) * 2004-09-24 2012-09-18 Bridgestone Corporation Pneumatic tire with tread having circumferential grooves and lug grooves
US10933697B2 (en) 2015-07-27 2021-03-02 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2017056782A (ja) * 2015-09-15 2017-03-23 住友ゴム工業株式会社 空気入りタイヤ
EP4067115A1 (en) * 2021-03-30 2022-10-05 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
EP1541380A1 (en) 2005-06-15
US20050247388A1 (en) 2005-11-10
EP1541380B1 (en) 2013-10-30
EP1541380A4 (en) 2011-06-29
CN1684844A (zh) 2005-10-19

Similar Documents

Publication Publication Date Title
WO2004024471A1 (ja) 非対称トレッドパターンを有するタイヤおよびその装着方法
US8701725B2 (en) Motor vehicle tire having tread pattern
US7163039B2 (en) High-performance tire for a motor vehicle
JP4410453B2 (ja) 空気入りタイヤ
JPS585803B2 (ja) 低騒音ラグタイヤ
KR20170108133A (ko) 공기입 타이어
JPH05319029A (ja) 重荷重用空気入りラジアルタイヤ
JP5913247B2 (ja) 空気入りタイヤ
JP5030753B2 (ja) 空気入りタイヤ
EP1552966B1 (en) Pneumatic tire and tire wheel assembly
JP4202824B2 (ja) 空気入りタイヤ
JP5211888B2 (ja) 空気入りタイヤ
JP2015500166A (ja) 可変面取り部付きトレッド
CN101298227B (zh) 具有不对称胎面花纹的轮胎和安装该轮胎的方法
JP4275371B2 (ja) 空気入りタイヤ
JP4763260B2 (ja) 空気入りタイヤ
JP4643041B2 (ja) 空気入りタイヤ
JP3591991B2 (ja) 小型トラック用偏平空気入りラジアルタイヤ
JP2004090729A (ja) 空気入りタイヤ
JP2004090798A (ja) 空気入りタイヤ、タイヤ・ホイール組立体およびトレッド陸部列の設計方法
JP2004090769A (ja) 空気入りタイヤ
JP6291965B2 (ja) タイヤユニット及びそれを備えた車両
JP7360018B2 (ja) 空気入りタイヤ
JP7352072B2 (ja) 空気入りタイヤ
WO2020213335A1 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10526084

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003795277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038230801

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003795277

Country of ref document: EP