RU2010110307A - Наноструктуры с высокими термоэлектрическими свойствами - Google Patents

Наноструктуры с высокими термоэлектрическими свойствами Download PDF

Info

Publication number
RU2010110307A
RU2010110307A RU2010110307/28A RU2010110307A RU2010110307A RU 2010110307 A RU2010110307 A RU 2010110307A RU 2010110307/28 A RU2010110307/28 A RU 2010110307/28A RU 2010110307 A RU2010110307 A RU 2010110307A RU 2010110307 A RU2010110307 A RU 2010110307A
Authority
RU
Russia
Prior art keywords
electrode
nanostructures
nanostructure
electric current
semiconductor
Prior art date
Application number
RU2010110307/28A
Other languages
English (en)
Other versions
RU2515969C2 (ru
Inventor
Пейдонг ЯНГ (US)
Пейдонг ЯНГ
Арунава МАДЖУМДАР (US)
Арунава МАДЖУМДАР
Эллон И. ХОЧБАУМ (US)
Эллон И. ХОЧБАУМ
Ренкун ЧЕН (US)
Ренкун ЧЕН
Рауль Диаз ДЕЛГАДО (US)
Рауль Диаз ДЕЛГАДО
Original Assignee
Члены Правления Университета Калифорнии (Us)
Члены Правления Университета Калифорнии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Члены Правления Университета Калифорнии (Us), Члены Правления Университета Калифорнии filed Critical Члены Правления Университета Калифорнии (Us)
Publication of RU2010110307A publication Critical patent/RU2010110307A/ru
Application granted granted Critical
Publication of RU2515969C2 publication Critical patent/RU2515969C2/ru

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Abstract

1. Одномерная (1D) или двумерная (2D) наноструктура, содержащая шероховатую поверхность, где наноструктура содержит полупроводник, необязательно легированный, при условии, что наноструктура не является кремниевой нанопроволокой, полученной путем погружения очищенных кремниевых подложек p-типа с ориентацией (111) в водный раствор HF/AgNO3 на 20 мин при 50°С. ! 2. Наноструктура по п.1, отличающаяся тем, что полупроводник содержит элементы Si, Ge, соединения GaAs, CdSe, GaN, AlN, Bi2Te3, ZnO, и т.п. или их комбинацию и необязательно легирован пятивалентным элементом или трехвалентным элементом. ! 3. Наноструктура по п.2, отличающаяся тем, что полупроводник содержит Si, Ge, или их комбинацию. ! 4. Наноструктура по п.1, отличающаяся тем, что наноструктура является 1D-наноструктурой. ! 5. Наноструктура по п.4, отличающаяся тем, что 1D-наноструктура является нанопроволокой. ! 6. Наноструктура по п.1, отличающаяся тем, что наноструктура является 2D-наноструктурой. ! 7. Устройство, содержащее одну или более одномерных (1D) или двумерных (2D) наноструктур, содержащих шероховатую поверхность, где каждая наноструктура содержит полупроводник, необязательно легированный, и каждая наноструктура контактирует с первым электродом и со вторым электродом. ! 8. Устройство по п.7, отличающееся тем, что первый электрод содержит первый светонепроницаемый материал, а второй электрод содержит второй светонепроницаемый материал, причем первый и второй светонепроницаемые материалы являются одним и тем же материалом или разными материалами. ! 9. Устройство по п.7, отличающееся тем, что первый электрод и второй электрод электрически связаны один с другим. ! 10. Устройство по п.7, отличающе�

Claims (51)

