US20110312916A1 - Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens - Google Patents

Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens Download PDF

Info

Publication number
US20110312916A1
US20110312916A1 US13/146,004 US201013146004A US2011312916A1 US 20110312916 A1 US20110312916 A1 US 20110312916A1 US 201013146004 A US201013146004 A US 201013146004A US 2011312916 A1 US2011312916 A1 US 2011312916A1
Authority
US
United States
Prior art keywords
compound
alkyl
cancer
group
alkylaryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/146,004
Other languages
English (en)
Inventor
David Casebier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eledon Pharmaceuticals Inc
Original Assignee
Tokai Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Pharmaceuticals Inc filed Critical Tokai Pharmaceuticals Inc
Priority to US13/146,004 priority Critical patent/US20110312916A1/en
Assigned to TOKAI PHARMACEUTICALS, INC. reassignment TOKAI PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CASEBIER, DAVID
Publication of US20110312916A1 publication Critical patent/US20110312916A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/28Antiandrogens

Definitions

  • This invention provides novel prodrugs of steroidal CYP17 inhibitors for the treatment of urogenital and/or androgen-related cancers, diseases and/or conditions, including castrate-resistant prostrate cancer, the synthesis of these new chemical entities, and to methods of using the same in the treatment of urogenital and/or androgen-related cancers, diseases and/or conditions.
  • PCA Prostate cancer
  • Androgens play an important role in the development, growth, and progression of PCA (McConnell, J. D., Urol. Clin. North Am., 1991, 18: 1-13), with the two most important androgens in this regard being testosterone, 90% of which is synthesized in the testes and the remainder (10%) is synthesized by the adrenal glands, and the more potent androgen, dihydrotestosterone (DHT), to which testosterone is converted by the enzyme steroid, 5 ⁇ -reductase, that is localized primarily in the prostate (Bruchovsky, N. et al., J. Biol. Chem., 1968, 243, 2012-2021).
  • DHT dihydrotestosterone
  • the last step in the biosynthesis of testosterone involves two key reactions that occur sequentially, both reactions being catalyzed by a single enzyme, the cytochrome P450 monooxygenase 17 ⁇ -hydroxylase/ 17,20 -lyase (CYP17) (Hall, P. F., J. Steroid Biochem. Molec. Biol., 1991, 40, 527-532).
  • CYP17 cytochrome P450 monooxygenase 17 ⁇ -hydroxylase/ 17,20 -lyase
  • Ketoconazole an antifungal agent that also inhibits P450 enzymes, is also a modest CYP17 inhibitor, and has been used clinically for the treatment of PCA (Trachtenberg, J. et al., J. Urol. 1983, 130, 152-153).
  • ketoconazole was found to retain activity in advanced PCA patients with progression, despite flutamide withdrawal (Small, E. J. et al., J. Urol., 1997, 157, 1204-1207), and although the drug has now been withdrawn from use because of liver toxicity and other side effects, the ketoconazole results suggest that more potent and selective inhibitors of CYP17 could provide useful agents for treating this disease, even in advanced stages, and in some patients who may appear to be hormone refractory.
  • Njar et al. disclosed a series of potent CYP17 inhibitors/antiandrogens, the 17-benzoazoles, 17-pyrimidinoazoles and 17-diazines in Published International Patent Application WO2006/093993 (University of Maryland). These compounds are potent inhibitors of human CYP17 enzyme, as well as potent antagonists of both wild type and mutant androgen receptors (AR).
  • Particularly-potent CYP17 inhibitors included 3- ⁇ -hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Compound 5), 17-(1H-benzimidazole-1-yl)androsta-4,16-diene-3-one (Compound 6), and 3- ⁇ -hydroxy-17-(5′-pyrimidyl)androsta-5,16-diene (Compound 15), with IC 50 values of 300, 915 and 500 nM, respectively.
  • Compounds 5, 6, and 15 were effective at competing with the binding of 3 H—R1881 (methyltrienolone, a stable synthetic androgen) to both the mutant LNCaP AR and the wild-type AR, with a 2.2- to 5-fold higher binding efficiency to the latter.
  • Compounds 5 and 6 were also shown to be potent pure AR antagonists, with cell-growth studies showing that Compounds 5 and 6 inhibit the growth of DHT-stimulated LNCaP and LAPC4 prostate cancer cells with IC 50 values in the low micromolar range (i.e., ⁇ 10 ⁇ M). Their inhibitory potencies were comparable to that of casodex, but remarkably superior to that of flutamide.
  • compound 5 When tested in vivo, compound 5 proved to be very effective at inhibiting the growth of androgen-dependent LAPC4 human prostate tumor xenograft, while compound 6 proved to be ineffective.
  • compound 5 and analogs may be used for the treatment of human prostate cancer, as well as breast cancer, ovarian cancer, and other urogenital cancers or other androgen-related conditions or diseases.
  • the invention contemplates a compound of Formula I:
  • the ABC ring structure is optionally substituted independently at each position and wherein hydrogen substituents on adjacent carbon atoms of the ABC ring structure are optionally removed and replaced by a pi-bond between the adjacent carbon atoms;
  • Y is Z-L-C( ⁇ O)O—
  • the invention contemplates a pharmaceutical composition comprising a therapeutically-effective amount of one or more compounds of the invention and one or more pharmaceutically-acceptable excipients, bulking agents, binders, flow agents, release agents, carriers or diluents.
  • the invention contemplates a method of treating a cancer or a urogenital disease in a subject in need or want thereof, the method comprising administering to the subject a therapeutically-effective amount of a compound of the invention.
  • the invention contemplates a method of treating a cancer or a urogenital disease in a subject in need or want thereof, the method comprising administering to the subject a therapeutically-effective amount of a compound of the invention, in combination with a hormone therapy, a chemotherapy, a radiation therapy, an immunotherapy, or surgery.
  • Alkyl is a C 1 -C 12 -straight, C 1 -C 12 -branched, or C 3 -C 12 -cyclic group, optionally substituted independently at each position with one or more of hydroxyl, methoxy, ethoxy, sulfhydryl, methylmercapto, ethylmercapto, fluorine, chlorine, bromine, iodine, aryl, and heteroaryl.
  • Aryl is a mono- or poly-cyclic aromatic system.
  • aryl include phenyl, naphthyl, indenyl, fluorenyl, phenathrenyl, and azulenyl.
  • Aryl is optionally substituted independently at each position with one or more of hydroxyl, methoxy, ethoxy, sulfhydryl, methylmercapto, ethylmercapto, fluorine, chlorine, bromine, iodine, oxo, and heteroaryl.
  • aryl groups contain from five to ten ring atoms.
  • Heteroaryl is a mono- or poly-cyclic aromatic system comprising at least one aromatic ring with at least one ring heteroatom, wherein the heteroatom is nitrogen, oxygen, or sulfur. Heteroaryl is optionally substituted independently at each position with hydroxyl, methoxy, ethoxy, sulfhydryl, methylmercapto, ethylmercapto, fluorine, chlorine, bromine, iodine, oxo and aryl.
  • heteroaryl groups include furan, thiophene, pyrrole, pyrrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, triazole, thiadiazole, oxadiazole, pyridine, pyrimidine, pyrazine, pyridazine, triazine, indole, carbazole, benzofuran, benzothiphene, benzthiazole, indazole, quinoline, isoquinoline, cinnoline, and phthalazine.
  • heteroaryl groups contain from five to twelve ring atoms.
  • Alkylaryl is an alkyl group that is distally attached via an aryl group, for example, tolyl.
  • Aralkyl is an aryl group that is distally attached via an alkyl group, for example, benzyl.
  • Polyalkoxyl is polypropylene glycol) or poly(ethylene glycol), wherein the monomers are repeated 2-100 times, wherein such polyalkoxy groups may be defined by the precise range of repeating units (e.g., 35-40), by the targeted peak of envelope distribution in the repeating units (e.g., 114 from PEG5000), or by a selection for solubility or physical properties, and wherein such groups are optionally “capped” by an alkyl group (MPEG5000 for methoxy-PEG5000) or an aryl group, such as phenyl (polyalkoxylaryl).
  • an alkyl group MPEG5000 for methoxy-PEG5000
  • aryl group such as phenyl (polyalkoxylaryl).
  • the instant invention contemplates the use of prodrugs, (modified versions or precursors of a parent compound, designed to enhance delivery properties and be converted to the parent compound in the body in a predictable, consistent manner) to improve oral bioavailability and pharmacokinetics of effective therapeutic agents.
  • the invention provides prodrugs of steroidal C-17 heterocycles, and methods of synthesizing and using the same to treat urogenital and/or androgen-related cancers, diseases and conditions.
  • a prodrug of the invention comprises a prodrug group at the 3-carbon on the “A” ring of the compound.
  • the prodrug group comprises an ester linkage.
  • the prodrug group is attached to the A-ring by the ester linkage.
  • the prodrug group comprises a charged group.
  • a charged group is a group that is charged under normal physiological conditions. Non-limiting examples of a charged group include trialkylammonium groups, quaternary ammonium groups, sulfonic acids, phosphonic acids, fluoroalkanols; or acidic hydroxyl groups.
  • an acidic hydroxyl group is made acidic by the resonance and/or inductive effect of a nearby electron-withdrawing group. In some embodiments, an acidic hydroxyl group is made acidic by the resonance and/or inductive effect of a nearby electron-withdrawing group, wherein the acidic hydroxyl group is more acidic than an analogous hydroxyl group lacking the nearby electron-withdrawing group. In some embodiments, the acidic hydroxyl group is more acidic than water. In some embodiments, the acidic hydroxyl group is phenolic. In some embodiments, the acidic hydroxyl group has a substantial negative charge in water. In some embodiments, the acidic hydroxyl group exists substantially as an alkoxide in water.
  • the acidic hydroxyl group has a substantial negative charge in physiological fluids. In some embodiments, the acidic hydroxyl group has a substantial negative charge under normal physiological conditions. In some embodiments, the acidic hydroxyl group exists substantially as an alkoxide under normal physiological conditions. In some embodiments, normal physiological conditions are conditions inherent in a living organism.
  • the charged group is connected to the ester linkage by a linking group.
  • the linking group is C 1 -C 12 -alkyl, fluoro-C 2 -C 6 -alkyl, aryl, arylalkyl, alkylaryl, alkoxyalkyl, polyalkoxyalkyl, or heteroaryl.
  • the linking group is cyclic.
  • the linking group together with the charged group forms a ring.
  • the linking group is optionally substituted with one or more of alkyl, aryl, heteroaryl, aralkyl, alkylaryl, halogen, hydroxyl, alkoxy, alkylamino, and mercaptan.
  • the prodrug group is a quaternary ammonium species, for example, betaine, carnitine, and cocamidopropylbetaine (CAPB).
  • the prodrug group is an oxycarbonylalkylphosphonate; an oxycarbonylalkylsulfonate; or a phenolic carboxylate, such as syringic acid or gallic acid, or a pharmaceutically-acceptable salt of any such compound.
  • the invention also contemplates synthetic analogs of these compounds.
  • the synthetic analog has improved bioavailability.
  • the synthetic analog has improved pharmacokinetics.
  • the prodrug group fragments in vivo to provide a drug.
  • a prodrug fragments under a set of physiological conditions In some embodiments, the set of physiological conditions that fragment a prodrug is general. In some embodiments, the set physiological conditions that fragment a prodrug is specific to the identity of the prodrug. In some embodiments, the set of physiological conditions comprises pH. In some embodiments, the set of physiological conditions comprises temperature. In some embodiments, the set of physiological conditions comprises metabolism. In some embodiments, the set of physiological conditions comprises hydrolysis. In some embodiments, the set of physiological conditions comprises catalysis. In some embodiments, the set of physiological conditions comprises enzyme activity. In some embodiments, the set of physiological conditions comprises oxidation or reduction.
  • the optional substitution for the ABC ring structure includes one or more of: C 1 -C 6 -alkyl; halogenated C 1 -C 6 -alkyl; C 1 -C 6 -alkenyl; halogenated C 1 -C 6 -alkenyl; halogen; amino; aminoalkylene; hydroxyimino; and hydroxy.
