WO2000076699A1 - Ultrafine composite metal powder and method for producing the same - Google Patents

Ultrafine composite metal powder and method for producing the same Download PDF

Info

Publication number
WO2000076699A1
WO2000076699A1 PCT/JP2000/003918 JP0003918W WO0076699A1 WO 2000076699 A1 WO2000076699 A1 WO 2000076699A1 JP 0003918 W JP0003918 W JP 0003918W WO 0076699 A1 WO0076699 A1 WO 0076699A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ultrafine
organic compound
surfactant
particles
Prior art date
Application number
PCT/JP2000/003918
Other languages
English (en)
French (fr)
Inventor
Teruo Komatsu
Hiroshi Nagasawa
Original Assignee
Kimoto, Masaaki
Kitabayashi, Susumu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16526451&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000076699(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kimoto, Masaaki, Kitabayashi, Susumu filed Critical Kimoto, Masaaki
Priority to US10/018,141 priority Critical patent/US6730400B1/en
Priority to JP2001503014A priority patent/JP4732645B2/ja
Priority to AU52486/00A priority patent/AU5248600A/en
Publication of WO2000076699A1 publication Critical patent/WO2000076699A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a method for producing ultrafine metal composite particles, and more particularly, to a method for producing ultrafine metal composite particles that can be mass-produced at a low cost and that can control particle size with extremely high dispersibility in an organic solvent. .
  • Ultrafine metal particles having a particle diameter of 100 nm or less have significantly different characteristics from ordinary particles. For example, in the case of gold (Au), when the particle diameter becomes 10 nm or less, characteristics such as a drastic decrease in the melting point are observed. In addition, these ultrafine metal particles have a high catalytic activity, and are materials that have new possibilities in various fields in the future.
  • the ultrafine metal particles are considered to be applied to a low-temperature firing paste or the like as a wiring forming material for electronic devices or the like by a dry plating method with little environmental load.
  • Those with a uniform particle size can be secondarily arranged to form nanostructures, and nonlinear optical effects and nanoelectronic circuits are expected.
  • the conventional method for producing ultrafine metal particles has the following problems.
  • a method of obtaining ultrafine metal particles from a gas phase by evaporating a metal as a raw material in a vacuum in the presence of a small amount of gas is known.
  • the amount of ultrafine metal particles produced at one time is generally small because they are produced in a vacuum apparatus.
  • equipment such as electron beam, plasma, laser, and induction heating is required to evaporate the metal, and there are problems with production costs. Therefore, it is hard to say that it is suitable for mass production.
  • the ultrafine metal particles obtained by these gas phase methods tended to be in the form of dumplings because of non-uniform particle size and relatively easy aggregation.
  • a method of preparing ultrafine metal particles from a liquid phase has also been proposed. For example, a method is known in which an ammoniacal silver nitrate complex solution is reduced in a hydrophobic reaction tank to produce ultrafine silver particles.
  • the present inventor has proposed in Japanese Patent Application Laid-Open No. 10-183307 a metal composite ultrafine particle in which a shell of a metal organic compound is formed around a metal nucleus, and has come up with a specific production method.
  • a metal organic compound is heated and decomposed in a temperature range below the complete decomposition temperature in an inert gas atmosphere in which air is shut off, the organic components escape while decomposing, and the reduced metal is aggregated.
  • Form a metal nucleus at the center The periphery of the metal nucleus is covered with a shell of an undecomposed metal organic compound, and metal composite ultrafine particles having a shape in which the organic compound is located on the outermost periphery are formed.
  • metal composite ultrafine particles have the property that the particle size is extremely uniform: Also, since the organic compound is located on the outermost side and the organic groups protrude radially, a large number of metal composite ultrafine particles aggregate. In this case, the organic groups face each other and assemble. Therefore, even in a solid state, the powder is kept as much as possible and it is difficult to form a dumpling. When this powder is put into an organic solvent, the organic groups dissolve in the organic solvent, and as a result, the metal composite ultrafine particles are easily dispersed in the organic solvent alone.
  • the metal composite ultrafine particles devised by the present inventors have a uniform particle size and a good dispersibility, but have a disadvantage that the mass productivity, the price and the variability of the particle size are insufficient. That is, in the above-described production method, the metal organic compound must be heated and decomposed in an inert gas atmosphere in which air is shut off. Therefore, an operation of replacing air with an inert gas in a closed container is required. A sealing device is required to exhaust the thermally decomposed organic gas. Therefore, it is not suitable for mass production, and as a result, the price of the metal composite ultrafine particles increases.
  • the particle diameter of the metal composite ultrafine particles cannot be variably adjusted.
  • the particle diameters of the individual metal composite ultrafine particles are almost the same, but the particle diameter can be increased or Difficulty in reducing the size limits their applications:
  • a new method of manufacturing ultrafine metal composites must be developed.
  • the dispersibility There was also a demand for technology development to further strengthen the technology. (Disclosure of the Invention)
  • a surfactant shell and an organic compound shell derived from a metal organic compound surround a metal nucleus in which metal atoms reduced and precipitated from the metal organic compound are gathered, and the particle diameter is 1 to 100 nm. It is a metal composite ultrafine particle characterized by the following.
  • the invention according to claim 2 is characterized in that a surfactant shell surrounds a metal nucleus in which metal atoms reduced and precipitated from a metal-inorganic compound are aggregated, and the particle diameter is 1 to 100 nm. Fine particles.
  • the invention according to claim 3 is the metal composite ultrafine particle according to claim 1 or 2, wherein the metal core is composed of an alloy of a plurality of types of metals:
  • the invention of claim 5 includes a first step in which the metal organic compound is colloided in a mixed solvent of a hydrophobic non-aqueous solvent and a hydrophilic non-aqueous solvent to form an ultrafine particle precursor, and a reduction in the colloid solution
  • the method for producing ultrafine metal composite particles is as follows:
  • the invention of claim 6 is a method for forming an ultrafine particle precursor by colloidalizing a metal organic compound or a metal inorganic compound in a mixed solvent of a hydrophobic non-aqueous solvent and a hydrophilic non-aqueous solvent using a surfactant.
  • One step by adding a reducing agent to the colloid solution, reducing the precursor of the ultrafine particles to form a metal composite having a particle diameter of 1 to 100 nm having at least a surfactant shell around the metal core.
  • a method for producing ultrafine metal composite particles, comprising a second step of forming ultrafine particles.
  • the invention of claim 7 includes a first step in which a metal organic compound or a metal inorganic compound is colloided in a non-aqueous solvent using a surfactant to form an ultrafine particle precursor, and reduction in the colloid solution
  • the ultrafine particle precursor is reduced by adding an agent
  • the metal organic compound is composed of a plurality of metal organic compounds having different metal species
  • the generated metal nucleus is composed of an alloy of a plurality of types of metals.
  • the metal-inorganic compound is composed of a plurality of metal-inorganic compounds having different metal species
  • the generated metal nucleus is composed of an alloy of a plurality of types of metals.
  • novel metal composite ultrafine particles are proposed in order to increase the dispersion stability of the metal composite ultrafine particles.
  • These metal composite ultrafine particles have a surfactant shell around the metal nucleus, and enable the metal ultrafine particles to be strongly dispersed in a non-aqueous solvent such as an organic solvent by the surfactant shell.
  • a non-aqueous solvent such as an organic solvent by the surfactant shell.
  • the metal nucleus at the center of the metal composite ultrafine particles is surrounded by a surfactant shell and an organic compound shell when the metal nucleus is composed of a metal component that is reduced and precipitated from a metal organic compound or a metal inorganic compound.
  • the metal nucleus consisting of the metal component is located inside .:
  • the metal-inorganic compound the metal nucleus is located inside the surfactant shell.
  • the organic compound, the surfactant, and the metal component are present in an integrated manner in a state where some or all of them are bonded, for example, in a micelle structure.
  • the metal nucleus substantially consisting of a metal component may include a metal organic compound, an organic component derived therefrom, a metal inorganic compound, an inorganic component, and the like, and these are also included in the present invention.
  • the surfactant shell surrounding the metal nucleus is substantially composed of a surfactant, but may further contain a metal component, an organic component, an inorganic component, and the like.
  • the compound shell is also substantially composed of organic compounds, but may also contain other surfactant components:
  • the dispersion stability of the metal composite ultrafine particles according to the present invention mainly depends on the surfactant shell. Therefore, the surfactant shell is preferably located at the outermost periphery of the metal composite ultrafine particles.
  • the configuration of the metal composite ultrafine particles has the following configuration.
  • a configuration consisting of a metal core and a surfactant shell There is a configuration consisting of a metal core and a surfactant shell, a configuration consisting of a metal core, a metal organic compound layer, and a surfactant shell, and a configuration consisting of a metal core, a metal organic compound layer, an organic compound shell, and a surfactant shell.
  • the organic compound and the surfactant are mixed to form a shell, that is, the organic compound shell and the surfactant shell form a mixed common shell.
  • a surfactant shell is wound around the outermost periphery.
  • the dispersion stability of the metal composite ultrafine particles of the present invention depends on the surfactant shell. However, further dispersion stability can be obtained when both the organic compound shell and the surfactant shell surround the metal core. Therefore, when metal composite ultrafine particles are produced from a metal organic compound, a cooperative dispersion effect is obtained by the surfactant shell and the organic compound shell.
  • the production of ultrafine composite metal particles from a metal-inorganic compound depends on the dispersion effect of the surfactant shell. In any case, the dispersion stability of the metal composite ultrafine particles of the present invention is guaranteed by the strong dispersing force of the surfactant shell.
  • the next feature of the present invention is that a colloid solution reduction method is applied to generate the metal composite ultrafine particles.
  • the conventional method of reducing the heat of a metal organic compound in a closed device has the greatest difficulty in mass productivity and grain size control.
  • the present invention employs a colloid solution reduction method as a method for solving both of these problems at once:
  • the feature of the production method of the present invention is that colloid particles in which a metal organic compound or a metal inorganic compound is aggregated are formed, and the colloid particles are used as an ultrafine particle precursor.
  • the particle size of the colloid particles By controlling the particle size of the colloid particles, the particle size of the metal composite ultrafine particles formed by reducing the colloid particles can be variably designed.
  • the solution may be open to the atmosphere because it forms colloids in the solution. Therefore, it is possible to provide inexpensive ultrafine particles which are easy to operate, have mass productivity, and are inexpensive.
  • the method of the present invention for colloidalizing a metal compound there is a first method in which a metal organic compound is combined with a hydrophobic non-aqueous solvent and a hydrophilic non-aqueous solvent.
  • metal organic compounds or gold There is a third method of combining a surfactant with a non-aqueous solvent to colloid the genus inorganic compound.
  • the concentration of the metal organic compound or metal inorganic compound is adjusted, the amount and ratio of the hydrophobic solvent and the hydrophilic solvent are adjusted, and the amount of the surfactant is adjusted.
  • the particle size of the colloid When the particle size of the colloid is large, the number of molecules of the metal organic compound or the metal inorganic compound contained in one colloid increases. Therefore, if the particle size of the colloid is large, the amount of metal is large, so that a metal nucleus having a large particle size is formed. If the particle size of the colloid is small, a metal nucleus having a small particle size can be formed. Even if the colloid diameter is the same, the metal core diameter may differ due to the difference in the condensation density. As described above, the particle size controllability of the metal ultrafine particles was first achieved by the colloid solution reduction method according to the present invention.
  • the metal composite ultrafine particles produced by the present invention are used for various purposes, such as forming an electrode of a metal ultrathin film by firing, or supporting the metal ultrafine particles in an island shape on a substrate. By this baking, the surfactant shell and the organic compound shell around the metal core decompose and escape, so that the metal core ultimately remains as ultrafine metal particles.
  • the electrode film and the like are formed by the ultrafine metal particles. Therefore, the technology to control the grain size of metal nuclei is extremely important: The present invention meets this requirement for the first time:
  • the first method of the present invention a method in which a metal organic compound is dissolved and dispersed in a hydrophobic non-aqueous solvent and then a hydrophilic non-aqueous solvent is added, and a method in which the metal organic compound is dissolved and dispersed in a hydrophilic non-aqueous solvent After that, a hydrophobic non-aqueous solvent may be added.
  • colloids of metal organic compounds can be made. Since no surfactant is used, reduction of this colloid results in the formation of ultrafine metal composite particles in which an organic compound shell surrounds a metal core.
  • the present inventors have succeeded for the first time to obtain metal composite ultrafine particles conventionally obtained by the gas phase reaction method by the colloid solution reduction method of the present invention. This is different from the conventional method in that the particle size of metal nuclei can be controlled by the colloid solution reduction method.
  • the metal organic compound or the metal inorganic compound is colloided with a hydrophobic non-aqueous solvent and a hydrophilic non-aqueous solvent, but also a surfactant is added to promote colloidation, Enhances stability and dispersibility of colloid particles.
  • the metal organic compound or the metal inorganic compound may be added to either solvent first.
  • both the organic compound shell and the surfactant shell are formed around the metal core by reduction. Is formed.
  • the inorganic component dissolves and disperses in the solvent by reduction, so that only a surfactant shell is formed around the metal core. In both cases, the ultrafine metal composite particles have a strong dispersibility in the solvent because they are covered by the surfactant shell.
  • the third method is a method of adding a surfactant to a metal organic compound or a metal inorganic compound and dissolving / dispersing the same in a non-aqueous solvent to form a colloid. Therefore, colloidation is performed only with a surfactant.
  • a metal organic compound both an organic compound shell and a surfactant shell are formed around the metal core by reduction.
  • the inorganic component dissolves and disperses in the solvent due to reduction, and only a surfactant shell is formed around the metal core. Disperses strongly in the solvent because it is covered by the shell.
  • the surfactant is not contained in the colloid particles produced by the first method, but the surfactant is present on the outermost side of the colloid particles produced by the second method and the third method. Surrounding.
  • a reducing agent is added to these colloid solutions, the metal component of the metal organic compound or the metal inorganic compound is reduced and precipitated, and a metal nucleus is formed at the center of the colloid.
  • the amount of metal contained in the colloid particles determines the diameter of this metal core .
  • the decomposed organic components not only dissolve and disperse in the solvent, but also form an organic compound shell around the metal core.