1. Одномерная (1D) или двумерная (2D) наноструктура, содержащая шероховатую поверхность, где наноструктура содержит полупроводник, необязательно легированный, при условии, что наноструктура не является кремниевой нанопроволокой, полученной путем погружения очищенных кремниевых подложек p-типа с ориентацией (111) в водный раствор HF/AgNO3 на 20 мин при 50°С.
2. Наноструктура по п.1, отличающаяся тем, что полупроводник содержит элементы Si, Ge, соединения GaAs, CdSe, GaN, AlN, Bi2Te3, ZnO, и т.п. или их комбинацию и необязательно легирован пятивалентным элементом или трехвалентным элементом.
3. Наноструктура по п.2, отличающаяся тем, что полупроводник содержит Si, Ge, или их комбинацию.
4. Наноструктура по п.1, отличающаяся тем, что наноструктура является 1D-наноструктурой.
5. Наноструктура по п.4, отличающаяся тем, что 1D-наноструктура является нанопроволокой.
6. Наноструктура по п.1, отличающаяся тем, что наноструктура является 2D-наноструктурой.
7. Устройство, содержащее одну или более одномерных (1D) или двумерных (2D) наноструктур, содержащих шероховатую поверхность, где каждая наноструктура содержит полупроводник, необязательно легированный, и каждая наноструктура контактирует с первым электродом и со вторым электродом.
8. Устройство по п.7, отличающееся тем, что первый электрод содержит первый светонепроницаемый материал, а второй электрод содержит второй светонепроницаемый материал, причем первый и второй светонепроницаемые материалы являются одним и тем же материалом или разными материалами.
9. Устройство по п.7, отличающееся тем, что первый электрод и второй электрод электрически связаны один с другим.
10. Устройство по п.7, отличающееся тем, что при наличии разности температур между первым электродом и вторым электродом вырабатывается электрический ток, протекающий через наноструктуру.
11. Способ вырабатывания электрического тока, содержащий:
(a) создание устройства по п.10 и
(b) повышение температуры первого электрода, при котором вырабатывается электрический ток, протекающий от первого электрода к наноструктуре и через наноструктуру - ко второму электроду.
12. Устройство, содержащее:
(a) первый электрод;
(b) второй электрод;
(c) третий электрод;
(d) первое множество одномерных (1D) или двумерных (2D) наноструктур, содержащих шероховатую поверхность, где каждая наноструктура содержит полупроводник, необязательно легированный; и
(e) второе множество 1D- или 2D-наноструктур, содержащих шероховатую поверхность, где каждая наноструктура содержит полупроводник, необязательно легированный,
причем первое множество наноструктур контактирует с первым электродом и с третьим электродом, второе множество наноструктур контактирует с первым электродом и со вторым электродом, а второй электрод электрически связан с третьим электродом, так что когда первый электрод имеет более высокую температуру, чем второй электрод, вырабатывается электрический ток, протекающий от второго электрода ко второму множеству наноструктур, через второе множество наноструктур - к первому электроду, через первый электрод - к первому множеству наноструктур и через первое множество наноструктур - к третьему электроду.
13. Термоэлектрический генератор, содержащий устройство по п.12.
14. Термоэлектрический охладитель, содержащий устройство по п.12.
15. Способ вырабатывания электрического тока, содержащий:
(a) создание устройства по п.12 и
(b) повышение температуры первого электрода, при котором вырабатывается электрический ток, протекающий от второго электрода ко второму множеству наноструктур, через второе множество наноструктур - к первому электроду, через первый электрод - к первому множеству наноструктур и через первое множество наноструктур - к третьему электроду.
16. Способ снижения температуры на участке, содержащий:
(a) создание устройства по п.12, в котором электрическая мощность передается между вторым и третьим электродами, а первый электрод находится на или вблизи участка; и
(b) обеспечение протекания электрического тока от второго электрода ко второму множеству наноструктур, через второе множество наноструктур - к первому электроду, через первый электрод - к первому множеству наноструктур и через первое множество наноструктур - к третьему электроду, так что температура на участке снижается.
17. Устройство, содержащее одну или более 1D-наноструктур по п.4, отличающееся тем, что 1D-наноструктура содержит первый конец и второй конец, причем первый конец контактирует с первым электродом, а второй конец контактирует со вторым электродом.
18. Устройство по п.17, отличающееся тем, что 1D-наноструктура является нанопроволокой.
19. Устройство по п.18, отличающееся тем, что первый электрод содержит первый светонепроницаемый материал, а второй электрод содержит второй светонепроницаемый материал, причем первый и второй светонепроницаемые материалы являются одним и тем же материалом или разными материалами.
20. Устройство по п.17, отличающееся тем, что первый электрод и второй электрод электрически связаны один с другим.
21. Устройство по п.17, отличающееся тем, что при наличии разности температур между первым электродом и вторым электродом вырабатывается электрический ток, протекающий через 1D-наноструктуру.
22. Способ вырабатывания электрического тока, содержащий:
(a) создание устройства по п.21 и
(b) повышение температуры первого электрода, при котором вырабатывается электрический ток, протекающий от первого электрода к 1D-наноструктуре и через 1D-наноструктуру - ко второму электроду.
23. Устройство, содержащее:
(a) первый электрод;
(b) второй электрод;
(c) третий электрод;
(d) первое множество 1D-наноструктур, каждая из которых имеет удлиненную форму с первым концом и со вторым концом и шероховатую поверхность, где каждая 1D-наноструктура содержит полупроводник, легированный трехвалентным элементом; и
(e) второе множество 1D-наноструктур, каждая из которых имеет удлиненную форму с первым концом и со вторым концом и шероховатую поверхность, где каждая 1D-наноструктура содержит полупроводник, легированный пятивалентным элементом,
причем первый конец первого множества 1D-наноструктур контактирует с первым электродом, второй конец первого множества 1D-наноструктур контактирует с третьим электродом, первый конец второго множества 1D-наноструктур контактирует с первым электродом, второй конец второго множества 1D-наноструктур контактирует со вторым электродом, а второй электрод электрически связан с третьим электродом, так что когда первый электрод имеет более высокую температуру, чем второй электрод, вырабатывается электрический ток, протекающий от второго электрода ко второму множеству 1D-наноструктур, через второе множество 1D-наноструктур - к первому электроду, через первый электрод - к первому множеству 1D-наноструктур и через первое множество 1D-наноструктур - к третьему электроду.
24. Термоэлектрический генератор, содержащий устройство по п.23.
25. Термоэлектрический охладитель, содержащий устройство по п.23.
26. Способ вырабатывания электрического тока, содержащий:
(a) создание устройства по п.23 и
(b) повышение температуры первого электрода, при котором вырабатывается электрический ток, протекающий от второго электрода ко второму множеству 1D-наноструктур, через второе множество 1D-наноструктур - к первому электроду, через первый электрод - к первому множеству 1D-наноструктур и через первое 1D-множество наноструктур - к третьему электроду.