  • an alkenyl group is bonded to the ABC ring structure by an sp 3 carbon of the alkenyl group.
  • an alkenyl group is bonded to the ABC ring structure by an sp 2 carbon of the alkenyl group.
  • hydrogen substituents on adjacent carbon atoms of the ABC ring structure are removed and replaced by a pi-bond between the adjacent carbon atoms.
  • the pyridine, pyrazine, pyrimidine, pyridazine, benzimidazole, benzotriazole, pyrimidinoimidazole, or pyrimidinotriazole functionalities attached to the D ring are optionally substituted with one or more of halogen, amino, aminoalkylene, hydroxy, —SH, —S—C 1 -C 6 -alkyl, C 1 -C 6 -alkyl and halogenated C 1 -C 6 -alkyl.
  • the pyridine, pyrazine, pyrimidine, pyridazine, benzimidazole, benzotriazole, pyrimidinoimidazole, and pyrimidinotriazole groups are, respectively:
  • the C ring substitution consists of the C13 methyl group.
  • the compound is one of the following:
  • the prodrug of this invention includes a pharmaceutically-acceptable prodrug group.
  • the prodrug group is attached to the drug via one or more bonds that are labile under normal physiological conditions.
  • the prodrug group provides improved oral bioavailability and pharmacokinetics over the drug.
  • the prodrug group is incorporated at the Y position of a compound of Formula I.
  • the compound of Formula I is:
  • R 1 is H, alkyl, alkylaryl, mercaptoalkyl, hydroxyalkyl, arylalkyl, alkylamino, aminoalkyl, alkylcarboxyl, carboxyalkyl, alkylamido, amidoalkyl, or other group derived from natural or unnatural amino acids;
  • R is independently at each occurrence C 1 -C 5 -alkyl, hydroxyalkyl, phenyl, pyridyl, benzyl or alkoxyalkyl, wherein each R group may or may not be joined to another R group to form a ring; and n is from 1-50, or a stereoisomer or pharmaceutically-acceptable salt thereof. In some embodiments, a value for n is selected for improved pharmacokinetic properties.
  • the compound of Formula I is:
  • the substitution of the prodrug group is modified to adjust the pKa of the prodrug. In some embodiments, the substitution of the prodrug group is modified to adjust the pKa of the prodrug such that the prodrug exists in a charged state at the desired point of adsorption, distribution, metabolism and/or excretion.
  • the compound of Formula I is:
  • the substitution of the prodrug group is modified to adjust the pKa of the prodrug. In some embodiments, the substitution of the prodrug group is modified to adjust the pKa of the prodrug such that the prodrug exists in a charged state at the desired point of adsorption, distribution, metabolism and/or excretion.
  • the compound of Formula I is:
  • n is from 0 to 50.
  • a value of n is chosen such that the pKa of the fluoroalkanol is within physiological range.
  • the compound of Formula I is:
  • n is from 0 to 50.
  • a value of n is chosen such that the pKa of the fluoroalkanol is within physiological range.
  • compositions of the invention are generated, for example, by treating the compounds of the invention with an acid, a hemi-acid, or a salt to afford the corresponding salt form.
  • Non-limiting examples of pharmaceutically-acceptable salts include chlorides, bromides, iodides, phosphates, sulfates, carbonates, bicarbonates, formates, acetates, propionates, benzoates, picolinates, fumarates, maleates, malates, succinates, methanesulfonates, toluenesulfonates, mesitylenesulfonates, trifluoromethanesulfonates, tetrafluoroborates, tetraphenylborates, and hexafluorophosphates.
  • the 17-diazine groups of Compounds 14 and 15 exhibit different influences on the chemical shifts of the corresponding 16-olefinic protons with respect to that of the precursor ⁇ 16 -17-iodide 13: the 16-H in Compound 14 appearing as a singlet at ⁇ 6.77, being significantly deshielded compared to the 16-H in Compound 13 ( ⁇ 6.14); and the 16-H in Compound 15 appearing at ⁇ 6.11, similar to Compound 13.
  • Compound 15 has been reported previously by Haidar et at (Haidar, S. et al., Arch. Pharm. Med. Chem., 2001, 334, 373-374) and its biological and pharmacological activities have also been described (Haidar, S. et al., J. Steroid Biochem. Molec. Biol., 2003, 84, 555-562).
  • Abiraterone may be prepared as described in the literature (Potter, G. A. et al., J. Med. Chem ., op. cit.).
  • compositions comprising a pharmaceutically-acceptable carrier and one or more of the compounds disclosed herein.
  • Suitable pharmaceutically-acceptable carriers include, for example, vehicles, adjuvants, excipients, and diluents.
  • the present invention also provides methods of treating urogenital and/or androgen-related cancers, diseases and/or conditions, including, without limitation, breast cancer, prostate cancer (e.g., prostatic adenocarcinoma), other urogenital cancers, prostate hyperplasia (BPH), and/or other androgen-related diseases and/or conditions, by administering to a subject in need or want thereof a therapeutically-effective amount of a compound of the present invention.
  • breast cancer e.g., prostatic adenocarcinoma
  • BPH prostate hyperplasia
  • the treatment may be prophylactic (referring to any degree of inhibition of the onset of a cellular disorder, including complete inhibition, such as in a subject expected to soon exhibit the cellular disorder) or therapeutic (referring to any degree of inhibition or any degree of beneficial effects on the disorder or condition in the subject (e.g., human), (e.g., inhibition of the growth or metastasis of a tumor or circulating tumor cells).
  • Maintenance therapy in which continued suppression of symptoms or progression of disease is achieved by continued administration of the compound, is also contemplated by this invention.
  • prostate diseases that can be treated include, e.g., prostatic hyperplasia (BPH), and prostate cancer (e.g., prostatic adenocarcinoma).
  • Non-limiting examples of cancer symptoms include: tumors, persistent cough, bloody saliva, changes in bowel habits, bloody stool, anemia, lumps including lumps of the breast or testicle, bodily discharges, changes in urinary habits, pain or burning upon urination, prostate enlargement, bloody urine, swollen glands, warts, moles, genital bleeding, involuntary weight gain or loss, persistent itching, persistent skin discoloration, non-healing sores, headaches, pain or discomfort such as in the back or pelvis, cramps such as abdominal cramps, weakness, and loss of appetite.
  • a mammal such as a rat, rabbit, dog or human
  • Methods of administering a compound of the present invention to a subject are known in the art.
  • a mammal such as a rat, rabbit, dog or human
  • a particular route can provide a more immediate and more effective result than another route.
  • a pharmaceutical composition is formulated for oral administration.
  • the composition comprises a suspension of a compound in a suitable vehicle.
  • vehicles for oral administration include phosphate-buffered saline (PBS), 5% dextrose in water (D5W), 1% carboxymethyl cellulose (CMC) and a syrup.
  • a composition is formulated to stabilize the consistency of a dose over a period of storage and administration.
  • the composition comprises a solution.
  • a solution comprises an effective amount of one or more compounds dissolved in a diluent.
  • diluents include water, saline, and buffers.
  • the composition comprises a solid dosage form.
  • the solid dosage form comprises a capsule, a caplet, a lozenge, a sachet, or a tablet.
  • the solid dosage form is a liquid-filled dosage form.
  • the solid dosage form is a solid-filled dosage form.
  • the solid dosage form is a solid-filled tablet, capsule, or caplet.
  • the solid-filled dosage form is a powder-filled dosage form.
  • the solid dosage form comprises a compound in the form of micronized particles, solids or granules.
  • the composition comprises an emulsion.
  • the emulsion comprises a compound of the invention characterized by surfactant properties.
  • the solid dosage form comprises one or more of lactose, sorbitol, maltitol, mannitol, cornstarch, potato starch, microcrystalline cellulose, hydroxypropyl cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, pharmaceutically-acceptable excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, carriers, and binders.
  • the solid dosage form comprises one or more materials that facilitate manufacturing, processing or stability of the solid dosage form.
  • a lozenge comprises a flavoring agent.
  • Non-limiting examples of excipients useful in the present invention include sucrose, gum acacia, gum tragacanth, a pastille, an inert base, a gelatin, glycerin, a sucrose emulsion, an acacia emulsion, and a gel.
  • a solid dosage form is coated.
  • the coating improves absorption of the compound in the gastrointestinal tract.
  • Non-limiting examples of coatings include cellulose acetate phthalate (CAP), polyvinyl acetate phthalate (CVAP), and modified coatings thereof.
  • the composition is formulated as an aerosol.
  • the aerosol is administered via inhalation.
  • the aerosol comprises one or more propellants.
  • propellants include dichlorodifluoromethane, hydrofluorocarbon (such as HFC 134a and/or 227), and nitrogen.
  • a compound is administered by a route that is oral, parenteral, enteral, intraperitoneal, topical, transdermal, ophthalmic, nasal, local, non-oral, aerosol, spray, inhalation, subcutaneous, intravenous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, or intrathecal.
  • a dose is administered by a route that is oral, parenteral, enteral, intraperitoneal, topical, transdermal, ophthalmic, nasal, local, non-oral, aerosol, spray, inhalation, subcutaneous, intravenous, intramuscular, buccal, sublingual, rectal, vaginal, intra-arterial, or intrathecal.
  • the compound is administered as a suspension in PBS, D5W, or a carbohydrate-based syrup.
  • the dose is administered as a suspension in PBS, D5W, or a carbohydrate-based syrup.
  • a dose administered to a subject is an effective dose.
  • the effective dose provides a therapeutic response in the subject within a therapeutically-useful time frame.
  • the effective dose comprises a therapeutically-effective amount of a compound.
  • the therapeutically-effective amount provides a therapeutic response in the subject within a therapeutically-useful time frame.
  • the specific dose level and frequency of dosage are influenced by a variety of factors, including the activity, metabolic stability, bioavailability, rate of excretion, biological half-life, and mode and time of administration of the compound; the age, body weight, health condition, gender, diet, and physical and health characteristics of the subject; and the severity of the cancer or other disease or condition.
  • a dose comprises an effective amount of a compound.
  • a dose is administered once a day. In some embodiments, a dose is administered more than once a day. In some embodiments, a dose is greater than about 1 mg/day. In some embodiments, a dose is greater than about 5 mg/day. In some embodiments, a dose is greater than about 10 mg/day. In some embodiments, a dose is greater than about 25 mg/day. In some embodiments, a dose is greater than about 50 mg/day. In some embodiments, a dose is greater than about 100 mg/day. In some embodiments, a dose is less than about 5000 mg/day.
  • a dose is less than about 4000 mg/day. In some embodiments, a dose is less than about 3000 mg/day. In some embodiments, a dose is less than about 2500 mg/day. In some embodiments, a dose is less than about 2000 mg/day. In some embodiments, a dose is less than about 1500 mg/day. In some embodiments, a dose is less than about 1000 mg/day. In some embodiments, a dose is less than about 500 mg/day. In some embodiments, a dose is from about 500 mg to about 1200 mg per day. In some embodiments, a dose is from about 500 mg to about 1500 mg per day. In some embodiments, a dose is from about 1 mg to about 5000 mg per day.
  • a dose is from about 5 mg to about 4000 mg per day. In some embodiments, a dose is from about 10 mg to about 3000 mg per day. In some embodiments, a dose is from about 25 mg to about 2000 mg per day. In some embodiments, a dose is from about 50 mg to about 2500 mg per day. In some embodiments, a dose is from about 100 mg to about 2000 mg per day. In some embodiments, a dose is from about 100 mg to about 1000 mg per day. In some embodiments, a dose is from about 100 mg to about 500 mg per day.
  • a dose is about 0.01 to about 100 mg/kg of subject body mass per day. In some embodiments, a dose is about 0.05 to about 50 mg/kg of subject body mass per day. In some embodiments, a dose is about 0.1 to about 40 mg/kg of subject body mass per day. In some embodiments, a dose is about 0.25 to about 30 mg/kg of subject body mass per day. In some embodiments, a dose is about 0.5 to about 20 mg/kg of subject body mass per day. In some embodiments, a dose is about 0.75 to about 15 mg/kg of subject body mass per day. In some embodiments, a dose is about 1 to about 10 mg/kg of subject body mass per day. In some embodiments, a dose is about 2 to about 5 mg/kg of subject body mass per day.