  • the decomposed inorganic components dissolve in the solvent.
  • the metal organic compound in the present invention is not particularly limited as long as it is a metal organic compound having an organic group, and examples thereof include metal organic compounds such as organic acid salts.
  • metal organic compounds such as organic acid salts.
  • organic acid salts For example, naphthenate, octylate, stearate, benzoate, balatylate, fatty acid salts such as n-decanoate, metal alkoxides such as isop-c-poxide, ethoxide, etc., and acetylacetone complex salts of the above metals And the like.
  • the number of carbon atoms is usually about 1 to 30, more preferably 1 to 18.
  • the metal organic compounds can be used alone or in combination of two or more.
  • the metal of the metal organic compound is not particularly limited, c which can and suitably selected child depending on the final product application etc.
  • Organic compounds obtained by reducing these metal organic compounds include, for example, formic acid, acetic acid, propionic acid, stearic acid, oleic acid, palmitic acid, lauric acid, myristic acid, decanoic acid, laurenic acid, valeric acid, etc.
  • fatty acids and alcohols include stearyl alcohol, alcoholic alcohol, real alcohol / real alcohol, nonolemicyl alcohol, laurino alcohol and myristyl alcohol.
  • the organic compound shell of the present invention is constituted by the organic groups of these reduced organic compounds and metal organic compounds.
  • the metal inorganic compound in the present invention is not particularly limited, and examples thereof include metal inorganic salts.
  • metal inorganic salts For example, gold chloride, platinum chloride, rhodium chloride, ruthenium chloride, chloroaurate, chloroplatinate, silver nitrate, gold hydrogen nitrate, gold hydroxide, platinum hydroxide, rhodium hydroxide, ruthenium hydroxide, palladium hydroxide, Hexaammine platinum, copper sulfate, nickel sulfate, platinum sulfate, silver phosphate, etc.
  • the metal component is not particularly limited as long as it is derived from the metal organic compound or the metal inorganic compound, but preferably Cu, Ag, Au, Zn, Cd, G a, In, S i, Ge, Sn, Pd, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Au, V, Cr, Mn, Y, Z r, Nb, Mo, Ca, Sr, Ba, Sb, Bi.
  • alloy type metal composite ultrafine particles of these metals for example, by using a metal organic compound or a metal inorganic compound containing two or more metals, it is also possible to prepare alloy type metal composite ultrafine particles of these metals.
  • alloy type metal composite ultrafine particles can be prepared by mixing two or more metal organic compounds or metal inorganic compounds having different metal species.
  • the form of the metal-organic compound as a raw material is not particularly limited, and may be any of a powder, a liquid, and the like.
  • the ratio of the metal component in the metal composite ultrafine particles of the present invention can be appropriately set according to the use of the final product or the like, but is usually 50 to 90 weight. It should be about / 0 . For example, when used for metal coating, it usually weighs 50 to 80 weight. / 0 , especially 60-80% by weight Is preferred .:
  • this surfactant is used for forming a colloid;
  • This surfactant is sometimes referred to herein as a dispersant.
  • the surfactant include various surfactants such as a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • a nonionic surfactant is used.
  • Known surfactants are used as these surfactants, and examples thereof include the following.
  • Examples of the cationic surfactant include an alkylamine salt, a quaternary ammonium salt, and a polyoxyethylene alkylamine.
  • anionic surfactant a fatty acid salt, a higher alcohol sulfate salt, an alkylbenzene sulfonate, or the like is used.
  • amphoteric surfactant for example, alkyne rebetaine is used.
  • nonionic surfactant polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid monoglyceride and the like are used.
  • surfactants used by the present inventors include, for example, Texahole 963 (manufactured by San Nopco Co., Ltd.), which is a polycarboxylate amine salt; ), And sorbitan carboxylate, Leodor SPO10 (manufactured by Kao Corporation), and polyoxyethylene alkylamine, Amitol 105 (manufactured by Kao Corporation), but are not limited to these.
  • Examples of the hydrophobic non-aqueous solvent used in the present invention include petroleum hydrocarbons such as toluene, xylene, kerosene, and cyclohexane, and organic solvents such as terpenes such as turpentine and terpineol.
  • As the hydrophilic non-aqueous solvent alcohols such as methanol and ethanol, and ketones such as acetate are often used.
  • non-aqueous solvent used in the present invention may be the above-mentioned hydrophobic non-aqueous solvent or hydrophilic non-aqueous solvent.
  • water is excluded as a solvent: Some metal organic compounds and metal inorganic compounds are soluble in water. However, since water is partially ionized, it has the property of charging the colloid particles in the aqueous solution. In some cases, when the colloid particles are charged, they are repelled electrically, but in other cases they are agglomerated with each other to form a cluster. Therefore, the desired particle size It is difficult to obtain uniform colloidal particles. Also, if water enters into the finished metal composite ultrafine particles, the metal part will oxidize when it comes into contact with air and transform into a metal oxide. For these reasons, water is excluded as a solvent in the present invention.
  • a reducing agent used for this purpose is not limited at all, but includes, for example, organic compounds such as aldehyde, sugar, formic acid, oxalic acid, hydrazine, aliphatic amine, carbon monoxide, sulfur dioxide, and sulfurous acid. Lower oxides such as salts or salts of lower oxygen acids, hydrides or hydrogen complex compounds such as iodine, boron, aluminum, silicon, tin and the like are used. Particularly preferably, hydrazine, acetoaldehyde, fatty acid tin salt and the like are used. Hydrogen can also be used as a reducing agent:
  • the concentration of the reducing agent may be lower than the solubility in the solvent at room temperature, and there is no particular limitation. There is no particular limitation as long as it is lower than the solubility of the solvent. That is, it is desired that the reducing agent is dissolved in the solution.
  • the reduction temperature is not particularly limited as long as the reaction phase is kept in a solution state: in particular, when an alcohol such as methanol or ethanol, glucose, or ascorbic acid is used as the reducing agent, the reducing effect is obtained. It is preferable to warm slowly to a temperature at which The reduction time depends on the type and concentration of the reducing agent, but is not particularly limited, and is, for example, 10 minutes to 20 hours.
  • the first method of the present invention since no surfactant shell is formed, it is necessary to form an organic compound shell around the metal core. We believe that there are two pathways for the formation of organic compound shells. The first is the case where the reduction is stopped halfway and the unreduced metal organic compound is left around, and the organic group forms an organic compound shell. The second is a case where the organic component formed by reducing the metal organic compound is bound to the outer surface of the colloid particles without being released into the solvent, and this organic component forms an organic compound shell. In the first case, to form the organic compound shell, the reduction of the metal organic compound in the colloid particles is not performed completely, but the reduction is performed. You need to stop halfway and stop at partial returns:
  • an organic compound shell and a surfactant shell are formed for the metal organic compound, and a surfactant shell is formed for the metal inorganic compound. Since the surfactant shell is formed at least on the outer periphery of the metal nucleus, the organic compound shell does not have to be provided, and in this case, the reduction may be performed completely., Of course, when the organic compound shell is desired to be left. Must stop the reduction halfway. It is desirable that the metal-inorganic compound is completely reduced, the inorganic components are released into the solvent, and the metal core is directly surrounded by the surfactant shell.
  • the third method of the present invention is the same as the second method, wherein an organic compound shell and a surfactant shell are formed for a metal organic compound, and a surfactant shell is formed for a metal inorganic compound. Therefore, the rest of the situation is the same as in the second method, and the description is omitted.
  • the two layers may be separated from each other, but they are mixed at the same position, and the surfactant and the organic group protrude outward in a mixed state In some cases.
  • the method of limiting the amount of the reducing agent added to the partial amount of reduction, the method of lowering the solution temperature, the method of adding a reduction stopping agent, the metal composite ultrafine particles in the partial reduction step From the solution-any of these termination methods may be employed.
  • the temperature lowering method is preferred:
  • oxidizing agents such as benzoyl peroxide, sodium iodate, and potassium permanganate are used as the reduction terminator.However, if added excessively, the generated ultrafine particles will be oxidized. Careful addition is desired.
  • the average particle diameter of the metal composite ultrafine particles is suitably from 1 to 100 nm.
  • this metal composite ultrafine particle is usually about 1 to 10 nm, preferably 1 to 5 nm.
  • concentration and purification are performed as necessary: A known purification method can be applied, for example, centrifugation, membrane purification, solvent extraction, concentration drying method, etc.
  • the structure of the prepared metal composite ultrafine particles can be analyzed by methods such as surface plasmon absorption spectrum, electron microscope, atomic force microscope, X-ray diffraction, elemental analysis, and thermal analysis. From these results, it was verified that a surfactant shell exists around the metal core and its outer periphery. In addition, it is difficult to distinguish between the surfactant shell and the organic compound shell with an electron microscope or an atomic force microscope, but it is possible to verify the existence of both by the elemental analysis method;
  • Ultrafine metal composite particles were prepared using copper oleate as the metal organic compound.
  • copper oleate was prepared according to a known method.
  • the powder consisted of ultrafine particles with a particle size of about 1 O nm, and the particle size uniformity was extremely high. Further, when powder X-ray diffraction was performed, a core of metallic copper was confirmed. In addition, when this ultrafine particle powder was dispersed in toluene and benzene, no precipitation was observed in any case, and a transparent solubilized state was obtained. This suggests that the structure is such that the lipophilic group exists at the outermost periphery of the ultrafine particles, and the atomic force microscopy image (AFM) of the ultrafine particles shows that an organic compound shell exists around the metal core. It was confirmed that.
  • AFM atomic force microscopy image
  • Metal composite oak fine particles were prepared using silver abietic acid as a metal organic compound.
  • silver avietate was prepared according to a known method. Sodium abietic acid was heated and dissolved in pure water at 60 ° C. Separately, an equivalent amount of silver nitrate was dissolved in pure water and added to the above sodium abietic acid aqueous solution. The precipitated silver abietic acid was filtered off with a suction filter and dried using a drying machine.
  • Silver acetate is dissolved in methanol, which is a hydrophilic non-aqueous solvent, to prepare a silver acetate solution having a concentration of 0.1 M (mo1 / L).
  • methanol which is a hydrophilic non-aqueous solvent
  • 4 OmL of toluene as a hydrophobic non-aqueous solvent was added, and the mixture was stirred.
  • 0.2 g to 0.5 g of Texahole 966 (polyamine carboxylate) as a surfactant was added. Add g to make a colloid.
  • Acetaldehyde was added to this colloid solution as a reducing agent, and 65. C constant temperature condition After stirring for 5 minutes at, the color of the solution became a transparent chrome yellow, and a dispersion solution of the metal composite ultrafine particles was obtained. Even if this solution was stored in a refrigerator for 1 week, the transparent yellow solution did not change, and stable ultrafine composite metal particles were formed in a solution-dispersed state.
  • an absorption peak was found at a wavelength of 450 nm. This indicates that it has a metal core with a diameter of about 30 nm.
  • AFM atomic force microscope
  • HRTEM high-resolution transmission electron microscope
  • the donut part is a surfactant shell (partially containing an organic compound shell).
  • the donut has a silver metal nucleus of about 30 nm. The resulting metal composite ultrafine particles were obtained.
  • Nickel oleate was prepared according to a known method. Commercially available sodium oleate was heated and dissolved in pure water at 60C. Separately, an equivalent amount of nickel nitrate was dissolved in pure water and added to the sodium oleate aqueous solution. The precipitated oily nickel oleate was separated using a separating funnel.
  • the solution turned transparent lemon yellow, indicating that metal composite ultrafine particles were formed.
  • the surface plasmon absorption spectrum of this solution was taken, there was an absorption peak at a wavelength of 408 nm. From the two absorption peaks, the diameter of the metal core was found to be 2-3 nm.
  • the ultrafine metal composite particles were observed by TEM, it was found that they had a donut structure with a diameter of about 30 nm. Therefore, according to this example, metal composite fine particles having a silver metal core having a diameter of 2 to 3 nm were formed,
  • Sorbone T80 Sorbitan carboxylate
  • the solution turned transparent red wine color, indicating that metal composite ultrafine particles were formed. This From the surface plasmon absorption of the solution, it was confirmed that a copper metal nucleus having a diameter of 10 nm was formed.
  • Ultrafine metal particles were prepared using silver stearate as the metal organic compound.
  • silver stearate was prepared according to a known method. Commercially available sodium stearate was heated and dissolved in pure water at 6. Separately, an equivalent amount of silver nitrate was dissolved in pure water and added to the above-mentioned aqueous solution of sodium stearate. The precipitated silver stearate was separated by filtration using a suction filter, and then dried using a dryer.
  • ultrafine metal composite ultrafine particles When the soluble metal composite ultrafine particles were applied on polyimide, dried and then heated, they were easily sintered at about 220 t to form a silver coating film.
  • These ultrafine metal composite particles which consist of silver nuclei, silver stearate layer and surfactant shell, have high dispersibility and It was also proved that the metal film forming ability was extremely high.
  • the metal composite ultrafine particles have a surfactant core and an organic compound shell surrounding a metal core, and a strong dispersion stabilizer in a non-aqueous solvent called a surfactant is arranged on the outer periphery.
  • the metal nucleus is a metal composite ultrafine particle composed of an alloy of a plurality of types of metals, a wide variety of ultrafine metal particles can be provided, and the applicability such as formation of an electrode film is further improved.
  • the metal component is represented by Cu, Ag, Au, Zn, Cd, Ga, In, Si, Ge, Sn, Pd, Fe, C o, Ni, Ru, Rh, Pd, Os, Ir, Pt, V, Cr,: In, Y, Zr, Nb, Mo, Ca, Sr, B a, Sb, and Bi force can be selected, and a wide range of metal composite ultrafine particles can be provided.
  • metal composite ultrafine particles having at least a surfactant shell on the outer periphery of the metal nucleus can be formed, and moreover, by changing the amount of the organic compound, the amount of the inorganic compound, the amount of the solvent, the reducing conditions, and the like.
  • the particle size of the metal core can be freely controlled. Also, open ring Since it can be manufactured at the environment, mass production is possible and metal composite ultrafine particles can be supplied to the market at low cost.
  • metal composite ultrafine particles having at least a surfactant shell around the metal nucleus can be formed using a single non-aqueous solvent, and the amount of the organic compound or the amount of the inorganic compound / solvent
  • the particle size of the metal nucleus can be freely controlled by changing the amount and the reduction conditions.
  • vacuum equipment and other large equipment are not required, mass production is possible, and metal composite ultrafine particles can be supplied to the market at low cost.
  • metal composite ultrafine particles whose metal nuclei are composed of an alloy of a plurality of kinds of metals from a plurality of metal organic compounds
  • metal composite ultrafine particles whose metal nuclei are composed of an alloy of several kinds of metals from a plurality of metal inorganic compounds.
  • the metal composite ultrafine particles of the present invention can be used for electronic materials (print wiring, conductive materials, etc.), magnetic materials (magnetic recording media, electromagnetic wave absorbers, electromagnetic wave resonators, etc.), catalyst materials (high-speed reaction catalysts, etc.). ), Structural materials (far-infrared materials, etc.), medical materials, etc., and can provide a large amount of metal composite ultrafine particles useful in a wide range of industries at low cost.