27. Способ снижения температуры на участке, содержащий:
(a) создание устройства по п.23, в котором электрическая мощность передается между вторым и третьим электродами, а первый электрод находится на или вблизи участка; и
(b) обеспечение протекания электрического тока от второго электрода ко второму множеству 1D-наноструктур, через второе множество 1D-наноструктур - к первому электроду, через первый электрод - к первому множеству 1D-наноструктур и через первое множество 1D-наноструктур - к третьему электроду, так что температура на участке снижается.
28. Устройство для термоэлектрического преобразования, содержащее:
(a) первый электрод;
(b) второй электрод и
(c) одну или более наноструктур, размещенных между первым электродом и вторым электродом, где каждая из одной или более наноструктур включает в себя один или более полупроводниковых материалов; причем
каждая из одной или более наноструктур контактирует с первым электродом и со вторым электродом и каждая из одной или более наноструктур включает в себя поверхность, средняя шероховатость которой варьируется от 1 до 5 нм.
29. Устройство по п.28, отличающееся тем, что каждая из одной или более наноструктур является 1D-наноструктурой.
30. Устройство по п.28, отличающееся тем, что 1D-наноструктура является нанопроволокой.
31. Устройство по п.28, отличающееся тем, что каждая из одной или более наноструктур является 2D-наноструктурой.
32. Устройство по п.28, отличающееся тем, что один или более полупроводниковых материалов включает в себя, по меньшей мере, один элемент или соединение, выбранное из группы, состоящей из Si, Ge, GaAs, CdSe, GaN, AlN, Bi2Te3 и ZnO.
33. Устройство по п.28, отличающееся тем, что один или более полупроводниковых материалов включает в себя, по меньшей мере, один элемент, выбранный из группы, состоящей из Si и Ge,
34. Устройство по п.28, отличающееся тем, что один или более полупроводниковых материалов легированы пятивалентными элементами или трехвалентными элементами.
35. Устройство по п.28, отличающееся тем, что:
(a) первый электрод включает в себя первый светонепроницаемый материал;
(b) второй электрод включает в себя второй светонепроницаемый материал; и
(c) первый светонепроницаемый материал и второй светонепроницаемый материал являются одним и тем же материалом или разными материалами.
36. Устройство по п.28, отличающееся тем, что первый электрод и второй электрод электрически соединены один с другим через одну или более наноструктур.
37. Устройство по п.28, отличающееся тем, что предназначено для генерирования электрического тока.
38. Устройство по п.37, отличающееся тем, что дополнительно предназначено для генерирования электрического тока, протекающего между первым электродом и вторым электродом через одну или более наноструктур, если первый электрод и второй электрод имеют разные температуры.
39. Устройство по п.28, отличающееся тем, что предназначено для термоэлектрического охлаждения.
40. Устройство для термоэлектрического преобразования, содержащее:
(a) первый электрод;
(b) второй электрод;
(c) третий электрод;
(d) одну или более первых наноструктур, размещенных между первым электродом и вторым электродом, где каждая из одной или более первых наноструктур включает в себя один или более полупроводниковых материалов; и
(e) одну или более вторых наноструктур, размещенных между первым электродом и вторым электродом, где каждая из одной или более вторых наноструктур включает в себя один или более полупроводниковых материалов; причем
каждая из одной или более первых наноструктур контактирует с первым электродом и вторым электродом, каждая из одной или более вторых наноструктур контактирует со вторым электродом и с третьим электродом, каждая из одной или более первых наноструктур включает в себя первую поверхность, средняя шероховатость которой варьируется от 1 до 5 нм, и каждая из одной или более вторых наноструктур включает в себя вторую поверхность, средняя шероховатость которой варьируется от 1 до 5 нм.
41. Устройство по п.40, отличающееся тем, что первый электрод и третий электрод электрически соединены один с другим через одну или более первых наноструктур, второй электрод и одну или более вторых наноструктур.
42. Устройство по п.40, отличающееся тем, что предназначено для генерирования электрического тока.
43. Устройство по п.40, отличающееся тем, что дополнительно предназначено для генерирования электрического тока, протекающего между первым электродом и третьим электродом через одну или более первых наноструктур, второй электрод и одну или более вторых наноструктур, если второй электрод имеет температуру, отличную от температуры первого электрода и третьего электрода.
44. Устройство по п.40, отличающееся тем, что предназначено для термоэлектрического охлаждения.
45. Устройство по п.40, отличающееся тем, что:
(a) первый электрод включает в себя первый светонепроницаемый материал;
(b) второй электрод включает в себя второй светонепроницаемый материал; а
(c) первый светонепроницаемый материал и второй светонепроницаемый материал являются одним и тем же материалом или разными материалами.
46. Устройство для термоэлектрического преобразования, содержащее:
(a) первый электрод;
(b) второй электрод;
(c) третий электрод;
(d) одну или более наноструктур, размещенных между первым электродом и вторым электродом, где каждая из одной или более наноструктур включает в себя один или более полупроводниковых материалов; и
(e) одну или более термоэлектрических структур, размещенных между вторым электродом и третьим электродом, причем
каждая из одной или более наноструктур контактирует с первым электродом и со вторым электродом, каждая из одной или более термоэлектрических структур контактирует со вторым электродом и с третьим электродом, и каждая из одной или более наноструктур включает в себя поверхность, средняя шероховатость которой варьируется от 1 до 5 нм.
47. Устройство по п.46, отличающееся тем, что первый электрод и третий электрод электрически соединены один с другим через одну или более наноструктур, второй электрод и одну или более термоэлектрических структур.
48. Устройство по п.46, отличающееся тем, что предназначено для генерирования электрического тока.
49. Устройство по п.48, отличающееся тем, что дополнительно предназначено для генерирования электрического тока, протекающего между первым электродом и третьим электродом через одну или более наноструктур, второй электрод и одну или более термоэлектрических структур, если второй электрод имеет температуру, отличную от температуры первого электрода и третьего электрода.
50. Устройство по п.46, отличающееся тем, что предназначено для термоэлектрического охлаждения.
51. Устройство по п.46, отличающееся тем, что:
(a) первый электрод включает в себя первый светонепроницаемый материал;
(b) второй электрод включает в себя второй светонепроницаемый материал; а
(c) первый светонепроницаемый материал и второй светонепроницаемый материал являются одним и тем же материалом или разными материалами.
RU2010110307/04A 2007-08-21 2008-08-21 Наноструктуры с высокими термоэлектрическими свойствами RU2515969C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US95715807P 2007-08-21 2007-08-21
US60/957,158 2007-08-21
US1627607P 2007-12-21 2007-12-21
US61/016,276 2007-12-21
PCT/US2008/073922 WO2009026466A1 (en) 2007-08-21 2008-08-21 Nanostructures having high performance thermoelectric properties