  • a composition has a concentration of greater than about 0.01% of the compound by mass. In some embodiments, a composition has a concentration of greater than about 0.025% of the compound by mass. In some embodiments, a composition has a concentration of greater than about 0.05% of the compound by mass. In some embodiments, a composition has a concentration of greater than about 0.075% of the compound by mass. In some embodiments, a composition has a concentration of greater than about 0.1% of the compound by mass. In some embodiments, a composition has a concentration of less than about 25% of the compound by mass. In some embodiments, a composition has a concentration of less than about 20% of the compound by mass.
  • a composition has a concentration of less than about 15% of the compound by mass. In some embodiments, a composition has a concentration of less than about 10% of the compound by mass. In some embodiments, a composition has a concentration of less than about 7.5% of the compound by mass. In some embodiments, a composition has a concentration of less than about 5% of the compound by mass. In some embodiments, a composition has a concentration of less than about 3% of the compound by mass. In some embodiments, a composition has a concentration of about 0.01% to about 25% of the compound by mass. In some embodiments, a composition has a concentration of about 0.025% to about 20% of the compound by mass.
  • a composition has a concentration of about 0.05% to about 15% of the compound by mass. In some embodiments, a composition has a concentration of about 0.02% to about 5% of the compound by mass. In some embodiments, a composition has a concentration of about 0.1% to about 3% of the compound by mass. In some embodiments, a composition has a concentration of about 10% to about 80% of the compound by mass.
  • a compound of the invention is administered alone.
  • a compound is administered with one or more other ingredient(s), for example, a pharmaceutically-acceptable excipient, carrier or diluent.
  • a compound is used in combination with other cancer treatments.
  • the compounds of this invention are used as a part of or in combination with known cancer treatments, for example, hormone therapy, chemotherapy, radiation therapy, immunotherapy, and/or surgery.
  • one or more compounds are used in combination with one or more additional agents.
  • the additional agent is a drug.
  • the additional agent is a hormone.
  • Non-limiting examples of drugs and/or hormones for use in combination with the prodrugs of this invention include anti-androgens such as flutamide and nilutamide; another CYP17 inhibitor, such as abiraterone; luteinizing hormone-releasing hormone agonists, such as leuprolide, goserelin and buserelin; and drugs that prevent the adrenal glands from making androgens, such as ketoconazole and aminoglutethimide; and estrogens.
  • anti-androgens such as flutamide and nilutamide
  • another CYP17 inhibitor such as abiraterone
  • luteinizing hormone-releasing hormone agonists such as leuprolide, goserelin and buserelin
  • drugs that prevent the adrenal glands from making androgens such as ketoconazole and aminoglutethimide
  • estrogens such as ketoconazole and aminoglutethimide
  • Non-limiting examples of cancer drugs include cyclophosphamide, methotrexate, 5-fluorouracil (5-FU), doxorubicin, carboplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide, dacarbazine, ifosfamide, mechlorethamin, melphalan, procarbazine, bleomycin, doxorubicin, idarubicin mitoxantrone, chlorodeoxyadenosine, cytarabine, fludarabine, 6-mercaptopurine, methotrexate, 6-thioguanine, pentostatin, etoposide, gemcitabine, steroid creams, corticosteroids, prednisone, and dexamethasone.
  • 5-FU 5-fluorouracil
  • doxorubicin carboplatin
  • carmustine chlorambucil
  • cisplatin cyclopho
  • Compounds of this invention may be administered to a subject at any time, as determined by the treating physician.
  • the compound is administered during one or more of Stage II, Stage III, and Stage IV of the cancer.
  • the compound is administered during an advanced stage of a urogenital and/or androgen-related disease or condition.
  • the invention provides compound of Formula I:
  • the ABC ring structure is optionally substituted independently at each position and wherein hydrogen substituents on adjacent carbon atoms of the ABC ring structure are optionally removed and replaced by a pi-bond between the adjacent carbon atoms;
  • Y is Z-L-C( ⁇ O)O—
  • X is optionally substituted with one or more of halogen, amino, aminoalkylene, hydroxy, —SH, —S—C 1 -C 6 -alkyl, C 1 -C 6 -alkyl and halogenated C 1 -C 6 -alkyl.
  • the pyridine, pyrazine, pyrimidine, pyridazine, benzimidazole, benzotriazole, pyrimidinoimidazole, and pyrimidinotriazole groups are, respectively:
  • each * indicates a point of attachment to the C17 position.
  • the ABC ring structure is optionally substituted with one or more of C 1 -C 6 -alkyl, halogenated C 1 -C 6 -alkyl, C 1 -C 6 -alkenyl, halogenated C 1 -C 6 -alkenyl, halogen, amino, aminoalkylene, hydroxyimino, and hydroxyl.
  • Z is a quaternary ammonium group, wherein the quaternary ammonium group is trimethyl ammonium, triethyl ammonium, triphenyl ammonium, benzyldimethyl ammonium, benzyldiethyl ammonium, N-methylpiperidinium, N-ethylpiperidinium, or tribenzyl ammonium.
  • Z is a sulfonic acid
  • L is C 1 -C 6 -alkyl
  • Z is a phosphonic acid
  • L is C 1 -C 6 -alkyl
  • the compound is:
  • the compound is:
  • R is C 1 -C 6 -alkyl, aryl, heteroaryl, arylalkyl, or alkylaryl;
  • R 1 is C 1 -C 8 -alkyl, aryl, aralkyl, alkylaryl, or alkylheteroaryl; and
  • n is from 1 to 49.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically-effective amount of one or more compounds of the invention and one or more pharmaceutically-acceptable excipients, bulking agents, binders, flow agents, release agents, carriers or diluents.
  • the composition is an oral dosage form.
  • the oral dosage form is a tablet, a caplet, a capsule or a liquid suspension.
  • the amount of the compound is less than about 1000 mg. In some embodiments, the amount of the compound is less than about 2000 mg.
  • the amount of the compound is from about 100 mg to about 500 mg. In some embodiments, the amount of the compound is from about 500 mg to about 1500 mg.
  • the compound is:
  • R is C 1 -C 6 -alkyl, aryl, heteroaryl, arylalkyl, or alkylaryl; and R 1 is C 1 -C 8 -alkyl, aryl, aralkyl, alkylaryl, or alkylheteroaryl; and n is from 1 to 49.
  • the invention provides a method of treating a cancer or a urogenital disease in a subject in need or want thereof, the method comprising administering to the subject a therapeutically-effective amount of a compound of the invention.
  • the cancer is a urogenital and/or androgen-related cancer.
  • the cancer or urogenital disease is prostate cancer, breast cancer, ovarian cancer, other urogenital cancer, or prostate hyperplasia.
  • the method further comprises administering to the subject a therapeutically-effective amount of one or more of an anti-androgen, a CYP17 inhibitor, a luteinizing hormone-releasing hormone agonist, a drug for preventing androgen production, an estrogen, and a chemotherapy drug.
  • the amount is less than about 1000 mg. In some embodiments, the amount is less than about 2000 mg.
  • the amount is from about 100 to about 500 mg. In some embodiments, the amount is from about 500 to about 1500 mg.
  • the compound is:
  • R is C 1 -C 6 -alkyl, aryl, heteroaryl, arylalkyl, or alkylaryl; and R 1 is C 1 -C 8 -alkyl, aryl, aralkyl, alkylaryl, or alkylheteroaryl; and n is from 1 to 49.
  • the invention provides a method of treating a cancer or a urogenital disease in a subject in need or want thereof, the method comprising administering to the subject a therapeutically-effective amount of a compound of the invention, in combination with a hormone therapy, a chemotherapy, a radiation therapy, an immunotherapy, or surgery.
  • the cancer comprises a urogenital and/or androgen-related cancer.
  • the cancer or urogenital disease is prostate cancer, breast cancer, ovarian cancer, other urogenital cancer, or prostate hyperplasia.
  • the amount is less than about 1000 mg. In some embodiments, the amount is less than about 2000 mg.
  • the amount is from about 100 to about 500 mg. In some embodiments, the amount is from about 500 to about 1500 mg.
  • the compound is:
  • R is C 1 -C 6 -alkyl, aryl, heteroaryl, arylalkyl, or alkylaryl; and R 1 is C 1 -C 8 -alkyl, aryl, aralkyl, alkylaryl, or alkylheteroaryl; and n is from 1 to 49.
  • the above prepared bromoester (1.5 mmol, 743 mg) is dissolved in acetone (10 mL) and trimethylamine (2.5 mmol, 148 mg, 2324) is added. The mixture is stirred until the steroid starting material is shown to be exhausted by TLC, then concentrated in vacuo, and the residue is purified by reversed-phase HPLC to afford pure trimethylammonium acetate of abiraterone.
  • the reaction mixture is concentrated in vacuo, and the residue is taken up into ethyl acetate (50 mL).
  • the organic layer is washed (1N, HCl, 5% sat'd aq NaHCO 3 ), dried (brine, MgSO 4 ), and concentrated in vacuo, with the residue being distilled in vacuo to afford purified methyl R-3,4-dihydroxybutyrate, or the residue may be used directly in the following step.
  • the protected acid is used in the preparation of an abiraterone prodrug.
  • the bis-silyl protected ester (0.5 mmol, 358 mg) is dissolved in THF (5 mL) and a solution of TBAF (1.0M in THF, 1.1 mL) is added. The solution is stirred for 2.5 hours, and is poured into water (10 mL). The aqueous phase is extracted with EtOAc (3 ⁇ 20 mL) and the combined organics are dried (brine, MgSO 4 ) and concentrated in vacuo, with the residue being purified by flash column chromatography (silica, EtOAc/hexanes elution) to afford the desired dihydroxy ester.
  • the crude toluenesulfonate ester from the preceding step is dissolved in toluene (50 mL) and stirred, while trimethylamine (0.8 mmol, 47 mg, 744) is added.
  • the resultant mixture is heated for three hours, or until exhaustion of the toluenesulfonate ester is indicated by HPLC or TLC analysis.
  • the resultant mixture is filtered and the solids washed with toluene.
  • the R-3-hydroxy-4-trimethylammoniumbutyrate ester of abiraterone is purified via reversed-phase HPLC.
  • the above prepared ester is dissolved in THF (8 mL) and TBAF is added as a THF solution (1M, 6 mL, 6 mmol) and the resultant solution is stirred for two hours at room temperature.
  • the mixture is poured into half-saturated aqueous sodium chloride and extracted with dichloromethane (2 ⁇ 100 mL).
  • the combined organics are washed (1 ⁇ 1N HCl, 1 ⁇ water), dried (brine, MgSO 4 ), and concentrated in vacuo to afford the crude gallic ester, which is purified by flash column chromatography (silica gel, CHCl 3 —MeOH) to afford the pure desired material.
  • the above-prepared ester is dissolved in THF (8 mL) and TBAF is added as a THF solution (1M, 6 mL, 6 mmol) and the resultant solution is stirred for two hours at room temperature.
  • the mixture is poured into half-saturated aqueous sodium chloride and extracted with dichloromethane (2 ⁇ 100 mL).
  • the combined organics are washed (1 ⁇ 1N HCl, 1 ⁇ water), dried (brine, MgSO 4 ), and concentrated in vacuo to obtain the crude gallic ester, which is purified by flash column chromatography (silica gel, CHCl 3 -MeOH) to afford the pure desired material.
US13/146,004 2009-02-05 2010-02-05 Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens Abandoned US20110312916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/146,004 US20110312916A1 (en) 2009-02-05 2010-02-05 Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15003109P 2009-02-05 2009-02-05
US13/146,004 US20110312916A1 (en) 2009-02-05 2010-02-05 Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens
PCT/US2010/023391 WO2010091306A1 (fr) 2009-02-05 2010-02-05 Nouveaux promédicaments à base d'inhibiteurs cyp17 stéroïdiens/anti-androgènes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/023391 A-371-Of-International WO2010091306A1 (fr) 2009-02-05 2010-02-05 Nouveaux promédicaments à base d'inhibiteurs cyp17 stéroïdiens/anti-androgènes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/328,378 Continuation US9359395B2 (en) 2009-02-05 2014-07-10 Prodrugs of steroidal CYP17 inhibitors/antiandrogens

Publications (1)

Publication Number Publication Date
US20110312916A1 true US20110312916A1 (en) 2011-12-22

Family

ID=42115803

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/146,004 Abandoned US20110312916A1 (en) 2009-02-05 2010-02-05 Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens
US14/328,378 Expired - Fee Related US9359395B2 (en) 2009-02-05 2014-07-10 Prodrugs of steroidal CYP17 inhibitors/antiandrogens

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/328,378 Expired - Fee Related US9359395B2 (en) 2009-02-05 2014-07-10 Prodrugs of steroidal CYP17 inhibitors/antiandrogens

Country Status (9)

Country Link
US (2) US20110312916A1 (fr)
EP (2) EP3023433A1 (fr)
JP (2) JP2012516900A (fr)
CN (1) CN102686600A (fr)
AU (1) AU2010210422A1 (fr)
BR (1) BRPI1008745A2 (fr)
CA (1) CA2761389A1 (fr)
ES (1) ES2552087T3 (fr)
WO (1) WO2010091306A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110160170A1 (en) * 2008-04-14 2011-06-30 Njar Vincent C Compositions and methods of inducing endoplasmic reticulum stress response
WO2013096907A1 (fr) * 2011-12-22 2013-06-27 Tokai Pharmaceuticals, Inc. Méthodes et compositions pour la polythérapie à l'aide d'inhibiteurs de p13k/mtor
WO2014102833A3 (fr) * 2012-12-31 2015-03-26 Hetero Research Foundation Procédé de préparation d'acétate d'abiratérone
US9359395B2 (en) 2009-02-05 2016-06-07 Tokai Pharmaceuticals, Inc. Prodrugs of steroidal CYP17 inhibitors/antiandrogens
US9387216B2 (en) 2013-08-12 2016-07-12 Tokai Pharmaceuticals, Inc. Biomarkers for treatment of neoplastic disorders using androgen-targeted therapies
US9439912B2 (en) 2013-03-14 2016-09-13 University Of Maryland, Baltimore Androgen receptor down-regulating agents and uses thereof
US10098896B2 (en) 2005-03-02 2018-10-16 University Of Maryland Baltimore C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens, in vitro biological activities, pharmacokinetics and antitumor activity
US10792292B2 (en) 2019-03-06 2020-10-06 Propella Therapeutics, Inc. Abiraterone prodrugs
US11957696B2 (en) 2021-02-15 2024-04-16 Propella Therapeutics, Inc. Abiraterone prodrugs

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012959A1 (fr) * 2011-07-18 2013-01-24 Tokai Pharmaceuticals, Inc. Nouvelles compositions et procédés de traitement du cancer de la prostate
DE102011083725A1 (de) 2011-09-29 2013-04-04 Bayer Pharma AG Estra-1,3,5(10),16-tetraen-3-carboxamid-Derivate, Verfahren zu ihrer Herstellung, pharmazeutische Präparate die diese enthalten, sowie deren Verwendung zur Herstellung von Arzneimitteln
AU2013205648B2 (en) * 2011-11-30 2015-02-05 Astrazeneca Ab Combination treatment
CA2856646C (fr) * 2011-11-30 2020-01-14 Astrazeneca Ab Traitement combine du cancer
US20150337003A1 (en) * 2013-01-18 2015-11-26 Cortendo Ab (Publ) Abiraterone and analogs thereof for the treatment of diseases associated with cortisol overproduction
KR20150118153A (ko) 2013-02-21 2015-10-21 바이엘 파마 악티엔게젤샤프트 17.베타.-히드록시스테로이드 데히드로게나제 (akr1 c3)의 억제를 위한 에스트라-1,3,5(10),16-테트라엔-3-카르복스아미드
WO2014165815A2 (fr) * 2013-04-04 2014-10-09 University Of Maryland, Baltimore Composés non-stéroïdiens et stéroïdiens puissants en termes de régulation à la baisse du récepteur des androgènes et d'activité contre le cancer de la prostate
CN104017045B (zh) * 2014-06-23 2016-01-13 广州艾格生物科技有限公司 甾体cyp17抑制剂的新型药物前体及其应用、制备方法
TWI641616B (zh) * 2014-11-28 2018-11-21 四川海思科製藥有限公司 阿比特龍衍生物及其製備方法和醫藥用途
CN107188922B (zh) * 2016-03-14 2019-12-20 四川海思科制药有限公司 一种阿比特龙衍生物的盐及其制备方法和医药用途
CN107188921A (zh) * 2016-03-15 2017-09-22 四川海思科制药有限公司 阿比特龙衍生物的制备方法及其新固态形式和用途
CN107365343A (zh) * 2016-05-12 2017-11-21 四川海思科制药有限公司 一种苯并咪唑雄甾衍生物及其制备方法和医药用途
WO2017208132A1 (fr) * 2016-06-01 2017-12-07 Industriale Chimica S.R.L. Procédé de préparation de galétérone
ITUA20164043A1 (it) * 2016-06-01 2017-12-01 Ind Chimica Srl Processo per la preparazione di 3β-idrossi-17-(1H-benzimidazol-1-il)androsta-5,16-diene
CN106220705A (zh) * 2016-07-25 2016-12-14 厦门市瑞思医药科技有限公司 一种2’‑(n,n,n‑三甲基氯化铵基)乙酸阿比特龙酯的合成方法
CN109846826A (zh) * 2019-01-25 2019-06-07 湖南华腾制药有限公司 醋酸阿比特龙柔性脂质体及其制备方法
WO2021100019A1 (fr) 2019-11-22 2021-05-27 Suven Life Sciences Limited Promédicaments d'abiratérone
WO2022122042A1 (fr) * 2020-12-12 2022-06-16 上海喀露蓝科技有限公司 Dérivé d'abiratérone et son procédé de préparation

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2664423A (en) 1952-03-12 1953-12-29 Searle & Co 4-(cyclopentanopolyhydrophenanthr-17-yl) imidazoles and derivatives thereof
US3060174A (en) * 1960-01-14 1962-10-23 Ciba Geigy Corp Esters of the androstane series and process for their manufacture
GB972672A (en) * 1960-01-14 1964-10-14 Ciba Ltd Pharmaceutical preparations containing compounds of the androstane series
US3317520A (en) 1965-03-05 1967-05-02 Sterling Drug Inc Steroido[20, 21-c]pyrazoles and intermediates
US3313809A (en) 1965-03-05 1967-04-11 Sterling Drug Inc Steroido[21, 20-d]isoxazoles
DE1493169A1 (de) * 1965-09-03 1969-06-04 Schering Ag Verfahren zur Herstellung von 5 beta-Bisnorcholanderivaten
US3480621A (en) 1967-01-17 1969-11-25 Phytogen Prod Inc Steroid ketal
CH621803A5 (fr) 1974-08-08 1981-02-27 Siphar Sa
JPS563000Y2 (fr) 1976-07-27 1981-01-23
JPS563000A (en) * 1979-06-20 1981-01-13 Green Cross Corp:The Water-soluble cholesterol derivative
US4316885A (en) 1980-08-25 1982-02-23 Ayerst, Mckenna And Harrison, Inc. Acyl derivatives of rapamycin
US4469689A (en) * 1983-03-30 1984-09-04 The Upjohn Company Sulfonate containing ester prodrugs of corticosteroids
US4650803A (en) 1985-12-06 1987-03-17 University Of Kansas Prodrugs of rapamycin
US5232917A (en) 1987-08-25 1993-08-03 University Of Southern California Methods, compositions, and compounds for allosteric modulation of the GABA receptor by members of the androstane and pregnane series
IT1216687B (it) 1988-04-01 1990-03-08 Boehringer Biochemia Srl Complessi di platino (ii), loro preparazione e impiego come antitumorali.
US5028726A (en) 1990-02-07 1991-07-02 The University Of Vermont And State Agricultural College Platinum amine sulfoxide complexes
US6011020A (en) 1990-06-11 2000-01-04 Nexstar Pharmaceuticals, Inc. Nucleic acid ligand complexes
US5567588A (en) 1990-06-11 1996-10-22 University Research Corporation Systematic evolution of ligands by exponential enrichment: Solution SELEX
US5270163A (en) 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
US5660985A (en) 1990-06-11 1997-08-26 Nexstar Pharmaceuticals, Inc. High affinity nucleic acid ligands containing modified nucleotides
US5496938A (en) 1990-06-11 1996-03-05 Nexstar Pharmaceuticals, Inc. Nucleic acid ligands to HIV-RT and HIV-1 rev
US5683867A (en) 1990-06-11 1997-11-04 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: blended SELEX
US5637459A (en) 1990-06-11 1997-06-10 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chimeric selex
CA2084987C (fr) 1990-06-11 2007-02-13 Larry Gold Ligands d'acide nucleique
US5707796A (en) 1990-06-11 1998-01-13 Nexstar Pharmaceuticals, Inc. Method for selecting nucleic acids on the basis of structure
US5300294A (en) 1990-06-27 1994-04-05 Smithkline Beecham Corporation Method of treating prostatic adenocarcinoma
US5385936A (en) 1990-07-12 1995-01-31 The United States Of America As Represented By The Secretary Of The Department Of The Health And Human Services Gossypol acetic acid for the treatment of cancer
US5023264A (en) 1990-07-16 1991-06-11 American Home Products Corporation Rapamycin oximes
AU637247B2 (en) 1990-08-01 1993-05-20 Merrell Dow Pharmaceuticals Inc. 4-amino-delta4-steroids and their use as 5alpha-reductase inhibitors
US5023263A (en) 1990-08-09 1991-06-11 American Home Products Corporation 42-oxorapamycin
US5221670A (en) 1990-09-19 1993-06-22 American Home Products Corporation Rapamycin esters
PT98990A (pt) 1990-09-19 1992-08-31 American Home Prod Processo para a preparacao de esteres de acidos carboxilicos de rapamicina
US5233036A (en) 1990-10-16 1993-08-03 American Home Products Corporation Rapamycin alkoxyesters
US5120842A (en) 1991-04-01 1992-06-09 American Home Products Corporation Silyl ethers of rapamycin
US5100883A (en) 1991-04-08 1992-03-31 American Home Products Corporation Fluorinated esters of rapamycin
EP0580860B2 (fr) 1991-04-16 2004-12-15 Nippon Shinyaku Company, Limited Procede de production d'une dispersion solide
US5118678A (en) 1991-04-17 1992-06-02 American Home Products Corporation Carbamates of rapamycin
US5118677A (en) 1991-05-20 1992-06-02 American Home Products Corporation Amide esters of rapamycin
US5162333A (en) 1991-09-11 1992-11-10 American Home Products Corporation Aminodiesters of rapamycin
US5151413A (en) 1991-11-06 1992-09-29 American Home Products Corporation Rapamycin acetals as immunosuppressant and antifungal agents
GB9125660D0 (en) 1991-12-03 1992-01-29 Smithkline Beecham Plc Novel compound
US5264427A (en) 1992-01-29 1993-11-23 Research Corporation Technologies, Inc. 20-substituted pregnene derivatives and their use as androgen synthesis inhibitors
US5177203A (en) 1992-03-05 1993-01-05 American Home Products Corporation Rapamycin 42-sulfonates and 42-(N-carboalkoxy) sulfamates useful as immunosuppressive agents
JP2742331B2 (ja) * 1992-03-31 1998-04-22 ブリテイツシユ・テクノロジー・グループ・リミテツド 癌治療に有用な17位置換ステロイド
US5604213A (en) 1992-03-31 1997-02-18 British Technology Group Limited 17-substituted steroids useful in cancer treatment
US5237064A (en) 1992-05-20 1993-08-17 Merck & Co., Inc. Process for producing 7β-substituted-aza-5αandrostan-3-ones
CA2135055A1 (fr) 1992-05-20 1993-11-25 Bruce E. Witzel Inhibiteurs de la 4-azasteroide-5-alpha-reductase
ZA935111B (en) 1992-07-17 1994-02-04 Smithkline Beecham Corp Rapamycin derivatives
ZA935112B (en) 1992-07-17 1994-02-08 Smithkline Beecham Corp Rapamycin derivatives
US5256790A (en) 1992-08-13 1993-10-26 American Home Products Corporation 27-hydroxyrapamycin and derivatives thereof
DE4232681C2 (de) 1992-09-29 1994-11-24 Sigma Tau Ind Farmaceuti 17-Phenyl- und 17-Furyl-14beta,5alpha-androstan- und androsten- Derivate, Verfahren zu deren Herstellung und diese enthaltende pharmazeutische Zusammensetzung
GB9221220D0 (en) 1992-10-09 1992-11-25 Sandoz Ag Organic componds
US5434260A (en) 1992-10-13 1995-07-18 American Home Products Corporation Carbamates of rapamycin
US5480989A (en) 1992-10-13 1996-01-02 American Home Products Corporation Carbamates of rapamycin
US5411967A (en) 1992-10-13 1995-05-02 American Home Products Corporation Carbamates of rapamycin
US5302584A (en) 1992-10-13 1994-04-12 American Home Products Corporation Carbamates of rapamycin
US5489680A (en) 1992-10-13 1996-02-06 American Home Products Corporation Carbamates of rapamycin
US5480988A (en) 1992-10-13 1996-01-02 American Home Products Corporation Carbamates of rapamycin
US5262423A (en) 1992-10-29 1993-11-16 American Home Products Corporation Rapamycin arylcarbonyl and alkoxycarbonyl carbamates as immunosuppressive and antifungal agents
US5258389A (en) 1992-11-09 1993-11-02 Merck & Co., Inc. O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
US5260300A (en) 1992-11-19 1993-11-09 American Home Products Corporation Rapamycin carbonate esters as immuno-suppressant agents
US5504091A (en) 1993-04-23 1996-04-02 American Home Products Corporation Biotin esters of rapamycin
JPH08509617A (ja) 1993-04-30 1996-10-15 パシフィック・ノースウエスト・リサーチ・ファウンデーション 細胞酸化還元電位と癌危険性とのインジケータとしてのdnaプロフィル
US5391730A (en) 1993-10-08 1995-02-21 American Home Products Corporation Phosphorylcarbamates of rapamycin and oxime derivatives thereof
US5378836A (en) 1993-10-08 1995-01-03 American Home Products Corporation Rapamycin oximes and hydrazones
US5373014A (en) 1993-10-08 1994-12-13 American Home Products Corporation Rapamycin oximes
EP0729471A1 (fr) 1993-11-19 1996-09-04 Abbott Laboratories Analogues semi-synthetiques de rapamycine (macrolides) utilises comme immunomodulateurs
US5385908A (en) 1993-11-22 1995-01-31 American Home Products Corporation Hindered esters of rapamycin
US5385910A (en) 1993-11-22 1995-01-31 American Home Products Corporation Gem-distributed esters of rapamycin
US5385909A (en) 1993-11-22 1995-01-31 American Home Products Corporation Heterocyclic esters of rapamycin
CN1046944C (zh) 1993-12-17 1999-12-01 山道士有限公司 雷怕霉素类衍生物
US5637310A (en) 1993-12-20 1997-06-10 Smithkline Beecham Corporation Method of treating prostatic adenocarcinoma
US5389639A (en) 1993-12-29 1995-02-14 American Home Products Company Amino alkanoic esters of rapamycin
IL112778A0 (en) 1994-03-04 1995-05-26 Merck & Co Inc Substituted heterocycles, their preparation and pharmaceutical compositions containing them
US5362718A (en) 1994-04-18 1994-11-08 American Home Products Corporation Rapamycin hydroxyesters
US5463048A (en) 1994-06-14 1995-10-31 American Home Products Corporation Rapamycin amidino carbamates
US5491231A (en) 1994-11-28 1996-02-13 American Home Products Corporation Hindered N-oxide esters of rapamycin
US5563145A (en) 1994-12-07 1996-10-08 American Home Products Corporation Rapamycin 42-oximes and hydroxylamines
AU712193B2 (en) 1995-06-09 1999-10-28 Novartis Ag Rapamycin derivatives
JPH11513684A (ja) 1995-10-19 1999-11-24 メルク エンド カンパニー インコーポレーテッド 16−置換−6−アザ−ステロイド5α−レダクターゼ阻害剤
US5780462A (en) 1995-12-27 1998-07-14 American Home Products Corporation Water soluble rapamycin esters
US6258823B1 (en) 1996-07-12 2001-07-10 Ariad Pharmaceuticals, Inc. Materials and method for treating or preventing pathogenic fungal infection
US6368598B1 (en) 1996-09-16 2002-04-09 Jcrt Radiation Oncology Support Services, Inc. Drug complex for treatment of metastatic prostate cancer
US5994334A (en) 1997-02-05 1999-11-30 University Of Maryland Androgen synthesis inhibitors
DK0901786T3 (da) 1997-08-11 2007-10-08 Pfizer Prod Inc Faste farmaceutiske dispersioner med foröget biotilgængelighed
US5994335A (en) 1997-10-17 1999-11-30 The University Of Maryland, Baltimore 17-azolyl steroids useful as androgen synthesis inhibitors
US20030059471A1 (en) 1997-12-15 2003-03-27 Compton Bruce Jon Oral delivery formulation
JP4427900B2 (ja) 1998-04-10 2010-03-10 三菱化学株式会社 シアル酸誘導体を含む固体分散体
US6465445B1 (en) * 1998-06-11 2002-10-15 Endorecherche, Inc. Medical uses of a selective estrogen receptor modulator in combination with sex steroid precursors
ES2306646T3 (es) 1999-02-09 2008-11-16 Pfizer Products Inc. Composiciones de farmacos basicos con biodisponibilidad incrementada.
DE60010098T2 (de) 1999-08-24 2005-03-31 Ariad Gene Therapeutics, Inc., Cambridge 28-epirapaloge
DE60037455T2 (de) 1999-09-17 2008-11-27 Abbott Gmbh & Co. Kg Kinaseinhibitoren als arzneimittel
DK1955700T3 (da) 1999-09-30 2011-05-23 Harbor Biosciences Inc Terapeutisk behandling af androgenreceptor-betingede lidelser
JP2003518485A (ja) 1999-12-23 2003-06-10 ファイザー・プロダクツ・インク 向上された薬物濃度を与える医薬組成物
UA80393C2 (uk) 2000-12-07 2007-09-25 Алтана Фарма Аг Фармацевтична композиція, яка містить інгібітор фде 4, диспергований в матриці
WO2002083139A1 (fr) 2001-04-10 2002-10-24 Merck & Co., Inc. Inhibiteurs de l'activite d'akt
WO2002083675A2 (fr) 2001-04-10 2002-10-24 Merck Sharp & Dohme Limited Inhibiteurs de l'activite de l'akt
EP1269994A3 (fr) 2001-06-22 2003-02-12 Pfizer Products Inc. Compositions Pharmaceutiques comprenant un médicament et un polymère permettant d'améliorer la concentration du médicament
US20030054053A1 (en) 2001-09-20 2003-03-20 Charles Young Methods and compositions for inhibiting the proliferation of prostate cancer cells
JP4436674B2 (ja) 2001-10-12 2010-03-24 ジョンズ ホプキンス ユニバーシティ 1α,25−ジヒドロキシビタミンD3の低カルシウム血症性オキシム類似体
SE0103424D0 (sv) 2001-10-15 2001-10-15 Astrazeneca Ab Pharmaceutical formulation
US20070015713A1 (en) 2005-07-14 2007-01-18 Voyager Pharmaceutical Corporation Methods for treating prostate cancer
MXPA04007433A (es) 2002-02-01 2004-10-11 Pfizer Prod Inc Procedimiento para preparar dispersiones solidas amorfas homogeneas de farmaco secadas por pulverizacion utilizando un dispositivo de secado por pulverizacion modificado.
JP2005523260A (ja) 2002-02-01 2005-08-04 ファイザー・プロダクツ・インク 圧力ノズルを用いた均質噴霧乾燥固体非晶質薬剤分散体の製造方法
JP4394960B2 (ja) 2002-04-08 2010-01-06 メルク エンド カムパニー インコーポレーテッド Akt活性阻害薬
US20050130977A1 (en) 2002-04-08 2005-06-16 Lindsley Craig W. Inhibitors of akt activity
DE60329188D1 (de) 2002-08-12 2009-10-22 Bend Res Inc Arzneizubereitungen bestehend aus arzneimitteln in halb-geordneter form und polymeren
AU2003270087B2 (en) 2002-09-03 2009-04-23 Georgetown University Akt inhibitors, pharmaceutical compositions, and uses thereof
US6933312B2 (en) 2002-10-07 2005-08-23 Agouron Pharmaceuticals, Inc. Pyrazole derivatives
US7399764B2 (en) 2002-10-30 2008-07-15 Merck & Co., Inc. Inhibitors of Akt activity
TW200500360A (en) 2003-03-01 2005-01-01 Astrazeneca Ab Hydroxymethyl compounds
EP1622616B1 (fr) 2003-04-24 2011-06-15 Merck Sharp & Dohme Corp. Inhibiteurs de l'activite akt
AU2004233835B2 (en) 2003-04-24 2010-02-25 Merck Sharp & Dohme Corp. Inhibitors of Akt activity
DE602004026047D1 (de) 2003-04-24 2010-04-29 Merck Sharp & Dohme Hemmer der akt aktivität
AU2004233827B2 (en) 2003-04-24 2009-05-28 Merck Sharp & Dohme Corp. Inhibitors of Akt activity
US7439268B2 (en) * 2003-07-18 2008-10-21 Idexx Laboratories Compositions containing prodrugs of florfenicol and methods of use
US20070036747A1 (en) 2003-07-29 2007-02-15 Dompe S.P.A. Pharmaceutical combination useful for stem cell mobilization
CA2535944A1 (fr) 2003-08-22 2005-03-03 University Of Virginia Patent Foundation Blocus de mtor permettant d'empecher une reponse adaptative hormonale
US7605120B2 (en) 2003-10-22 2009-10-20 Amgen Inc. Antagonists of the brandykinin B1 receptor
EP1687309A1 (fr) 2003-11-17 2006-08-09 Pfizer Products Inc. Composés de pyrrolopyrimidine utiles dans le traitement du cancer
WO2005085227A1 (fr) 2004-03-02 2005-09-15 Smithkline Beecham Corporation Inhibiteurs de l'activite de la proteine kinase b (akt)
EP1740556A1 (fr) * 2004-03-26 2007-01-10 Rigel Pharmaceuticals, Inc. Composes antiviraux heterocycliques comportant des groupes fonctionnels metabolisables et leurs utilisations
WO2005098446A2 (fr) 2004-03-31 2005-10-20 The Johns Hopkins University Biomarqueurs du cancer des ovaires
BRPI0509745A (pt) 2004-04-08 2007-09-25 Topotarget As compostos de difenil ox-indol-2-ona e seu uso no tratamento de cáncer
ATE499364T1 (de) 2004-04-09 2011-03-15 Merck Sharp & Dohme Hemmer der akt aktivität
WO2005100356A1 (fr) 2004-04-09 2005-10-27 Merck & Co., Inc. Inhibiteurs de l'activite d'akt
US7604947B2 (en) 2004-06-09 2009-10-20 Cornell Research Foundation, Inc. Detection and modulation of cancer stem cells
US20060013873A1 (en) 2004-07-16 2006-01-19 Chih-Chiang Yang Bioadhesive dosage form of steroids
US7544677B2 (en) 2004-08-23 2009-06-09 Merck & Co., Inc. Inhibitors of Akt activity
EP1812406B1 (fr) 2004-09-30 2018-09-12 Janssen Pharmaceutica N.V. Modulateurs selectifs du recepteur d'androgene a base de derives benzimidazoliques
CA2597456A1 (fr) 2005-02-14 2006-08-31 Merck & Co., Inc. Inhibiteurs d'activite d'akt
CN103349664A (zh) * 2005-03-02 2013-10-16 马里兰州立大学巴尔的摩分校 含甾族的c-17苯并吡咯的组合物
JP2008535915A (ja) 2005-04-12 2008-09-04 メルク エンド カムパニー インコーポレーテッド Akt活性の阻害剤
NZ563423A (en) 2005-06-10 2010-05-28 Merck Sharp & Dohme Inhibitors of AKT activity
CN101310185A (zh) 2005-09-19 2008-11-19 约翰·霍普金斯大学 ***癌的生物标记
JP5335432B2 (ja) 2005-11-17 2013-11-06 オーエスアイ・フアーマシユーテイカルズ・エル・エル・シー 縮合2環系mTOR阻害剤
AR057960A1 (es) 2005-12-02 2007-12-26 Osi Pharm Inc Inhibidores de proteina quinasa biciclicos
US7659274B2 (en) 2006-01-25 2010-02-09 Osi Pharmaceuticals, Inc. Unsaturated mTOR inhibitors
US7943732B2 (en) 2006-06-05 2011-05-17 Intrexon Corporation AKT ligands and polynucleotides encoding AKT ligands
MY147628A (en) 2006-07-06 2012-12-31 Array Biopharma Inc Cyclopenta [d] pyrimidines as akt protein kinase inhibitors
US20080051380A1 (en) 2006-08-25 2008-02-28 Auerbach Alan H Methods and compositions for treating cancer
JP2010502640A (ja) 2006-08-30 2010-01-28 ノバルティス アクチエンゲゼルシャフト mTORシグナル伝達を調節する組成物および方法
EP2084267B1 (fr) 2006-09-26 2018-04-11 Cedars-Sinai Medical Center Vaccins comprenant des antigenes de cellules souches cancereuses et procedes
DE602007008470D1 (en) 2006-10-17 2010-09-23 Bend Res Inc Off
AR064010A1 (es) 2006-12-06 2009-03-04 Merck & Co Inc Inhibidores de la actividad de la akt
WO2008070823A2 (fr) 2006-12-07 2008-06-12 University Of South Florida Inhibiteur d'akt mimant le substrat
WO2008076918A2 (fr) 2006-12-15 2008-06-26 University Of Maryland, Baltimore Agents anti-cancer et composé inhibant l'activité androgène
US7807393B2 (en) 2007-01-29 2010-10-05 Northwestern University Biomarkers for prostate cancer
UY30892A1 (es) 2007-02-07 2008-09-02 Smithkline Beckman Corp Inhibidores de la actividad akt
DK2481409T3 (en) 2007-03-07 2018-08-06 Abraxis Bioscience Llc Nanoparticle comprising rapamycin and albumin as anticancer agent
WO2008154382A1 (fr) 2007-06-06 2008-12-18 University Of Maryland, Baltimore Inhibiteurs de hdac et médicaments ciblant une hormone pour le traitement du cancer
CA2726734C (fr) 2007-06-06 2014-10-07 University Of Maryland, Baltimore Utilisation de l'inhibiteur d'hdac ms-275 et d'inhibiteurs de l'aromatase pour le traitement du cancer
WO2009003136A1 (fr) 2007-06-26 2008-12-31 Rigel Pharmaceuticals, Inc. Pyrimidine-2,4-diamines substituées destinées au traitement de troubles de prolifération cellulaire
US20090047252A1 (en) 2007-06-29 2009-02-19 Gilead Sciences, Inc. Antiviral compounds
ES2403284T3 (es) 2008-01-09 2013-05-17 Array Biopharma, Inc. Pirimidil ciclopentanos como inhibidores de la proteína quinasa AKT
GB2470873A (en) 2008-03-12 2010-12-08 Univ Maryland Androgen receptor inactivation contributes to antitumor efficacy of CYP17 inhibitors in prostrate cancer
US20100048912A1 (en) 2008-03-14 2010-02-25 Angela Brodie Novel C-17-Heteroaryl Steroidal CYP17 Inhibitors/Antiandrogens, In Vitro Biological Activities, Pharmacokinetics and Antitumor Activity
US20110118219A1 (en) 2008-03-25 2011-05-19 University Of Maryland, Baltimore Novel prodrugs of c-17-heteroaryl steroidal cyp17 inhibitors/antiandrogens: synthesis, in vitro biological activities, pharmacokinetics and antitumor activity
WO2009129208A2 (fr) 2008-04-14 2009-10-22 University Of Maryland, Baltimore Compositions et procédés permettant d'induire une réponse au stress du réticulum endoplasmique
EP3062106B1 (fr) 2008-04-16 2020-11-11 The Johns Hopkins University Méthode pour déterminer androgènes recepteur variantes dans le cancer de la prostate
WO2010008847A2 (fr) 2008-06-24 2010-01-21 Takeda Pharmaceutical Company Limited Inhibiteurs de pi3k/m tor
WO2010089763A2 (fr) 2008-06-30 2010-08-12 Reliance Life Sciences Pvt. Ltd. Microparticules de poly(n-vinyle caprolactam-co-acrylamide) pour des applications de libération contrôlée
WO2010006072A2 (fr) 2008-07-08 2010-01-14 The Regents Of The University Of California Modulateurs de mtor et leurs utilisations
EP2318040A4 (fr) 2008-07-24 2013-05-01 Univ Central Florida Res Found Thérapie ciblant des cellules souches cancéreuses
US9075065B2 (en) 2008-09-12 2015-07-07 Dako Denmark A/S Prostate cancer biomarker
US8841422B2 (en) 2008-09-17 2014-09-23 University Of Maryland, Baltimore Human androgen receptor alternative splice variants
US8133724B2 (en) 2008-09-17 2012-03-13 University Of Maryland, Baltimore Human androgen receptor alternative splice variants as biomarkers and therapeutic targets
EP2349275B1 (fr) 2008-10-31 2017-03-08 Novartis AG Combinaison d'un inhibiteur de la phosphoinositide 3-kinase (pi3k) et de la mtor.
CN101607985B (zh) 2008-12-24 2013-03-27 中国科学院生物物理研究所 抗人cea的单克隆抗体,包含其的组合物,及其用途
US8791095B2 (en) 2009-02-05 2014-07-29 Tokai Pharmaceuticals, Inc. Steroidal CYP17 inhibitors/antiandrogens
US20110312916A1 (en) 2009-02-05 2011-12-22 Tokai Pharmaceuticals, Inc. Novel prodrugs of steroidal cyp17 inhibitors/antiandrogens
WO2010091299A2 (fr) 2009-02-05 2010-08-12 Tokai Pharmaceuticals Nouvelles polythérapies contre le cancer
US8168652B2 (en) 2009-03-12 2012-05-01 Merck Sharp & Dohme Corp. Inhibitors of AKT activity
WO2010111132A2 (fr) 2009-03-27 2010-09-30 Bend Research, Inc. Procédé de séchage par pulvérisation
WO2011017534A2 (fr) 2009-08-07 2011-02-10 Tokai Pharmaceuticals, Inc. Traitement du cancer de la prostate
AU2010319697B2 (en) 2009-11-13 2016-05-19 Tokai Pharmaceuticals, Inc. Mammalian metabolites of steroids
CA2791244A1 (fr) 2010-03-08 2011-09-15 Regents Of The University Of Minnesota Isoformes du recepteur aux androgenes et procedes associes
WO2011116344A2 (fr) 2010-03-18 2011-09-22 The Uab Research Foundation Ciblage de cellules souches cancéreuses
US20120028972A1 (en) 2010-07-30 2012-02-02 Lilly Wong Biomarker assays for detecting or measuring inhibition of tor kinase activity
US9594086B2 (en) 2011-03-22 2017-03-14 The Johns Hopkins University Biomarkers for aggressive prostate cancer
WO2013012959A1 (fr) 2011-07-18 2013-01-24 Tokai Pharmaceuticals, Inc. Nouvelles compositions et procédés de traitement du cancer de la prostate
CA2856646C (fr) 2011-11-30 2020-01-14 Astrazeneca Ab Traitement combine du cancer
AU2012358219A1 (en) 2011-12-22 2014-07-10 Tokai Pharmaceuticals, Inc. Methods and compositions for combination therapy using P13K/mTOR inhibitors

