TWI343359B - Flexible nano electrothermal material and heating apparatus having the same - Google Patents

Flexible nano electrothermal material and heating apparatus having the same Download PDF

Info

Publication number
TWI343359B
TWI343359B TW95121702A TW95121702A TWI343359B TW I343359 B TWI343359 B TW I343359B TW 95121702 A TW95121702 A TW 95121702A TW 95121702 A TW95121702 A TW 95121702A TW I343359 B TWI343359 B TW I343359B
Authority
TW
Taiwan
Prior art keywords
carbon nanotubes
flexible
electrothermal material
substrate
nano
Prior art date
Application number
TW95121702A
Other languages
Chinese (zh)
Other versions
TW200800793A (en
Inventor
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95121702A priority Critical patent/TWI343359B/en
Publication of TW200800793A publication Critical patent/TW200800793A/en
Application granted granted Critical
Publication of TWI343359B publication Critical patent/TWI343359B/en

Links

Description

1343359 100年03月21日核1 正替换頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種電熱材料及一種加熱裝置,尤其涉及一 種以高分子材料爲*基底之奈米柔性電熱材料,以及使用 該奈米柔性電熱材料之加熱裝置。 【先前技術】 [0002] 電熱材料係指藉由自身電阻能夠把電能轉化爲熱能之材 料。通常電熱材料係由金屬(例如鎢絲、鉬片等等)或 半導體(如矽碳棒等)製成。由於金屬具有良好之電導 率,電阻通常很小,因此可以産生很高功率和溫度。 [0003] 但同時由金屬或半導體組成之電熱材料也具有明顯之缺 點,如這些材料在常溫下不可隨意變形;且電阻通常很 低,功率過大,發熱量過高,不適合在常溫範圍使用。 金屬對人體之親和性差,甚至某些金屬如銅會對人體産 生危害。因此這些電熱材料不適合使用於與人體緊密接 觸之加熱保溫裝置中,如電熱毯、電熱墊等。 [0004] 由此研發出在高分子材料基底:中添加導電顆粒如金屬粉 ,石墨粉等之電熱材料,此種電熱材料具有柔性,且其 電阻可相對較高,可用於低溫加熱,但由於要達到合適 之導電率,其中之導電顆粒之含量需要較高,因此造成 基底材料強度下降。 [0005] 有鑒於此,有必要提供一種具有柔性可隨意變形、機械 強度高,人體親和性高,可在低溫範圍下使用之電熱材 料。 095121702 表單編號A0101 第3頁/共12頁 1003097663-0 ^343359 100年03月21日核正替換食 【發明内容】 [0006] 以下將以實施例說明一種奈米柔性電熱材料,及一種包 括該奈米柔性電熱材料之加熱裝置。 [0007] 該奈米柔性電熱材料包括基底及分散在該基底中之複數 奈米碳管,其中之奈米碳管之重量百分比含量為0. 1%~4% ,該複數奈米碳管在基底内均勻分散,且該複數奈米碳 管互相搭接於基底内形成導電網路,該基底爲柔性高分 子材料。 [0008] 一種加熱裝置,其包括奈米柔姓丨邊熟射斜、兩根導線及 * - -· f 、二··' 開關,該兩根導線珀於將备秦会料接入電源1343359 1st, 21st, 100th, 1st, 1st, 1st, 1st, 6th, 1st, 1st, 1st, 1st, 1st, 1st, 1st, 1st, 1st A meter of flexible electrothermal material, and a heating device using the nanometer flexible electrothermal material. [Prior Art] [0002] An electrothermal material refers to a material that can convert electrical energy into thermal energy by its own resistance. Usually, the electrothermal material is made of a metal such as a tungsten wire, a molybdenum sheet or the like, or a semiconductor such as a tantalum carbon rod or the like. Since metals have good electrical conductivity, the resistance is usually small, so high power and temperature can be produced. [0003] However, electrothermal materials composed of metals or semiconductors also have obvious disadvantages, such as these materials are not freely deformable at normal temperature; and the resistance is usually low, the power is too large, and the amount of heat is too high, which is not suitable for use in a normal temperature range. Metals have poor affinity for the human body, and even certain metals such as copper can cause harm to humans. Therefore, these electrothermal materials are not suitable for use in heating and heat-insulating devices that are in close contact with the human body, such as electric blankets, electric heating pads, and the like. [0004] Thus, an electrothermal material in which a conductive particle such as a metal powder, a graphite powder or the like is added to a polymer material substrate is developed, and the electrothermal material has flexibility, and the electric resistance thereof can be relatively high, and can be used for low-temperature heating, but In order to achieve a suitable electrical conductivity, the content of the conductive particles needs to be high, thus causing a decrease in the strength of the substrate material. In view of the above, it is necessary to provide an electrothermal material which is flexible and freely deformable, has high mechanical strength, high human affinity, and can be used in a low temperature range. 095121702 Form No. A0101 Page 3/Total 12 Page 1003097663-0 ^343359 Correction of Foods by March 21, 2001 [Invention] [0006] Hereinafter, a nano flexible electrothermal material will be described by way of example, and a A heating device for nano flexible electrothermal materials. The carbon nanotubes are in the form of a plurality of carbon nanotubes, wherein the carbon nanotubes are present in a weight percentage of 0.1% to 4%, and the plurality of carbon nanotubes are The substrate is uniformly dispersed, and the plurality of carbon nanotubes are overlapped with each other to form a conductive network, and the substrate is a flexible polymer material. [0008] A heating device comprising a nano-soft-spotted edge-drilling oblique, two wires and a *---f, two--' switch, the two wires are connected to the power supply