Publications (2)

Publication Number Publication Date
RU2010110307A true RU2010110307A (ru) 2011-09-27
RU2515969C2 RU2515969C2 (ru) 2014-05-20

Family

ID=40378659

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010110307/04A RU2515969C2 (ru) 2007-08-21 2008-08-21 Наноструктуры с высокими термоэлектрическими свойствами

Country Status (7)

Country Link
US (2) US8729381B2 (ru)
EP (2) EP2221893A3 (ru)
JP (2) JP5524839B2 (ru)
KR (3) KR20100056478A (ru)
CN (2) CN101836285B (ru)
RU (1) RU2515969C2 (ru)
WO (1) WO2009026466A1 (ru)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
US8101449B2 (en) * 2007-01-03 2012-01-24 Toyota Motor Engineering & Manufacturing North America, Inc. Process for altering thermoelectric properties of a material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
EP2221893A3 (en) 2007-08-21 2013-09-18 The Regents of the University of California Nanostructures Having High Performance Thermoelectric Properties
GB2464157B (en) * 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
US8247325B2 (en) * 2008-10-10 2012-08-21 Uchicago Argonne, Llc Direct growth of metal nanoplates on semiconductor substrates
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
JP2011040663A (ja) * 2009-08-18 2011-02-24 Hioki Ee Corp サーモパイル型赤外線検知素子およびその製造方法
KR20110052225A (ko) * 2009-11-12 2011-05-18 삼성전자주식회사 나노복합체형 열전재료 및 이를 포함하는 열전소자와 열전모듈
US20110114146A1 (en) * 2009-11-13 2011-05-19 Alphabet Energy, Inc. Uniwafer thermoelectric modules
JP5364549B2 (ja) * 2009-12-07 2013-12-11 日置電機株式会社 サーモパイル型赤外線検知素子およびその製造方法
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
KR101779497B1 (ko) * 2010-08-26 2017-09-18 엘지이노텍 주식회사 나노입자가 도핑된 열전소자를 포함하는 열전모듈 및 그 제조 방법
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
WO2012054777A2 (en) 2010-10-22 2012-04-26 California Institute Of Technology Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials
KR101287611B1 (ko) * 2010-11-15 2013-07-18 전북대학교산학협력단 실리콘 나노선의 제조 방법
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8736011B2 (en) * 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
TWI441305B (zh) * 2010-12-21 2014-06-11 Ind Tech Res Inst 半導體裝置
KR101876947B1 (ko) 2011-01-25 2018-07-10 엘지이노텍 주식회사 나노 구조의 벌크소재를 이용한 열전소자와 이를 포함하는 열전모듈 및 그의 제조 방법
WO2012101312A1 (es) * 2011-01-25 2012-08-02 Consejo Superior De Investigaciones Científicas Procedimiento de fabricación de un dispositivo termoeléctrico, y dispositivo termoeléctrico así obtenido
US20120282435A1 (en) * 2011-03-24 2012-11-08 University Of Massachusetts Nanostructured Silicon with Useful Thermoelectric Properties
CN102181939A (zh) * 2011-03-25 2011-09-14 华东师范大学 一种控制硅纳米线生长长度的方法
CN103460421B (zh) * 2011-04-06 2016-05-18 松下知识产权经营株式会社 热电转换元件模块及其制造方法
WO2013007798A1 (en) 2011-07-14 2013-01-17 GEORGE, John T. Electrical light source with thermoelectric energy recovery
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
EP2592363A1 (en) 2011-11-14 2013-05-15 Entry Technology Holding B.V. Energy conversion device
KR101956278B1 (ko) * 2011-12-30 2019-03-11 삼성전자주식회사 그래핀 함유 복합 적층체, 이를 포함하는 열전재료, 열전모듈과 열전 장치
US10205080B2 (en) 2012-01-17 2019-02-12 Matrix Industries, Inc. Systems and methods for forming thermoelectric devices
CN104205382A (zh) 2012-01-25 2014-12-10 阿尔法贝特能源公司 用于热回收***的模块化热电单元及其方法
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
WO2013149205A1 (en) 2012-03-29 2013-10-03 California Institute Of Technology Phononic structures and related devices and methods
FR2991207B1 (fr) * 2012-06-04 2014-05-16 Commissariat Energie Atomique Procede de fabrication d'un materiau thermoelectrique
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
EP2885823B1 (en) * 2012-08-17 2018-05-02 Matrix Industries, Inc. Methods for forming thermoelectric devices
TW201409783A (zh) * 2012-08-28 2014-03-01 Juant Technology Co Ltd 可透光的熱電致冷元件
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US20140116491A1 (en) * 2012-10-29 2014-05-01 Alphabet Energy, Inc. Bulk-size nanostructured materials and methods for making the same by sintering nanowires
WO2014070795A1 (en) 2012-10-31 2014-05-08 Silicium Energy, Inc. Methods for forming thermoelectric elements
US20140360546A1 (en) * 2013-06-08 2014-12-11 Alphabet Energy, Inc. Silicon-based thermoelectric materials including isoelectronic impurities, thermoelectric devices based on such materials, and methods of making and using same
US20150045885A1 (en) * 2013-08-06 2015-02-12 University Of Limerick Seedless group iv nanowires, and methods for the production thereof
US9065017B2 (en) 2013-09-01 2015-06-23 Alphabet Energy, Inc. Thermoelectric devices having reduced thermal stress and contact resistance, and methods of forming and using the same
US9263662B2 (en) 2014-03-25 2016-02-16 Silicium Energy, Inc. Method for forming thermoelectric element using electrolytic etching
US9691849B2 (en) 2014-04-10 2017-06-27 Alphabet Energy, Inc. Ultra-long silicon nanostructures, and methods of forming and transferring the same
CN105226179B (zh) * 2015-07-20 2018-07-20 南昌大学 一种基于单根一维同质结微/纳米线的热发电机及其发电方法
CN107431082A (zh) * 2016-01-29 2017-12-01 华为技术有限公司 制备发电器件的方法、发电器件和供电设备
CN105703462A (zh) * 2016-03-17 2016-06-22 深圳市微纳集成电路与***应用研究院 一种可穿戴设备的热电发电装置和对蓄电电源充电的衣物
US10290796B2 (en) 2016-05-03 2019-05-14 Matrix Industries, Inc. Thermoelectric devices and systems
CN107611247A (zh) * 2016-07-11 2018-01-19 林宗宏 成长碲及碲化物纳米线阵列于导电基材上的方法和碲及碲化物纳米线热电装置
USD819627S1 (en) 2016-11-11 2018-06-05 Matrix Industries, Inc. Thermoelectric smartwatch
FR3064109A1 (fr) * 2017-03-20 2018-09-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure a nanofils et procede de realisation d'une telle structure
US20180342661A1 (en) 2017-05-25 2018-11-29 Globalfoundries Inc. Fin-based devices based on the thermoelectric effect
EP3704751A4 (en) * 2017-10-31 2021-09-08 Technology Innovation Momentum Fund (Israel) Limited Partnership COMPOSITE ELECTRODES WITH NANOSTRUCTURES
CA3090784A1 (en) * 2018-02-09 2019-08-15 Mahmoud HUSSEIN Thermoelectric devices based on nanophononic metamaterials
JP7291461B2 (ja) * 2018-02-20 2023-06-15 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
US11758813B2 (en) * 2018-06-18 2023-09-12 Sumitomo Electric Industries, Ltd. Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, optical sensor, and method for manufacturing thermoelectric conversion material
EP3614389B1 (en) * 2018-08-23 2023-10-11 Tata Consultancy Services Limited Systems and methods for predicting structure and properties of atomic elements and alloy materials thereof
US11165007B2 (en) 2019-01-25 2021-11-02 King Abdulaziz University Thermoelectric module composed of SnO and SnO2 nanostructures
KR102205050B1 (ko) 2019-04-26 2021-01-20 한국과학기술연구원 열전소자 및 그 제조방법
US11762517B2 (en) 2019-06-19 2023-09-19 Nissha Co., Ltd. Touch panel
CN110690846B (zh) * 2019-09-29 2022-01-28 西南大学 一种基于倾斜硅纳米线的光热电转换器件
WO2022081769A1 (en) * 2020-10-13 2022-04-21 Worcester Polytechnic Institute Thermoelectric device and fabrication