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10098896B2 (en) 2005-03-02 2018-10-16 University Of Maryland Baltimore C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens, in vitro biological activities, pharmacokinetics and antitumor activity
US20110160170A1 (en) * 2008-04-14 2011-06-30 Njar Vincent C Compositions and methods of inducing endoplasmic reticulum stress response
US8785423B2 (en) 2008-04-14 2014-07-22 University Of Maryland, Baltimore Compositions and methods of inducing endoplasmic reticulum stress response for the treatment of cell proliferative diseases
US9359395B2 (en) 2009-02-05 2016-06-07 Tokai Pharmaceuticals, Inc. Prodrugs of steroidal CYP17 inhibitors/antiandrogens
WO2013096907A1 (fr) * 2011-12-22 2013-06-27 Tokai Pharmaceuticals, Inc. Méthodes et compositions pour la polythérapie à l'aide d'inhibiteurs de p13k/mtor
EP2938625B1 (fr) 2012-12-31 2018-02-21 Hetero Research Foundation Procédé de préparation d'acétate d'abiratérone
WO2014102833A3 (fr) * 2012-12-31 2015-03-26 Hetero Research Foundation Procédé de préparation d'acétate d'abiratérone
US9439912B2 (en) 2013-03-14 2016-09-13 University Of Maryland, Baltimore Androgen receptor down-regulating agents and uses thereof
US9884067B2 (en) 2013-03-14 2018-02-06 University Of Maryland, Baltimore Androgen receptor down-regulating agents and uses thereof
US9808472B2 (en) 2013-08-12 2017-11-07 Tokai Pharmaceuticals, Inc. Biomarkers for treatment of neoplastic disorders using androgen-targeted therapies
US9387216B2 (en) 2013-08-12 2016-07-12 Tokai Pharmaceuticals, Inc. Biomarkers for treatment of neoplastic disorders using androgen-targeted therapies
US10792292B2 (en) 2019-03-06 2020-10-06 Propella Therapeutics, Inc. Abiraterone prodrugs
US11559534B2 (en) 2019-03-06 2023-01-24 Propella Therapeutics, Inc. Abiraterone prodrugs
US11957696B2 (en) 2021-02-15 2024-04-16 Propella Therapeutics, Inc. Abiraterone prodrugs

Also Published As

Publication number Publication date
JP2012516900A (ja) 2012-07-26
JP2016034946A (ja) 2016-03-17
EP2393827B1 (fr) 2015-10-07
CA2761389A1 (fr) 2010-08-12
AU2010210422A8 (en) 2011-08-25
BRPI1008745A2 (pt) 2019-09-17
ES2552087T3 (es) 2015-11-25
EP3023433A1 (fr) 2016-05-25
US20140371181A1 (en) 2014-12-18
AU2010210422A1 (en) 2011-08-18
US9359395B2 (en) 2016-06-07
EP2393827A1 (fr) 2011-12-14
WO2010091306A1 (fr) 2010-08-12
CN102686600A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
US9359395B2 (en) Prodrugs of steroidal CYP17 inhibitors/antiandrogens
US9295679B2 (en) Prodrugs of C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activities, pharmacokinetics and antitumor activity
US7875599B2 (en) C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens, in vitro biological activities, pharmacokinetics and antitumor activity
US20150051179A1 (en) Novel steroidal cyp17 inhibitors/antiandrogens
US10098896B2 (en) C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens, in vitro biological activities, pharmacokinetics and antitumor activity
AU2018403404B2 (en) Compound and use thereof in medicine
WO2014207309A1 (fr) Dérivés d'estratriénthiazole thérapeutiquement actifs utilisés comme inhibiteurs de la 17β-hydroxystéroïde déshydrogénase de type 1
US20080306164A1 (en) New 2-substituted d-homo-estra-1,3,5(10)-trienes as inhibitors of 17beta-hydroxy steroid dehydrogenase type 1
WO2016102775A1 (fr) Promédicaments d'inhibiteurs de 17β-hsd1
CN114702544B (zh) 一种氨基甾体化合物及其制备方法和应用

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKAI PHARMACEUTICALS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CASEBIER, DAVID;REEL/FRAME:027033/0176

Effective date: 20110823

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION