RU2414296C1 - Катализатор для синтеза углеводородов из со и h2 и способ его получения - Google Patents

Катализатор для синтеза углеводородов из со и h2 и способ его получения Download PDF

Info

Publication number
RU2414296C1
RU2414296C1 RU2009139846/04A RU2009139846A RU2414296C1 RU 2414296 C1 RU2414296 C1 RU 2414296C1 RU 2009139846/04 A RU2009139846/04 A RU 2009139846/04A RU 2009139846 A RU2009139846 A RU 2009139846A RU 2414296 C1 RU2414296 C1 RU 2414296C1
Authority
RU
Russia
Prior art keywords
catalyst
synthesis
component
metal
carbon
Prior art date
Application number
RU2009139846/04A
Other languages
English (en)
Inventor
Владимир Зальманович Мордкович (RU)
Владимир Зальманович Мордкович
Аида Разимовна Караева (RU)
Аида Разимовна Караева
Лилия Вадимовна Синева (RU)
Лилия Вадимовна Синева
Эдуард Борисович Митберг (RU)
Эдуард Борисович Митберг
Игорь Григорьевич Соломоник (RU)
Игорь Григорьевич Соломоник
Вадим Сергеевич Ермолаев (RU)
Вадим Сергеевич Ермолаев
Original Assignee
Инфра Текнолоджиз Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инфра Текнолоджиз Лтд. filed Critical Инфра Текнолоджиз Лтд.
Priority to RU2009139846/04A priority Critical patent/RU2414296C1/ru
Priority to CN201080046714.6A priority patent/CN102762296B/zh
Priority to AU2010313807A priority patent/AU2010313807B2/en
Priority to JP2012536741A priority patent/JP5624627B2/ja
Priority to CA2778386A priority patent/CA2778386C/en
Priority to EP10809203A priority patent/EP2501471A2/en
Priority to US13/504,929 priority patent/US8865613B2/en
Priority to PCT/RU2010/000618 priority patent/WO2011053192A2/en
Application granted granted Critical
Publication of RU2414296C1 publication Critical patent/RU2414296C1/ru
Priority to ZA2012/02912A priority patent/ZA201202912B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • B01J35/23
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products

Abstract

Изобретение относится к области каталитической химии. Описан катализатор для синтеза углеводородов из СО и Н2, характеризующийся тем, что содержит в качестве активного компонента металл VIII группы Периодической таблицы Д.И.Менделеева и пористый носитель, включающий оксидный и углеродный компоненты, при этом углеродный компонент представляет собой привитые к стенкам пор оксидного компонента углеродные нанотрубки, содержание которых составляет 10-35% от массы катализатора. Описан способ получения указанного выше катализатора, заключающийся в том, что на оксидный компонент пористого носителя пропиткой из водного раствора соли соответствующего металла наносят активный металл, выбранный из VIII группы Периодической таблицы Д.И.Менделеева, например Со, Fe или Ru, высушивают, прокаливают, обрабатывают в токе водорода, на полученный пористый материал из углеродсодержащих газов при температуре 600-650°С осаждают и прививают углеродные нанотрубки, затем вновь обрабатывают раствором соли активного металла, выбранного из группы Со, Fe или Ru, до содержания металла 10-45% от массы катализатора, причем содержание углеродных нанотрубок составляет 10-35% от массы катализатора. Технический результат - получен активный катализатор, устойчивый к перегревам. 2 н. и 6 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области нанотехнологии, нефтехимии, газохимии, углехимии и касается состава катализаторов для экзотермических процессов, в частности, для синтеза углеводородов С5 и выше из СО и Н2 по реакции Фишера-Тропша, и способа получения указанного катализатора.
Синтез углеводородов из СО и Н2 (синтез Фишера-Тропша) протекает в присутствии катализаторов на основе металлов VIII группы Периодической системы Д.И.Менделеева. Состав катализатора имеет одно из первостепенных значений в процессе синтеза углеводородов, поскольку он определяет результат - состав получаемых продуктов.
Общеизвестно, что синтез углеводородов из СО и Н2 является экзотермическим и протекает при повышенных давлениях. Для поддержания высокой активности и селективности катализатора в данной реакции необходима оптимизация его состава, позволяющая снизить вероятность местных перегревов, отрицательно влияющих на селективность катализатора в отношении образования целевых продуктов и дезактивации катализатора.
Основные требования, предъявляемые к организации каталитического слоя для процесса Фишера-Тропша (высокая концентрация каталитически активного компонента в реакционном объеме; малый характерный размер частиц катализатора, менее 50 мкм; высокая эффективная теплопроводность слоя катализатора; развитая поверхность раздела фаз газ-жидкость; обеспечение режима конвективного течения газа, близкого к режиму идеального вытеснения), не соответствуют требованиям существующих схем процессов, использующих традиционные катализаторы в суспендированном, фиксированном или псевдоожиженном слое [А.А.Хасин, В.А.Кириллов "Катализ в промышленности", №2, 2002, стр.26-37]. Таким образом, повышение эффективности процесса получения углеводородов из синтез-газа требует разработки катализаторов нового типа.
Один из вариантов решения отмеченных выше проблем в случае проведения процесса на твердом катализаторе (гранулированном, кольцеобразном и т.п.), образующем неподвижный слой и помещенном внутри трубки, разделяющей газовое пространство с катализатором и жидкую фазу (воду), за счет которой осуществляется отвод тепла, - повышение теплопроводности твердого катализатора. Этого можно достичь, используя в качестве составляющих компонентов катализатора металлы, некоторые карбиды или наноуглеродные материалы [S.Berber, Y.-K. Known, D.Tomanek "Unusually High Thermal Conductivity of Carbon Nanotubes", Physical review letters, V.84, N.20, 2000, p.4613-4616]. Известно, что наличие наноуглеродной составляющей придает катализатору улучшенные свойства, а именно высокую теплопроводность, устойчивость к спеканию и коксообразованию.
Известен способ приготовления катализатора для получения углеводородов и/или их кислородсодержащих производных из синтез-газа с его использованием [WO 2004069407, 2004], отличающийся тем, что катализатор готовят из порошков каталитически активного агента, теплопроводящего агента и порообразующего агента с размером частиц менее 300 мкм. Сначала смешивают порошки теплопроводящего и порообразующего агентов, затем полученный порошок смешивают с каталитически активным агентом, далее уплотняют полученную смесь, придают телу катализатора необходимую форму и осуществляют термическую обработку тела катализатора. Уплотнение смеси и придание формы цилиндра либо перфорированного цилиндра, либо пластины, либо профилированной пластины телу катализатора проводят методом таблетирования в прокатном стане с введением дополнительной стадии вырубки пластины нужной формы. Термическую обработку проводят в два этапа в токе инертного газа при температуре выше 400°С и в токе водородсодержащего газа при температуре выше 300°С. Каталитически активный агент содержит один из металлов VIII группы в количестве не менее 2 мас.%. В качестве теплопроводящего агента используют металлическую медь, и/или цинк, и/или алюминий, и/или олово, и/или их смеси или сплавы. В качестве порообразующего агента используют оксид, и/или гидроксид, и/или карбонат, и/или гидроксокарбонат, и/или соль одного или нескольких из металлов, входящих в состав теплопроводящего агента или порошок каталитически активного агента. Отношение массового содержания порообразующего агента к массовому содержанию теплопроводящего агента составляет 0,25-4. Недостатком такого катализатора является расположение теплопроводящего носителя, которое не совпадает с потоками реагирующих веществ и снижает эффективность катализатора (низкая активность - конверсия СО не превышает 15% при объемной скорости синтез-газа 930 ч-1) в получении углеводородов и/или их кислородсодержащих производных из синтез-газа.
Известен катализатор для синтеза Фишера-Тропша [ЕР 0681868, 1995], представляющий кобальт или железо, нанесенные на носитель, в качестве которого используют углерод с удельной площадью поверхности не менее 100 м2/г. Катализатор также содержит промотор - платину (0,2-10 мас.%). Катализатор готовят пропиткой порошка углерода (0,5-1,0 мм) водными растворами солей металлов. Предварительно углерод из органических материалов (кокосовый уголь, торф, уголь, карбидизированные полимеры) обрабатывают при температурах от 300 до 3300°С последовательно в инертной, окислительной и еще раз инертной атмосфере. Синтез проводят при 150-300°С, 0,1-5 МПа и отношении Н2:СО - 1:1-3:1. Недостатком этого катализатора является низкая селективность по продуктам С5 и выше за счет недостаточно высокой теплопроводности углерода из органических материалов.
Известен катализатор для синтеза углеводородов из синтез-газа [SU 1819158, 1990]. Катализатор содержит железо в качестве активного компонента, и медь, кремний и калий, и активированный паром или минеральной кислотой уголь (2-20 г на 100 г металлического железа). При этом 50-100% частиц угля имеют величину 0,1-100 мкм или 50-100% имеют величину 850-1200 мкм. Катализатор получают растворением железа и отдельно меди в азотной кислоте при повышенной температуре, смешивают их и нагревают полученный раствор до кипения, добавляют к кипящему раствору раствор щелочи или кальцинированной соды и доводят значение рН образовавшейся суспензии до 7-8. Полученную суспензию фильтруют, твердые вещества суспендируют в паровом конденсате и добавляют калийсодержащий раствор жидкого стекла с последующей обработкой азотной кислотой, отделением осадка катализаторной массы, сушкой, формированием экструзией, дополнительной сушкой и измельчением. Синтез Фишера-Тропша проводят в реакторе с неподвижным слоем катализатора при давлении 20-30 бар и температуре 220-320°С. Выход твердого продукта в виде воска составляет 40-55% в пересчете на углеводороды C2+. Активированнывый уголь можно добавлять к катализатору на любой стадии до эктрудирования. Активацию угля паром осуществляют при 800 и 1000°С, а обработку минеральной кислотой при более низкой температуре 400-600°С. Целью изобретения является повышение белизны получаемых по методу Фишера-Тропша углеводородов, которое достигается за счет того, что катализатор содержит активированный паром или минеральной кислотой уголь. Недостатками данного катализатора являются его низкая производительность и низкая селективность по целевым продуктам, а также сложный способ приготовления.
Известен катализатор для избирательного гидрирования карбоксильных соединений в ароматические спирты и способ его приготовления [СH 101185904, 2007]. Катализатор состоит из: 1) структурированного основания, такого как металлическая пена, сотовидная керамика, углеродный нетканый материал и керамическое волокно; 2) покрытия из наноматериала, такого как углеродное нановолокно; 3) металлического активного компонента, такого как никель, рутений, родий, палладий и/или платина. Катализатор эффективно увеличивает селективность образования целевого продукта. Катализатор устанавливают в реакторе так, чтобы и катализатор, и жидкие реагенты, и растворитель могли быть легко отделены друг от друга, что снижает потери катализатора. Недостатками такого катализатора являются его низкая активность и потери катализатора в процессе гидрирования наноуглеродного покрытия.
Известен структурированный плоский катализатор на основе массива ориентированных углеродных нанотрубок, расположенных на поверхности пластины из металлкерамического сплава, предназначенный для синтеза Фишера-Тропша в микроканальном реакторе, и способ его приготовления [Chin Y.H., Нu J., Сао С., Gao Y., Wang Y. // Catalysis Today, v.110, pp.47-52, 2005], включающий в себя несколько сложных и длительных стадий. Подготовка катализатора с углеродными нанотрубками на поверхности пластины из металлкерамического сплава включает следующие стадии:
1) подготовка пластины на основе интерметаллида FeCrAlY;
2) окисление пластины в потоке воздуха; нанесение на пластину слоя оксида алюминия методом химического осаждения изопропилата алюминия из газовой фазы при 900°С;
3) подготовка золь Fe/мезопористого оксида кремния и нанесение на пластинку;
4) сушка и прокалка полученного материала;
5) синтез углеродных нанотрубок каталитическим разложением этилена при 700°С;
6) нанесение биметаллического катализатора Со-Rе/Аl2О3 на материал с углеродными нанотрубками, последовательным погружением в спиртовой раствор золя оксида алюминия и водный раствор нитрата кобальта и рениевой кислоты;
7) прокалка материала после каждого погружения в потоке воздуха при 350°С в течение 3 ч;
9) восстановление катализатора;
10) испытание катализатора в микроканальном стальном реакторе.
Полученный катализатор в виде пластины с углеродными нанотрубками на поверхности имеет сложную конструкцию изготовления, конверсия СО испытанного катализатора составила 42%, селективность по СН4 27%. Данный катализатор не решает поставленной заявителем задачи по улучшению массо- и теплопереноса. Кроме того, многостадийный и трудоемкий способ приготовления катализатора делает его практически неприменимым в промышленном масштабе.
Наиболее близким техническим решением к предлагаемому изобретению является "Катализатор для синтеза Фишера-Тропша и способ его получения" [РФ 2325226, 2006], согласно которому катализатор содержит в качестве активного компонента металл VIII группы Периодической системы Д.И.Менделеева и носитель, содержащий оксидную составляющую и углеродное волокно. Причем содержание активного компонента составляет 5-40% от массы катализатора, оксидная составляющая содержит оксид алюминия, и/или оксид кремния, и/или оксид титана, и /или оксид циркония. Дополнительно катализатор содержит промоторы, в качестве которых используют металл цирконий и металлы VII, VIII групп Периодической системы Д.И. Менделеева и/или их окислы в количестве 0,1-5% от массы катализатора. Кроме того, катализатор содержит углеродное волокно в форме отрезков длиной не более 3 мм и диаметром не более 20 мкм в форме цилиндра в количестве 1-25% от массы катализатора.
Способ получения катализатора заключается в приготовлении пасты, содержащей оксидную составляющую, углеродное волокно, связующее бемит, воду, пластификатор и порообразующий компонент, ее экструзии, высушивании и прокаливании, после чего проводят последовательные стадии пропитки раствором солей металлов для внесения 5-40 мас.% кобальта и, по необходимости, 0,1-5% промоторы с промежуточными стадиями высушивания и прокаливания.
Перед проведением синтеза образец катализатора активируют посредством восстановления в потоке водорода (объемная скорость 100-5000 ч-1) при температуре 300-600°С в течение 0,5-5 час. Синтез углеводородов из СО и Н2 проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 0,1-4 МПа и температуре 150-300°С. Мольное отношение СО:Н2 в синтез-газе составляет 1:1-1:3. Синтез-газ может содержать до 25 об.% азота. Недостатком этого катализатора является низкая производительность по целевым продуктам, а также низкая теплопроводность, что не решает поставленные заявителем задачи по улучшению массо- и теплопереноса.
Техническая задача, решаемая заявленным изобретением, состоит в создании катализатора синтеза Фишера-Тропша с улучшенным массо- и теплопереносом и способа его получения.
Единый технический результат заключается в устойчивости катализатора к перегревам при сохранении высокой производительности по углеводородам C5 и выше за счет улучшения переноса массы и тепла.
Технический результат достигается тем, что катализатор для синтеза углеводородов из СО и H2 содержит в качестве активного компонента металл VIII группы Периодической таблицы Д.И.Менделеева и пористый носитель, содержащий оксидный и углеродный компоненты. В качестве углеродного компонента катализатор содержит углеродные нанотрубки (УНТ), которые привиты (закреплены) к стенкам пор носителя.
Углеродные нанотрубки прививают к стенкам пор оксидного компонента носителя в процессе их осаждения методом CVD-химического осаждения из газовой фазы с помощью частиц металла активного компонента, выбранного из VIII группы Периодической таблицы Д.И.Менделеева, например Со, Fe или Ru. Частицы металла активного компонента предварительно наносят на пористый оксидный компонент в процессе его пропитки раствором соли соответствующего металла.
Оксидный компонент носителя представляет собой пористый материал, который состоит из оксидов алюминия, кремния, титана, циркония, магния, лантана, цеолиты, смешанных оксидов и/или их смесей, причем их содержание предпочтительно составляет 45-80% от массы катализатора и зависит от того, какой активный компонент выбран. Наличие пор в оксидном компоненте носителя позволяет закрепить на частицах металла углеродные нанотрубки и таким образом привить их к стенкам пор, причем размер пор носителя составляет не менее 10 нм и обеспечивает хороший отвод продуктов реакции от активных центров катализатора. Оксидный компонент носителя может иметь различную форму, например, гранул, шариков, размер которых может изменяться от 1 до 5 мм.
Содержание оксидного компонента носителя менее 45% от массы катализатора не желательно из-за снижения селективности катализатора в отношении образования углеводородов С5+, а более 80% - из-за снижения активности катализатора в синтезе.
Содержание активного компонента Со, Fe или Ru составляет 10-45 % от массы катализатора, что является предпочтительным. Содержание металла менее 10% и более 45% от массы катализатора, как правило, не приводит к положительному результату.
Содержание углеродных нанотрубок составляет 10-35 % от массы катализатора. Содержание их менее 10% от массы катализатора не позволяет решить поставленную задачу, а более 35% - приводит к снижению активности катализатора в синтезе.
Дополнительно катализатор может содержать промоторы, в качестве которых могут использоваться металлы II-IV и/или VI-VIII групп Периодической системы Д.И.Менделеева и/или их оксиды, при этом содержание промоторов составляет 0,1-5 % от массы катализатора. Промоторы наносят на катализатор методом пропитки из раствора солей металлов перечисленных групп.
Способ получения катализатора для синтеза углеводородов из СО и H2, соответствующий данному изобретению, заключается в том, что на оксидный компонент пористого носителя пропиткой из водного раствора соли соответствующего металла наносят активный металл, выбранный из VIII группы Периодической таблицы Д.И.Менделеева, например Со, Fe или Ru. Затем высушивают, прокаливают и обрабатывают в токе водорода. На полученный пористый материал с частицами активного металла прививают углеродные нанотрубки в количестве 10-35 % от массы катализатора методом CVD из углеродсодержащих газов при температуре 600-650°С. Пористый материал с привитыми УНТ вновь обрабатывают раствором соли металла, выбранного из группы Со, Fe или Ru, до содержания металла 10-45% от массы катализатора, причем содержание углеродных нанотрубок составляет 10-35% от массы катализатора.
В пористый носитель с привитыми к стенкам пор оксидного компонента УНТ могут быть введены промоторы пропиткой раствором их солей до содержания 0,1-5% от массы катализатора. В качестве промоторов можно использовать элементы II-IV и/или VI-VIII групп Периодической системы Д.И.Менделеева и/или их оксиды.
Как показали исследования заявителя, использование катализатора, соответствующего изобретению, в синтезе Фишера-Тропша приводит к устойчивости при перегревах даже при высокой нагрузке по синтез-газу. При этом производительность по целевым продуктам возрастает.
Наличие УНТ, привитых к стенкам пор носителя с помощью частиц активного металла в процессе их осаждения методом CVD и направленных навстречу потоку газа, придают катализатору улучшенные свойства, а именно обеспечивают лучший массо- и теплоперенос. Кроме того, катализатор с УНТ устойчив к спеканию и коксообразованию.
Катализатор, содержащий УНТ, по предлагаемому изобретению можно использовать в реакции Фишера-Тропша, в реакциях окисления СО, паровой конверсии метана, гидрирования непредельных углеводородов (в т.ч. селективных диенов и ацетиленов в олефины), дегидрирования н-бутана, гидрирования СО.
Приготовление катализатора, содержащего УНТ, по предлагаемому способу получения требует предварительной подготовки оксидного компонента пористого носителя. Для этого в оксидный компонент пористого носителя вносят активный металл, выбранный из VIII группы Периодической таблицы Д.И.Менделеева - Со, Fe или Ru, из раствора соли соответствующего металла с последующим высушиванием, прокаливанием и обработкой при температуре 500°С в течение 2 часов в токе водорода. Далее методом CVD получают углеродный компонент пористого носителя, т.е. осаждают и прививают углеродные нанотрубки в количестве 10-35% от массы катализатора к стенкам пор оксидного компонента носителя путем закрепления УНТ на частицах активного металла.
Процесс осаждения методом CVD и прививки углеродных нанотрубок в количестве 10-35% от массы катализатора к стенкам пор оксидного компонента носителя для катализатора синтеза Фишера-Тропша осуществляют из газовой углеродсодержащей фазы. В качестве углеродсодержащих газов используют метан, ацетилен, окись углерода при разбавлении их водородом и/или инертными газами (аргон, гелий). В вертикальный реактор проточного типа с находящимся внутри пористым материалом с частицами активного металла, нагретым до температуры синтеза, непрерывно подают углеродсодержащий газ и отводят газообразные продукты синтеза. Реактор представляет собой кварцевую трубку диаметром 30 мм и длиной 400 мм. Перед работой реактор продувают инертным газом для удаления воздуха. Пористый материал с частицами активного металла предварительно восстанавливают. Синтез проводят в течение 30-240 мин при давлении 0,01-1 МПа и температуре 500-1100°С. После охлаждения пористого носителя с закрепленными УНТ на частицах металла, расположенных на стенках пор оксидного компонента, носитель выгружали из реактора.
Активный металл наносят на носитель методом пропитки из раствора солей Со, Fe или Ru (нитрат, ацетат, формиат, ацетилацетонат и т.д.). В зависимости от количества наносимого активного металла пропитка может быть многократной: одно-, двух-, трех- и более. На каждом этапе пропитки образец высушивают сначала на водяной бане, затем высушивают и/или прокаливают в потоке инертного газа при температуре от 100 до 1000°С в течение 60-600 мин. При необходимости аналогичным образом вводят металлический или оксидный промотор.
Перед проведением осаждения УНТ методом CVD и прикрепления их к стенкам пористой системы оксидного компонента носителя пористый материал с частицами активного металла предварительно активируют посредством восстановления в потоке водорода (объемная скорость 100-5000 ч-1) при температуре 500-800°С в течение 60-180 мин.
Перед проведением процесса синтеза углеводородов из СО и Н2 катализатор активируют посредством восстановления в потоке водорода (объемная скорость 100-5000 ч-1) при температуре 300-600°С в течение 60-300 мин.
Синтез углеводородов из СО и Н2 проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 0,1-4 МПа и температуре 150-300°С. Мольное отношение СО:Н2 в синтез-газе составляет 1:1-1:3.
В таблице приведены показатели синтеза Фишера-Тропша, проведенного с использованием образцов катализаторов, соответствующих изобретению.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Катализатор состава 10%Co/(80%SiO2+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - SiO2 пропиткой наносят 0,05 г кобальта из водного раствора его нитрата, высушивают и прокаливают. Полученный материал обрабатывают в токе водорода при температуре 500°С в течение 2 ч, затем помещают в реактор диаметром 30 мм, нагревают до температуры 650°С в токе водорода, после этого пропускают смесь метана с водородом в объемном отношении CH4:H2=2:1 со скоростью подачи 40:20 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы носителя (оксидного компонента носителя). Непрореагировавшие метан и водород выводят из реактора через ловушку. Продолжительность синтеза 30 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий оксидный компонент и углеродный в виде углеродных нанотрубок диаметром 8-70 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,05 г кобальта из водного раствора его нитрата, высушивают и прокаливают.
Перед проведением процесса синтеза Фишера-Тропша полученный катализатор активируют в токе водорода (о.с. 3000 ч-1) при 400°С в течение 1 ч. Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре 160-240°C с использованием синтез-газа с мольным отношением СО:Н2=1:2 (о.с. 3000 ч-1).
Пример 2. Катализатор состава 25%Со/(60% цеолит HY+15%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - цеолита HY пропиткой наносят кобальт и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 500°С в токе аргона, после этого пропускают смесь ацетилен с аргоном в объемном отношении C2H2:Ar=1:7 со скоростью подачи 12:93 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие ацетилен и аргон выводят из реактора через ловушку. Продолжительность синтеза 120 мин. После окончания синтеза реактор охлаждают в токе аргона до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий оксидный компонент и углеродный - углеродные нанотрубки диаметром 8-60 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ наносят 0,20 г кобальта из водного раствора его нитрата методом пропитки, высушивают и прокаливают.
Перед проведением процесса синтеза Фишера-Тропша полученный катализатор активируют в токе водорода (о.с. 3000 ч-1) при 450°С в течение 1 ч. Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре 160-240°C с использованием синтез-газа с мольным отношением СО/Н2=1/2 (о.с. 3000 ч-1).
Пример 3. Катализатор состава 45%Co/(45%MgO+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - MgO пропиткой наносят кобальт и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 650°С в токе водорода, после этого пропускают смесь метана с водородом в объемном отношении СН4:H2=2:1 со скоростью подачи 80:40 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие метан и водород выводят из реактора через ловушку. Продолжительность синтеза 180 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий оксидный компонент и углеродный в виде углеродных нанотрубок диаметром 8-50 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ наносят 0,40 г кобальта из водного раствора его нитрата методом пропитки, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 4. Катализатор состава 25%Fe/(65%Lа2O3+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - La2О3 пропиткой наносят 0,05 г железа (III) и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 600°С в токе смеси азота и водорода в соотношении N2:H2=2:1, после этого пропускают смесь ацетилена с аргоном и водородом в объемном отношении С2Н2:N22=1:7:4 со скоростью подачи 12:93:45 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие ацетилен, азот и водород выводят из реактора через ловушку. Продолжительность синтеза 180 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий оксидный компонент и углеродный - в виде углеродных нанотрубок диаметром 8-60 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ наносят 0,2 г железа из водного раствора его нитрата, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 5. Катализатор состава 10%Ni/(70%TiO2+20%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - ТiO2 пропиткой наносят 0,05 г никеля из водного раствора его нитрата и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 700°С в токе водорода, после этого пропускают смесь ацетилена с аргоном и водородом в объемном отношении C2H2:N22=1:7:4 со скоростью подачи 12:93:45 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие ацетилен, азот и водород выводят из реактора через ловушку. Продолжительность синтеза 120 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, в качестве углеродного компонента содержащий углеродные нанотрубки диаметром 5-10 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,05 г никеля из водного раствора его нитрата, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 6. Катализатор состава 20%Ru/(70%Аl2O3+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - Аl2О3 пропиткой наносят 0,05 г рутения и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 650°С в токе водорода, после этого пропускают смесь метана с водородом в объемном отношении СН4:H2=2:1 со скоростью подачи 110:55 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие метан и водород выводят из реактора через ловушку. Продолжительность синтеза 120 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий в качестве углеродного компонента углеродные нанотрубки диаметром 8-70 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,15 г рутения из водного раствора его нитрата.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 7. Катализатор состава 40%Co/(50%ZrO2+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. На 1 г оксидного компонента носителя - ZrO2 пропиткой наносят 0,05 г кобальта и обрабатывают, как в примере 1, затем полученный материал помещают в реактор диаметром 30 мм, нагревают до температуры 650°С в токе водорода, после этого пропускают смесь метана с водородом в объемном отношении СН42=2:1 со скоростью подачи 80:40 мл/мин. При этом осажденные УНТ закрепляются на частицах кобальта, расположенных на стенках пористой системы оксидного компонента носителя. Непрореагировавшие метан и водород выводят из реактора через ловушку. Продолжительность синтеза 120 мин. После окончания синтеза реактор охлаждают в токе водорода до комнатной температуры и выгружают материал, который представляет собой пористый носитель, содержащий оксидный компонент и углеродный в виде углеродных нанотрубок диаметром 8-60 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,35 г кобальта из водного раствора его нитрата, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 8. Катализатор состава 25%Со-3%Ва/(57% цеолит HY+15%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками в качестве углеродного компонента получают, как в примере 2. В полученном материале УНТ имеют диаметр 10-80 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,03 г бария из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 9. Катализатор состава 25%Со-1,5%Аl/(63,5% цеолит HY+10%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками получают, как в примере 2. В полученном материале УНТ имеют диаметр 8-70 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,015 г алюминия из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 10. Катализатор состава 25%Co-3%Zr/(54% цеолит HY+18%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками получают, как в примере 2. В полученном материале УНТ имеют диаметр 8-90 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,03 г циркония из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 11. Катализатор состава 25%Со-5%Сr/(53% цеолит HY+17%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками получают, как в примере 2. В полученном материале УНТ имеют диаметр 10-80 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,05 г хрома из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 12. Катализатор состава 25%Co-0,1%Re/(55,9% цеолит HY+19%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками получают, как в примере 2. В полученном материале УНТ имеют диаметр 8-60 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,001 г рения из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 13. Катализатор состава 25%Со-0,5%Fе/(59,5% цеолит HY+15%УНТ) готовят следующим способом.
1. Получение носителя с УНТ. Пористый носитель с оксидным компонентом - цеолит HY и углеродными нанотрубками получают, как в примере 2. В полученном материале УНТ имеют диаметр 8-70 нм с цилиндрической и конической структурой.
2. Получение катализатора. На пористый носитель с привитыми в порах его оксидного компонента УНТ пропиткой наносят 0,2 г кобальта и 0,005 г железа из водных растворов их солей, высушивают и прокаливают.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Пример 14 (Сравнительный, при отсутствии углеродного компонента). Образец катализатора состава 20%Со/(80% цеолит НВ) готовят следующим способом.
1. Приготовление носителя. В качестве носителя использован гранулированный цеолит НВ.
2. Получение катализатора. Кобальт наносят, как в примере 1.
Активацию полученного катализатора и синтез проводят, как в примере 1.
Согласно приведенным в таблице показателям синтеза Фишера-Тропша для вышеуказанных примеров, конверсия СО и производительность предлагаемого катализатора по углеводородам С5 и выше увеличивается, а селективность по метану снижается по сравнению с катализатором, не содержащим углеродные нанотрубки.
Предлагаемый катализатор для синтеза Фишера-Тропша высокоэффективен, устойчив к перегревам при сохранении высокой производительности по углеводородам C5 и выше за счет улучшения переноса массы и тепла благодаря наличию углеродных нанотрубок, привитых к порам оксидного компонента носителя.
Пример Конверсия СО, % Селективность по метану, % Производительность по углеводородам C5 и выше, кг/м3
1 77 20 298
2 70 21 293
3 74 18 323
4 75 20 315
5 73 19 318
6 69 21 302
7 72 21 317
8 79 22 330
9 75 18 327
10 77 18 332
11 75 19 327
12 82 21 333
13 76 18 324
14 60 35 206

Claims (8)

1. Катализатор для синтеза углеводородов из СО и Н2, характеризующийся тем, что содержит в качестве активного компонента металл VIII группы Периодической таблицы Д.И.Менделеева и пористый носитель, включающий оксидный и углеродный компоненты, при этом углеродный компонент представляет собой привитые к стенкам пор оксидного компонента углеродные нанотрубки, содержание которых составляет 10-35% от массы катализатора.
2. Катализатор по п.1, отличающийся тем, что оксидный компонент носителя представляет собой оксиды алюминия, кремния, титана, циркония, магния, лантана, цеолиты, смешанные оксиды и/или их смеси.
3. Катализатор по п.1, отличающийся тем, что размер пор носителя составляет не менее 10 нм.
4. Катализатор по п.1, отличающийся тем, что содержание пористого носителя составляет 45-80% от массы катализатора.
5. Катализатор по п.1, отличающийся тем, что в качестве активного компонента содержит металл из группы Со, Fe или Ru, причем содержание активного компонента составляет 10-45% от массы катализатора.
6. Катализатор по п.1, отличающийся тем, что дополнительно содержит промоторы, в качестве которых используют металлы II-IV и/или VI-VIII групп Периодической системы Д.И.Менделеева и/или их оксиды, причем содержание промоторов составляет 0,1-5% от массы катализатора.
7. Способ получения катализатора для синтеза углеводородов из СО и Н2, содержащий в качестве активного компонента металл VIII группы Периодической таблицы Д.И.Менделеева и пористый носитель, имеющий оксидный компонент, заключающийся в том, что на оксидный компонент пористого носителя пропиткой из водного раствора соли соответствующего металла наносят активный металл, выбранный из VIII группы Периодической таблицы Д.И.Менделеева, например Со, Fe или Ru, высушивают, прокаливают, обрабатывают в токе водорода, на полученный пористый материал из углеродсодержащих газов при температуре 600-650°С осаждают и прививают углеродные нанотрубки, затем вновь обрабатывают раствором соли активного металла, выбранного из группы Со, Fe или Ru до содержания металла 10-45% от массы катализатора, причем содержание углеродных нанотрубок составляет 10-35% от массы катализатора.
8. Способ по п.7, отличающийся тем, что дополнительно осуществляют пропитку носителя раствором солей промоторов, в качестве которых используются металлы II-IV и/или VI-VIII групп Периодической системы Д.И.Менделеева и/или их оксиды, причем промоторы берут в количестве 0,1-5% от массы катализатора
RU2009139846/04A 2009-10-29 2009-10-29 Катализатор для синтеза углеводородов из со и h2 и способ его получения RU2414296C1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2009139846/04A RU2414296C1 (ru) 2009-10-29 2009-10-29 Катализатор для синтеза углеводородов из со и h2 и способ его получения
CN201080046714.6A CN102762296B (zh) 2009-10-29 2010-10-22 用于催化co和h2合成碳氢化合物的催化剂及其制备方法
AU2010313807A AU2010313807B2 (en) 2009-10-29 2010-10-22 Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
JP2012536741A JP5624627B2 (ja) 2009-10-29 2010-10-22 Coおよびh2から炭化水素を合成するための触媒およびその製造方法
CA2778386A CA2778386C (en) 2009-10-29 2010-10-22 Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
EP10809203A EP2501471A2 (en) 2009-10-29 2010-10-22 Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
US13/504,929 US8865613B2 (en) 2009-10-29 2010-10-22 Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
PCT/RU2010/000618 WO2011053192A2 (en) 2009-10-29 2010-10-22 Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
ZA2012/02912A ZA201202912B (en) 2009-10-29 2012-04-19 Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009139846/04A RU2414296C1 (ru) 2009-10-29 2009-10-29 Катализатор для синтеза углеводородов из со и h2 и способ его получения

Publications (1)

Publication Number Publication Date
RU2414296C1 true RU2414296C1 (ru) 2011-03-20

Family

ID=43922934

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139846/04A RU2414296C1 (ru) 2009-10-29 2009-10-29 Катализатор для синтеза углеводородов из со и h2 и способ его получения

Country Status (9)

Country Link
US (1) US8865613B2 (ru)
EP (1) EP2501471A2 (ru)
JP (1) JP5624627B2 (ru)
CN (1) CN102762296B (ru)
AU (1) AU2010313807B2 (ru)
CA (1) CA2778386C (ru)
RU (1) RU2414296C1 (ru)
WO (1) WO2011053192A2 (ru)
ZA (1) ZA201202912B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455065C1 (ru) * 2011-06-02 2012-07-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения катализатора для синтеза высших углеводородов из со и н2 и катализатор, полученный этим способом
RU2659078C1 (ru) * 2016-06-15 2018-06-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор, способ приготовления катализатора и способы окислительной конверсии углеводородов, гидрирования оксидов углерода и углеводородов
RU2787379C1 (ru) * 2022-05-19 2023-01-09 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор, способ его приготовления и способ получения водорода из аммиака

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX349170B (es) 2009-04-17 2017-07-17 Seerstone Llc Metodo para la produccion de carbono solido mediante la reduccion de oxidos de carbono.
CA2757012C (en) 2011-11-03 2021-05-04 University Of Saskatchewan Promoted iron catalysts supported on carbon nanotubes for fischer-tropsch synthesis
MX354377B (es) 2012-04-16 2018-02-28 Seerstone Llc Metodos para tratar un gas de escape que contiene oxidos de carbono.
JP6328611B2 (ja) 2012-04-16 2018-05-23 シーアストーン リミテッド ライアビリティ カンパニー 非鉄触媒で炭素酸化物を還元するための方法および構造
WO2013158160A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Method for producing solid carbon by reducing carbon dioxide
MX354526B (es) 2012-04-16 2018-03-07 Seerstone Llc Metodos y sistemas para capturar y secuestrar carbono y para reducir la masa de oxidos de carbono en una corriente de gas de desechos.
NO2749379T3 (ru) 2012-04-16 2018-07-28
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN107651667A (zh) 2012-07-12 2018-02-02 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
MX2015000580A (es) 2012-07-13 2015-08-20 Seerstone Llc Metodos y sistemas para formar productos de carbono solido y amoniaco.
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
GB201220691D0 (en) * 2012-11-16 2013-01-02 Univ Bath A catalyst
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3113880A4 (en) 2013-03-15 2018-05-16 Seerstone LLC Carbon oxide reduction with intermetallic and carbide catalysts
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
CN104722327B (zh) * 2013-12-18 2018-05-22 武汉凯迪工程技术研究总院有限公司 一种用于费-托合成的金属基整体式膜催化剂及其制备方法
JP6764407B2 (ja) * 2014-12-19 2020-09-30 ビーピー ピー・エル・シー・ 担持コバルト含有フィッシャー−トロプシュ合成触媒を調製するための方法
JP6646317B2 (ja) * 2015-03-04 2020-02-14 国立大学法人群馬大学 カーボンナノチューブ被覆触媒粒子
US9815747B2 (en) 2015-04-28 2017-11-14 Battelle Energy Alliance, Llc Syngas conversion to a light alkene and related methods
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
AU2017349184B2 (en) 2016-10-27 2019-11-21 Shell Internationale Research Maatschappij B.V. A fischer-tropsch catalyst body
CN106967451A (zh) * 2017-03-07 2017-07-21 北京神雾环境能源科技集团股份有限公司 费托合成制备液体烃类的方法和制备催化剂的方法
WO2018168833A1 (ja) * 2017-03-15 2018-09-20 東洋インキScホールディングス株式会社 多層カーボンナノチューブ、多層カーボンナノチューブの製造方法、分散液、樹脂組成物、および塗膜
US10786803B2 (en) 2018-04-23 2020-09-29 King Abdulaziz University Multi-walled carbon nanotube nanocomposite for hydrogen production
JPWO2021095782A1 (ru) * 2019-11-14 2021-05-20
CN115845854A (zh) * 2022-11-28 2023-03-28 高潞空气化工产品(上海)能源科技有限公司 一种高导热性耐高温催化剂及其制备方法和用途

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895994A (en) 1988-04-14 1990-01-23 W. R. Grace & Co.-Conn. Shaped catalysts and processes
DE59510755D1 (de) 1994-05-13 2003-09-04 Kataleuna Gmbh Catalysts Kohlenstoffhaltige Katalysatorträger und Verfahren zu deren Herstellung
DE19533484A1 (de) 1995-09-12 1997-03-13 Basf Ag Monomodale und polymodale Katalysatorträger und Katalysatoren mit engen Porengrößenverteilungen und deren Herstellverfahren
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
US6156694A (en) 1998-11-05 2000-12-05 E. I. Dupont De Nemours & Company Raney cobalt catalyst and a process for hydrogenating organic compounds using said catalyst
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6331574B1 (en) 1999-10-08 2001-12-18 Exxonmobil Research And Engineering Company Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst compositions, use of the catalysts for conducting such reactions, and the products of such reactions
US6685810B2 (en) * 2000-02-22 2004-02-03 California Institute Of Technology Development of a gel-free molecular sieve based on self-assembled nano-arrays
US6624204B1 (en) 2000-09-01 2003-09-23 Exxonmobil Research And Engineering Company Carbon monoxide hydrogenation process
FR2832649B1 (fr) * 2001-11-23 2004-07-09 Sicat Composites a base de nanotubes ou nanofibres de carbone deposes sur un support active pour application en catalyse
GB0214383D0 (en) * 2002-06-21 2002-07-31 Isis Innovation Catalyst
US7404936B2 (en) * 2002-10-22 2008-07-29 Velocys Catalysts, in microchannel apparatus, and reactions using same
AU2003297257A1 (en) 2002-11-11 2004-06-03 Conocophillips Company Improved supports for high surface area catalysts
RU2227067C1 (ru) 2003-02-10 2004-04-20 Институт катализа им. Г.К. Борескова СО РАН Способ приготовления катализатора и способ получения углеводородов и их кислородсодержащих производных с его использованием
CN1530321A (zh) * 2003-03-14 2004-09-22 中国科学院成都有机化学研究所 一种制备小管径碳纳米管的催化剂
WO2005065100A2 (en) * 2003-12-15 2005-07-21 Resasco Daniel E Rhenium catalysts and methods for production of single-walled carbon nanotubes
RU2256501C1 (ru) 2004-03-01 2005-07-20 Институт органической химии им. Н.Д. Зелинского РАН Катализатор для синтеза углеводородов из со и h2
MX2007005795A (es) * 2004-11-17 2007-10-03 Hyperion Catalysis Int Metodo para preparar soportes de catalizador y catalizadores con soporte a partir de nanotubos de carbono de paredes sencillas.
KR100647309B1 (ko) 2005-01-21 2006-11-23 삼성에스디아이 주식회사 열 및 물질전달 특성이 우수한 연료가스 개질반응 촉매용담체 및 그의 제조방법
EP1782885B1 (en) 2005-11-07 2012-04-04 Research Institute of Petroleum Industry (RIPI) Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons
RU2325226C1 (ru) * 2006-12-27 2008-05-27 ООО "Объединенный центр исследований и разработок" Катализатор для синтеза фишера-тропша и способ его получения
RU2326732C1 (ru) 2006-12-27 2008-06-20 ООО "Объединенный центр исследований и разработок" Катализатор для синтеза фишера-тропша и способ его получения
RU2414300C1 (ru) 2009-08-04 2011-03-20 Инфра Текнолоджиз Лтд. Носитель для катализатора экзотермических процессов и катализатор на его основе

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МХРА 02009836 А, 27.05.2003. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455065C1 (ru) * 2011-06-02 2012-07-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения катализатора для синтеза высших углеводородов из со и н2 и катализатор, полученный этим способом
RU2659078C1 (ru) * 2016-06-15 2018-06-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор, способ приготовления катализатора и способы окислительной конверсии углеводородов, гидрирования оксидов углерода и углеводородов
RU2787379C1 (ru) * 2022-05-19 2023-01-09 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Катализатор, способ его приготовления и способ получения водорода из аммиака

Also Published As

Publication number Publication date
CN102762296A (zh) 2012-10-31
WO2011053192A2 (en) 2011-05-05
US8865613B2 (en) 2014-10-21
JP5624627B2 (ja) 2014-11-12
AU2010313807A1 (en) 2012-05-17
CA2778386C (en) 2014-11-25
CN102762296B (zh) 2015-03-25
EP2501471A2 (en) 2012-09-26
AU2010313807B2 (en) 2016-05-26
CA2778386A1 (en) 2011-05-05
US20120214664A1 (en) 2012-08-23
JP2013509290A (ja) 2013-03-14
WO2011053192A3 (en) 2011-08-11
ZA201202912B (en) 2012-12-27

Similar Documents

Publication Publication Date Title
RU2414296C1 (ru) Катализатор для синтеза углеводородов из со и h2 и способ его получения
CN107754793B (zh) 多孔碳负载的费托合成催化剂及其制备方法和应用
CA3052345C (en) Fischer-tropsch synthesis catalyst containing nitride carrier, and preparation method therefor and use thereof
Xu et al. Carbon dioxide reforming of methane over nanocomposite Ni/ZrO 2 catalysts
NO329355B1 (no) Fremgangsmate for en Fischer-Tropsch reaksjon
Han et al. Microstructured Al‐fiber@ meso‐Al2O3@ Fe‐Mn‐K Fischer–Tropsch catalyst for lower olefins
US20050096215A1 (en) Process for producing synthesis gas using stabilized composite catalyst
US7393877B2 (en) Process for the conversion of a synthesis gas to hydrocarbons in the presence of beta-SiC and effluent from this process
EP1782885B1 (en) Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons
CN107530685B (zh) 包含分散的金和钯的催化剂及其在选择性氢化中的用途
JP2000104078A (ja) 炭素ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
US20040010174A1 (en) Oxidative dehydrogenation of hydrocarbons by promoted metal oxides
RU2325226C1 (ru) Катализатор для синтеза фишера-тропша и способ его получения
Han et al. Microfibrous-structured Al-fiber@ ns-Al 2 O 3 core–shell composite functionalized by Fe–Mn–K via surface impregnation combustion: as-burnt catalysts for synthesis of light olefins from syngas
RU2422200C1 (ru) Катализатор синтеза углеводородов и способ его получения
Guerrero-Ruiz et al. Effect of the basic function in Co, MgO/C catalysts on the selective oxidation of methane by carbon dioxide
WO2022249616A1 (ja) 酸化脱水素用触媒
AU2019239617B2 (en) A supported cobalt-containing Fischer-Tropsch catalyst, process for preparing the same and uses thereof
KR20230060032A (ko) 높은 아세틸렌 함량을 갖는 가스 혼합물의 선택적 수소화 공정
CN115106118A (zh) 具有催化低碳烷烃脱氢功能的负载型催化剂及其制备方法和应用以及制备低碳烯烃的方法
Montoya et al. Effect of preparation method and support on the deactivation of nickel catalysts by carbon deposition

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20140402