,該開關安廣泰該兩根導 電熱材料包括柔性高分子木, the switch An Guangtai the two conductive materials including flexible polymer wood

1UU 奈米柔性 散在該基 底中複數奈米碳管,該奈米碳管在基ϋΓ#成導電網路 [0009] 由於柔性高分子基底材料4_g| 拳性電熱材料1UU nano-flexible in the base of the plurality of carbon nanotubes, the carbon nanotubes in the base 成# into a conductive network [0009] due to the flexible polymer substrate material 4_g|

可隨意彎曲且具有良好之/5:½趨^性Ί;νί艮據奈米碳管之 含量不同,其電阻可調,秦^释复1€给量低時,其電阻可 調至較高值,從而其適合用於低溫加熱;且由於奈米碳 管之加入且在柔性高分子基底材料内部形成可導電之網 路,除了可用於導電,使該奈米柔性電熱材料整個材料 上均勻發熱外,還可提高該奈米柔性電熱材料之強度。 【實施方式】 [0010] 參閱圖1,第一實施例之奈米柔性電熱材料1包括柔性高 分子基底材料10及分散在柔性高分子基底材料10中之複 數奈米碳管12。奈米碳管12互相搭接而在柔性高分子基 095121702 表單編號Α0101 第4頁/共12頁 1003097663-0 1343359 _ ’ Λ 100年03月21日修正替换π 底材料1 0中形成導電網路,從而奈米柔性電熱材料1可以 導電,通電以後便可發熱。 [0011] 柔性高分子基底材料10可選自矽橡膠彈性體、聚氨脂、 環氧樹脂其中之一或其組合物。奈米碳管12可爲多壁奈 米碳管或單壁奈米碳管。其長度可爲卜10微米,優選的 ,其重量百分比含量爲整個電熱材料之0. 1 %〜4%。奈米碳 管1 2之含量不同則電熱材料之電阻率亦不同。 [0012] 更加具體的,請參見圖2,其爲奈米柔性電熱材料1中奈 • 米碳管含量與電阻率之關係曲線。可以看出,奈米柔性 電熱材料1隨奈米碳管重量百分比含量增加電阻率下降, 含量爲0. 4%時,電阻率近似爲10歐姆·米(Ω · m),奈 米碳管含量小於1%時電阻率下降之速度較快,隨後下降 速度較慢,當奈米碳管含量達到4%時,其電阻率下降至 較低水平,近似爲0.1歐姆·米(Ω·ιη)。 [0013] 奈米柔性電熱材料1中還可添加有各種添加劑以提高材料 之物理化學性能,如抗氧化劑_、阻燃劑。抗氧化劑品種 繁多,常見的如氮,氮-二'/3矣基-對苯二胺。阻燃劑可 選自氣化石蠟、氣化脂環烴、四氣鄰笨二甲酸酐、磷酸 酯、含齒磷酸酯、鹵化磷、磷多元醇及函代酸酐等,阻 燃劑之含量可爲1%〜10%。 [0014] 本實施例之奈米柔性電熱材料1具有以下特點: [0015] 1、由於採用柔性高分子基底材料,因此其可以任意變形 ,且高分子材料比金屬或半導體更具人體親和性。 [0016] 2、由於加入了奈米碳管,其機械韌性得到加強,強度增 095121702 表單編號 Α0101 第 5 頁/共 12 頁 1003097663-0 -1343359 [0017] [0018] [0019] [0020] [0021] 095121702 100年03月21日核正替換t 高,不易損壞,且同時具有合適之導熱性,可迅速將内 部産生之熱量傳導出來。 3、其電阻可在一定範圍内可調,且整個電熱材料面上同 時均勻發熱,溫度可控制在較低水平,如低於100°C,因 此本實施例之奈米柔性電熱材料不會因過熱產生危害。 對於用於給人體進行保溫之電熱材料其溫度可控制之更 低,例如在36°C到40°C之間。例如,一塊30x30x 0. 05cm之這種奈米柔性電熱材料,奈米碳管含量爲2. 5% ,用3 6 V之電源沿膜面導電,消抵之:功率不到1瓦特。 .J. : 基於以上特性,寸將未實方| 於各種需求低:每加熱之領 毯、理療電熱帶、減肥腰It can be bent at will and has a good /5:1⁄2 ^ Ί Ί; νί艮 according to the content of the carbon nanotubes, its resistance is adjustable, Qin ^ release 1 € when the amount is low, its resistance can be adjusted to a higher Value, so that it is suitable for low-temperature heating; and because of the addition of a carbon nanotube and forming an electrically conductive network inside the flexible polymer substrate material, in addition to being used for electrical conduction, the nano-flexible electrothermal material is uniformly heated over the entire material. In addition, the strength of the nano flexible electrothermal material can also be increased. [Embodiment] Referring to Fig. 1, a nano-flexible electrocaloric material 1 of the first embodiment comprises a flexible high molecular base material 10 and a plurality of carbon nanotubes 12 dispersed in a flexible polymer base material 10. The carbon nanotubes 12 overlap each other in the flexible polymer base 095121702 Form No. 1010101 Page 4 / Total 12 pages 1003097663-0 1343359 _ ' 03 March 21, 2011 Correction of the replacement of π bottom material 10 0 to form a conductive network Therefore, the nano-flexible electrothermal material 1 can be electrically conductive, and can be heated after being energized. [0011] The flexible polymer base material 10 may be selected from one of a ruthenium rubber elastomer, a polyurethane, an epoxy resin, or a combination thereof. The carbon nanotube 12 can be a multi-walled carbon nanotube or a single-walled carbon nanotube. 1%〜4%。 The length of the entire electrothermal material is 0.1% ~ 4%. The electrical resistivity of the electrothermal material is also different when the content of the carbon nanotubes 12 is different. [0012] More specifically, please refer to FIG. 2, which is a graph showing the relationship between the content of the carbon nanotubes and the resistivity in the nanometer flexible electrothermal material 1. It can be seen that the nano-flexible electrothermal material 1 decreases in resistivity with the weight percentage of the carbon nanotubes, and the content is 0.4%, the resistivity is approximately 10 ohm·m (Ω · m), and the carbon nanotube content is When the content is less than 1%, the resistivity decreases faster, and then the rate of decline is slower. When the carbon nanotube content reaches 4%, the resistivity drops to a lower level, which is approximately 0.1 ohm·m (Ω·ιη). [0013] Various additives may be added to the nano-flexible electrothermal material 1 to improve the physical and chemical properties of the material, such as an antioxidant _, a flame retardant. There are many varieties of antioxidants, such as nitrogen, nitrogen-di-/3-mercapto-p-phenylenediamine. The flame retardant may be selected from the group consisting of gasified paraffin, gasified alicyclic hydrocarbon, tetra-glycolic acid anhydride, phosphate ester, tooth-containing phosphate ester, phosphorus halide, phosphorus polyol and functional anhydride, and the content of the flame retardant may be It is 1%~10%. [0014] The nano-flexible electrocaloric material 1 of the present embodiment has the following features: 1. Since a flexible polymer base material is used, it can be arbitrarily deformed, and the polymer material is more human-friendly than metal or semiconductor. [0016] 2. Due to the addition of the carbon nanotubes, the mechanical toughness is enhanced, and the strength is increased by 095121702. Form No. 1010101 Page 5 of 12 1003097663-0 -1343359 [0018] [0019] [0020] 0021] 095121702 On March 21, 100, the nuclear replacement is high, not easy to damage, and at the same time has suitable thermal conductivity, which can quickly transfer the heat generated inside. 3. The resistance can be adjusted within a certain range, and the entire surface of the electrothermal material is uniformly heated at the same time, and the temperature can be controlled at a low level, such as lower than 100 ° C, so the nano flexible electric heating material of the embodiment does not cause Overheating creates a hazard. The temperature of the electrothermal material used to insulate the human body can be controlled to a lower temperature, for example, between 36 ° C and 40 ° C. For example, a nanometer flexible electrothermal material of 30x30x0.05 cm has a carbon nanotube content of 2.5%, and is electrically conductive along the membrane surface with a power supply of 3 6 V, which is less than 1 watt. .J. : Based on the above characteristics, the inch will not be real | low in various needs: every heating collar, physiotherapy electric heating, slimming waist