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588254A (en) 1950-05-09 1952-03-04 Purdue Research Foundation Photoelectric and thermoelectric device utilizing semiconducting material
DE1483298B1 (de) 1965-06-11 1971-01-28 Siemens Ag Elektrische Kontaktanordnung zwischen einem Germanium-Silizium-Halbleiterkoerper und einem Kontaktstueck und Verfahren zur Herstellung derselben
US4251286A (en) * 1979-09-18 1981-02-17 The University Of Delaware Thin film photovoltaic cells having blocking layers
US4493939A (en) 1983-10-31 1985-01-15 Varo, Inc. Method and apparatus for fabricating a thermoelectric array
US4842699A (en) 1988-05-10 1989-06-27 Avantek, Inc. Method of selective via-hole and heat sink plating using a metal mask
US5391914A (en) 1994-03-16 1995-02-21 The United States Of America As Represented By The Secretary Of The Navy Diamond multilayer multichip module substrate
US5824561A (en) 1994-05-23 1998-10-20 Seiko Instruments Inc. Thermoelectric device and a method of manufacturing thereof
US5837929A (en) 1994-07-05 1998-11-17 Mantron, Inc. Microelectronic thermoelectric device and systems incorporating such device
RU2154325C2 (ru) 1996-05-28 2000-08-10 Мацушита Электрик Уорк, Лтд. Способ изготовления термоэлектрического модуля
US6300150B1 (en) 1997-03-31 2001-10-09 Research Triangle Institute Thin-film thermoelectric device and fabrication method of same
US6388185B1 (en) * 1998-08-07 2002-05-14 California Institute Of Technology Microfabricated thermoelectric power-generation devices
EP1166369A4 (en) 1999-03-11 2006-12-27 Eneco Inc HYBRID THERMOIONIC CONVERTER AND METHOD THEREOF
JP2004532133A (ja) * 2001-03-30 2004-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア ナノ構造及びナノワイヤーの組立方法並びにそれらから組立てられた装置
CN101638216B (zh) * 2001-03-30 2012-12-19 加利福尼亚大学董事会 纳米结构和纳米线的制造方法及由其制造的器件
US7619158B2 (en) 2001-06-01 2009-11-17 Marlow Industries, Inc. Thermoelectric device having P-type and N-type materials
US6843902B1 (en) 2001-07-20 2005-01-18 The Regents Of The University Of California Methods for fabricating metal nanowires
US20040251539A1 (en) 2001-09-12 2004-12-16 Faris Sadeg M. Thermoelectric cooler array
EP1433208A4 (en) 2001-10-05 2008-02-20 Nextreme Thermal Solutions Inc LOW-DIMENSIONAL STRUCTURES, ELECTRON EMITTERS AND PHONES BLOCKERS
WO2003046265A2 (en) 2001-11-26 2003-06-05 Massachusetts Institute Of Technology Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
CN1167141C (zh) 2001-12-06 2004-09-15 天津大学 由一维纳米线阵列结构温差电材料制造的微温差电池
US7220310B2 (en) 2002-01-08 2007-05-22 Georgia Tech Research Corporation Nanoscale junction arrays and methods for making same
US8154093B2 (en) 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
KR20030064292A (ko) 2002-01-25 2003-07-31 가부시키가이샤 고마쓰 세이사쿠쇼 열전모듈
US6972146B2 (en) 2002-03-15 2005-12-06 Canon Kabushiki Kaisha Structure having holes and method for producing the same
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US7400395B2 (en) 2002-06-12 2008-07-15 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (SERS) substrate
US7361313B2 (en) 2003-02-18 2008-04-22 Intel Corporation Methods for uniform metal impregnation into a nanoporous material
US6989897B2 (en) 2002-06-12 2006-01-24 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced Raman spectroscopy (SERS) substrate
JP2004031696A (ja) 2002-06-26 2004-01-29 Kyocera Corp 熱電モジュール及びその製造方法
US6639242B1 (en) * 2002-07-01 2003-10-28 International Business Machines Corporation Monolithically integrated solid-state SiGe thermoelectric energy converter for high speed and low power circuits
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
JP4235440B2 (ja) 2002-12-13 2009-03-11 キヤノン株式会社 半導体デバイスアレイ及びその製造方法
WO2004071949A2 (en) 2003-02-13 2004-08-26 The Regents Of The University Of California Nanostructured casting of organic and bio-polymers in porous silicon templates
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7605327B2 (en) 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
US7538010B2 (en) 2003-07-24 2009-05-26 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating an epitaxially grown layer
EP1652218A2 (en) 2003-08-04 2006-05-03 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
US20050045702A1 (en) * 2003-08-29 2005-03-03 William Freeman Thermoelectric modules and methods of manufacture
US20050060884A1 (en) 2003-09-19 2005-03-24 Canon Kabushiki Kaisha Fabrication of nanoscale thermoelectric devices
CN100397671C (zh) 2003-10-29 2008-06-25 京瓷株式会社 热电换能模块
US6969679B2 (en) 2003-11-25 2005-11-29 Canon Kabushiki Kaisha Fabrication of nanoscale thermoelectric devices
EP1700336A1 (en) 2003-12-23 2006-09-13 Koninklijke Philips Electronics N.V. Semiconductor device comprising a heterojunction
KR100552707B1 (ko) 2004-04-07 2006-02-20 삼성전자주식회사 나노와이어 발광소자 및 그 제조방법
US20060233692A1 (en) * 2004-04-26 2006-10-19 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050257821A1 (en) 2004-05-19 2005-11-24 Shriram Ramanathan Thermoelectric nano-wire devices
EP1612870A1 (en) 2004-07-01 2006-01-04 Interuniversitair Microelektronica Centrum Vzw Method of manufacturing a thermoelectric generator and thermoelectric generator thus obtained
AU2005325265A1 (en) 2004-07-07 2006-07-27 Nanosys, Inc. Systems and methods for harvesting and integrating nanowires
WO2006019059A1 (ja) 2004-08-17 2006-02-23 The Furukawa Electric Co., Ltd. 熱電冷却装置
US20060076046A1 (en) 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US20060157101A1 (en) 2004-10-29 2006-07-20 Sakamoto Jeff S System and method for fabrication of high-efficiency durable thermoelectric devices
US9865790B2 (en) 2004-12-07 2018-01-09 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
US7309830B2 (en) 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
US8206780B2 (en) 2004-12-14 2012-06-26 The Regents Of The University Of California Polymer composite photonic particles
US7569202B2 (en) 2005-05-09 2009-08-04 Vesta Research, Ltd. Silicon nanosponge particles
JP2006332188A (ja) 2005-05-24 2006-12-07 Toyota Motor Corp 熱電発電モジュール
US8039726B2 (en) 2005-05-26 2011-10-18 General Electric Company Thermal transfer and power generation devices and methods of making the same
RU2296055C2 (ru) * 2005-05-31 2007-03-27 Общество с ограниченной ответственностью "Восток" Наноструктурированное покрытие несущей основы
JP4522340B2 (ja) 2005-08-01 2010-08-11 シャープ株式会社 平面導波路素子
WO2007022359A2 (en) 2005-08-16 2007-02-22 The Regents Of The University Of California Vertical integrated silicon nanowire field effect transistors and methods of fabrication
US7847180B2 (en) 2005-08-22 2010-12-07 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same
US7833816B2 (en) 2005-12-07 2010-11-16 Intel Corporation Forming a thin film thermoelectric cooler and structures formed thereby
US20070131269A1 (en) 2005-12-09 2007-06-14 Biprodas Dutta High density nanowire arrays in glassy matrix
DE102005063038A1 (de) 2005-12-29 2007-07-05 Basf Ag Nano Thermoelektrika
US7855396B2 (en) 2006-02-20 2010-12-21 Industrial Technology Research Institute Light emitting diode package structure
US20070261730A1 (en) 2006-05-12 2007-11-15 General Electric Company Low dimensional thermoelectrics fabricated by semiconductor wafer etching
FR2904146B1 (fr) 2006-07-20 2008-10-17 Commissariat Energie Atomique Procede de fabrication d'une nanostructure a base de nanofils interconnectes,nanostructure et utilisation comme convertisseur thermoelectrique
US20080178921A1 (en) 2006-08-23 2008-07-31 Qi Laura Ye Thermoelectric nanowire composites
EP1926155B1 (en) 2006-09-12 2010-10-27 C.R.F. Società Consortile per Azioni Generator of electric energy based on the thermoelectric effect
US7850941B2 (en) 2006-10-20 2010-12-14 General Electric Company Nanostructure arrays and methods for forming same
DE102006055120B4 (de) 2006-11-21 2015-10-01 Evonik Degussa Gmbh Thermoelektrische Elemente, Verfahren zu deren Herstellung und deren Verwendung
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
US20080178920A1 (en) 2006-12-28 2008-07-31 Schlumberger Technology Corporation Devices for cooling and power
GB0701069D0 (en) 2007-01-19 2007-02-28 Univ Bath Nanostructure template and production of semiconductors using the template
US7943234B2 (en) 2007-02-27 2011-05-17 Innovative Surface Technology, Inc. Nanotextured super or ultra hydrophobic coatings
WO2009011975A2 (en) 2007-05-23 2009-01-22 California Institute Of Technology Method for fabricating monolithic two-dimensional nanostructures
US7905013B2 (en) 2007-06-04 2011-03-15 Sharp Laboratories Of America, Inc. Method for forming an iridium oxide (IrOx) nanowire neural sensor array
WO2009014985A2 (en) 2007-07-20 2009-01-29 California Institute Of Technology Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
EP2221893A3 (en) 2007-08-21 2013-09-18 The Regents of the University of California Nanostructures Having High Performance Thermoelectric Properties
WO2009045538A2 (en) 2007-10-04 2009-04-09 Purdue Research Foundation Fabrication of nanowire array composites for thermoelectric power generators and microcoolers
JP2009094378A (ja) 2007-10-11 2009-04-30 Panasonic Corp 半導体装置及びその製造方法
US7558371B2 (en) 2007-10-18 2009-07-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of generating X-ray diffraction data for integral detection of twin defects in super-hetero-epitaxial materials
FR2923601B1 (fr) 2007-11-12 2010-01-01 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a connexion par nanofil et procede de realisation
TW200935635A (en) 2008-02-15 2009-08-16 Univ Nat Chiao Tung Method of manufacturing nanometer-scale thermoelectric device
US20090236317A1 (en) 2008-03-21 2009-09-24 Midwest Research Institute Anti-reflection etching of silicon surfaces catalyzed with ionic metal solutions
ITRM20080193A1 (it) 2008-04-11 2009-10-12 Univ Milano Bicocca Dispositivo di conversione termo-elettrica bidirezionale ad effetto seebeck/peltier impiegante nanofili di materiale conduttore o semiconduttore.
US7994027B2 (en) 2008-05-09 2011-08-09 George Mason Intellectual Properties, Inc. Microwave heating for semiconductor nanostructure fabrication
EP2311109A2 (en) 2008-07-06 2011-04-20 Lamos Inc. Split thermo-electric structure and devices and systems that utilize said structure
KR101005803B1 (ko) 2008-08-11 2011-01-05 한국표준과학연구원 양자점나노선 어레이 태양광 소자 및 그 제조 방법
KR101680764B1 (ko) 2008-08-11 2016-11-29 삼성전자주식회사 이방성 신장 열전 나노복합물, 그의 제조방법 및 이를 포함한 열전소자
KR20100021336A (ko) 2008-08-14 2010-02-24 삼성전자주식회사 나노 헬릭스를 이용한 태양전지
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US20100072461A1 (en) 2008-09-24 2010-03-25 Hanvision Co., Ltd. Thermo-electric semiconductor device and method for manufacturing the same
TWI380487B (en) 2008-12-12 2012-12-21 Ind Tech Res Inst Thermoelectric device
TWI401830B (zh) 2008-12-31 2013-07-11 Ind Tech Res Inst 低熱回流之熱電奈米線陣列及其製造方法
KR101062129B1 (ko) 2009-02-05 2011-09-02 주식회사 엘지화학 열전 소자 모듈 및 열전 소자 제조 방법
WO2010105163A2 (en) 2009-03-12 2010-09-16 The Curators Of The University Of Missouri High energy-density radioisotope micro power sources
US10138120B2 (en) 2009-03-31 2018-11-27 The Regents Of The University Of Michigan Shaping nanostructure arrays
US8470409B2 (en) 2009-04-28 2013-06-25 Ben Gurion University Of The Negev Research And Development Authority Nanowires, method of fabrication the same and uses thereof
WO2010151556A1 (en) 2009-06-22 2010-12-29 Q1 Nanosystems, Inc. Nanostructure and methods of making the same
JP2011014612A (ja) 2009-06-30 2011-01-20 Ibiden Co Ltd 配線基板及び配線基板の製造方法
US20110114146A1 (en) 2009-11-13 2011-05-19 Alphabet Energy, Inc. Uniwafer thermoelectric modules
IT1397679B1 (it) 2009-12-15 2013-01-18 Univ Milano Bicocca Elemento di conversione termo-elettrica seebeck/peltier comprendente nanofili paralleli di materiale conduttore o semiconduttore organizzati in file e colonne attraverso un corpo isolante e procedimento
EP2545585A2 (en) 2010-03-09 2013-01-16 Board of Regents of the University of Texas System Porous and non-porous nanostructures
US20130000688A1 (en) 2010-03-23 2013-01-03 Cho Hans S Thermoelectric device
US8138068B2 (en) 2010-08-11 2012-03-20 International Business Machines Corporation Method to form nanopore array
US8512588B2 (en) 2010-08-13 2013-08-20 Lawrence Livermore National Security, Llc Method of fabricating a scalable nanoporous membrane filter
KR101075772B1 (ko) 2010-08-30 2011-10-26 삼성전기주식회사 열전 모듈 및 이를 제조하는 방법
US9240328B2 (en) 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8736011B2 (en) 2010-12-03 2014-05-27 Alphabet Energy, Inc. Low thermal conductivity matrices with embedded nanostructures and methods thereof
US20120152295A1 (en) 2010-12-21 2012-06-21 Alphabet Energy, Inc. Arrays of filled nanostructures with protruding segments and methods thereof
US20120247527A1 (en) 2010-12-21 2012-10-04 Alphabet Energy, Inc. Electrode structures for arrays of nanostructures and methods thereof
US20120282435A1 (en) 2011-03-24 2012-11-08 University Of Massachusetts Nanostructured Silicon with Useful Thermoelectric Properties
WO2013006701A1 (en) 2011-07-05 2013-01-10 Excelitas Technologies Led Solutions, Inc Graphene-based thermopile
US8779276B2 (en) 2011-07-14 2014-07-15 Sony Corporation Thermoelectric device
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
US9444027B2 (en) 2011-10-04 2016-09-13 Infineon Technologies Ag Thermoelectrical device and method for manufacturing same
WO2013119298A2 (en) 2011-11-21 2013-08-15 Research Triangle Institute Nanoparticle compact materials for thermoelectric application
US8822309B2 (en) 2011-12-23 2014-09-02 Athenaeum, Llc Heterogeneous integration process incorporating layer transfer in epitaxy level packaging
CN104205382A (zh) 2012-01-25 2014-12-10 阿尔法贝特能源公司 用于热回收***的模块化热电单元及其方法
US20130175654A1 (en) 2012-02-10 2013-07-11 Sylvain Muckenhirn Bulk nanohole structures for thermoelectric devices and methods for making the same
US9051175B2 (en) 2012-03-07 2015-06-09 Alphabet Energy, Inc. Bulk nano-ribbon and/or nano-porous structures for thermoelectric devices and methods for making the same
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US20140182644A1 (en) 2012-10-15 2014-07-03 Alphabet Energy, Inc. Structures and methods for multi-leg package thermoelectric devices
US9082930B1 (en) 2012-10-25 2015-07-14 Alphabet Energy, Inc. Nanostructured thermolectric elements and methods of making the same
US20140116491A1 (en) 2012-10-29 2014-05-01 Alphabet Energy, Inc. Bulk-size nanostructured materials and methods for making the same by sintering nanowires

Also Published As

Publication number Publication date
KR20150041159A (ko) 2015-04-15
JP5524839B2 (ja) 2014-06-18
CN101836285B (zh) 2014-11-12
KR101631043B1 (ko) 2016-06-24
US20110114145A1 (en) 2011-05-19
CN104392933B (zh) 2017-11-07
EP2181460A4 (en) 2013-09-04
CN101836285A (zh) 2010-09-15
RU2515969C2 (ru) 2014-05-20
JP5948363B2 (ja) 2016-07-06
KR101631042B1 (ko) 2016-06-24
WO2009026466A1 (en) 2009-02-26
EP2181460A1 (en) 2010-05-05
US8729381B2 (en) 2014-05-20
US9219215B1 (en) 2015-12-22
JP2014168077A (ja) 2014-09-11
KR20150041160A (ko) 2015-04-15
EP2221893A3 (en) 2013-09-18
JP2010537430A (ja) 2010-12-02
KR20100056478A (ko) 2010-05-27
EP2221893A2 (en) 2010-08-25
CN104392933A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
RU2010110307A (ru) Наноструктуры с высокими термоэлектрическими свойствами
JP2010537430A5 (ru)
US9209375B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
Wang et al. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material
Qian et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics
Mehta et al. Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring
US20130175654A1 (en) Bulk nanohole structures for thermoelectric devices and methods for making the same
Lupan et al. Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication
KR101864211B1 (ko) 실리콘 나노선 기반의 열전소자 및 그 제조 방법
KR101416663B1 (ko) 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법
US20190214538A1 (en) Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
EP2609635B1 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
US20110168224A1 (en) Thermoelectric device and thermoelectric device array
KR20140012073A (ko) 나노구조 어레이를 위한 전극 구조 및 이의 제조 방법
CN107146843A (zh) 热电产生器
KR101020475B1 (ko) 태양 전지 - 열전 소자 통합 모듈 및 이의 제조방법
KR101039208B1 (ko) 반도체 막대를 구비하는 태양 전지, 이의 제조방법, 및 태양 전지 - 열전 소자 통합 모듈
KR101948888B1 (ko) 열전 소자
TW201230420A (en) Apparatus, systems and methods for electrical power generation from heat
Lee et al. Dielectrophoretically aligned GaN nanowire rectifiers
KR20140008999A (ko) 금속-절연체 전이 금속을 이용하는 열전소자
Padma et al. Fabrication of GaN/InGaN MQW blue light emitting diode
JP7477075B2 (ja) 発電素子、発電装置、電子機器、及び発電素子の製造方法
JP6657889B2 (ja) 熱電変換素子及びその製造方法
RU117044U1 (ru) Светоизлучающий элемент

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180822