Description

糸田 » 金属複合超微粒子及びその製造方法
(技術分野)
本発明は金属複合超微粒子の製造方法に関し、 更に詳細には、 有機溶媒中での分散 性が極めて高い粒径制御可能な金属複合超微粒子を安価に大量生産できる金属複合超 微粒子の製造方法に関する。
(背—景技術)
粒子径が 1 0 0 n m以下の金属超微粒子は、 その特性が一般の粒子とは大きく異な る。 例えば、 金 (A u ) の場合、 粒子径が 1 0 n m以下になると融点が大きく低下す る等の特性が見られる。 また、 これらの金属超微粒子は高い触媒作用を有するなど、 今後いろいろな分野で新しい可能性を有する材料である。
特に、 この金属超微粒子は、 環境負荷のほとんどない乾式メツキ法により、 電子装 置等の配線形成材料として、 低温焼成ペース ト等への応用が考えられている。 また、 均一な粒子径を持つものは 2次的に配列することが可能で、 ナノ構造を形成でき、 非 線形光学効果やナノ電子回路などが期待されている。
しかしながら、 従来一般に行われていた金属超微粒子の製造方法では、 次のような 問題点があった。 例えば、 原料となる金属を真空中、 若干のガスの存在下で蒸発させ ることによって、 気相中から金属の超微粒子を得る方法が知られている。
ところが、 この方法では真空装置内で生成するために、 一般に一度に得られる金属 超微粒子の生成量が少ない。 また、 金属を蒸発させるために電子ビーム、 プラズマ、 レーザー、 誘導加熱等の装置が必要であり、 生産コス ト上の問題もあることから、 大 量生産に適しているとは言い難い。 しかも、 これらの気相法により得られる金属超微 粒子は、粒径の均一性が無くかつ比較的凝集し易いために団子状になる傾向があった。 量産性を得るために、 液相中から金属超微粒子を調製する方法も提案されている。 例えば、 疎水性反応槽内でアンモニア性硝酸銀錯体溶液を還元して銀超微粒子を製造 する方法が知られている。 しかしながら、 液相法により得られる金属超微粒子も粒径 均一性が無くかつ凝集性が比較的高い: そこで分散安定性を与えるために、 二の金属 超微粒子溶液中に事後的に界面活性剤を加えて保護コロイ ド化する提案がなされてい る。 しかし分散性の悪い団子状態の超微粒子を保護コロイ ド化しても用途は限られて いる しかも粒径均一性に到ってはほとんど満足されていなかった。
そこで本発明者は特開平 1 0— 1 8 3 2 0 7号公報において、 金属核の周囲に金属 有機化合物の殻を形成した金属複合超微粒子を提案し、 その具体的製法を創案するに 至った。 即ち、 金属有機化合物を、 空気を遮断した不活性ガス雰囲気下において、 完 全分解温度未満の温度領域で加熱分解すると、 有機成分が分解しながら逃散して、 還 元された金属が集合して中心に金属核を形成する。 この金属核の周囲は未分解な金属 有機化合物の殻で被覆され、 有機化合物が最外周に位置した形状の金属複合超微粒子 が形成される。
この金属複合超微粒子は粒径が極めて均一であるという性質を有している: また、 有機化合物が最外部に位置して有機基が放射状に突出しているから、 多数の金属複合 超微粒子が集合する場合にも有機基同士が相向かい合って集合することになる。 従つ て、 固体状態でも粉体状を極力保持して団子状になりにくい。 また、 この粉体を有機 溶媒に投入すると、 有機基が有機溶媒に溶け込む結果、 金属複合超微粒子が容易に単 体で有機溶媒中に分散する。
このように本発明者が創案した金属複合超微粒子は粒径均一性と良好な分散性を有 しているが、 量産性、 価格および粒怪可変性については不十分であるという欠点があ る 即ち、 前述した製造方法では、 金属有機化合物を、 空気を遮断した不活性ガス雰 囲気下において加熱分解しなければならないから、 密閉容器内で空気を不活性ガスに 置換する操作が必要となり、 しかも加熱分解された有機ガスを排気処理するために密 封装置が必要となる。 このため大量生産に向かず、 その結果、 金属複合超微粒子の価 格が高くなってしまう。
また、 この製造方法では、 金属複合超微粒子の粒径を可変に調整することができな レ、: 個々の金属複合超微粒子の粒径はほぼ同一であるが、 この粒径を大きく したり、 小さく したりすることが困難であるために、 その用途には限界が生じる: これらの欠 点を解消するために、金属複合超微粒子の新しい製造方法の開発が必要とされている。 更に、 粒径を可変にしたときに、 超微粒子としての安定性を確保するため、 分散性 を更に強固にする技術開発も要請されていた。 (発明の開示)
請求項 1の発明は、 金属有機化合物から還元析出する金属原子が集合した金属核の 周りを、 界面活性剤殻と金属有機化合物起源の有機化合物殻が取り巻き、 粒径が 1〜 1 0 0 n mであることを特徴とする金属複合超微粒子である。
請求項 2の発明は、 金属無機化合物から還元析出する金属原子が集合した金属核の 周りを界面活性剤殻が取り巻き、 粒径が 1〜 1 0 0 n mであることを特徴とする金属 複合超微粒子である。
請求項 3の発明は、 前記金属核が複数種の金属の合金から構成される請求項 1又は 2記載の金属複合超微粒子である:,
請求項 4の発明は、 前記金属成分が、 C u、 A g、 Au、 Z n、 C d、 G a、 I n、 S i 、 G e、 S n、 P d、 F e、 C o、 ヽ T i 、 R u、 R h、 P d、 O s、 I r、 P t、 V、 C r、 Mn、 Y、 Z r、 N b , λ'Ι ο、 C a、 S r、 B a、 S b及び B i の少なく とも 1種である請求項 1、 2又は 3記載の金属複合超微粒子である。
請求項 5の発明は、 金属有機化合物を疎水性非水系溶媒と親水性非水系溶媒の混合 溶媒中でコロイ ド化して超微粒子前駆体を形成する第 1工程と、 このコロイ ド溶液中 に還元剤を添加することにより前記超微粒子前駆体を還元し、 金属核の外周に有機化 合物殻を有する粒径 1〜 1 0 0 n mの金属複合超微粒子を形成する第 2工程からなる ことを特徴とする金属複合超微粒子の製造方法である:
請求項 6の発明は、 金属有機化合物又は金属無機化合物を界面活性剤を用いて疎水 性非水系溶媒と親水性非水系溶媒の混合溶媒中でコロイ ド化して超微粒子前駆体を形 成する第 1工程と、 このコロイ ド溶液中に還元剤を添加することにより前記超微粒子 前駆体を還元して金属核の外周に少なく とも界面活性剤殻を有する粒径 1〜 1 0 0 n mの金属複合超微粒子を形成する第 2工程からなることを特徴とする金属複合超微粒 子の製造方法である。
請求項 7の発明は、 金属有機化合物又は金属無機化合物を界面活性剤を用いて非水 系溶媒中でコロイ ド化して超微粒子前駆体を形成する第 1工程と、 このコロイ ド溶液 中に還元剤を添加することにより前記超微粒子前駆体を還元し、 金属核の外周に少な く とも界面活性剤殻を有する粒怪 1〜 1 0 0 n mの金属複合超微粒子を形成する第 2 工程からなることを特徴とする金属複合超微粒子の製造方法である。
請求項 8の発明は、 前記金属有機化合物が金属種の異なる複数の金属有機化合物か らなり、 生成される金属核が複数種の金属の合金から構成される請求項 5、 6又は 7 記載の金属複合超微粒子の製造方法である e
請求項 9の発明は、 前記金属無機化合物が金属種の異なる複数の金属無機化合物か らなり、 生成される金属核が複数種の金属の合金から構成される請求項 6又は 7記載 の金属複合超微粒子の製造方法である。
(発明を実施するための最良の形態)
以下に、 本発明に係る金属複合超微粒子及びその製造方法をその実施の形態ととも に詳細に説明する。
本発明では、 金属複合超微粒子の分散安定性を増大させるために、 新規な金属複合 超微粒子を提案する。 この金属複合超微粒子は、金属核の外周に界面活性剤殻を有し、 有機溶媒などの非水系溶媒中において、 界面活性剤殻によって金属超微粒子が強力に 単体で分散することを可能にしている。 従来の有機金属化合物からなる有機化合物殻 よりも強力な分散安定性を付与することに成功した。
金属複合超微粒子の中心にある金属核は、 金属有機化合物又は金属無機化合物から 還元析出する金属成分で構成されている 金属有機化合物由来の場合には、 界面活性 剤殻と有機化合物殻で囲われた内部に金属成分からなる金属核が位置する.:, 金属無機 化合物由来の場合には、 界面活性剤殻で囲われた内部に金属核が位置する。 ここで、 有機化合物及と界面活性剤と金属成分とは、 例えばミセル構造のように、 その一部又 は全部が結合した状態で一体化して存在している。
実質的に金属成分からなる金属核には、 金属有機化合物やそれに由来する有機質成 分、 また金属無機化合物や無機質成分等も含まれる場合があるが、 これらも本発明に 包含される。 また、 金属核の周りを取り囲む界面活性剤殻は実質的に界面活性剤から 構成されているが、 その他にも金属成分、 有機質成分、 無機質成分等が含まれていて も良い: 同様に、 有機化合物殻も実質的に有機化合物から構成されているが、 その他 にも界面活性剤成分が含まれていても良い.: 本発明に係る金属複合超微粒子の分散安定性は主と して界面活性剤殻に依ってい る。 従って、 界面活性剤殻は金属複合超微粒子の最外周に位置することが好ましい。 金属複合超微粒子の構成には次のような構成がある。 金属核と界面活性剤殻からなる 構成、 金属核と金属有機化合物層と界面活性剤殻からなる構成、 金属核と金属有機化 合物層と有機化合物殻と界面活性剤殻からなる構成がある,. また、 有機化合物と界面 活性剤とが混合して殻を構成する場合、 即ち、 有機化合物殻と界面活性剤殻が混合共 通殻を構成する場合もある。 いずれにしても、 最外周を界面活性剤殻が取り卷いてい ることが本発明の金属複合超微粒子の特徴である。
本発明の金属複合超微粒子の分散安定性は界面活性剤殻に依存している。 しかし、 有機化合物殻と界面活性剤殻の両方が金属核を取り卷く揚合には、 より一層の分散安 定性が得られる。 従って、 金属有機化合物から金属複合超微粒を作る場合には、 界面 活性剤殻と有機化合物殻による協同分散効果が得られる。 金属無機化合物から金属複 合超微粒子を作る場合には、 界面活性剤殻の分散効果に依存する。 いずれにしても、 界面活性剤殻の強力な分散力により、 本発明の金属複合超微粒子の分散安定性が保証 される。
本発明の次の特徴は、 前記金属複合超微粒子を生成するために、 コロイ ド溶液還元 法を適用したことである。 従来の金属有機化合物を密閉装置内で加熱還元する方法で は、 その量産性と粒怪制御性に最大の難点があった。 本発明はこれらの両問題を一挙 に解決する方法としてコロイ ド溶液還元法を採用する:
つまり、 本発明の製法における特徴は、 金属有機化合物又は金属無機化合物が集合 したコロイ ド粒子を形成し、 このコロイ ド粒子を超微粒子前駆体とするものである。 このコロイ ド粒子の粒径を制御すれば、 これを還元してできる金属複合超微粒子の粒 径も可変に設計することができる。 溶液中でコロイ ドを形成するから、 溶液は大気に 対し開放されていてもよい。 従って、 操作性が簡単で量産性を有し、 安価な超微粒子 を提供できる。
金属系化合物をコロイ ド化する本発明方法には、 金属有機化合物を疎水性非水系溶 媒と親水性非水系溶媒に組み合わせる第 1の方法がある。 また、 金属有機化合物又は 金属無機化合物をコロイ ド化するのに、 疎水性非水系溶媒と親水性非水系溶媒を組み 合わせ、 これに界面活性剤を加える第 2の方法がある。 更に、 金属有機化合物又は金 属無機化合物をコロイ ド化するのに、 界面活性剤と非水系溶媒を組み合わせる第 3の 方法がある。
コロイ ドの粒径を制御するには、 金属有機化合物又は金属無機化合物の濃度を調整 したり、 疎水性溶媒と親水性溶媒の添加量や添加比を調整したり、 界面活性剤の添加 量を調整したり、 金属の還元条件を調整する方法がある。 金属有機化合物又は金属無 機化合物の濃度を濃く したり、 界面活性剤の添加量を少なくすると、 コロイ ドの粒径 が大きくなる。 逆は、 コロイ ドの粒径が小さくなる。
コロイ ドの粒径が大きいと、 1コロイ ド中に含まれる金属有機化合物又は金属無機 化合物の分子数が多くなる。 従って、 コロイ ドの粒径が大きいと金属量が多いため、 大粒径の金属核になり、 コロイ ドの粒径が小さいと小粒径の金属核が形成できる。 コ ロイ ド径が同じでもその凝縮密度の違いによって金属核径が異なることもある。 この ように、 金属超微粒子の粒径制御性は本発明によるコロイ ド溶液還元法によって初め て達成された。
本発明によって製造される金属複合超微粒子は、 焼成することによって金属超薄膜 の電極を形成したり、 基板上に金属超微粒子をアイランド状に坦持させるなど各種用 途に用いられる。 この焼成によって、 金属核の周りの界面活性剤殻や有機化合物殻は 分解して逃散するから、 最終的には金属核が金属超微粒子として残留する。 この金属 超微粒子によって前記電極膜などが形成される。 従って、 金属核の粒径を制御できる 技術は極めて重要である:. 本発明は、 この要請に初めて応えたものである:
本発明の第 1の方法では、 金属有機化合物を疎水性非水系溶媒に溶解 ·分散させた 後、 親水性非水系溶媒を添加する場合と、 金属有機化合物を親水性非水系溶媒に溶解 •分散させた後、 疎水性非水系溶媒を添加する場合とがある。 いずれの場合でも、 金 属有機化合物のコロイ ドを作成できる。 界面活性剤を用いないので、 このコロイ ドを 還元すると、 金属核を有機化合物殻が取り囲む金属複合超微粒子が形成さる。 本発明 者等は、 従来気相反応法で得ていた金属複合超微粒子を本発明のコロイ ド溶液還元法 で得ることに初めて成功した。 コロイ ド溶液還元法により金属核の粒径制御が可能と なった点で、 従来と異なっている。
第 2の方法では、 金属有機化合物又は金属無機化合物を疎水性非水系溶媒と親水性 非水系溶媒でコロイ ド化するだけでなく、界面活性剤を添加してコロイ ド化の促進と、 コロイ ド粒子の安定性 ·分散性を強化している。 金属有機化合物又は金属無機化合物 をどちらの溶媒に先に添加してもよい, 金属有機化合物を用いた場合には、 還元によ つて、 金属核の周囲に有機化合物殻と界面活性剤殻の両者が形成される。 金属無機化 合物を用いた場合には、 還元により無機成分は溶媒中に溶解 ·分散してゆくから、 金 属核の周囲に界面活性剤殻だけが形成される。 両ケースともに、 金属複合超微粒子は 界面活性剤殻により被われているため、 溶媒中で強力な分散性を有する。
第 3の方法は、 金属有機化合物又は金属無機化合物に界面活性剤を添加し、 非水系 溶媒に溶解 ·分散させてコロイ ド化する方法である。 従って、 コロイ ド化は界面活性 剤だけで行われる。 金属有機化合物を用いた場合には、 還元によって、 金属核の周囲 に有機化合物殻と界面活性剤殻の両者が形成される。 金属無機化合物を用いた場合に は、 還元により無機成分は溶媒中に溶解 ·分散してゆき、 金属核の周囲に界面活性剤 殻だけが形成される: 生成される金属複合超微粒子は界面活性剤殻により被われてい るため、 溶媒中で強力に分散する。
前述したように、 第 1方法により生成されたコロイ ド粒子には界面活性剤は含まれ ていないが、 第 2方法及び第 3方法により生成されたコロイ ド粒子の最外部には界面 活性剤が取り巻いている。 これらのコロイ ド溶液中に還元剤を添加すると、 金属有機 化合物又は金属無機化合物の金属成分が還元析出し、 コロイ ド中心部に金属核を形成 する。 コロイ ド粒子に含まれる金属量により、 この金属核の直径が決まる,: 分解され た有機成分は溶媒中に溶解 ·分散するだけでなく、 金属核の周りに有機化合物殻を形 成する, 他方、 分解された無機成分は溶媒中に溶解 .分散してしまう:,
本発明における金属有機化合物としては、 有機基を有した金属有機化合物であれば 何でもよく、 特に制限されない: 例えば有機酸塩ゃァ'レコ一 /レ等の金属有機化合物が ある。 例えば、 ナフテン酸塩、 ォクチル酸塩、 ステアリン酸塩、 安息香酸塩、 バラ ト ルイル酸塩、 n —デカン酸塩等の脂肪酸塩、 イソプ cポキシド、 エトキシド等の金属 アルコキシド、 上記金属のァセチルァセ トン錯塩等が挙げられる。
これらの中でも、 特にォレイン酸塩、 パラ トルィル酸塩、 ステアリン酸塩、 n—デ カン酸塩、 金属エトキシド、 金属ァセチルァセトネート等が好ましい: 脂肪酸塩とし ては、 特に直鎖脂肪酸塩が好ましく、 炭素数は通常 1〜 3 0程度、 より好ましくは 1 〜 1 8である。 また、金属有機化合物は、単独で又は 2種以上併用することができる。 金属有機化合物の金属も特に制限されず、 最終製品の用途等に応じて適宜選択するこ とができる c
これらの金属有機化合物を還元してえられる有機化合物は、 例えば、 ギ酸、 酢酸、 ブロピオン酸、 ステアリン酸、 ォレイン酸、 パルミチン酸、 ラウリン酸、 ミ リスチン 酸、 デカン酸、 ラウレン酸、 吉草酸などの脂肪酸、 アルコールと してステアリルアル コーノレ、 才レイ /レアルコ—ル、 ノ ノレミチルァノレコール、 ラウリ ノレアルコール、 ミ リス チルアルコールがあげられる。 本発明の有機化合物殻はこれらの還元有機化合物や金 属有機化合物の有機基によって構成される。
また、 本発明における金属無機化合物としては特に制限されないが、 例えば金属無 機塩がある。 例えば、 塩化金、 塩化白金、 塩化ロジウム、 塩化ルテニウム、 塩化金酸 塩、 塩化白金酸塩、 硝酸銀、 硝酸水素金、 水酸化金、 水酸化白金、 水酸化ロジウム、 水酸化ルテニウム、 水酸化パラジウム、 へキサアンミン白金、 硫酸銅、 硫酸ニッケル、 硫酸白金、 リン酸銀など。
これらの金属無機化合物は、 還元剤により金属が金属核に還元析出すると、 残留し た無機成分は非水系溶媒中に溶解 ·分散して、 金属複合超微粒子中には残留しない。 従って、 金属核の周りには分散剤としての界面活性剤殻が取り囲んだ構造になる。 金属成分は、 前記金属有機化合物又は金属無機化合物に由来するものであれば特に 制限されないが、 好ましくは C u、 A g、 A u、 Z n、 C d、 G a、 I n、 S i 、 G e、 S n、 P d、 F e、 C o、 N i , R u、 R h、 P d、 O s、 I r、 P t 、 A u、 V、 C r、 M n、 Y、 Z r、 N b、 M o、 C a、 S r、 B a、 S b、 B iである。 本発明方法では、 例えば 2種以上の金属を含む金属有機化合物又は金属無機化合物 を用いることによって、 これら金属の合金型の金属複合超微粒子を調製することも可 能である。 また、 金属種が異なる 2種以上の金属有機化合物や金属無機化合物を混合 して、 合金型の金属複合超微粒子を調製することもできる。
原料としての金属有機化合物の形態は特に制限されず、 粉末状、 液状等のいずれの ものであっても良い
本発明の金属複合超微粒子における金属成分の比率は、 最終製品の用途等に応じて 適宜設定できるが、 通常は 5 0〜9 0重量。 /0程度とすれば良い。 例えば、 金属コ一テ ィング用に用いる場合は通常 5 0〜8 0重量。 /0程度、 特に 6 0〜8 0重量%とするの が好ましい.:.
本発明ではコロイ ド形成用;こ界面活性剤が用いられる。 この界面活性剤は本明細書 中で分散剤と呼ばれる場合もある。 界面活性剤としては、 カチオン系界面活性剤、 ァ 二オン系界面活性剤、 両性界面活性剤、 ノニオン系界面活性剤など各種の界面活性剤 が含まれるが、 好ましくはノニオン系界面活性剤が用いられる。 これらの界面活性剤 には公知の界面活性剤が用いられるが、 例えば以下のようなものがある。
カチオン系界面活性剤としては、 アルキルアミン塩、 第 4級アンモニゥム塩、 ポリ ォキシエチレンアルキルァミン等が用いられる。
ァニオン系界面活性剤としては、 脂肪酸塩、 高級アルコール硫酸エステル塩、 アル キルベンゼンスルフォン酸塩等が用いられる。
両性界面活性剤としては、 例えばアルキ'レべタイン等が用いられる。
ノニオン系界面活性剤としては、 ポリオキシエチレンアルキルエーテル、 ポリオキ シエチレンアルキルフエノールエーテル、 ソルビタン脂肪酸エステル、 ポリオキシェ チレンソルビタン脂肪酸エステル、 脂肪酸モノ グリセライ ド等が用いられる。
特に、 本発明者等によって用いられる界面活性剤は、 例えばポリカルボン酸ァミン 塩であるテキサホール 9 6 3 (サンノプコ株式会社製)、 カルボン酸ソルビタンであ るソルボン T 8 0 (東邦化学工業株式会社製)、 またカルボン酸ソルビタンであるレ オドール S P O 1 0 (花王株式会社製)、 ポリオキシエチレンアルキルァミンである アミ一ト 1 0 5 (花王株式会社製) があるが、 これにこだわるものではない: 本発明で用いられる疎水性非水系溶媒と しては、 トルエン、 キシレン、 ケロシン、 シクロへキサン等の石油系炭化水素類、 及びテレビン油、 ターピネオ——ル等のテル ペン類等の有機溶媒がある: また、 親水性非水系溶媒としては、 メタノール、 ェタノ —/レ等のアルコール類、 ァセ 卜ン等のケトン類等がよく利用される。
更に、 本発明で用いられる非水系溶媒は、 前記疎水性非水系溶媒でも親水性非水系 溶媒でもよい。
本発明では、 溶媒として水は排除される: 金属有機化合物や金属無機化合物には水 に溶解する物質も存在する。 しかし、 水は一部イオン化しているため、 水溶液中のコ ロイ ド粒子を帯電させる性質を有する。 コロイ ド粒子が帯電すると、 電気的に反発す るケースもあるが、 互いに凝集して団子状になるケースもある。 従って、 所望の粒径 の均一なコロイ ド粒子を得ることが困難である。 また、 完成品である金属複合超微粒 子の中に水が入ると、 金属部分が空気と触れた時に酸化して金属酸化物に変質する。 これらの理由から、 本発明では水は溶媒として排除される。
本発明では、 コロイ ド粒子を形成した後、 コロイ ド溶液中に還元剤を添加して、 金 属有機化合物又は金属無機化合物から金属を還元析出させ、 金属核を形成する必要が ある。 そのために用いられる還元剤としては何ら制限を受けるものではないが、 例え ぱ、 アルデヒ ド、 糖、 ギ酸、 シユウ酸、 ヒ ドラジン、 脂肪族ァミン等の有機化合物類、 一酸化炭素、 二酸化硫黄、 亜硫酸塩等の低級酸化物類または低級酸素酸の塩類、 ヨウ 素、 ホウ素、 アルミニウム、 ケィ素、 スズ等の水素化物類または水素錯化合物類など が用いられる。 特に、 好ましくは、 ヒ ドラジン、 ァセトアルデヒ ド、 脂肪酸スズ塩な どが用いられる。 また、 水素を還元剤として用いることもできる.:
還元剤による還元を行う場合、 直接溶液中に還元剤を添加する方法、 または予め還 元剤を溶媒に溶解させた溶液を添加する方法が採られる。 還元剤の濃度は、 直接溶液 に還元剤を添加する場合、 室温でのその溶媒に対する溶解度以下であればよく、 特に 制限はない: また、 還元剤を溶液として添加する場合でも、 室温でのその溶媒の溶解 度以下であればよく、 特に制限はない。 即ち、 還元剤が溶液中に溶解していることが 望まれる。
還元温度は反応相を溶液状態に保つ温度であれば特に制限はない:, 特に、 還元剤と して、 メタノール、 エタノール等のアルコール類、 ブドウ糖、 ァスコルビン酸などが 用いられる場合には、 還元作用が発現する温度まで緩やかに暖めることが好ましい。 また、 還元時間は還元剤の種類やその濃度に依存するが特に制限はなく、 例えば 1 0分〜 2 0時間である,:
本発明の第 1方法では、 界面活性剤殻が形成されないので、 金属核の周りに有機化 合物殻を形成する必要がある。 有機化合物殻の形成は 2経路あると考えている。 第一 は、 還元を途中で停止させて、 周りに未還元の金属有機化合物を残留させ、 その有機 基が有機化合物殻を構成する場合である。 第二は、 金属有機化合物を還元して出来た 有機成分が溶媒中に放出されないでコロイ ド粒子の外表面に結合し、 この有機質成分 が有機化合物殻を構成する場合である。第一のケースで有機化合物殻を形成するには、 コロイ ド粒子中の金属有機化合物に対する還元を完全に行うのではなく、 その還元を 途中で停止して、 部分的還元に止めておく必要がある:
還元を途中で停止させると、 金属核の周りには金属有機化合物層が取り巻いた構造 ができる。 特に、 最外周の金属有機化合物の金属は內方に向いているから、 有機基は 外方に突出する。 この外方に突出した有機基が有機化合物殻となる。
本発明の第 2方法では、 金属有機化合物に関して有機化合物殻と界面活性剤殻が形 成され、 金属無機化合物に関して界面活性剤殻が形成される。 界面活性剤殻は金属核 の外周に少なく とも形成されているから、 有機化合物殻は無くてもよく、 この場合に は還元を完全に行えばよい,: 勿論、 有機化合物殻を残したい場合には還元を途中停止 させることが必要になる。 また、 金属無機化合物に関しては、 還元を完全に行い、 無 機成分を溶媒中に放出し、金属核が界面活性剤殻に直接取り囲まれることが望ましい。 本発明の第 3方法は、 前記第 2方法と同様であり、 金属有機化合物に関して有機化 合物殻と界面活性剤殻が形成され、 金属無機化合物に関して界面活性剤殻が形成され る。 従って、 他の事情も第 2方法と同様であるから、 再記を省略する。
界面活性剤層と有機化合物層が存在するとき、 両層が層分離する場合もあるが、 同 じ位置に混在した層になり、 界面活性剤と有機基とがミックス状態で外方に突出する 場合もある。
還元を途中で停止させるには、還元剤の添加量を部分的還元量に制限しておく方法、 溶液温度を低下させる方法、 還元停止剤を添加する方法、 部分的還元段階で金属複合 超微粒子を溶液から分離する方法等がある- このいずれの停止法が採用されてもよい。 その中でも温度低下法が好ましい:
還元停止剤としては、 過酸化べンゾィル、 ヨウ素酸ナトリウム、 過マンガン酸カリ ゥム等の各種酸化剤が用いられるが、 過剰に添加すると生成した超微粒子を酸化して しまうので、 必要最低量を慎重に添加することが望まれる。
本発明では、 金属複合超微粒子の平均粒径は 1〜 1 0 0 n mが適当である。 平均粒 径が小さいほどバルク金属にはない超微粒子性が増大する。 より好ましくは、 平均粒 径は 1〜 1 0 n m程度であり、 最終製品の用途等に応じて変更される。 例えば、 金属 或いは金属酸化物の表面のコーテイング用にこの金属複合超微粒子を用いる場合は通 常 l〜 1 0 n m程度、 好ましくは 1〜 5 n mである,:
さらに、 本発明の製造方法では、 これらの成分以外にも、 本発明の効果を妨げない 範囲において、 流動パラフィ ン、 各種石油系高沸点溶媒、 油脂等の公知の各種添加剤 を配合することによって作業性等を改善することが可能である:
還元が終了した後、 必要に応じて濃縮 ·精製を行う: 精製方法は、 公知の精製法も 適用でき、 例えば遠心分離、 膜精製、 溶媒抽出、 濃縮乾燥法等により行えば良い: 本発明によって作成された金属複合超微粒子の構造は、 表面プラズモン吸収スぺク トル、 電子顕微鏡、 原子間力顕微鏡、 X線回折、 元素分析、 熱分析などの方法によつ て分析できる。 この結果から、 金属核とその外周に界面活性剤殻が存することが実証 された。 また界面活性剤殻と有機化合物殻を電子顕微鏡や原子間力顕微鏡で区別して 確認することは難しいが、 元素分析の方法;こよって両者が存在することが実証できて いる。
(実施例)
以下、 実施例を示し、 本発明の特徴とするところをより一層明確にする。
実施例 1
[ォレイン酸銅の第 1方法によるコロイ ド化]
金属有機化合物としてォレイン酸銅を用いて金属複合超微粒子を調製した。 まず、 公知の方法に従ってォレイン酸銅を調製した。 市販のォレイン酸ナトリゥムを純水に
6 0 ' で加熱溶解した。 別に当量の硝酸銅を純水に溶解し、 先のォレイン酸ナトリウ ム水溶液に加えた:. 析出した油状のォレイン酸銅を分液ロートを用いて分離した:., このようにして得られたォレイン酸銅 5 0 gを秤量し、 これを容量 1 0 0 0 m 1の ナス型フラスコに投入して、 トルエン 1 0 0 gを疎水性非水系溶媒として加えた。 次 にァセ トン 5 0 gを親水性非水系溶媒として加え、 超音波乳化機より攪拌してコロイ ド溶液を調製した。 この中に、 1 . 0 X 1 0— 2 λ [濃度の水素化ホウ素ナトリウムのメ タノール溶液 5 O m 1 を還元剤と して添カ卩し、 5 0 Cまで加温して還元を促進させた。 すると、 コロイ ド溶液は次第に茶色に変化した。 1 0分後にメタノール 2 0 O m 1を 沈殿溶媒として加え、 冷却して還元反応を停止させると、 沈殿物が得られた。
この変性した粉末を透過型電子顛微鏡で観察したところ、 粒径が約 1 O n mの超微 粒子からなり、 粒径均一性が極めて高いことが分かった。 更に、 粉末 X線回折を行つ たところ、 金属銅のコア一が確認された。 また、 この超微粒子粉末をトルエン及びベンゼンに分散させたところ、 いずれの場 合にも沈殿は認められず、 透明な可溶化状態となった。 このことから超微粒子の最外 周に親油基が存在する構造であることが推定され、 更にこの超微粒子の原子間力顕微 鏡像 (A FM) から金属核の周りに有機化合物殻が存在することが確認された。
この銅の金属複合超微粒子粉末をガラス基板上に塗布し、 窒素雰囲気下で約 2 5 0Cに加熱すると、 有機成分が分解逃散して、 ガラス基板上に銅コーティング膜が形成 された。従って、銅核とォレイン酸銅からなるこの金属複合超微粒子は分散性が高く、 しかも金属膜形成能が極めて高いことが実証された。
実施例 2
[ァビエチン酸銀の第 1方法によるコロイ ド化]
金属有機化合物としてァビエチン酸銀を用いて金属複合樫微粒子を調製した。まず、 公知の方法に従ってァビエチン酸銀を調製した。 ァビエチン酸ナトリゥムを純水に 6 0°Cで加熱溶解した。 別に当量の硝酸銀を純水に溶解し、 先のアビェチン酸ナトリウ ム水溶液に加えた。 析出したァビエチン酸銀を吸引濾過器により濾別した後、 乾操機 を用いて乾燥した。
このアビェチン酸銀 50 gをガラス製ビ一力一中でテレビン油 3 O O m l に溶解し た。 次にメチルアルコール 5 O m 1を加えてコロイ ド溶液を調製した。 これに、 ヒ ド ラジンの 1. 0 X 1 0— 2M濃度のメチルアルコール溶液を加えると、 溶液は有色に変 化した.: 1 0分後にメタノール 2 0 O m 1 を沈殿溶媒として加え、 冷却して還元反応 を停止させると、 沈殿物が得られた。
この沈殿物を透過型電子顕微鏡で観察すると、 直径 3 nmの金属複合超微粒子が観 察された。
実施例 3
[酢酸銀の第 2方法によるコロイ ド化]
酢酸銀を親水性非水系溶媒であるメタノールに溶解させて濃度が 0. 1 M (mo 1 /L) の酢酸銀溶液を作る。 この溶液 5 mLに疎水性非水系溶媒のトルエンを 4 Om L添加して攪拌し、 更に界面活性剤である商品名テキサホール 9 6 3 (ポリカルボン 酸ァミン塩) を 0. 2 g〜0. 5 g添加してコロイ ド化する。
このコロイ ド溶液に還元剤と してァセトアルデヒ ドを添加し、 6 5。Cの定温度条件 で 5分間攪拌すると、 溶液の色が透明なクロームイエロ一になり、 金属複合超微粒子 の分散溶液が得られた。 この溶液を冷蔵庫内に 1週間貯蔵しても透明な黄色溶液の変 化は無く、 安定な金属複合超微粒子が溶液分散状態で形成された。
この溶液の表面プラズモン吸収を見ると、 波長が 4 5 0 n mの位置に吸収ピークが 見出された。 このことは、 直径が約 3 0 n mの金属核を有していることを示す。 また、 原子間力顕微鏡 (A F M) でこの金属複合超微粒子を撮像すると、 全体がドーナツ状 で、 ドーナツ部の直径が約 1 0 0 n mであることが分かった。 高分解能透過型電子頭 微鏡 (H R T E M ) で調べると、 金属銀の格子像が明確に見られ、 その粒径分布の中 心は約 3 0 n mであり、 表面プラズモン吸収の結果と合致した。
このことから、 ドーナツの中空部に金属核があり、 ドーナツ部が界面活性剤殻 (一 部有機化合物殻を含有した) であり、 この実施例では約 3 0 n mの銀の金属核を有し た金属複合超微粒子が得られた。
実施例 4
[ォレイン酸ニッケルの第 2方法によるコロイ ド化]
金属有機化合物としてォレイン酸ニッケルを用いて金属超微粒子を調製した。まず、 公知の方法に従ってォレイン酸ニッケルを調製した。 市販のォレイン酸ナトリゥムを 純水に 6 0 Cで加熱溶解した。 別に当量の硝酸ニッケルを純水に溶解し、 先のォレイ ン酸ナトリゥム水溶液に加えた。 析出した油状のォレイン酸ニッケルを分液ロートを 用いて分離した。
このよ うにして得られたォレイン酸ニッケル 5 0 gを秤量し、 これを容量 1 0 0 0 m 1 のナス型フラスコに投入し、 ノニオン系界面活性剤 (商品名スパン 4 0 ) 0 . 5 gと トルエン 1 0 0 g、 エタノール 5 0 gを加えて攪拌した。 この攪拌により、 ォレ イン酸ニッケルは乳化した。 この中にブドウ糖 5 gを添加し、 5 0 °Cに加温すると溶 液は茶色に変化した。 1 0分後にメタノール 2 0 0 m 1 を加えて冷却すると、 沈殿物 が得られた。
これをマイ力上に滴下乾燥して、 原子間力顕微鏡で観察すると、 直径 8 n mの金属 複合超微粒子が観察された c
実施例 5
[酢酸銀の第 3方法によるコロイ ド化] 酢酸銀 0. 0 1 gを非水系溶媒であるシクロへキサン 1 0 0 mL;こ分散させる, こ の溶液 4 O mLに 9 5 %濃度のブロピオンアルデヒ ドを還元剤として添加し、 更に分 散剤 (界面活性剤) として 0. 1 gの商品名ァミート 1 0 5 (ポリオキシエチレンァ ルキルァミ ン) を添加し、 6 5 で 5分間攪拌する。
溶液は透明なレモンイエローになり、 金属複合超微粒子ができたことを示した。 こ の溶液の表面プラズモン吸収スぺク トルをとると、 波長 40 8 nmの位置に吸収ピ一 クが存在した。二の吸収ピークから金属核の直径は 2〜 3 nmであることが分かった。 また、 金属複合超微粒子を T EMで観察すると、 直径が約 3 0 nmのドーナツ構造を していることが分かった。 従って、 この実施例により直径が 2〜3 nmの銀の金属核 を有した金属複合微粒子が形成された,:
実施例 6
:ジェチルへキサン酸インジウムの第 3方法によるコロイ ド化]
ジェチルへキサン酸ィンジゥムを非水系溶媒のトルェンに 5重量。 /0だけ溶解させ る。 この溶液 5 mLを更に卜/レエン 4 O mLに添加混合し、 これに界面活性剤として 商品名テキサホール 9 6 3 (ポリカルボン酸ァミン塩) を 0. 2 g添加し、 更に還元 剤と してプロピオンアルデヒ ドを 2 mL添加する。
このコロイ ド溶液を 6 5°Cに設定して 5分間攪拌すると、 全体が透明なイェローに なり、 安定な金属複合超微粒子が形成された,—, この溶液の吸収スペク トルをとると、 波長 4 3 0 n mの位置に吸収ピークが存在する: また、 T E M写真からインジウム金 属核の直径は 5 n mであることが分かった: 更に、 金属複合超微粒子を A FMで観察 すると、 直径が約 5 0 nmの ド一ナツ構造をしていることが分かった この実施例に より直怪が 5 nmのインジウムの金属核を有した金属複合超微粒子が形成された。 実施例 7
Ϊ酢酸銅の第 3方法によるコロイ ド化]
酢酸銅を非水系溶媒のトルエン 1 0 O mLに溶解して 0. 1重量%のトルエン溶液 を作る: この溶液に界面活性剤として商品名ソルボン T 8 0 (カルボン酸ソルビタン) を添加して、 酢酸銅をコロイ ド化する.: このコロイ ド溶液に、 還元剤としてァスコル ビン酸を添加し、 1 0 0で,に加熱して 5分間攪拌する。
溶液が透明な赤ワイン色になり、 金属複合超微粒子が形成されたことが分かる。 こ の溶液の表面プラズモン吸収から、 直径が 1 0 n mの銅の金属核が形成されているこ とが確認できた。
実施例 8
[ステアリン酸銀の第 3方法によるコロイ ド化]
金属有機化合物としてステアリン酸銀を用いて金属超微粒子を調製した。 まず、 公 知の方法に従ってステアリン酸銀を調製した。 市販のステアリン酸ナトリゥムを純水 に 6 で加熱溶解した。 別に当量の硝酸銀を純水に溶解し、 先のステアリン酸ナト リウム水溶液に加えた。 析出したステアリン酸銀を吸引濾過器を用い濾別した後、 乾 燥機を用いて乾操した。
このようにして得られたステアリン酸銀 5 0 gを秤量し、 これを容量 1 0 0 0 m l のナス型フラスコに投入し、 ノニオン系界面活性剤 (商品名ツイ一ン 8 0 ) 0 . δ g と非水系溶媒として トルエン 1 0 0 gを加えた。 この溶液を超音波乳化機により攪拌 すると、 ステアリン酸銀の懸濁液が調製された。 次に、 還元剤としてギ酸 5 gを添加 し、 懸濁液を 4 0 Cに加温して還元反応を促進させると、 懸濁液は次第に紫色に変化 した。 3 0分後に冷却して還元を停止させ、 沈殿溶媒としてメタノール 3 0 0 m 1を 加えると沈殿物が得られた。
この変性した粉末を透過型電子顕微鏡で観察したところ、 粒径が約 5 n mの均一性 が極めて高い超微粒子から構成されていた:, 更に、 粉末 X線回折を行ったところ、 金 属銀のコア一が確認された.:, また、 熱分析により金属成分の比率を求めたところ、 有 機基が約 1 5重量。 /0を占めており、 元素分析の結果などからステア リ ン酸基であるこ とが確認できた。 同時に界面活性剤であるツイ一ン 8 0の成分が 1 0重量。 /0存在する ことも分かった。 つまり、 銀核とステア リ ン酸基層と最外周にツイーン 8 0の界面活 性剤殻から構成されていることが分かった。
また、 この超微粒子粉末をトルエン及び n —へキサンに分散させたところ、 いずれ の湯合にも沈殿は認められず、 透明な可溶化状態となった。 前記界面活性剤殻が超微 粒子の最外周に存在する結果、 可溶性が高いことが理解できる。
この可溶状態の金属複合超微粒子をポリイミ ド上に塗布し、 乾操した後に加熱する と、 約 2 2 0 tで容易に燒結して銀コ一ティ ング膜が形成された,: 従って、 銀核とス テアリン酸銀層と界面活性剤殻からなるこの金属複合超微粒子は分散性が高く、 しか も金属膜形成能が極めて高いことが実証された。
本発明は上記実施例に限定されるものではなく、 本発明の技術的思想を逸脱しない 範囲における種々の変形例、設計変更などをその技術的範囲内に包含するものである。
(産業上の利用可能性)
請求項 1の発明によれば、 金属核の周りを界面活性剤殻と有機化合物殻が取り巻い た金属複合超微粒子であり、 界面活性剤という非水系溶媒中における強力な分散安定 剤を外周に配置しているため、 従来の有機化合物殻だけからなる金属複合超微粒子よ りもはるかに分散安定性が強力である e また、 有機化合物殻を併有しているため、 相 乗的な分散安定効果を発揮できる:
請求項 2の発明によれば、 金属核の周りを界面活性剤殻が取り巻いた金属複合超微 粒子であり、 界面活性剤という非水系溶媒中における強力な分散安定剤を外周に配置 しているため、 従来の有機化合物殻だけからなる金属複合超微粒子よりもはるかに分 散安定性が強力である,
請求項 3の発明によれば、 金属核が複数種の金属の合金から構成される金属複合超 微粒子であるから、 多種多様な金属超微粒子を提供でき、 電極膜の形成などの応用性 を一層拡大することができる,:
請求項 4の発明によれば、 前記金属成分を C u、 A g、 A u、 Z n、 C d、 G a、 I n、 S i 、 G e、 S n、 P d、 F e、 C o、 N i 、 R u、 R h、 P d、 O s、 I r、 P t 、 V、 C r、 : I n、 Y、 Z r、 N b , M o、 C a、 S r、 B a、 S b及び B i力 ら選ぶことができ、 広範囲の金属複合超微粒子を提供できる。
請求項 5の発明によれば、 金属核の周りに有機化合物殻を被覆した金属複合超微粒 子を形成でき、 しかも有機化合物量 ·溶媒量 ·還元条件などを変えることにより金属 核の粒径を自在に制御することができる e また、 この製法によれば、 真空装置などの 密閉装置を必要としないため、 大量生産が可能となり、 金属複合超微粒子を安価に市 場に供給できる。
請求項 6の発明によれば、 金属核の外周に少なく とも界面活性剤殻を有する金属複 合超微粒子を形成でき、 しかも有機化合物量や無機化合物量 ·溶媒量 ·還元条件など を変えることにより金属核の粒径を自在に制御することができる。 また、 オープン環 境で製造できるため、 大量生産が可能となり、 金属複合超微粒子を安価に市場に供給 できる。
請求項 7の発明によれば、 単一の非水系溶媒を用いて金属核の外周に少なく とも界 面活性剤殻を有する金属複合超微粒子を形成でき、 しかも有機化合物量や無機化合物 量 ·溶媒量 ·還元条件などを変えることにより金属核の粒径を自在に制御することが できる。 また、 真空装置やその他大型装置が不要なため、 大量生産が可能となり、 金 属複合超微粒子を安価に市場に供給できる
請求項 8の発明によれば、 複数の金属有機化合物から金属核が複数種の金属の合金 から構成される金属複合超微粒子を形成することができる,:
請求項 9の発明によれば、 複数の金属無機化合物から金属核が^数種の金属の合金 から構成される金属複合超微粒子を形成することができる。
従って、 本発明の金属複合超微粒子は、 電子材料 (プリ ン ト配線、 導電性材料等)、 磁性材料 (磁気記録媒体、 電磁波吸収体、 電磁波共鳴器等)、 触媒材料 (高速反応触 媒等)、 構造材料 (遠赤外材料等)、 医療材料等の各種の用途に用いることでき、 広 範囲の産業に有用な金属複合超微粒子を大量且つ安価に提供できる。

Claims

言青求の範囲
1. 金属有機化合物から還元析出する金属原子が集合した金属核の周りを、 界面活 性剤殻と金属有機化合物起源の有機化合物殻が取り卷き、 粒径が 1〜 1 O O nmであ ることを特徴とする金属複合超微粒子。
2. 金属無機化合物から還元析出する金属原子が集合した金属核の周りを界面活性 剤殻が取り巻き、 粒径が 1〜 1 00 n mであることを特徴とする金属複合超微粒子。
3. 前記金属核が複数種の金属の合金から構成される請求項 1又は 2記載の金属複 合超微粒子。
4. 前記金属成分が、 C u、 A g、 Au、 Z n、 C d、 G a、 Ί η、 S i、 G e、 S n、 P d、 F e、 C o、 N i 、 R u、 R h、 P d、 O s、 I r、 P t、 V、 C r、 M n、 Y、 Z r、 N b、 λ4 o、 C a、 S r、 B a、 S b及び B i の少なく とも 1種で ある請求項 1、 2又は 3記載の金属複合超微粒子 c
5. 金属有機化合物を疎水性非水系溶媒と親水性非水系溶媒の混合溶媒中でコロイ ド化して超微粒子前駆体を形成する第 1工程と、 このコロイ ド溶液中に還元剤を添加 することにより前記超微粒子前駆体を還元し、 金属核の外周に有機化合物殻を有する 粒径 1〜 1 0 0 n mの金属複合超微粒子を形成する第 2工程からなることを特徴とす る金属複合超微粒子の製造方法。
6. 金属有機化合物又は金属無機化合物を界面活性剤を用いて疎水性非水系溶媒と 親水性非水系溶媒の混合溶媒中でコロイ ド化して超微粒子前駆体を形成する第 1工程 と、 このコロイ ド溶液中に還元剤を添加することにより前記超微粒子前駆体を還元し て金属核の外周に少なく とも界面活性剤殻を有する粒径 1〜 1 0 0 nmの金属複合超 微粒子を形成する第 2工程からなることを特徴とする金属複合超微粒子の製造方法。
7. 金属有機化合物又は金属無機化合物を界面活性剤を用いて非水系溶媒中でコロ ィ ド化して超微粒子前駆体を形成する第 1工程と、 このコロイ ド溶液中に還元剤を添 加することにより前記超微粒子前駆体を還元し、 金属核の外周に少なく とも界面活性 剤殻を有する粒径 1〜 1 0 0 n mの金属複合超微粒子を形成する第 2工程からなるこ とを特徴とする金属複合超微粒子の製造方法。
8. 前記金属有機化合物が金属種の異なる複数の金属有機化合物からなり、 生成さ れる金属核が複数種の金属の合金から構成される請求項 5、 6又は 7記載の金属複合 超微粒子の製造方法。
9 . 前記金属無機化合物が金属種の異なる複数の金属無機化合物からなり、 生成さ れる金属核が複数種の金属の合金から構成される請求項 6又は 7記載の金属複合超微 粒子の製造方法。
PCT/JP2000/003918 1999-06-15 2000-06-14 Ultrafine composite metal powder and method for producing the same WO2000076699A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/018,141 US6730400B1 (en) 1999-06-15 2000-06-14 Ultrafine composite metal particles and method for manufacturing same
JP2001503014A JP4732645B2 (ja) 1999-06-15 2000-06-14 金属複合超微粒子の製造方法
AU52486/00A AU5248600A (en) 1999-06-15 2000-06-14 Ultrafine composite metal powder and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/206623 1999-06-15
JP20662399 1999-06-15

Publications (1)

Publication Number Publication Date
WO2000076699A1 true WO2000076699A1 (en) 2000-12-21

Family

ID=16526451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003918 WO2000076699A1 (en) 1999-06-15 2000-06-14 Ultrafine composite metal powder and method for producing the same

Country Status (4)

Country Link
US (1) US6730400B1 (ja)
JP (2) JP4732645B2 (ja)
AU (1) AU5248600A (ja)
WO (1) WO2000076699A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051562A1 (fr) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Dispersion d'oxyde metallique
WO2003091302A1 (fr) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Polymere reticule, particule fine de polymere et leur procede de production
JP2004204354A (ja) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk 金属超微粒子及びその製造方法
JP2005043879A (ja) * 2003-07-08 2005-02-17 Fuji Xerox Co Ltd ポリイミド樹脂層の製造方法、及びポリイミド樹脂無端ベルト、感光体、及びそれを用いた電子写真装置。
WO2005023702A1 (ja) * 2003-09-09 2005-03-17 Ulvac, Inc. 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
WO2005088652A1 (ja) * 2004-03-10 2005-09-22 Asahi Glass Company, Limited 金属含有微粒子、金属含有微粒子分散液および導電性金属含有材料
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
JP2006089786A (ja) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd 極性溶媒に分散した金属ナノ粒子の製造方法
JP2006161128A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd ニッケルスラリー及びその製造方法並びに該ニッケルスラリーを用いたニッケルペースト又はニッケルインキ
JP2007095503A (ja) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペースト
JP2007197756A (ja) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd ナノ粒子分散体の保存方法及び輸送方法
JP2007197755A (ja) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd 金属ナノ粒子の製造方法、金属ナノ粒子、導電性組成物および電子デバイス
JP2007277709A (ja) * 2006-04-11 2007-10-25 Samsung Electro-Mechanics Co Ltd ニッケルナノ粒子の製造方法
JP2007533862A (ja) * 2004-04-22 2007-11-22 本田技研工業株式会社 金属および合金ナノ粒子およびそれらの合成方法
WO2009090846A1 (ja) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
WO2009116136A1 (ja) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法及びナノペースト接合方法
JP2010153118A (ja) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd 金属粒子ペースト及び導電性基材の製造方法
JP2010534280A (ja) * 2007-07-26 2010-11-04 エルジー・ケム・リミテッド 銅粒子組成物の製造方法
JP2010285669A (ja) * 2009-06-15 2010-12-24 Fuji Electric Holdings Co Ltd 金属粒子の製造方法、金属粒子、及び金属粒子製造装置
JP2011052326A (ja) * 1999-06-15 2011-03-17 Akio Komatsu 金属複合超微粒子及びその製造方法
US8252417B2 (en) * 2005-02-25 2012-08-28 Fry's Metals, Inc. Metallic particles for electrokinetic or electrostatic deposition
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
JP2013147720A (ja) * 2012-01-23 2013-08-01 Sumitomo Metal Mining Co Ltd 銀粉及びその製造方法
JP5306322B2 (ja) * 2008-03-18 2013-10-02 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法、接合方法及びパターン形成方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497131B2 (en) * 1999-10-06 2013-07-30 Becton, Dickinson And Company Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules
US7192778B2 (en) * 1999-10-06 2007-03-20 Natan Michael J Surface enhanced spectroscopy-active composite nanoparticles
JP4081987B2 (ja) * 2000-05-30 2008-04-30 株式会社村田製作所 金属粉末の製造方法,金属粉末,これを用いた導電性ペーストならびにこれを用いた積層セラミック電子部品
JP4871443B2 (ja) * 2000-10-13 2012-02-08 株式会社アルバック 金属超微粒子分散液の製造方法
US6861263B2 (en) 2001-01-26 2005-03-01 Surromed, Inc. Surface-enhanced spectroscopy-active sandwich nanoparticles
US20060159838A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
WO2003083172A1 (fr) * 2002-04-01 2003-10-09 Canon Kabushiki Kaisha Element conducteur et procede de production associe
JP3837508B2 (ja) * 2002-06-14 2006-10-25 独立行政法人産業技術総合研究所 表面プラズモン励起性貴金属微粒子状薄膜
US6939388B2 (en) * 2002-07-23 2005-09-06 General Electric Company Method for making materials having artificially dispersed nano-size phases and articles made therewith
US7531149B2 (en) * 2003-10-14 2009-05-12 The Board Of Trustees Of The University Of Arkansas Synthetic control of metal oxide nanocrystal sizes and shapes
KR20060128997A (ko) * 2004-02-04 2006-12-14 가부시키가이샤 에바라 세이사꾸쇼 복합형 나노입자 및 그 제조방법
ES2242528B1 (es) * 2004-03-25 2006-12-01 Consejo Sup. Investig. Cientificas Nanoparticulas magneticas de metales nobles.
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
WO2006076609A2 (en) 2005-01-14 2006-07-20 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
US20060158497A1 (en) * 2005-01-14 2006-07-20 Karel Vanheusden Ink-jet printing of compositionally non-uniform features
US20070190298A1 (en) * 2005-01-14 2007-08-16 Cabot Corporation Security features, their use and processes for making them
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US7575621B2 (en) 2005-01-14 2009-08-18 Cabot Corporation Separation of metal nanoparticles
CN100434210C (zh) * 2005-01-17 2008-11-19 武汉科技大学 一种碳包覆金属纳米粒子及其制备方法
US20070068343A1 (en) * 2005-06-30 2007-03-29 Lukehart Charles M Synthesis of shape-specific transition metal nanoparticles
JP4822783B2 (ja) * 2005-09-22 2011-11-24 株式会社日本触媒 金属ナノ粒子の製法および当該製法により得られた粒子のコロイド
US20090298197A1 (en) * 2005-11-15 2009-12-03 Oxonica Materials Inc. Sers-based methods for detection of bioagents
US8409863B2 (en) 2005-12-14 2013-04-02 Becton, Dickinson And Company Nanoparticulate chemical sensors using SERS
US7723100B2 (en) 2006-01-13 2010-05-25 Becton, Dickinson And Company Polymer coated SERS nanotag
ES2601391T3 (es) * 2006-01-27 2017-02-15 Becton Dickinson And Company Inmunoensayo de flujo lateral con modalidad de detección encapsulada
KR20070080467A (ko) * 2006-02-07 2007-08-10 삼성전자주식회사 구리 나노 입자, 이의 제조 방법 및 이를 이용한 구리피막의 제조 방법
EP2044402B2 (en) * 2006-07-24 2016-11-30 Becton Dickinson and Company Apparatus and method for performing an assay using magnetic particles
US7919015B2 (en) * 2006-10-05 2011-04-05 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
US8343627B2 (en) 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
US20080278181A1 (en) * 2007-03-07 2008-11-13 Research Foundation Of State University Of New York Oxidation-resistant, ligand-capped copper nanoparticles and methods for fabricating them
US20100090164A1 (en) * 2008-06-10 2010-04-15 Xiaogang Peng Indium arsenide nanocrystals and methods of making the same
US8105414B2 (en) * 2008-09-15 2012-01-31 Lockheed Martin Corporation Lead solder-free electronics
US8486305B2 (en) 2009-11-30 2013-07-16 Lockheed Martin Corporation Nanoparticle composition and methods of making the same
US9011570B2 (en) 2009-07-30 2015-04-21 Lockheed Martin Corporation Articles containing copper nanoparticles and methods for production and use thereof
US9072185B2 (en) 2009-07-30 2015-06-30 Lockheed Martin Corporation Copper nanoparticle application processes for low temperature printable, flexible/conformal electronics and antennas
US9545668B2 (en) * 2009-11-27 2017-01-17 Tokusen Kogyo Co., Ltd. Fine metal particle-containing composition
KR101513524B1 (ko) * 2010-05-31 2015-04-20 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 금속 나노입자 콜로이드의 제조 방법
WO2012052192A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Ausgangswerkstoff und verfahren zur herstellung einer sinterverbindung
JP5344099B2 (ja) * 2011-06-16 2013-11-20 住友金属鉱山株式会社 銀粉及びその製造方法
CN102642809B (zh) * 2012-04-27 2014-01-15 中国科学院理化技术研究所 一种有机纳米线/金属纳米颗粒复合纳米材料及其制备方法
GB201403731D0 (en) * 2014-03-03 2014-04-16 P V Nano Cell Ltd Nanometric copper formulations
CN106134299B (zh) 2014-03-20 2018-10-23 住友电气工业株式会社 印刷线路板用基板、印刷线路板以及制造印刷线路板用基板的方法
JP6585032B2 (ja) * 2014-03-27 2019-10-02 住友電気工業株式会社 プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
WO2016117575A1 (ja) 2015-01-22 2016-07-28 住友電気工業株式会社 プリント配線板用基材、プリント配線板及びプリント配線板の製造方法
JP6843370B2 (ja) * 2017-03-16 2021-03-17 住友金属鉱山株式会社 ニッケル粉末の製造方法
US11938543B2 (en) * 2021-04-09 2024-03-26 Heraeus Deutschland GmbH & Co. KG Silver sintering preparation and the use thereof for the connecting of electronic components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104806A (ja) * 1989-09-16 1991-05-01 Toyohisa Fujita 磁性流体の製造方法
JPH05225823A (ja) * 1992-02-10 1993-09-03 Sumitomo Metal Ind Ltd 銅導体ペースト及びその製造方法
JPH0885807A (ja) * 1994-09-16 1996-04-02 Noritake Co Ltd 単分散性銀−パラジウム複合粉末の製造方法及びその粉末
JPH08143916A (ja) * 1994-11-24 1996-06-04 Nok Corp 鉄微粒子の製造方法
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965046A (en) * 1974-09-26 1976-06-22 Graham Magnetics Incorporated Process of making metal powders and products produced thereby
JPS62121640A (ja) * 1985-11-21 1987-06-02 Agency Of Ind Science & Technol 貴金属オルガノゾルの製造方法
ES2009404A6 (es) * 1988-11-24 1989-09-16 Quintela Manuel Arturo Lopez Procedimiento para a obtencion de particulas magneticas ultrafinas de nd-fe-b de diferentes tamanos.
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
US5698483A (en) * 1995-03-17 1997-12-16 Institute Of Gas Technology Process for preparing nanosized powder
AU1743397A (en) * 1995-12-28 1997-07-28 James R. Heath Organically-functionalized monodisperse nanocrystals of metals
US6436167B1 (en) * 1996-05-13 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Synthesis of nanostructured composite particles using a polyol process
JPH11241107A (ja) * 1997-10-23 1999-09-07 Shizuko Sato 金属超微粒子及びその製法
AU5248600A (en) * 1999-06-15 2001-01-02 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104806A (ja) * 1989-09-16 1991-05-01 Toyohisa Fujita 磁性流体の製造方法
JPH05225823A (ja) * 1992-02-10 1993-09-03 Sumitomo Metal Ind Ltd 銅導体ペースト及びその製造方法
JPH0885807A (ja) * 1994-09-16 1996-04-02 Noritake Co Ltd 単分散性銀−パラジウム複合粉末の製造方法及びその粉末
JPH08143916A (ja) * 1994-11-24 1996-06-04 Nok Corp 鉄微粒子の製造方法
JPH10183207A (ja) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk 超微粒子及びその製造方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052326A (ja) * 1999-06-15 2011-03-17 Akio Komatsu 金属複合超微粒子及びその製造方法
WO2003051562A1 (fr) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Dispersion d'oxyde metallique
US7674401B2 (en) 2001-12-18 2010-03-09 Asahi Kasei Kabushiki Kaisha Method of producing a thin conductive metal film
CN100395059C (zh) * 2001-12-18 2008-06-18 旭化成株式会社 金属氧化物分散体、由其得到的金属薄膜和生产该金属薄膜的方法
JP4578100B2 (ja) * 2001-12-18 2010-11-10 旭化成イーマテリアルズ株式会社 金属酸化物分散体
JPWO2003051562A1 (ja) * 2001-12-18 2005-04-21 旭化成株式会社 金属酸化物分散体
WO2003091302A1 (fr) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Polymere reticule, particule fine de polymere et leur procede de production
US7129293B2 (en) 2002-04-24 2006-10-31 Japan Science And Technology Agency Crosslinked polymers, fine polymer particle, and process for producing these
JP2005043879A (ja) * 2003-07-08 2005-02-17 Fuji Xerox Co Ltd ポリイミド樹脂層の製造方法、及びポリイミド樹脂無端ベルト、感光体、及びそれを用いた電子写真装置。
JP4608972B2 (ja) * 2003-07-08 2011-01-12 富士ゼロックス株式会社 ポリイミド樹脂層の製造方法、及びポリイミド樹脂無端ベルト、感光体、及びそれを用いた電子写真装置。
JP2005081501A (ja) * 2003-09-09 2005-03-31 Ulvac Japan Ltd 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
EP1666408A1 (en) * 2003-09-09 2006-06-07 Ulvac, Inc. Metal nanoparticle and method for producing same, liquid dispersion of metal nanoparticle and method for producing same, metal thin line, metal film and method for producing same
EP1666408A4 (en) * 2003-09-09 2009-11-25 Ulvac Inc METAL NANOTEHILES AND METHOD OF MANUFACTURING THEREOF, LIQUID DISPERSION OF METAL NANOTEHTES AND METHOD OF PRODUCTION THEREOF, THIN METAL LINE, METAL FILM AND METHOD OF MANUFACTURING THEREOF
WO2005023702A1 (ja) * 2003-09-09 2005-03-17 Ulvac, Inc. 金属ナノ粒子及びその製造方法、金属ナノ粒子分散液及びその製造方法、並びに金属細線及び金属膜及びその形成方法
US7628840B2 (en) 2003-09-09 2009-12-08 Ulvac, Inc. Metal nano-particles and method for preparing the same, dispersion of metal nano-particles and method for preparing the same, and thin metallic wire and metal film and method for preparing these substances
JP2005270957A (ja) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp 金属微粒子の抽出方法等および用途
WO2005088652A1 (ja) * 2004-03-10 2005-09-22 Asahi Glass Company, Limited 金属含有微粒子、金属含有微粒子分散液および導電性金属含有材料
JPWO2005088652A1 (ja) * 2004-03-10 2008-01-31 旭硝子株式会社 金属含有微粒子、金属含有微粒子分散液および導電性金属含有材料
US7390440B2 (en) 2004-03-10 2008-06-24 Asahi Glass Company, Limited Process for producing metal-containing particles having their surface coated with at least two dispersants different in vaporization temperature
JP4623981B2 (ja) * 2004-03-12 2011-02-02 大研化学工業株式会社 金属超微粒子の製造方法
JP2004204354A (ja) * 2004-03-12 2004-07-22 Daiken Kagaku Kogyo Kk 金属超微粒子及びその製造方法
JP2007533862A (ja) * 2004-04-22 2007-11-22 本田技研工業株式会社 金属および合金ナノ粒子およびそれらの合成方法
JP2006089786A (ja) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd 極性溶媒に分散した金属ナノ粒子の製造方法
JP2006161128A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd ニッケルスラリー及びその製造方法並びに該ニッケルスラリーを用いたニッケルペースト又はニッケルインキ
US8252417B2 (en) * 2005-02-25 2012-08-28 Fry's Metals, Inc. Metallic particles for electrokinetic or electrostatic deposition
JP2007095503A (ja) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd 導電性ペースト
JP2007197755A (ja) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd 金属ナノ粒子の製造方法、金属ナノ粒子、導電性組成物および電子デバイス
JP2007197756A (ja) * 2006-01-25 2007-08-09 Nippon Shokubai Co Ltd ナノ粒子分散体の保存方法及び輸送方法
JP4712744B2 (ja) * 2006-04-11 2011-06-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. ニッケルナノ粒子の製造方法
JP2007277709A (ja) * 2006-04-11 2007-10-25 Samsung Electro-Mechanics Co Ltd ニッケルナノ粒子の製造方法
JP2010534280A (ja) * 2007-07-26 2010-11-04 エルジー・ケム・リミテッド 銅粒子組成物の製造方法
US8906317B2 (en) 2008-01-17 2014-12-09 Applied Nanoparticle Laboratory Corporation Production apparatus of composite silver nanoparticle
WO2009090846A1 (ja) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、複合銀ナノペースト、その製法、製造装置、接合方法及びパターン形成方法
US8348134B2 (en) 2008-01-17 2013-01-08 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticle, composite silver nanopaste, bonding method and patterning method
US8459529B2 (en) 2008-01-17 2013-06-11 Applied Nanoparticle Laboratory Corporation Production method of composite silver nanoparticle
JP5256281B2 (ja) * 2008-03-18 2013-08-07 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法及びナノペースト接合方法
WO2009116185A1 (ja) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法、接合方法及びパターン形成方法
WO2009116136A1 (ja) * 2008-03-18 2009-09-24 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法及びナノペースト接合方法
JP5306322B2 (ja) * 2008-03-18 2013-10-02 株式会社応用ナノ粒子研究所 複合銀ナノペースト、その製法、接合方法及びパターン形成方法
JP2010153118A (ja) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd 金属粒子ペースト及び導電性基材の製造方法
JP2010285669A (ja) * 2009-06-15 2010-12-24 Fuji Electric Holdings Co Ltd 金属粒子の製造方法、金属粒子、及び金属粒子製造装置
US8497022B2 (en) 2009-07-16 2013-07-30 Applied Nanoparticle Laboratory Corporation Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
US8491998B2 (en) 2009-07-16 2013-07-23 Applied Nanoparticle Laboratory Corporation Composite nanometal paste of two-metallic-component type, bonding method, and electronic part
JP2013147720A (ja) * 2012-01-23 2013-08-01 Sumitomo Metal Mining Co Ltd 銀粉及びその製造方法

Also Published As

Publication number Publication date
JP5480801B2 (ja) 2014-04-23
AU5248600A (en) 2001-01-02
JP2011052326A (ja) 2011-03-17
JP4732645B2 (ja) 2011-07-27
US6730400B1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
WO2000076699A1 (en) Ultrafine composite metal powder and method for producing the same
JP3205793B2 (ja) 超微粒子及びその製造方法
US7829140B1 (en) Method of forming iron oxide core metal shell nanoparticles
US7820291B2 (en) Core-shell type nanoparticles comprising metal cores and crystalline shells of metal oxide or metalloid oxide
Capek Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions
Wang et al. Bimetallic nanocrystals: liquid‐phase synthesis and catalytic applications
US7780876B2 (en) Fine metal particle colloidal solution, conductive paste material, conductive ink material, and process for producing the same
US20060068217A1 (en) Group of metal magnetic nanoparticles and method for producing the same
EP0914244A1 (en) Organically-functionalized monodisperse nanocrystals of metals
Fereshteh et al. Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds
KR101671049B1 (ko) 니켈-코발트 나노 입자 및 그 제조 방법
Klabunde et al. Nanochemistry
JP2003342605A (ja) 超微粒子、超微粒子結晶膜及び超微粒子結晶の製造方法
WO2006090151A1 (en) Process of forming a nanocrystalline metal alloy
Manickam et al. Production of Nanomaterials Using Ultrasonic Cavitation–A Simple, Energy Efficient and Technological Approach
KR100987935B1 (ko) 헤테로다이머 및 합금 나노결정의 제조방법
JP5394769B2 (ja) 燃料電池用合金触媒電極の製造方法
KR20150124689A (ko) 복합 금속 나노 입자의 제조 방법
JP2009127062A (ja) 金属微粒子分散液およびその製造方法
Carbon Controlled Synthesis & Properties
CN115770883A (zh) 一种通过表面改性无机纳米材料相转移的方法
JP4464448B2 (ja) 超微粒子結晶膜、超微粒子結晶及びそれらの製造方法
JP2008231556A (ja) 多元系合金磁性ヒドロゾルおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10018141

Country of ref document: US

122 Ep: pct application non-entry in european phase