熱材料1應用 *電熱地 本實施例之奈米柔性電熱材料1可以採下方法製備: 步驟1,提供一種分散均勻予物溶k,預聚物單體溶 液。預聚物材料經進一步彳 高分子基底 ·' ΤΌΠβΓΓ^ 材料,例如矽橡膠彈性體、聚脂\ €氧樹脂之預聚物/ !·.…mice 、單體或者其組合。以聚氨酯爲例,將聚氨酯之預聚物 用溶劑如乙酸乙酯等溶解稀釋,降低其粘度,然後用超 聲波清洗一段時間,得到分散均勻之聚氨酯預聚物溶液 步驟2,將奈米碳管加入上述溶液,並且用超聲波分散一 段時間。其中,奈米碳管之重量百分比含量爲0. 1〜4%。 超聲波分散之作用係使奈米碳管能夠在聚氨酯預聚物溶 液中初步分散。奈米碳管可爲多壁奈米碳管或者單壁奈 表單編號A0101 第6頁/共12頁 1003097663-0Application of Thermal Material 1 *Electrothermally The nano-flexible electrocaloric material 1 of the present embodiment can be prepared by the following method: Step 1, providing a uniformly dispersed pre-dissolved k-pre-polymer monomer solution. The prepolymer material is further entangled with a polymeric substrate, such as a ΤΌΠβΓΓ^ material, such as a ruthenium rubber elastomer, a polyester/polyoxy resin prepolymer/!..mice, a monomer, or a combination thereof. Taking polyurethane as an example, the prepolymer of polyurethane is dissolved and diluted with a solvent such as ethyl acetate to reduce its viscosity, and then ultrasonically washed for a period of time to obtain a uniformly dispersed polyurethane prepolymer solution. Step 2, adding a carbon nanotube The above solution was dispersed with ultrasonic waves for a while. 1〜4%。 The weight percentage of the carbon nanotubes is 0. 1~4%. The effect of ultrasonic dispersion is to enable the carbon nanotubes to be initially dispersed in the polyurethane prepolymer solution. The carbon nanotubes can be multi-walled carbon nanotubes or single-walled naphthalene. Form No. A0101 Page 6 of 12 1003097663-0

1343359 • > 100年03月21日修正替换頁 米碳管,奈米碳管之製備方法可採用先前技術中之化學 氣相沈積法、電弧放電法、雷射燒蝕法等。奈米碳管之 長度可爲1〜10微米。 [0022] 另外,由於奈米碳管易於聚集和纏結,可以進一步藉由 超聲波破碎儀破碎一段時間,將聚集和纏結之奈米碳管 分開,然後再藉由超聲波分散一段時間,從而能夠使奈 米碳管分散比較均勻。 [0023] 參 步驟3,加入引發劑,使預聚物溶液或預聚物單體溶液發 生反應或發生交聯而聚合並固化成所需求之形狀,以便 於實際應用。引發劑之選擇根據預聚物材料之不同而不 同,對於聚氨酯其可爲去離子水。適當之超聲清洗一段 時間,收集溶液中生成之膏狀物質,即得到複合材料之 預加工物。 [0024] 優選的,固化前可在兩端埋上電極311、312,則可得以 如圖3所示之奈米柔性電熱材料,電極311、312之材料可 • 採用高導電率之金屬如銅或鋁。 [0025] 參閱圖4,本實施例之電加熱裝置包括奈米柔性電熱材料 、導線421、422及開關43,奈米柔性電熱材料兩端埋有 兩電極411、412,導線421、422分別用於將電極411、 41 2接入電源44。開關43可設置在導線421及422當中任 意一根上。 [0026] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 095121702 表單編號A0101 第7頁/共12頁 1003097663-0 1343359 100年03月21日按正背换首 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0027] 圖1係第一實施例之奈米柔性電熱材料剖面示意圖。 [0028] 圖2係第一實施例之奈米柔性電熱材料中奈米碳管含量-電阻率關係曲線。 [0029] 圖3係第二實施例之奈米柔性電熱材料之剖面示意圖。 [0030] 圖4係加熱裝置第一實施例之示%圖。 d1343359 • > Correction and replacement page on March 21, 100. The preparation method of carbon nanotubes and carbon nanotubes can be carried out by chemical vapor deposition, arc discharge, laser ablation, etc. in the prior art. The carbon nanotubes can be from 1 to 10 microns in length. [0022] In addition, since the carbon nanotubes are easily aggregated and entangled, it can be further broken by a sonicator for a period of time to separate the aggregated and entangled carbon nanotubes, and then dispersed by ultrasonic waves for a period of time. The carbon nanotubes are dispersed more evenly. [0023] In step 3, an initiator is added to cause the prepolymer solution or the prepolymer monomer solution to react or crosslink to polymerize and solidify into a desired shape for practical use. The choice of initiator varies depending on the prepolymer material, which can be deionized water for the polyurethane. The appropriate ultrasonic cleaning is used for a period of time to collect the creamy substance formed in the solution to obtain a pre-processed material of the composite material. [0024] Preferably, the electrodes 311, 312 can be buried at both ends before curing, so that the nano-flexible electrothermal material can be obtained as shown in FIG. 3, and the materials of the electrodes 311 and 312 can be made of a metal having high conductivity such as copper. Or aluminum. [0025] Referring to FIG. 4, the electric heating device of the embodiment includes a nanometer flexible electrothermal material, wires 421 and 422, and a switch 43. Two electrodes 411 and 412 are buried at both ends of the nanometer flexible electrothermal material, and the wires 421 and 422 are respectively used. The electrodes 411, 41 2 are connected to the power source 44. The switch 43 can be disposed on any of the wires 421 and 422. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Anyone familiar with this 095121702 Form No. A0101 Page 7 / Total 12 Page 1003097663-0 1343359 The equivalent modification or change made by the person in accordance with the spirit of the invention in the spirit of the invention shall be covered by the person who is in the spirit of the invention. It is within the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0027] FIG. 1 is a schematic cross-sectional view of a nano-flexible electrothermal material of the first embodiment. 2 is a graph showing the relationship between the carbon nanotube content and the resistivity in the nano flexible electrothermal material of the first embodiment. 3 is a schematic cross-sectional view of a nano flexible electrothermal material of the second embodiment. 4 is a % view of the first embodiment of the heating device. d

【主要元件符號說明】 [0031] 基底:10 [0032] 奈米碳管:12 [0033] 電極:311,312,411,412 [0034] 導線:421,422 [0035] 開關:43 [0036] 電源44 :[Main component symbol description] [0031] Substrate: 10 [0032] Carbon nanotube: 12 [0033] Electrode: 311, 312, 411, 412 [0034] Conductor: 421, 422 [0035] Switch: 43 [0036] Power supply 44:

Hitellecrua!Hitellecrua!

095121702 表單编號A0101 第8頁/共12頁 1003097663-0095121702 Form No. A0101 Page 8 of 12 1003097663-0

Claims (1)

1343359 » » 100年03月21日俊正替換W 七、申請專利範圍: 1 · 一種奈米柔性電熱材料,其包括基底及分散於該基底中之 複數奈米碳管,其申之奈米碳管之重量百分比含量為 〇· ,該複數奈米碳管在基底内均勻分散,且該複數 不米碳官互相搭接於基底内形成導電網路,該基底爲柔性 南分子材料。 2 .如申請專利範圍第!項所述之奈米柔性電熱材料其中, 該柔性高分子材料爲石夕橡㈣性體、聚氨脂、環氧樹脂其 • 中之一或其組合物。 3.如申請專利範圍第1項所述之奈米柔性電熱材料,其中, 。玄不米兔管爲单壁奈米碳管或多壁奈米碳管。 4 .如申請專利範圍第1項所述之奈米柔性電熱材料,其中, 該奈米碳管長度爲卜10微米。 ' 5 申請專利範圍第1項所述之奈米柔性電熱材料,其中進 一步包括添加劑。 6. 如申請專利範圍第5項所述之奈米柔性電熱材料其中, • 祕加劑爲阻燃劑,其選自氣化石域、k化脂環烴、四氣 鄰苯二甲酸酐、磷酸醋、含_酸醃、由化磷、磷多元醇 及鹵代酸酐其中之一》 7. 如申請專利範圍第6項所述之奈米柔性電熱材料,其中, 該阻燃劑之重量百分比含量爲1%〜1〇%。 8. -種加熱裝置’其包括奈米柔性電熱材料'兩根導線及開 關,該兩根導線用於將該奈米柔性電熱材料接入電源,該 開關安裝在該兩根導線中任意一根上,該奈米柔性電熱材 料包括柔性高分子材料組成之基底及分散於該基底中之複 095121702 表單編號A0101 第9頁/共丨2頁 1003097663-0 1343359 100年03月21日按正替换有 數奈米碳管,其中之奈米碳管之重量百分比含量為 〇. 1/6~4%,該複數奈米碳管在基底内均勻分散,且該複數 奈米碳管互相搭接於基底内形成導電網路。 9 如申請專利範圍第8項所述之奈米柔性電熱材料,盆中, 該奈米柔性電熱材料兩端設置有兩個電極該導 別與該兩個電極電連接。 人 < 、’’刀1343359 » » On March 21, 100, Junzheng replaced W. VII. Patent application scope: 1 · A nano-flexible electrothermal material comprising a substrate and a plurality of carbon nanotubes dispersed in the substrate, the carbon nanotubes thereof The weight percentage is 〇·, the plurality of carbon nanotubes are uniformly dispersed in the substrate, and the plurality of carbon nanotubes are overlapped with each other to form a conductive network, and the substrate is a flexible south molecular material. 2. If you apply for a patent scope! The nano flexible electrothermal material according to the invention, wherein the flexible polymer material is one of or a combination of a stellite, a polyurethane, an epoxy resin, or a combination thereof. 3. The nanometer flexible electrothermal material according to claim 1, wherein. The Xuanbei rice tube is a single-walled carbon tube or a multi-walled carbon tube. 4. The nanometer flexible electrothermal material according to claim 1, wherein the carbon nanotube has a length of 10 micrometers. ' 5 The nano flexible electrothermal material described in claim 1 of the patent application, further comprising an additive. 6. The nanometer flexible electrothermal material according to claim 5, wherein the secret additive is a flame retardant selected from the group consisting of a gasification domain, a k-lipid hydrocarbon, a tetra-phthalic anhydride, and a phosphoric acid. 7. A vinegar, a sulphuric acid-containing, a phosphorus-containing, a phosphorus-polyol, and a halogenated acid anhydride. 7. The nanometer flexible electrothermal material according to claim 6, wherein the flame retardant is present in a percentage by weight. It is 1%~1〇%. 8. A heating device comprising: two wires and a switch of a nano-flexible electrothermal material, the two wires being used for connecting the nano-flexible electrothermal material to a power source, the switch being mounted on any one of the two wires The nano-flexible electrothermal material comprises a substrate composed of a flexible polymer material and a composite 095121702 dispersed in the substrate. Form No. A0101 Page 9/Total 2 Page 1003097663-0 1343359 100 March 21 The carbon nanotubes, wherein the carbon nanotubes have a weight percentage of 〇. 1/6 to 4%, the plurality of carbon nanotubes are uniformly dispersed in the substrate, and the plurality of carbon nanotubes are overlapped with each other in the substrate. Conductive network. 9 The nanometer flexible electrothermal material according to claim 8, wherein the nanometer flexible electrothermal material is provided with two electrodes at both ends thereof to be electrically connected to the two electrodes. Person < ,’’ knife :觀,: ;;r- infellectual Property 〆‘·,、广 Γι’ * ?^jnice · 095121702 表單編號A0101 第10頁/共12頁 1003097663-0:View,: ;;r- infellectual Property 〆‘·,, Γ Γι’ * ?^jnice · 095121702 Form No. A0101 Page 10 of 12 1003097663-0
TW95121702A 2006-06-16 2006-06-16 Flexible nano electrothermal material and heating apparatus having the same TWI343359B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95121702A TWI343359B (en) 2006-06-16 2006-06-16 Flexible nano electrothermal material and heating apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95121702A TWI343359B (en) 2006-06-16 2006-06-16 Flexible nano electrothermal material and heating apparatus having the same

Publications (2)

Publication Number Publication Date
TW200800793A TW200800793A (en) 2008-01-01
TWI343359B true TWI343359B (en) 2011-06-11

Family

ID=44764926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95121702A TWI343359B (en) 2006-06-16 2006-06-16 Flexible nano electrothermal material and heating apparatus having the same

Country Status (1)

Country Link
TW (1) TWI343359B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409962B (en) 2007-10-10 2010-11-10 清华大学 Surface heat light source and preparation method thereof
CN101400198B (en) 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 Surface heating light source, preparation thereof and method for heat object application
TWI462627B (en) * 2008-08-01 2014-11-21 Hon Hai Prec Ind Co Ltd Hollow heating source
TWI466585B (en) * 2008-08-01 2014-12-21 Hon Hai Prec Ind Co Ltd Hollow heating source
CN101848564B (en) 2009-03-27 2012-06-20 清华大学 Heating element
TWI408989B (en) * 2009-04-24 2013-09-11 Hon Hai Prec Ind Co Ltd Linear heater
TWI399118B (en) * 2009-04-24 2013-06-11 Hon Hai Prec Ind Co Ltd Method for making linear heater
TWI501685B (en) * 2009-04-30 2015-09-21 Hon Hai Prec Ind Co Ltd Three-dimensional heat source
TWI400985B (en) * 2009-04-30 2013-07-01 Hon Hai Prec Ind Co Ltd Method for making planar heater
TWI400984B (en) * 2009-04-30 2013-07-01 Hon Hai Prec Ind Co Ltd Planar heater
TWI501686B (en) * 2009-04-30 2015-09-21 Hon Hai Prec Ind Co Ltd Three-dimensional heat source
TWI478617B (en) * 2009-04-30 2015-03-21 Hon Hai Prec Ind Co Ltd Method for making three-dimensional heat source
TWI501687B (en) * 2009-04-30 2015-09-21 Hon Hai Prec Ind Co Ltd Three-dimensional heat source
TWI513357B (en) * 2009-04-30 2015-12-11 Hon Hai Prec Ind Co Ltd Three-dimensional heat source
TWI397342B (en) * 2009-04-30 2013-05-21 Hon Hai Prec Ind Co Ltd Planar heater
TWI399120B (en) * 2009-04-30 2013-06-11 Hon Hai Prec Ind Co Ltd Planar heater
TWI400983B (en) * 2009-04-30 2013-07-01 Hon Hai Prec Ind Co Ltd Planar heater
CN101998706B (en) 2009-08-14 2015-07-01 清华大学 Carbon nanotube fabric and heating body using carbon nanotube fabric
RU2680099C1 (en) 2013-11-29 2019-02-15 Ким Но Ыль Plastic hot water boiler
CN112606156A (en) * 2020-12-10 2021-04-06 安徽环瑞电热器材有限公司 Electric heat tracing wood floor and manufacturing method thereof

Also Published As

Publication number Publication date
TW200800793A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
TWI343359B (en) Flexible nano electrothermal material and heating apparatus having the same
CN101090586B (en) Nano flexible electrothermal material and heating device containing the nano flexible electrothermal material
CN101523975B (en) Heating element
JP5580835B2 (en) Carbon nanotube heating sheet
CN104924701B (en) A kind of carbon-based material/polymer composites and preparation method thereof
CN104499272A (en) High-elasticity conductive fiber and preparation method thereof
JP2009298691A (en) Electrostrictive composite material and method for manufacturing thereof
CN109068412A (en) A kind of containing graphene and the water nano heating film of carbon nanotube and preparation method thereof
Han et al. A facile method to prepare transparent and stretchable epidermal thin film heaters
KR101840734B1 (en) heat pad and system using the same
Xie et al. Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation
CN106189085A (en) A kind of Graphene thermo electric material and preparation method thereof
Liang et al. Experimental and analytical investigation of epoxy/MWCNT nanocomposites: electrical, thermal properties, and electric heating behavior
JP3882622B2 (en) PTC resistor
Yotprayoonsak et al. Facile fabrication of flexible and conductive AuNP/DWCNT fabric with enhanced Joule heating efficiency via spray coating route
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
US8063730B2 (en) Thermistor and electrical device employed with same
CN113354855B (en) Bendable electrothermal film device based on graphene and preparation method thereof
Ran et al. Liquid metal assisted fabrication of MXene-based films: Toward superior electromagnetic interference shielding and thermal management
Tembei et al. High-performance flexible electrothermal Joule heaters from laser reduced FN Co-doped graphene oxide with extended Sp2 networks
CN101616513B (en) Linear heat source
JP3932425B2 (en) Heating element with less generation of magnetic field in electromagnetic wave and manufacturing method thereof
KR20170097340A (en) A planar heating film using carbon nanotube
Kim et al. Carbon nanotube nanocomposite having segregated network structure for wearable thermotherapy application
JP6670490B2 (en) Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles