TW201008355A - Hollow heating source - Google Patents

Hollow heating source Download PDF

Info

Publication number
TW201008355A
TW201008355A TW97129313A TW97129313A TW201008355A TW 201008355 A TW201008355 A TW 201008355A TW 97129313 A TW97129313 A TW 97129313A TW 97129313 A TW97129313 A TW 97129313A TW 201008355 A TW201008355 A TW 201008355A
Authority
TW
Taiwan
Prior art keywords
layer
hollow
heat source
disposed
heating layer
Prior art date
Application number
TW97129313A
Other languages
Chinese (zh)
Other versions
TWI462627B (en
Inventor
Ding Wang
Chang-Hong Liu
Shou-Shan Fan
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097129313A priority Critical patent/TWI462627B/en
Publication of TW201008355A publication Critical patent/TW201008355A/en
Application granted granted Critical
Publication of TWI462627B publication Critical patent/TWI462627B/en

Links

Abstract

The present invention relates to a hollow heating source. The hollow heating source includes a hollow substrate, a heating layer, and at least two electrodes. The heating layer is disposed on a surface of the hollow substrate. The two electrodes are electrically connected with the heating layer. The heating layer includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes. The carbon nanotubes are entangled with each other.

Description

201008355 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種空心熱源,尤其涉及一種基於奈米石山 管的空心熱源。 反 【先前技術】 熱源在人們的生產、生活、科研中起著重要的作用。 空心熱源係熱源的一種’其特點為空心熱源具有一空心、社 參 ❹ 構,將待加熱物體設置於該空心結構的空心中對物體進^ 加熱,故,空心熱源可對待加熱物體的各個部位同時加熱仃 加熱面廣、加熱均勻且效率較高。空心熱源已成功用於工 業領域、科研領域或生活領域等,如工廠管道、 熱爐或廚具電烤箱等。 至加 空心熱源的基本結構通常包括基底和設置在 =層,通過在電熱層中通人電流產生焦耳熱使電敎層的 1升局進而加熱物體。先前的空心熱源的電熱層通 :金屬絲,如鉻鎳合金絲、銅絲、鉬絲或鎢絲等通過: 的:式形J属然而,採用金屬絲作為電熱層具有: :,ΐ屬=效率低’輻射距離短’且輻射不均勻;ΐ …猎度較大,重量大,使用不便。 具有電熱層存在的問題,礙纖維因為其 研究的埶點t ,密度小等優點成為電熱層材料 . “…、。妷纖維作為電熱層時,通常以碳纖 式存在。所述錢維紙包括紙基材和雜亂分佈 6 201008355 中的瀝月基奴纖維。其中,紙基材包括纖維素纖維和樹脂 等的混合物’瀝青基碳纖維的直徑為3~6毫米,長度為5〜2〇 微米。 然而,採用碳纖維紙作為加熱層具有以下缺點:其一, -碳纖維紙厚度較大,一般為幾十微米,使空心熱源不易做 ^微型結構,無法應用於微型器件的加熱。其二,由於該 石反纖維紙中包含了紙基材,故該碳纖維紙的密度較大,重 量大,使得採用該碳纖維紙的空心熱源使用不便。其三, ❹由於該碳纖維紙中的瀝青基碳纖維雜亂分佈,故該碳纖維 紙的強度較小,柔性較差,容易破裂,限制了其應有範圍。 其四,碳纖維紙的電熱轉換效率較低,不利於節能環保。 有鑒於此,提供一種加熱效率高、強度韌性大、壽命 長成本較低、可應用於宏觀和微觀器件,實際應用性能 好的空心熱源實為必要。 【發明内容】 一種空心熱源,其包括:一空心基底;一加熱層, ❹該加熱層設置於空心基底的表面;以及至少兩個電極, 且所述至少兩個電極間隔設置於加熱層的表面,並分別 與該加熱層電連接,其中,所述之加熱層包括一奈米碳 管層,且該奈米碳管層包括複數個相互纏繞的奈米碳管。 相較於先前技術,所述之空心熱源具有以下優點: 其一’奈米碳管可方便地製成任意尺寸的奈米碳管層, 既可應用於宏觀領域也可應用於微觀領域。其二,奈米 碳管比碳纖維具有更小的密度,故,採用奈米碳管層的 空心熱源具有更輕的重量,使用方便。其三,奈米碳管 7 201008355 層的電熱轉換效率高,熱阻率低,故該空心熱源具有升 溫迅速、熱滯後小、熱交換速度快的特點。其四,所述 之奈米碳管層中的奈米碳管無序排列,具有很好的韌 • 性,可彎曲折疊成任意形狀而不破裂,故具有較長的使 - 用壽命。 【實施方式】 以下將結合附圖詳細說明本技術方案空心熱源。 請參閱圖1及圓2 ’本技術方案第一實施例提供一種 ❹空心熱源100 ’該空心熱源1〇〇包括一空心基底1〇2 ; 一 加熱層104’該加熱層1〇4設置於該空心基底ι〇2的内表 面;一反射層108,該反射層1〇8位於加熱層1〇4的週邊, 设置於該空心基底102的外表面;—第一電極HQ及一第 二電極112,第一電極110和第二電極112間隔設置於加 熱層104的表面,並分別與加熱層1〇4電連接;一絕緣 保護層106’該絕緣保護層106設置於加熱層1〇4的内表 面。 G 所述空心基底102的材料不限,用於支撐加熱層 104,可為硬性材料,如:陶瓷、玻璃、樹脂、石英、'塑 膠等。空心基底102亦可選擇柔性材料,如:樹脂、 膠、塑膠或柔性纖維等。當空心基底1〇2為柔性材料時, 該空心熱源100錢用時可根據需要變折成任意形狀。 所述空心基底102的形狀大小不限,其具有一空心結構 即可’可為管狀、球狀、長方體狀等,可為全封閉結;冓, 也可為半封閉結構,其具體可根據實際需要進行改變。 空心基底102的橫截面的形狀亦不限,可為圓形、弧形、 8 201008355 長方形等。本實施例中,空心基底1〇2為一空心陶究管, 其橫截面為一圓形。 所述加熱層104設置於空心基底1〇2的内表面,用於 •向空心基底的内部空間加熱。所述加熱層1〇4包括 '一奈米碳管層,該奈米碳管層本身具有一定的粘性,可 利用本身的粘性設置於空心基底1〇2的表面,也可通過 粘結劑設置於空心基底102的表面。所述之粘結劑為矽 膠。該奈米碳管層的長度、寬度和厚度不限,可根據實 ❹際需要選擇。本技術方案提供的奈米碳管層的長度為 1〜10厘米,寬度為1〜厘米,厚度為i微米〜2毫米。 可以理解,奈米碳管層的熱回應速度與其厚度有關。在 相同面積的情況下,奈米碳管層的厚度越大,熱回應速 度越慢,反之,奈米碳管層的厚度越小,熱回應速度越 快。 所述奈米碳管層包括相互纏繞的奈米碳管,請參閱 圖3。所述之奈米碳管之間通過凡德瓦爾力相互吸引、纏 ❹繞,形成網路狀結構。該奈米碳管層中,奈米碳管為均 勻分佈,無規則排列,使得該奈米碳管層呈各向同性; 奈米碳管相互纏繞,故該奈米碳管層具有很好的柔韌 性,可彎曲折疊成任意形狀而不破裂,請參閱圖4。該奈 米碳官層中的奈米碳管包括單壁奈米碳管、雙壁奈米碳 管及多壁奈米碳管中的-種或多種。所述單壁奈米碳管 的直徑為0.5奈米〜1〇奈米,雙壁奈米碳管的直徑為 奈米〜15奈米,多壁奈米碳管的直徑為15奈米〜奈米。 該奈米碳管的長度大於50微米。本實施例中,奈米不碳管 的長度優選為200〜900微米。 201008355 “山ί實施例中,加熱層104採用厚度為100微米的奈 米石反官層。該奈米碳管層的長度為5厘米,奈米碳管層 .的為3厘米。利用奈米碳管層本身的粘性,將該奈 米碳官層設置於空心基底1〇2的内表面。 所述第一電極110和第二電極112間隔設置且分別與 加熱層電連接,第一電極110和第二電極可設置在加 熱層104的同一表面上也可設置在加熱層1〇4的不同表 面上。所述第一電極110和第二電極112可通過奈米碳管 β層的枯性或導電枯結劑(圖未示)設置於該加熱層104的表 面上。導電粘結劑在實現第一電極110和第二電極 與奈米碳管層電接觸的同時,還可將第一電極110和第二 電極112更好地固定於奈米碳管層的表面上。通過該第一 電極no和第二電極112可對加熱層1〇4施加電壓。其 中’第^ 一電極11 〇和第—雷:iS 1 1 Ί -V Β日上 7弟一電極112之間相隔設置,以使採 用奈米碳管層的加熱層1G4通電發熱時接人—定的阻值 避免短路現象產生。優選地,第一電極11〇 #第二電極 層1〇4的表面。基底1〇2的兩端,並環繞設置於加熱 極U〇和第二電極112為導電薄膜、金屬 片或者金屬引線。該導電薄膜的材料可為金屬、 = =(=雷錄广氧化物(ΑΤ〇)、導電銀膠 '導 電聚“勿專。该導電薄膜可通過物理氣相沈積法、化學 軋相沈積法或其他方法形成於加熱層1〇4表面 片或者金屬引線的材料可為銅片或銘片等。該 通過導電粘結劑固定於加熱層1〇4表面。 所述第-電極110和第二電極112還可為一奈米碳管 201008355 結構。該奈米碳管結構設置於加熱層iQ4的 奈米碳管結構可通過其自身的籼 該 加熱層⑽的外表面二4= =佈的if性奈米碳管。具體地,該奈米碳管二 包括=有序奈米碳管薄膜或至少一奈米碳管長線。 設置於沿空心基底102長产二有未…膜分別 &iu2長度方向的兩端作為第一電極11() 二;:ί112。該兩個有序奈米碳管薄膜環繞於加熱層 104的外表面,並通過導電粘結劑與加熱層1〇4之間形成 電接觸。所料電粘結㈣選為銀膠。由於本實施例中 的加熱層104也採用奈米碳管層,故第一電極11〇和第二 電,112與加熱層1〇4之間具有較小的歐姆接觸電阻,可 提尚空心熱源1〇〇對電能的利用率。 所述反射層108用於反射加熱層1〇4所發出的熱量, 使其有效地對空心基底102内部空間加熱。反射層'〇8 位於加熱層1〇4週邊,本實施例中,反射層1〇8設置於 ❹空心基底102的外表面。反射層1〇8的材料為一白色絕 緣材料,如:金屬氧化物、金屬鹽或陶瓷等。反射層1〇8 通過濺射或塗敷的方法設置於空心基底1〇2的外表面。 本實施例中,反射層1〇8的材料優選為三氧化二鋁,其 厚度為100微米〜0.5毫米。該反射層ι〇8通過濺射的方 法沈積於該空心基底1 〇 2外表面。可以理解’該反射層 108為一可選擇結構’當空心熱源1〇〇未包括反射層時, 該空心熱源1〇〇也可用於對外加熱。 所述絕緣保護層106用來防止該空心熱源1〇〇在使用 時與外界形成電接觸,同時還可防止加熱層1〇4中的奈 11 201008355 米碳管層吸附外界雜質。本實施例中,絕緣保護層l〇6 設置於加熱層104的内表面。所述絕緣保護層1〇6的材 料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層 ‘ 106厚度不限,可根據實際情況選擇。優選地,該絕緣保 '護層106的厚度為〇·5〜2毫米。該絕緣保護層1〇6可通過 塗敷或減:射的方法形成於加熱層1〇4的表面。可以理解, 所述絕緣保護層106為一可選擇結構。 本實施例所提供的空心熱源1〇〇在應用時具體包括 ©以下步驟:提供一待加熱的物體;將待加熱的物體設置 於該空心熱源100的中心;將空心熱源1〇〇通過第一電 極110與第二電極112連接導線接入1伏_2〇伏的電源電 壓後,加熱功率為1瓦〜40瓦時,該空心熱源可輻射出波 長較長的電磁波。通過溫度測量儀紅外測溫儀ΑΖ8859測 量發現該空心熱源100的加熱層1〇4表面的溫度為5〇。〇 〜500°C,加熱待加熱物體。可見’該奈米碳管層具有較 高的電熱轉換效率。由於加熱層1〇4表面的熱量以熱輻 〇射的形式傳遞給待加熱物體,加熱效果不會因為待加熱 物體中各個部分因為距離空心熱源1〇〇的不同而產生較 大的不同,可實現對待加熱物體的均勻加熱。對於具有 黑體結構的物體來說,其所對應的溫度為2〇(rc 〜45(rc時 就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射 最穩定、效率最高,所產生的熱輻射熱量最大。 該空心熱源100在使用時,可將其與待加熱的物體表 面直接接觸或將其與被加熱的物體間隔設置,利用其熱輻 射即可進行加熱。該空心熱源100可廣泛應用於如工廠管 道、實驗室加熱爐或廚具電烤箱等。 12 201008355 本實施例中所提供的空心熱源100具有以下優點:其 一,加熱層104為一奈米竣管層,奈米碳管具有強的抗腐 蝕性,使其可在酸性環境中工作;其二,奈米碳管比同體 * 積的鋼強度高100倍,重量卻只有其1/6,故,採用奈米 - 竣管的空心熱源20具有更南的強度和更輕的重量;其二’ 所述之奈米碳管層中的奈米碳管無序排列,具有很好的韌 性,可彎曲折疊成任意形狀而不破裂,故具有較長的使用 壽命。 φ 請參見圖5及圖6,本技術方案第二實施例提供一種 空心熱源200,該空心熱源200包括一空心基底202 ; — 加熱層204,該加熱層204設置於該空心基底202的内表 面;一反射層208,該反射層208位於加熱層204的週邊; 一第一電極210及一第二電極212,第一電極210和第二 電極212間隔設置於加熱層204的表面,並分別與加熱 層204電連接;一絕緣保護層206,該絕緣保護層206設 置於加熱層104的内表面。第二實施例中所提供的空心 _熱源200與第一實施例所提供的空心熱源100的結構基 本相同,其區別在於反射層208設置於空心基底202與 加熱層204之間,位於加熱層104的外表面。所述空心 基底202、加熱層204、反射層208、第一電極210及第 二電極212的結構和材料與第一實施例相同。 請參見圖7及圖8,本技術支案第三實施例提供一種 空心熱源300,該空心熱源300包括一空心基底302 ; — 加熱層304 ; —反射層208 ; —第一電極210及一第二電 極212,第一電極210和第二電極212間隔設置於加熱層 204的表面,並分別與加熱層204電連接。第三實施例中 13 201008355 的空心熱源300和第一實施例中的空心熱源10〇的結構 基本相同,其區別在於,該加熱層304設置於該空心基 底202的外表面,該反射層208設置於加熱層304的外 表面’由於加熱層304設置於空心基底302和反射層208 • 之間,故’無需絕緣保護層,且加熱層304與反射層308 的位置不同。第三實施例中的所述空心基底302、加熱層 3〇4、反射層308的結構和材料與第一實施例相同。 综上所述’本發明確已符合發明專利之要件,遂依 ❹去出專利申請。惟’以上所述者僅為本發明之較佳實 施例’自不能以此限制本案之申請專利範圍。舉凡習知 本案技藝之人士援依本發明之精神所作之等效修飾或變 化’皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 _圖1為本技術方案第一實施例所提供的空心熱源的結 構示意圖。 ' ° 圖2為圖1的沿II-II線的剖面示意圖。 ® 圖3為本技術方案實施例的奈来碳管層的掃描電鏡照 〇 *、、、 圖4為本技術方案實施例的奈米碳管層的照片。 一圖5為本技術方案第二實施例所提供的空心熱源的結 構示意圖。 圖6為圖5的vi-νΐ線的剖面示意圖。 圖7為本技術方案第三實施例所提供的空心熱源的姓 構示意圖。 、° 圖8為圖7的沿VIII-VIII線的剖面示意圖。 14 201008355 【主要元件符號說明】 空心熱源 100, 200, 300 空心基底 102, 202, 302 加熱層 104, 204, 304 絕緣保護層 106, 206 反射層 108, 208, 308 第一電極 110. 210, 310 第二電極 112, 212, 312 φ 15201008355 IX. Description of the Invention: [Technical Field] The present invention relates to a hollow heat source, and more particularly to a hollow heat source based on a nanostone mountain tube. Anti [Prior Art] Heat sources play an important role in people's production, life, and research. A kind of hollow heat source heat source is characterized in that the hollow heat source has a hollow and a ginseng structure, and the object to be heated is placed in the hollow of the hollow structure to heat the object, so the hollow heat source can treat various parts of the object to be heated. At the same time, the heating surface is wide, the heating is uniform and the efficiency is high. Hollow heat sources have been successfully used in industrial, scientific or life areas such as factory pipes, hot furnaces or kitchen ovens. The basic structure of the hollow heat source usually includes a substrate and a layer disposed on the layer, and a Joule heat is generated in the electrothermal layer to cause the Joule heat to heat the object by 1 liter of the layer. The electrothermal layer of the previous hollow heat source: a wire, such as a chrome-nickel wire, a copper wire, a molybdenum wire or a tungsten wire, etc.: The formula J is, however, the wire is used as the electrothermal layer: :, genus = Low efficiency 'short radiation distance' and uneven radiation; ΐ ... large hunting, heavy weight, inconvenient to use. There is a problem of the existence of the electric heating layer, which hinders the fiber from being a material of the electrothermal layer because of the defects t of the research and the small density. "..., when the fiber is used as the electrothermal layer, it is usually in the form of carbon fiber. The paper contains paper. Substrate and messy distribution 6 201008355. The paper substrate comprises a mixture of cellulose fibers and resin. The pitch-based carbon fiber has a diameter of 3 to 6 mm and a length of 5 to 2 μm. The use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of the carbon fiber paper is large, generally several tens of micrometers, so that the hollow heat source is not easy to be used as a micro structure, and cannot be applied to the heating of the micro device. Second, because the stone The paper substrate is included in the anti-fibre paper, so the density and weight of the carbon fiber paper are large, which makes the hollow heat source using the carbon fiber paper inconvenient to use. Third, the pitch-based carbon fiber in the carbon fiber paper is disorderly distributed. The carbon fiber paper has small strength, poor flexibility, and is easy to be broken, which limits its proper range. Fourth, the heat conversion efficiency of carbon fiber paper is low, which is disadvantageous. In view of the above, it is necessary to provide a hollow heat source with high heating efficiency, high strength and toughness, low life and low cost, and can be applied to macroscopic and microscopic devices, and has good practical application performance. The method includes: a hollow substrate; a heating layer, the heating layer is disposed on a surface of the hollow substrate; and at least two electrodes, and the at least two electrodes are spaced apart from the surface of the heating layer, and respectively the heating layer An electrical connection, wherein the heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of intertwined carbon nanotubes. Compared to the prior art, the hollow heat source has the following advantages : The 'nano carbon tube can be easily fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic fields. Second, the carbon nanotubes have a smaller density than carbon fibers. Therefore, the hollow heat source using the carbon nanotube layer has a lighter weight and is convenient to use. Third, the carbon nanotube 7 201008355 layer has high electrothermal conversion efficiency and low thermal resistivity, so The hollow heat source has the characteristics of rapid temperature rise, small thermal hysteresis and fast heat exchange rate. Fourth, the carbon nanotubes in the carbon nanotube layer are disorderly arranged, have good toughness, and can be bent and folded into The air heat source of the present invention will be described in detail below with reference to the accompanying drawings. Please refer to FIG. 1 and the circle 2 'The first embodiment of the present technical solution provides a first embodiment. The hollow heat source 100' includes a hollow substrate 1〇2; a heating layer 104' is disposed on the inner surface of the hollow substrate ι2; a reflective layer 108, the reflective layer 1〇8 is located at the periphery of the heating layer 1〇4, and is disposed on the outer surface of the hollow substrate 102; the first electrode HQ and the second electrode 112, and the first electrode 110 and the second electrode 112 are spaced apart from the heating layer 104. The surface is electrically connected to the heating layer 1〇4, respectively; an insulating protective layer 106' is disposed on the inner surface of the heating layer 1〇4. G The material of the hollow substrate 102 is not limited, and is used to support the heating layer 104, and may be a hard material such as ceramic, glass, resin, quartz, 'plastic” or the like. The hollow substrate 102 can also be selected from flexible materials such as resins, glues, plastics or flexible fibers. When the hollow substrate 1〇2 is a flexible material, the hollow heat source 100 can be folded into any shape as needed. The shape and size of the hollow substrate 102 is not limited, and it has a hollow structure, which can be a tubular shape, a spherical shape, a rectangular parallelepiped shape, etc., and can be a fully closed structure; a crucible or a semi-closed structure, which can be specifically based on actual conditions. Need to change. The shape of the cross section of the hollow substrate 102 is also not limited, and may be circular, curved, 8 201008355 rectangular or the like. In this embodiment, the hollow substrate 1〇2 is a hollow ceramic tube having a circular cross section. The heating layer 104 is disposed on the inner surface of the hollow substrate 1 2 for heating to the inner space of the hollow substrate. The heating layer 1〇4 includes a 'carbon nanotube layer, which has a certain viscosity, can be disposed on the surface of the hollow substrate 1〇2 by its own viscosity, or can be set by an adhesive. On the surface of the hollow substrate 102. The binder is a silicone. The length, width and thickness of the carbon nanotube layer are not limited and can be selected according to actual needs. The carbon nanotube layer provided by the technical solution has a length of 1 to 10 cm, a width of 1 to cm, and a thickness of 1 micrometer to 2 mm. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the greater the thickness of the carbon nanotube layer, the slower the thermal response speed. Conversely, the smaller the thickness of the carbon nanotube layer, the faster the heat response. The carbon nanotube layer comprises intertwined carbon nanotubes, see Figure 3. The carbon nanotubes are attracted to each other by Van der Waals forces, and are entangled to form a network structure. In the carbon nanotube layer, the carbon nanotubes are uniformly distributed and randomly arranged, so that the carbon nanotube layer is isotropic; the carbon nanotubes are intertwined, so the carbon nanotube layer has a good Flexibility, bendable into any shape without breaking, see Figure 4. The carbon nanotubes in the carbon carbon layer include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 1 〇 nanometer, the double-walled carbon nanotube has a diameter of nanometer to 15 nm, and the multi-walled carbon nanotube has a diameter of 15 nm to nanometer. Meter. The length of the carbon nanotubes is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. 201008355 In the embodiment of the mountain, the heating layer 104 is made of a nanometer reverse layer having a thickness of 100 micrometers. The length of the carbon nanotube layer is 5 cm, and the thickness of the carbon nanotube layer is 3 cm. The carbon nanotube layer itself is disposed on the inner surface of the hollow substrate 1〇2. The first electrode 110 and the second electrode 112 are spaced apart and electrically connected to the heating layer, respectively, the first electrode 110 And the second electrode may be disposed on the same surface of the heating layer 104 or on different surfaces of the heating layer 1〇4. The first electrode 110 and the second electrode 112 may pass through the β layer of the carbon nanotube Or a conductive drying agent (not shown) is disposed on the surface of the heating layer 104. The conductive adhesive may also be in the first place while the first electrode 110 and the second electrode are in electrical contact with the carbon nanotube layer. The electrode 110 and the second electrode 112 are better fixed on the surface of the carbon nanotube layer. A voltage can be applied to the heating layer 1〇4 through the first electrode no and the second electrode 112. Wherein the 'the first electrode 11 〇 And the first - Lei: iS 1 1 Ί -V on the next day, 7 brothers and one electrode 112 are set apart to make When the heating layer 1G4 of the carbon nanotube layer is energized and heated, it is connected to a predetermined resistance value to avoid the occurrence of a short circuit phenomenon. Preferably, the surface of the first electrode 11〇# the second electrode layer 1〇4. And the surrounding electrode is disposed on the heating electrode U 〇 and the second electrode 112 is a conductive film, a metal piece or a metal lead. The material of the conductive film can be metal, = = (= ray recording wide oxide (ΑΤ〇), conductive silver The conductive film may be formed by a physical vapor deposition method, a chemical rolling phase deposition method or the like on the surface layer of the heating layer 1 or the metal lead may be a copper sheet or a slab. The first electrode 110 and the second electrode 112 may also be a carbon nanotube 201008355 structure. The carbon nanotube structure is disposed on the heating layer iQ4. The carbon nanotube structure can pass through its own outer surface of the heating layer (10), and the if carbon nanotubes of the outer layer of the heating layer (10). Specifically, the carbon nanotubes include: an ordered carbon nanotube film or at least A long carbon nanotube line. It is placed along the hollow substrate 102 to produce a long film. Both ends of the length direction of &iu2 are respectively used as the first electrode 11() 2;: ί 112. The two ordered carbon nanotube films surround the outer surface of the heating layer 104, and pass through the conductive adhesive and the heating layer 1 Electrical contact is formed between the crucibles 4. The electrical bonding (4) is selected as silver paste. Since the heating layer 104 in this embodiment also uses a carbon nanotube layer, the first electrode 11 and the second electric, 112 and heating The layer 1〇4 has a small ohmic contact resistance, which can improve the utilization of electric energy by the hollow heat source. The reflective layer 108 is used to reflect the heat generated by the heating layer 1〇4, so that it is effective The interior space of the hollow substrate 102 is heated. The reflective layer '〇8 is located on the periphery of the heating layer 1〇4. In the present embodiment, the reflective layer 1〇8 is disposed on the outer surface of the crucible hollow substrate 102. The material of the reflective layer 1〇8 is a white insulating material such as a metal oxide, a metal salt or a ceramic. The reflective layer 1〇8 is provided on the outer surface of the hollow substrate 1〇2 by sputtering or coating. In the present embodiment, the material of the reflective layer 1 8 is preferably aluminum oxide having a thickness of 100 μm to 0.5 mm. The reflective layer ι 8 is deposited on the outer surface of the hollow substrate 1 通过 2 by sputtering. It will be understood that the reflective layer 108 is an optional structure. When the hollow heat source 1 does not include a reflective layer, the hollow heat source 1 can also be used for external heating. The insulating protective layer 106 is used to prevent the hollow heat source 1 from making electrical contact with the outside during use, and also prevents the carbon nanotube layer in the heating layer 1〇4 from adsorbing external impurities. In this embodiment, the insulating protective layer 106 is disposed on the inner surface of the heating layer 104. The material of the insulating protective layer 1〇6 is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer ‘106 is not limited and can be selected according to actual conditions. Preferably, the insulating protective layer 106 has a thickness of 〇·5 to 2 mm. The insulating protective layer 1〇6 can be formed on the surface of the heating layer 1〇4 by coating or subtraction. It can be understood that the insulating protective layer 106 is an optional structure. The hollow heat source 1 provided in this embodiment specifically includes the following steps: providing an object to be heated; placing an object to be heated at a center of the hollow heat source 100; passing the hollow heat source 1 through the first After the electrode 110 and the second electrode 112 are connected to the power supply voltage of 1 volt and 2 volts, the heating power is 1 watt to 40 watts, and the hollow heat source can radiate electromagnetic waves having a long wavelength. The temperature of the surface of the heating layer 1〇4 of the hollow heat source 100 was found to be 5 通过 by a temperature measuring instrument infrared thermometer ΑΖ8859. 〜 ~500 ° C, heat the object to be heated. It can be seen that the carbon nanotube layer has a higher electrothermal conversion efficiency. Since the heat of the surface of the heating layer 1〇4 is transmitted to the object to be heated in the form of heat radiation, the heating effect is not caused by the difference in the parts of the object to be heated because of the difference from the hollow heat source 1〇〇. Achieve uniform heating of the object to be heated. For an object with a black body structure, the corresponding temperature is 2 〇 (rc ~ 45 (the rc can emit heat radiation (infrared) that is invisible to the human eye, at which time the heat radiation is the most stable and efficient, resulting in The heat of the heat radiation is the largest. When the hollow heat source 100 is in use, it can be directly contacted with the surface of the object to be heated or spaced from the object to be heated, and can be heated by the heat radiation. The hollow heat source 100 can be heated. Widely used in factory pipes, laboratory heating furnaces or kitchen electric ovens, etc. 12 201008355 The hollow heat source 100 provided in this embodiment has the following advantages: First, the heating layer 104 is a nano tube layer, nano carbon The tube has strong corrosion resistance, so that it can work in an acidic environment. Second, the carbon nanotubes are 100 times stronger than the steel of the same body, and the weight is only 1/6, so the use of nano- The hollow heat source 20 of the manifold has a more souther strength and a lighter weight; the carbon nanotubes in the second carbon nanotube layer are disorderly arranged, have good toughness, and can be bent and folded into any shape. Without breaking, so Having a longer service life. φ Referring to FIG. 5 and FIG. 6, the second embodiment of the present technical solution provides a hollow heat source 200, which includes a hollow substrate 202, a heating layer 204, and the heating layer 204 is disposed on The inner surface of the hollow substrate 202; a reflective layer 208, the reflective layer 208 is located at the periphery of the heating layer 204; a first electrode 210 and a second electrode 212, the first electrode 210 and the second electrode 212 are spaced apart from the heating layer The surface of the 204 is electrically connected to the heating layer 204, respectively; an insulating protective layer 206 is disposed on the inner surface of the heating layer 104. The hollow heat source 200 provided in the second embodiment is the same as the first embodiment. The structure of the provided hollow heat source 100 is substantially the same, except that the reflective layer 208 is disposed between the hollow substrate 202 and the heating layer 204 on the outer surface of the heating layer 104. The hollow substrate 202, the heating layer 204, and the reflective layer 208 The structure and material of the first electrode 210 and the second electrode 212 are the same as those of the first embodiment. Referring to FIG. 7 and FIG. 8, the third embodiment of the present technology provides a hollow heat source 300, which is a hollow heat source 300. a hollow substrate 302; a heating layer 304; a reflective layer 208; a first electrode 210 and a second electrode 212, the first electrode 210 and the second electrode 212 are spaced apart from the surface of the heating layer 204, and are respectively heated The layer 204 is electrically connected. The hollow heat source 300 of the 13 201008355 in the third embodiment has substantially the same structure as the hollow heat source 10 第一 in the first embodiment, except that the heating layer 304 is disposed on the outer surface of the hollow substrate 202. The reflective layer 208 is disposed on the outer surface of the heating layer 304. Since the heating layer 304 is disposed between the hollow substrate 302 and the reflective layer 208, an 'insulation protective layer is not required, and the positions of the heating layer 304 and the reflective layer 308 are different. The structure and material of the hollow substrate 302, the heating layer 3〇4, and the reflective layer 308 in the third embodiment are the same as those in the first embodiment. In summary, the present invention has indeed met the requirements of the invention patent, and relies on the patent application. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a hollow heat source provided by a first embodiment of the present technical solution. '° Fig. 2 is a schematic cross-sectional view taken along line II-II of Fig. 1. FIG. 3 is a scanning electron microscope image of the carbon nanotube layer of the embodiment of the present invention. FIG. 4 is a photograph of the carbon nanotube layer of the embodiment of the present invention. FIG. 5 is a schematic structural view of a hollow heat source provided by a second embodiment of the present technical solution. Figure 6 is a schematic cross-sectional view of the vi-νΐ line of Figure 5. Fig. 7 is a schematic diagram showing the structure of a hollow heat source according to a third embodiment of the present technical solution. Fig. 8 is a schematic cross-sectional view taken along line VIII-VIII of Fig. 7. 14 201008355 [Description of main component symbols] Hollow heat source 100, 200, 300 Hollow substrate 102, 202, 302 Heating layer 104, 204, 304 Insulating protective layer 106, 206 Reflecting layer 108, 208, 308 First electrode 110. 210, 310 Second electrode 112, 212, 312 φ 15

Claims (1)

201008355 十、申請專利範圍 1. 一種空心熱源,其包括: 一空心基底; • 一加熱層,該加熱層設置於空心基底的表面;以及 至夕兩個電極間隔設置並分別與加熱層電連接,豆改良 在於: 、 所述之加熱層包括一奈米碳管層,且該奈米碳管層包括 複數個相互纏繞的奈米碳管。 ❺2· !1巾請專利範圍第1項所述之空心、熱源,其中,所述之 空心熱源進一步包括一反射層,所述反射層設置於加執 層的週邊。 … 3. =申4專利範ϋ第2項所述之空^熱源,其中,所述之 工“熱源進一步包括一絕緣保護層,該絕緣保護層設置 於加熱層的表面。 4. 如申請專利範圍第3項所述之空心熱源,其中,所述之 加熱層設置於空心基底的外表面,所述之反射層設置於 〇 加熱層的外表面,加熱層位於空心基底與反射層之間。 5. 如申睛專利範圍第3項所述之空心熱源,其中,所述之 2熱層設置於空心基底的内表面’所述之反射層設置於 空心基底的外表面,所述之絕緣保護層設置於加埶層的 内表面。 … 6. 如申請專利範圍第3項所述之空心熱源,其中,所述之 加熱層設置於空心基底的内表面,所述之反射層設置於 加熱層與空心基底之間,所述之絕緣保護層設置於加熱 層的内表面。 ”' 16 201008355 7. 如申明專利範圍第2項所述之空心熱源,其中,所述之 反射層的材料為金屬氧化物、金屬鹽或陶瓷,其厚度 100微米-0.5毫米。 又· 8. 如申請專利範圍第1項所述之W熱源,其巾,所述之 奈米碳管層中的奈米碳管之間通過凡德瓦爾力相互吸 引,形成網路狀結構。 9·如申請專職圍第1項所述之空心熱源,其中,所述太 ❹ 10·如申Μ專利乾圍第i項所述之空心熱源,其中 之不米碳管層的厚度為1微米至2毫米。 如申請專利範圍第工項 2米破管的長度大於50微米’直徑';於5其中太f所述 12.如申請專利範圍第i所述之空心^ ::個電極設置於加熱層的同斤述至 所述 導電 所述 ;膠::極的材料為金屬、合金、銦锡氧化I 14·Γ申:/專:聚合物或導電性㈣^ =申明專利範圍第!項所述 二心基底的材料為牟性…/原,其中,所述 料為塑膠或柔性㈣ 4或硬性材料,且所述柔性材 月旨、石英 纖維’所述硬性材料為陶t、玻璃、樹 17201008355 X. Patent application scope 1. A hollow heat source comprising: a hollow substrate; a heating layer disposed on a surface of the hollow substrate; and two electrodes spaced apart from each other and electrically connected to the heating layer, respectively The bean modification comprises: the heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of intertwined carbon nanotubes. The hollow heat source of claim 1, wherein the hollow heat source further comprises a reflective layer disposed at a periphery of the additive layer. 3. The air heat source of claim 2, wherein the heat source further comprises an insulating protective layer disposed on the surface of the heating layer. The hollow heat source of claim 3, wherein the heating layer is disposed on an outer surface of the hollow substrate, the reflective layer is disposed on an outer surface of the crucible heating layer, and the heating layer is located between the hollow substrate and the reflective layer. 5. The hollow heat source according to claim 3, wherein the hot layer is disposed on an inner surface of the hollow substrate, wherein the reflective layer is disposed on an outer surface of the hollow substrate, and the insulating protection is provided. The hollow heat source according to claim 3, wherein the heating layer is disposed on an inner surface of the hollow substrate, and the reflective layer is disposed on the heating layer. Between the hollow substrate and the hollow substrate, the insulating protective layer is disposed on the inner surface of the heating layer. The heat insulating material of claim 2, wherein the reflective layer is made of metal. Compound, metal or ceramics, having a thickness of 100 microns to 0.5mm. 8. In the case of the W heat source described in claim 1, the carbon nanotubes in the carbon nanotube layer are mutually attracted by the van der Waals force to form a network structure. 9. If applying for the hollow heat source as described in item 1 of the full-time enclosure, wherein the solar energy source described in item i of the patent application, such as Shenyi Patent, is a micron thickness of 1 micrometer. Up to 2 mm. For example, the length of the 2 meter broken pipe of the application of the patent scope is greater than 50 micrometers 'diameter'; wherein 5 is too f. 12. The hollow electrode as described in the scope of claim i is disposed on the heating layer. Said to the said conductive; glue:: the material of the pole is metal, alloy, indium tin oxide I 14 · Yan Shen: / special: polymer or conductivity (four) ^ = declared patent scope! The material of the two-core substrate is 牟..., the material is plastic or flexible (four) 4 or a hard material, and the flexible material is quartz, the hard material is ceramic, glass Tree 17
TW097129313A 2008-08-01 2008-08-01 Hollow heating source TWI462627B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097129313A TWI462627B (en) 2008-08-01 2008-08-01 Hollow heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097129313A TWI462627B (en) 2008-08-01 2008-08-01 Hollow heating source

Publications (2)

Publication Number Publication Date
TW201008355A true TW201008355A (en) 2010-02-16
TWI462627B TWI462627B (en) 2014-11-21

Family

ID=44827413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129313A TWI462627B (en) 2008-08-01 2008-08-01 Hollow heating source

Country Status (1)

Country Link
TW (1) TWI462627B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563572A (en) * 1984-08-01 1986-01-07 Armstrong World Industries, Inc. High-efficiency task heater
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP2003339540A (en) * 2002-05-30 2003-12-02 Thermos Kk Electric heating and heat insulating container
US20070298253A1 (en) * 2004-09-17 2007-12-27 Kenji Hata Transparent Conductive Carbon Nanotube Film and a Method for Producing the Same
JP2007039791A (en) * 2005-06-29 2007-02-15 Fujifilm Corp Reflector, heating crucible equipped with the reflector, and process for preparation of radiation image transforming panel
TWI343359B (en) * 2006-06-16 2011-06-11 Hon Hai Prec Ind Co Ltd Flexible nano electrothermal material and heating apparatus having the same
KR100797094B1 (en) * 2006-09-29 2008-01-22 한국기계연구원 Trasparent heater and fabricating method thereof

Also Published As

Publication number Publication date
TWI462627B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
CN102006542B (en) Sound generating device
TWI486090B (en) Hollow heating source
US8841588B2 (en) Heater
TWI420954B (en) Heater and method for making the same
US20110056929A1 (en) Electric heater
TWI670228B (en) Surface Source Blackbody and Preparation Method of Surface Source Blackbody
CN101616513B (en) Linear heat source
TW201008355A (en) Hollow heating source
TW201240481A (en) Thermal acoustic device and electric device
TWI386363B (en) Linear heater
TWI465145B (en) Hollow heating source
TWI380728B (en) Linear heater
TWI466585B (en) Hollow heating source
TWI380729B (en) Linear heater
TWI462630B (en) Planar heating source
TWI448417B (en) Linear heater
TWI380730B (en) Planar heating source
TW201000395A (en) Linear heater
TWI473524B (en) Hollow heating source
TWI427027B (en) Hollow heating source
TWI360521B (en) Planar heat source
CN101626642B (en) Hollow heat source
CN101636011B (en) Hollow heat source
TWI380733B (en) Planar heating source
TWI462628B (en) Planar heating source