KR20190055038A - 2차 전지, 부극, 정극 및 전해질 - Google Patents

2차 전지, 부극, 정극 및 전해질 Download PDF

Info

Publication number
KR20190055038A
KR20190055038A KR1020190053751A KR20190053751A KR20190055038A KR 20190055038 A KR20190055038 A KR 20190055038A KR 1020190053751 A KR1020190053751 A KR 1020190053751A KR 20190053751 A KR20190053751 A KR 20190053751A KR 20190055038 A KR20190055038 A KR 20190055038A
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
electrode active
material layer
positive electrode
Prior art date
Application number
KR1020190053751A
Other languages
English (en)
Other versions
KR102135752B1 (ko
Inventor
히데키 나카이
토모요 오오야마
마사유키 이하라
?스케 사이토
신이치 카타야마
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42830758&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20190055038(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20190055038A publication Critical patent/KR20190055038A/ko
Application granted granted Critical
Publication of KR102135752B1 publication Critical patent/KR102135752B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

2차 전지, 정극, 부극 및 전해질을 제공한다. 예를 들면, 2차 전지는, 부극; 정극 및; 전해질을 구비하고, 상기 부극이, 부극 활물질과, 금속 바륨 및 바륨 화합물로 이루어지는 군에서 선택되는 물질을 함유하는 피막{被膜; coat}을 포함하고 있는 것이다.

Description

2차 전지, 부극, 정극 및 전해질{SECONDARY BATTERY, ANODE, CATHODE, AND ELECTROLYTE}
본 발명은, 그 전체 내용이 본원 명세서에 참고용으로 병합되어 있는, 2009년 7월 16일자로 일본 특허청에 출원된 일본특허출원 제2009-168098호에 관련된 주제를 포함한다.
본 발명은, 전극 반응물질을 흡장{吸藏; inserting} 및 방출{放出; extracting}하는 것이 가능한 부극 및 정극, 용매 및 전해질염을 포함하는 전해질과, 그들을 이용한 2차 전지에 관한 것이다.
근래, 비디오 카메라, 디지털 스틸 카메라, 휴대 전화 혹은 노트북형 퍼스널 컴퓨터 등의 휴대용 전자 기기가 널리 보급되어 있으며, 그들의 소형화, 경량화 및 긴{長} 수명화가 강하게 요구되고 있다. 이것에 수반해서, 전원으로서 전지, 특히 소형이고 또한 경량이며 고에너지 밀도를 얻는 것이 가능한 2차 전지의 개발이 진행되고 있다.
그 중에서도, 충방전 반응으로서 전극 반응물질의 흡장 및 방출을 이용하는 2차 전지는, 많이 기대되고 있다. 납{鉛} 전지 및 니켈 카드뮴 전지보다도 높은 에너지 밀도가 얻어지기 때문이다. 이와 같은 2차 전지로서는, 전극 반응물질로서 리튬 이온을 이용한 리튬 이온 2차 전지 등이 알려져 있다.
이 2차 전지는, 전극 반응물질을 흡장 및 방출하는 것이 가능한 정극 및 부극과 함께, 전해질을 구비하고 있다. 전해질은, 용매에 전해질염 등이 용해된 것이다.
2차 전지의 구성에 대해서는, 각종 성능을 향상시키기 위해서, 다양한 검토가 이루어지고 있다. 구체적으로는, 전지 수명 특성, 고온 보존 특성 및 전지 용량을 향상시키기 위해서, 불소계 유기 금속염을 함유하는 피복층{被覆層; coating layer}에 의해 덮인 카본 코어를 이용하는 것이 제안되어 있다(예를 들면, 일본공개특허공보{特開}2005-505487호 참조). 또, 충방전 특성, 생산성 및 안전성을 향상시키기 위해서, 부극의 합제층{合劑層; combination layer}의 표면에 도전성 탄소 재료 및 절연성 금속 산화물 입자를 포함하는 보호층을 설치하는 것이 제안되어 있다(예를 들면, 일본특허 제3809662호 참조). 또, 충방전 사이클 특성을 향상시키기 위해서, 비수 전해질 중에 금속 과염소산염을 함유시키는 것이 제안되어 있다(예를 들면, 일본공개특허공보 2006-278185호 참조).
근래, 휴대용 전자 기기는 더욱더 고성능화 및 다기능화되어 있으며, 그의 소비 전력은 증대하는 경향에 있다. 그 때문에, 2차 전지의 충방전은 빈번하게 반복되고, 그 사이클 특성은 저하하기 쉬운 상황에 있다. 따라서, 2차 전지의 사이클 특성에 대해서, 한층 더 향상이 요망되고 있다.
상기한 관점에서, 본 발명의 목적은, 사이클 특성을 향상시키는 것이 가능한 2차 전지, 부극, 정극 및 전해질을 제공하는데 있다.
하나의 실시형태에 따르면, 부극, 정극 및 전해질을 구비하고, 상기 부극이, 부극 활물질과, 금속 바륨 및 바륨 화합물로 이루어지는 군에서 선택되는 물질을 함유하는 피막{被膜; coat}을 포함하는, 2차 전지가 제공된다.
하나의 실시형태에 따르면, 부극, 정극 및 전해질을 구비하고, 상기 정극이, 금속 바륨 및 바륨 화합물로 이루어지는 군에서 선택되는 물질을 포함하는, 2차 전지가 제공된다.
하나의 실시형태에 따르면, 부극, 정극 및 전해질을 구비하고, 상기 전해질이 바륨 화합물을 포함하는, 2차 전지가 제공된다.
하나의 실시형태에 따르면, 부극 활물질과, 금속 바륨 및 바륨 화합물로 이루어지는 군에서 선택되는 물질을 함유하는 피막을 포함하는, 부극이 제공된다.
하나의 실시형태에 따르면, 정극 활물질과, 금속 바륨 및 바륨 화합물로 이루어지는 군에서 선택되는 물질을 포함하는, 정극이 제공된다.
하나의 실시형태에 따르면, 용매와, 전해질염과, 바륨 화합물을 포함하는, 전해질이 제공된다.
본 실시형태의 부극에서는, 금속 바륨 등으로 이루어지는 피막을 가지고 있다. 그 때문에, 화학적 안정성이 향상된다. 또, 본 실시형태의 정극에서는, 금속 바륨 등을 포함하고 있다. 그 때문에, 충방전시에 있어서, 부극에 금속 바륨 등으로 이루어지는 피막이 형성된다. 또, 본 실시형태의 전해질에서는, 산화 바륨 등을 포함하고 있다. 그 때문에, 충방전시에 있어서, 부극에 산화 바륨 등으로 이루어지는 피막이 형성된다. 이것에 의해, 본 실시형태의 부극, 정극 혹은 전해질을 이용한 2차 전지에서는, 부극의 반응성이 저감하기 때문에, 충방전시에 있어서 전해질의 분해 반응이 억제된다.
실시형태의 2차 전지, 부극, 정극 혹은 전해질에 따르면, 부극이 금속 바륨, 산화 바륨, 수산화 바륨, 할로겐화 바륨, 탄산 바륨, 황산 바륨, 질산 바륨, 인산 바륨, 옥살산{蓚酸} 바륨 및 초산 바륨중의 적어도 1종으로 이루어지는 피막을 가지고 있다. 혹은, 정극이 상기한 금속 바륨 등을 포함하고 있다. 또는, 전해질이 상기한 산화 바륨 등을 포함하고 있다. 따라서, 사이클 특성을 향상시킬 수가 있다.
도 1은 본 발명의 제1 실시형태에서의 원통형 2차 전지의 구성을 도시하는 단면도,
도 2는 도 1에 도시한 권회{卷回; spirally wound} 전극체의 일부를 확대해서 도시하는 단면도,
도 3은 도 2에 도시한 정극 및 부극의 구성을 도시하는 평면도,
도 4는 부극 활물질 입자 및 부극 활물질 입자 피복막{被覆膜; coating film}의 구성을 도시하는 단면도,
도 5는 본 발명의 제1 실시형태에서의 래미네이트{laminated} 필름형 2차 전지의 구성을 도시하는 분해 사시도,
도 6은 도 5에 도시한 권회 전극체의 Ⅵ-Ⅵ선을 따라 절단한 구성을 도시하는 단면도,
도 7은 도 6에 도시한 권회 전극체의 일부를 확대해서 도시하는 단면도,
도 8은 본 발명의 제1 실시형태에서의 코인형 2차 전지의 구성을 도시하는 단면도,
도 9는 본 발명의 제2 실시형태에서의 원통형 2차 전지의 권회 전극체의 구성을 도시하는 단면도,
도 10은 도 9에 도시한 정극 및 부극의 구성을 도시하는 평면도,
도 11은 본 발명의 제2 실시형태에서의 래미네이트 필름형 2차 전지의 권회 전극체의 구성을 도시하는 단면도,
도 12는 본 발명의 제2 실시형태에서의 코인형 2차 전지의 구성을 도시하는 단면도,
도 13은 XPS에 의한 부극의 표면 분석 결과를 도시하는 도면,
도 14는 TOF-SIMS에 의한 부극의 표면 분석 결과를 도시하는 도면,
도 15는 XPS에 의한 SnCoC의 분석 결과를 도시하는 도면.
이하, 본 발명의 실시형태에 대해서, 도면을 참조해서 상세하게 설명한다. 또한, 설명하는 순서는 이하와 같다.
1.제1 실시형태(부극이 금속 바륨 등을 포함하는 2차 전지)
1-1.원통형 2차 전지
1-1-1.부극 활물질층 피복막
1-1-2.부극 활물질 입자 피복막
1-2.래미네이트 필름형 2차 전지
1-3. 코인형 2차 전지
2.제2 실시형태(정극이 금속 바륨 등을 포함하는 2차 전지)
3. 제3 실시형태(전해질이 산화 바륨 등을 포함하는 2차 전지)
<1.제1 실시형태(부극이 금속 바륨 등을 포함하는 2차 전지)>
<1-1.원통형 2차 전지>
<1-1-1.부극 활물질층 피복막>
우선, 제1 실시형태의 2차 전지에 대해서 설명한다. 도 1은 원통형 2차 전지의 단면 구성을 도시하고 있다. 도 2는 도 1에 도시한 권회 전극체(20)의 일부 확대를 도시하고 있다. 도 3은 도 2에 도시한 정극(21) 및 부극(22)의 평면 구성을 각각 도시하고 있다. 여기서 설명하는 2차 전지는, 예를 들면 부극의 용량이 전극 반응물질인 리튬 이온의 흡장 및 방출에 의해 표현되는 리튬 이온 2차 전지이다.
[2차 전지의 전체 구성]
이 2차 전지는, 도 1에 도시한 바와 같이, 주로, 거의 중공 원기둥모양{圓柱狀; cylinder}의 전지 캔(11)의 내부에, 권회 전극체(20) 및 한쌍의 절연판(12, 13)이 수납{收納; contain}된 것이다.
전지 캔(11)은, 예를 들면 일단부{一端部}가 폐쇄됨과 동시에 타단부{他端部}가 개방된 중공 구조를 가지고 있음과 동시에, 철(Fe), 알루미늄(Al) 혹은 그들의 합금 등에 의해 구성되어 있다. 이 전지 캔(11)의 표면에는, 니켈(Ni) 등이 도금되어 있어도 좋다. 한쌍의 절연판(12, 13)은, 그들 사이에 권회 전극체(20)를 상하측으로부터 끼움과 동시에 그 권회 둘레면{周面; periphery face}에 대해서 수직으로 연장{延在}하도록 배치되어 있다.
전지 캔(11)의 개방 단부{端部; end}에는, 전지 뚜껑(14), 안전 밸브 기구(15) 및 PTC(Positive Temperature Coefficient: 열감 저항) 소자(16)가 개스킷(17)을 거쳐서 코킹{caulk}되어 있다. 이것에 의해, 전지 캔(11)의 내부는 밀폐되어 있다. 전지 뚜껑(14)은, 예를 들면 전지 캔(11)과 마찬가지 재료에 의해 구성되어 있다. 안전 밸브 기구(15) 및 PTC 소자(16)는, 전지 뚜껑(14)의 내측에 설치되어 있다. 안전 밸브 기구(15)는, PTC 소자(16)를 거쳐서 전지 뚜껑(14)과 전기적으로 접속되어 있다. 이 안전 밸브 기구(15)에서는, 내부 단락{短絡}, 혹은 외부로부터의 가열 등에 기인해서 내부압력{內壓}이 일정 레벨 이상으로 된 경우에, 디스크 판(15A)이 반전해서 전지 뚜껑(14)과 권회 전극체(20) 사이의 전기적 접속을 절단{切斷; cut}하도록 되어 있다. PTC 소자(16)는, 온도의 상승에 따라서 저항이 증대(전류 제한)하여, 큰 전류에 기인하는 비정상적인{異常} 발열을 방지하는 것이다. 개스킷(17)은, 예를 들면 절연 재료에 의해 구성되어 있다. 개스킷(17)의 표면에는, 아스팔트가 도포되어 있어도 좋다.
권회 전극체(20)는, 도 1 및 도 2에 도시한 바와 같이, 세퍼레이터(23)를 거쳐서{개재해서} 정극(21)과 부극(22)이 적층 및 권회된 것이다. 권회 전극체(20)의 중심에는, 센터 핀(24)이 삽입되어 있어도 좋다. 정극(21)에는, 알루미늄 등에 의해 구성된 정극 리드(25)가 접속되어 있음과 동시에, 부극(22)에는, 니켈 등에 의해 구성된 부극 리드(26)가 접속되어 있다. 정극 리드(25)는, 안전 밸브 기구(15)에 예를 들면 용접에 의해 전지 뚜껑(14)과 전기적으로 접속되어 있다. 부극 리드(26)는, 전지 캔(11)에 예를 들면 용접에 의해 전기적으로 접속되어 있다.
[정극]
정극(21)은, 예를 들면 정극 집전체(21A)의 양면에 정극 활물질층(21B)가 설치된 것이다. 단, 정극 활물질층(21B)은, 정극 집전체(21A)의 한 면{片面}에만 설치되어 있어도 좋다. 정극 집전체(21A)는, 예를 들면 알루미늄, 니켈 및 스텐레스와 같은 금속 재료에 의해 구성되어 있다. 정극 활물질층(21B)은, 정극 활물질로서, 리튬 이온을 흡장 및 방출하는 것이 가능한 정극 재료의 어느것인가 1종 이상을 포함하고 있다. 필요에 따라서, 정극 결착제{結着劑; binder} 혹은 정극 도전제{導電劑; conductor} 등의 다른 재료를 포함하고 있어도 좋다.
정극 재료로서는, 리튬 함유 화합물이 바람직하며, 높은 에너지 밀도가 얻어지기 때문이다. 이 리튬 함유 화합물의 예로서는, 리튬(Li)과 전이{遷移} 금속 원소를 구성원소{element}로서 포함하는 복합 산화물 및, 리튬과 전이 금속 원소를 구성 원소로서 포함하는 인산 화합물을 들 수 있다. 그 중에서도, 전이 금속 원소로서 코발트(Co), 니켈, 망간(Mn) 및 철중의 적어도 1종을 포함하는 화합물이 바람직하며, 보다 높은 전압이 얻어지기 때문이다. 그의 화학식은, 예를 들면 LixM1O2 혹은 LiyM2PO4로 표현된다. 식중에서, M1 및 M2는, 1종류 이상의 전이 금속 원소를 나타낸다. x 및 y의 값은, 충방전 상태에 따라서 달라지며, 통상 0.05≤x≤1.10 및 0.05≤y≤1.10이다.
리튬과 전이 금속 원소를 포함하는 복합 산화물의 예로서는, 리튬-코발트 복합 산화물(LixCoO2), 리튬-니켈 복합 산화물(LixNiO2) 및, 하기의 식(1)로 표현되는 리튬-니켈계 복합 산화물을 들 수 있다. 또한, 식(1)중의 X(할로겐 원소)는, 예를 들면 불소(F), 염소(Cl), 브롬{臭素}(Br) 및 요오드(沃素}(I)중의 적어도 1종을 나타낸다. 리튬과 전이 금속 원소를 포함하는 인산 화합물의 예로서는, 리튬-철 인산 화합물(LiFePO4) 및 리튬-철-망간 인산 화합물(LiFe1-uMnuPO4(u〈1))을 들 수 있으며, 높은 전지 용량 및 뛰어난 사이클 특성이 얻어지기 때문이다.
[화학식 1]
LiaCobNicM1-b-cOd-eXe
식중에서, M은 붕소(B), 마그네슘(Mg), 알루미늄(Al), 규소(Si), 인(P), 황{硫黃}(S), 티탄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 구리(Cu), 아연(Zn), 갈륨(Ga), 게르마늄(Ge), 이트륨(Y), 지르코늄(Zr), 몰리브덴(Mo), 은(Ag), 바륨(Ba), 텅스텐(W), 인듐(In), 주석(Sn), 납(Pb) 및 안티몬(Sb)중의 적어도 1종이다. X는, 할로겐 원소이다. 각 값의 범위는, 이하와 같다: 0.8〈a〈1.2, 0≤b≤0.5, 0.5≤c≤1.0, 1.8〈d〈2.2 및 0≤e≤1.0이다.
게다가, 정극 재료의 예로서는, 산화물, 2황화물, 카르코겐화물{chalcogenide} 및 도전성 고분자를 들 수 있다. 산화물의 예로서는, 산화 티탄, 산화 바나듐 및 2산화 망간을 들 수 있다. 2황화물의 예로서는, 2황화 티탄 및 황화 몰리브덴을 들 수 있다. 카르코겐화물의 예로서는, 셀렌화 니오브를 들 수 있다. 도전성 고분자의 예로서는, 황, 폴리아닐린 및 폴리티오펜을 들 수 있다.
물론, 상기한 일련의 정극 재료는, 임의의 조합으로 2종 이상 혼합되어도 좋다. 또, 정극 재료는, 상기한 화합물 이외의 것이라도 좋다.
정극 결착제의 예로서는, 합성 고무 및 고분자 재료를 들 수 있다. 합성 고무의 예로서는, 스틸렌 부타디엔계 고무, 불소계 고무 및 에틸렌 프로필렌 디엔을 들 수 있다. 고분자 재료의 예로서는, 폴리불화 비닐리덴을 들 수 있다. 이들의 하나를 단독으로 이용해도 좋고, 이들의 복수종을 혼합해서 이용해도 좋다.
정극 도전제의 예로서는, 흑연, 카본 블랙, 아세틸렌 블랙 및 켓첸 블랙{Ketjen black}과 같은 탄소 재료를 들 수 있다. 이와 같은 탄소 재료는 단독으로 이용해도 좋고, 또는 이들의 복수종을 혼합해서 이용해도 좋다. 또한, 정극 도전제는, 도전성을 가지는 재료이면, 금속 재료 혹은 도전성 고분자 등이라도 좋다.
[부극]
부극(22)에서는, 부극 집전체(22A)의 양면에 부극 활물질층(22B)이 설치되어 있다. 단, 부극 활물질층(22B)은, 부극 집전체(22A)의 한면에만 설치되어 있어도 좋다. 이 부극(22)은, 후술하는 금속 바륨 및 바륨 화합물중의 적어도 1종으로 이루어지는 피막을 가지고 있다. 이 경우에는, 부극(22)은, 부극 활물질층(22B) 위에, 상기한 피막으로서의 부극 활물질층 피복막(22C)을 가지고 있다. 이 부극 활물질층 피복막(22C)은, 부극 활물질층(22B)과 마찬가지로, 부극 집전체(22A)의 한면에만 설치되어 있어도 좋고 또는 그의 양면에 설치되어 있어도 좋다.
부극 집전체(22A)는, 예를 들면 구리, 니켈 혹은 스테인리스 등의 금속 재료에 의해 구성되어 있다. 이 부극 집전체(22A)의 표면은, 조면화{粗面化; roughen}되어 있는 것이 바람직하다. 이것에 의해서, 소위 앵커{anchor} 효과에 의해, 부극 집전체(22A)에 대한 부극 활물질층(22B)의 밀착성이 향상되기 때문이다. 이 경우에는, 적어도 부극 활물질층(22B)과 대향하는 영역에서, 부극 집전체(22A)의 표면이 조면화되어 있으면 좋다. 조면화 방법의 예로서는, 전해 처리에 의해 미립자를 형성하는 방법을 들 수 있다. 이 전해 처리란, 전해조 중에서 전해법에 의해 부극 집전체(22A)의 표면에 미립자를 형성함으로써 요철{凹凸; concavity and convexity}을 설치하는 방법이다. 전해법에 의해 제작된 동박{銅箔}은, 일반적으로 "전해 동박"이라고 불리고 있다.
부극 활물질층(22B)은, 부극 활물질로서, 리튬 이온을 흡장 및 방출하는 것이 가능한 부극 재료의 어느것인가 1종 이상을 포함하고 있으며, 필요에 따라서, 부극 결착제 및 부극 도전제와 같은 다른 재료를 포함하고 있어도 좋다. 부극 결착제 및 부극 도전제에 관한 상세는, 예를 들면 정극 결착제 및 정극 도전제와 마찬가지이다. 이 부극 활물질층(22B)에서는, 예를 들면 충방전시에 있어서 의도하지 않게 금속 리튬이 석출{析出}되는 것을 방지하기 위해서, 부극 재료의 충전가능한 용량이 정극(21)의 방전 용량보다도 크게 되어 있는 것이 바람직하다.
부극 재료의 예로서는, 탄소 재료를 들 수 있다. 이 탄소 재료는, 리튬 이온의 흡장 및 방출시에 있어서의 결정{結晶} 구조의 변화가 매우 적다. 그 때문에, 탄소 재료에서는 높은 에너지 밀도 및 뛰어난 사이클 특성을 얻을 수 있음과 동시에, 부극 도전제로서도 기능하기 때문이다. 이 탄소 재료의 예로서는, 이(易)흑연화성{graphitizable} 탄소, (002)면의 면간격{spacing}이 0.37㎚ 이상인 난(難)흑연화성{non-graphitizable} 탄소 및, (002)면의 면간격이 0.34㎚ 이하인 흑연{黑鉛; graphite}을 들 수 있다. 보다 구체적으로는, 탄소 재료의 예로서는, 열분해 탄소류, 코크스류, 유리질 탄소 섬유, 유기 고분자 화합물 소성체{燒成體; fired body}, 활성탄 및 카본 블랙을 들 수 있다. 상기한 것중, 코크스류에는, 피치 코크스, 니들 코크스 및 석유 코크스 등이 포함된다. 유기 고분자 화합물 소성체란, 페놀 수지 혹은 푸란 수지 등을 적당한 온도에서 소성해서 탄소화한 것을 말한다. 또한, 탄소 재료의 형상은, 섬유 형상{纖維狀}, 구 형상{球狀}, 입자 형상{粒狀} 혹은 비늘조각 형상{鱗片狀; scale-like shape}의 어느 것이라도 좋다.
또, 부극 재료의 예로서는, 금속 원소 및 반(半)금속 원소중의 적어도 1종을 구성원소로서 포함하는 재료(금속계 재료)를 들 수 있다. 이와 같은 부극 재료에서는, 높은 에너지 밀도가 얻어지기 때문에 바람직하게 이용된다. 이와 같은 금속계 재료는, 금속 원소 혹은 반금속 원소의 단체{單體; simple substance}, 합금 혹은 화합물이라도 좋으며, 그들의 2종 이상이라도 좋고, 그들의 1종 이상의 상{相}을 적어도 일부에 가지는 것이라도 좋다. 본 발명에서, "합금"에는, 2종 이상의 금속 원소로 이루어지는 것 뿐만 아니라{것에 부가해서}, 1종 이상의 금속 원소와 1종 이상의 반금속 원소를 포함하는 것도 포함된다. 또, "합금"은, 비금속 원소를 포함하고 있어도 좋다. 그의 조직에는, 고용체{固溶體; solid solution}, 공정{共晶}(공융{共融} 혼합물), 금속간 화합물 및, 그들이 2종 이상 공존하는 조직이 포함된다.
상기한 금속 원소 혹은 반금속 원소는, 예를 들면 리튬과 합금을 형성하는 것이 가능한 금속 원소 혹은 반금속 원소이다. 구체적으로는, 상기한 금속 원소 혹은 반금속 원소는 마그네슘, 붕소, 알루미늄, 갈륨, 인듐(In), 규소, 게르마늄(Ge), 주석, 납(Pb), 비스머스(Bi), 카드뮴(Cd), 은(Ag), 아연, 하프늄(Hf), 지르코늄, 이트륨, 팔라듐(Pd) 및 백금(Pt)중의 적어도 1종이다. 그 중에서도, 규소 및 주석 중의 적어도 한쪽이 바람직하다. 규소 및 주석은 리튬 이온을 흡장 및 방출하는 능력이 우수하기 때문에, 높은 에너지 밀도가 얻어지기 때문이다.
규소 및 주석중의 적어도 한쪽을 포함하는 재료는, 예를 들면 규소 혹은 주석의 단체, 합금 혹은 화합물이라도 좋으며; 그들의 2종 이상이라도 좋고; 그들의 1종 혹은 2종 이상의 상을 적어도 일부에 가지는 재료라도 좋다.
규소의 합금의 예로서는, 규소 이외의 구성원소로서 이하의 원소중의 적어도 1종을 포함하는 합금을 들 수 있다. 이와 같은 규소 이외의 구성원소는, 주석, 니켈, 구리, 철, 코발트, 망간, 아연, 인듐, 은, 티탄, 게르마늄, 비스머스, 안티몬 혹은 크롬이다. 규소의 화합물의 예로서는, 규소 이외의 구성원소로서 산소 혹은 탄소를 포함하는 화합물을 들 수 있다. 이 규소의 화합물은, 규소 이외의 구성 원소로서 규소의 합금에 대해서 설명한 원소의 어느 것인가 1종 이상을 포함하고 있어도 좋다.
규소의 합금 혹은 화합물의 예로서는, SiB4, SiB6, Mg2Si, Ni2Si, TiSi2, MoSi2, CoSi2, NiSi2, CaSi2, CrSi2 및 Cu5Si를 들 수 있다. 또, 그의 예로서는, FeSi2, MnSi2, NbSi2, TaSi2, VSi2, WSi2, ZnSi2, SiC, Si3N4, Si2N2O, SiOv(0〈v≤2), SnOw(0〈w≤2) 혹은 LiSiO를 들 수 있다.
주석의 합금의 예로서는, 주석 이외의 구성원소로서 이하의 원소중의 적어도 1종을 포함하는 것을 들 수 있다. 이와 같은 원소는, 규소, 니켈, 구리, 철, 코발트, 망간, 아연, 인듐, 은, 티탄, 게르마늄, 비스머스, 안티몬 및 크롬이다. 주석의 화합물의 예로서는, 산소 혹은 탄소를 포함하는 화합물을 들 수 있다. 주석의 화합물은, 주석 이외의 구성원소로서, 주석의 합금에 대해서 설명한 원소의 어느 것인가 1종 이상을 포함하고 있어도 좋다. 주석의 합금 혹은 화합물의 예로서는, SnSiO3, LiSnO 및 Mg2Sn을 들 수 있다.
특히, 규소를 포함하는 재료(규소 함유 재료)로서는, 규소의 단체가 바람직하며, 높은 전지 용량 및 뛰어난 사이클 특성 등이 얻어지기 때문이다. "단체{單體}"란, 어디까지나 일반적인 이유에서의 단체(미량의 불순물을 포함하고 있어도 좋다)이며, 반드시 순도 100%를 의미하고 있는 것은 아니다.
또, 주석을 포함하는 재료(주석 함유 재료)로서는, 예를 들면 제1 구성원소로서의 주석에 부가해서, 제2 구성원소 및 제3 구성원소를 포함하는 재료가 바람직하다. 제2 구성원소는, 예를 들면 코발트, 철, 마그네슘, 티탄, 바나듐, 크롬, 망간, 니켈, 구리, 아연, 갈륨, 지르코늄, 니오브, 몰리브덴, 은, 인듐, 세륨(Ce), 하프늄, 탄탈, 텅스텐, 비스머스 및 규소중의 적어도 1종이다. 제3 구성원소는, 예를 들면 붕소, 탄소, 알루미늄 및 인중의 적어도 1종이다. 이 경우에는, 높은 전지 용량 및 뛰어난 사이클 특성 등이 얻어지기 때문이다.
그 중에서도, 주석, 코발트 및 탄소를 구성원소로서 포함하는 재료(SnCoC 함유 재료)가 바람직하다. 그 SnCoC 함유 재료의 조성으로서는, 예를 들면, 탄소의 함유량이 9.9질량% 이상 29.7질량% 이하, 주석 및 코발트의 함유량의 비율(Co/(Sn+Co))이 20질량% 이상 70질량% 이하이며, 높은 에너지 밀도가 얻어지기 때문이다.
SnCoC 함유 재료는, 주석, 코발트 및 탄소를 포함하는 상{相}을 가지고 있다. 이와 같은 상은, 저결정성 혹은 비정질인 것이 바람직하다. 이 상은, 리튬과 반응가능한 상(반응층)이다. 그 반응상의 존재에 따라서, 뛰어난 특성이 얻어진다. 이 반응상의 X선 회절에 의해 얻어지는 회절 피크의 반값폭은, 특정 X선으로서 CuKα선을 이용함과 동시에 삽인{揷引; trace} 속도를 1°/min으로 한 경우에 있어서, 회절각 2θ에서 1.0° 이상인 것이 바람직하다. 이것에 의해서, 리튬 이온이 원활하게 흡장 및 방출됨과 동시에, 전해질 등에 대한 반응성이 저감하기 때문이다. 또한, SnCoC 함유 재료는, 저결정성 혹은 비정질의 상에 부가해서, 구성원소의 단체 혹은 일부를 포함하는 상을 포함하고 있는 경우도 있다.
X선 회절에 의해 얻어진 회절 피크가 반응상{反應相}에 대응하는 것인지 아닌지에 대해서는, 리튬과의 전기화학적 반응 전후에 있어서의 X선 회절 차트를 비교해서 용이하게 판단할 수가 있다. 예를 들면, 리튬과의 전기화학적 반응 전후에 있어서 회절 피크의 위치가 변화하면, 반응상에 대응하는 것이다. 이 경우에는, 예를 들면 반응상의 회절 피크가 2θ=20° 이상 50° 이하의 범위에서 보인다{얻어진다}. 이와 같은 반응상은, 상기한 일련의 구성원소를 포함하고 있으며, 주로 탄소의 존재에 기인해서 저결정화 혹은 비정질화되어 있는 것이라고 생각된다.
SnCoC 함유 재료에서는, 구성원소인 탄소의 적어도 일부가 다른 구성 원소로서의 금속 원소 혹은 반금속 원소와 결합되어 있는 것이 바람직하며, 이것에 의해 주석 등의 응집 혹은 결정화가 억제되기 때문이다. 원소의 결합 상태는, 예를 들면 X선 광전자 분광법(XPS: x-ray photoelectron spectroscopy)에 의해 확인된다. 시판되는 장치에서는, 예를 들면 연{軟}X선으로서 Al-Kα선 혹은 Mg-Kα선 등이 이용가능하다. 탄소의 적어도 일부가 금속 원소 혹은 반금속 원소 등과 결합되어 있는 경우에는, 탄소의 1s궤도(C1s)의 합성파의 피크는 284.5eV보다도 낮은 영역에서 관찰된다. 단, 금 원자의 4f 궤도(Au4f)의 피크는 84.0eV에서 얻어지도록 에너지 교정되어 있는 것으로 한다. 이 때, 통상, 물질 표면에는 표면 오염 탄소가 존재하고 있기 때문에, 표면 오염 탄소의 C1s의 피크를 284.8eV로 하고, 그것을 에너지 기준으로 한다. XPS에서는, C1s의 피크의 파형이 표면 오염 탄소의 피크와 SnCoC 함유 재료중의 탄소의 피크를 포함한 형태로 측정된다. 그 때문에, 예를 들면 시판되는 소프트웨어를 이용해서 해석함으로써, 양자의 피크를 분리한다. 파형의 해석에서는, 최저 속박{束縛; bond} 에너지측에 존재하는 주피크의 위치를 에너지 기준(284.8eV)으로 한다.
또한, SnCoC 함유 재료는, 필요에 따라서, 이하의 구성원소중의 적어도 1종을 포함하고 있어도 좋다. 그 구성원소의 예로서는, 규소, 철, 니켈, 크롬, 인듐, 니오브, 게르마늄, 티탄, 몰리브덴, 알루미늄, 인, 갈륨 및 비스머스를 들 수 있다.
주석 함유 재료로서는, SnCoC 함유 재료 이외에, 주석, 코발트, 철 및 탄소를 구성원소로서 포함하는 재료(SnCoFeC 함유 재료)도 바람직하다. SnCoFeC 함유 재료의 조성은, 임의로 설정가능하다. 예를 들면, 철의 함유량을 적은 듯하게{다소 적게} 설정하는 경우의 조성은, 이하와 같다. 즉, 탄소의 함유량은 9.9질량% 이상 29.7질량% 이하, 철의 함유량은 0.3질량% 이상 5.9질량% 이하, 주석 및 코발트의 함유량의 비율(Co/(Sn+Co))은 30질량% 이상 70질량% 이하이다. 또, 예를 들면 철의 함유량을 많은 듯하게{다소 많게} 설정하는 경우의 조성은, 이하와 같다. 즉, 탄소의 함유량은 11.9질량% 이상 29.7질량% 이하이다. 또, 주석, 코발트 및 철의 함유량의 비율((Co+Fe)/(Sn+Co+Fe))은 26.4질량% 이상 48.5질량% 이하, 코발트 및 철의 함유량의 비율(Co/(Co+Fe))은 9.9질량% 이상 79.5질량% 이하이다. 이와 같은 조성 범위에서는, 높은 에너지 밀도가 얻어진다. SnCoFeC 함유 재료의 물성 등(반값폭 등)은, SnCoC 함유 재료와 마찬가지이다.
또, 다른 부극 재료의 예로서는, 금속 산화물 혹은 고분자 화합물을 들 수 있다. 금속 산화물은, 예를 들면 산화 철, 산화 루테늄 혹은 산화 몰리브덴 등이다. 고분자 화합물은, 예를 들면 폴리아세틸렌, 폴리아닐린 혹은 폴리피롤 등이다.
물론, 상기한 일련의 부극 재료는, 임의의 조합으로 2종 이상 혼합되어도 좋다. 또, 부극 재료는, 상기한 재료 이외의 것이라도 좋다.
부극 활물질층(22B)은, 예를 들면 도포법, 기상법, 액상법, 용사법{溶射法; spraying method}, 소성법(소결법{燒結法; sintering method}), 또는 그들의 2종 이상의 방법에 의해 형성되어 있다. 도포법이란, 예를 들면 부극 활물질을 결착제 등과 혼합한 후, 용제에 분산시켜 도포하는 방법이다. 기상법의 예로서는, 물리 증착법 혹은 화학 증착법을 들 수 있다. 구체적으로는, 그의 예로서는, 진공 증착법, 스퍼터링법, 이온 도금법, 레이저 애블레이션{ablation}법, 열 CVD(화학 기상 증착; Chemical Vapor Deposition)법 및 플라즈마 CVD법을 들 수 있다. 액상법의 예로서는, 전해 도금법 및 무전해 도금법을 들 수 있다. 용사법이란, 부극 활물질을 용융 상태 혹은 반용융 상태로 분무{噴付; spray}하는 방법이다. 소성법이란, 예를 들면 도포법과 마찬가지 수순{手順; procedure}으로 도포한 후, 결착제 등의 융점보다도 높은 온도로 열처리하는 방법이다. 소성법의 예로서는, 분위기 소성법, 반응 소성법 및 핫 프레스 소성법과 같은 공지의 수법을 들 수가 있다.
부극 활물질층 피복막(22C)은, 충방전 전부터 부극 활물질층(22B)에 설치되어 있다. 이 부극 활물질층 피복막(22C)은, 금속 바륨 및 바륨 화합물중의 적어도 1종(이하, 총칭해서 "금속 바륨 등"이라고 한다)으로 이루어진다. 즉, 부극 활물질층 피복막(22C)의 구성 재료는, 바륨 화합물의 어느 것인가 1종이라도 좋고, 금속 바륨만이라도 좋으며, 또는 그들의 혼합물이라도 좋다. 이것에 의해서, 부극(22)의 화학적 안정성이 향상되므로, 반응성이 저감한다. 따라서, 충방전시에 있어서 전해액의 분해 반응이 억제된다. 또한, 부극 활물질층 피복막(22C)은, 단층 구성이어도 좋고, 다층 구성이어도 좋다. 또, 금속 바륨 등에 대해서는, 1층중에서 복수의 재료가 혼합되어 있어도 좋고, 다층인 경우에는 층마다 재료가 달라도 좋다. 이러한 사항은, 후술하는 부극 활물질 입자 피복막(222)(도 4 참조)에 대해서도 마찬가지로 적용된다.
바륨 화합물의 예로서는, 산화 바륨, 수산화 바륨, 할로겐화 바륨, 황산 바륨, 질산 바륨, 인산 바륨 혹은 유기산 바륨염을 들 수 있다. 그 중에서도, 할로겐화 바륨 및 인산 바륨이 바람직하며, 부극(22)의 화학적 안정성이 보다 향상되기 때문이다. 할로겐화 바륨에 있어서의 할로겐의 종류는, 특별히 한정되지 않지만, 그 중에서도 불화 바륨이 바람직하다. 유기산 바륨염의 예로서는, 탄산 바륨, 옥살산 바륨 및 초산 바륨을 들 수 있다.
그 중에서도, 부극 활물질층 피복막(22C)은, 금속 바륨으로 이루어지는 것이 바람직하다. 이것에 의해서, 안정하고 또한 강고{强固; rigid}한 부극 활물질층 피복막(22C)이 형성되므로, 바륨 화합물을 포함하고 있는 경우보다도 부극(22)의 화학적 안정성이 향상되기 때문이다.
이 부극 활물질층 피복막(22C)은, 부극 활물질층(22B)의 표면 전체를 피복해도 좋고, 일부만을 피복하고 있어도 좋다. 그렇지만, 피복 범위가 넓을 수록 바람직하며, 부극(22)의 화학적 안정성이 보다 향상되기 때문이다. 이 때, 부극 활물질층 피복막(22C)의 일부는, 부극 활물질층(22B)의 내부로 들어가 있어도 좋다.
또, 부극 활물질층 피복막(22C)은, 예를 들면 액상법 혹은 기상법 등에 의해 형성되어 있다. 액상법은, 예를 들면 도포법 혹은 침지법(이른바 딥 코팅법) 등이다. 기상법은, 예를 들면 저항 가열법, 증착법, 스퍼터링법 혹은 화학 기상 증착(CVD)법 등이다. 이들 방법은, 단독으로 이용해도 좋고, 2종 이상이 병용되어도 좋다.
그 중에서도, 금속 바륨을 이용하는 경우에는, 기상법을 이용하는 것이 바람직하며, 부극 활물질층 피복막(22C)을 단시간에 용이하게 형성할 수 있기 때문이다. 한편, 바륨 화합물을 이용하는 경우에는, 그것이 용해된 용액(이하, "피막 형성 용액"이라고 한다)을 이용한 액상법이 바람직하며, 화학적 안정성이 뛰어난 부극 활물질층 피복막(22C)을 용이하게 형성할 수 있기 때문이다. 피막 형성 용액의 용매는, 특별히 한정되지 않지만, 그 중에서도 물이 바람직하며, 극성이 높으므로, 바륨 화합물을 용해하기 쉽기 때문이다. 또, 수계{水系}의 부극 활물질층 피복막(22C)이 형성되므로, 비수 용매계의 전해액과 조합해서 이용된 경우에 부극 활물질층 피복막(22C)이 용해하기 어려워지기 때문이다.
이 부극(22)에서는, 부극 활물질층 피복막(22C)의 존재에 기인해서, 예를 들면 XPS를 이용한 부극(22)의 표면 분석에 의해, Ba3d5/2에 귀속{歸屬; attribute}하는 피크가 778eV 이상 782eV 이하의 범위에서 얻어진다. 또, 예를 들면 비행 시간형{飛行時間型} 2차 이온 질량 분석법(TOF-SIMS: time of flight secondary ion mass spectrometry)을 이용한 부극(22)의 표면 분석에 의해, 정{正} 이차 이온으로서 Ba+, BaOH+, BaF+, BaOLi+, BaOHFLi+, BaF2Li+, BaOLi2F+, BaO2Li3 +, BaOHLi2F2 +, BaLi2F3 +, BaCO3Li+, BaSO4Li+ 및 BaLi2PO4 +중의 적어도 1종의 피크가 얻어진다. 상기한 이들 분석에 의해, 부극 활물질층 피복막(22C)의 유무를 용이하게 확인할 수가 있다.
여기서, 정극(21) 및 부극(22)에서는, 예를 들면 도 3에 도시한 바와 같이, 정극 활물질층(21B)은 정극 집전체(21A)의 일부 영역에 설치되어 있는데 대해, 부극 활물질층(22B) 및 부극 활물질층 피복막(22C)은 부극 집전체(22A)의 전영역에 설치되어 있다. 이 때문에, 부극 활물질층(22B) 및 부극 활물질층 피복막(22C)은, 정극 활물질층(21B)과 대향하는 영역 R1 및 대향하지 않는 영역 R2의 쌍방에 설치되어 있다. 또한, 도 3에서는, 정극 활물질층(21B) 및 부극 활물질층(22B)에 망긋기{網掛; shade}하고 있다.
[세퍼레이터]
세퍼레이터(23)는, 정극(21)과 부극(22)을 격리함과 동시에, 두극{兩極}의 접촉에 기인하는 전류의 단락을 방지하면서 리튬 이온을 통과시키는 것이다. 이 세퍼레이터(23)는, 예를 들면 합성 수지 혹은 세라믹 등으로 이루어지는 다공질막이다. 세퍼레이터(23)는 2종류 이상의 다공질막이 적층된 것이라도 좋다. 합성 수지의 예로서는, 폴리테트라플루오로에틸렌, 폴리프로필렌 및 폴리에틸렌을 들 수 있다.
[전해액]
세퍼레이터(23)에는, 액상의 전해질인 전해액이 함침{含浸; impregnate}되어 있다. 이 전해액은, 용매에 전해질염이 용해된 것이며, 필요에 따라서 각종 첨가제 등의 다른 재료를 포함하고 있어도 좋다.
용매는, 예를 들면 유기 용제 등의 비수 용매의 어느 것인가 1종 이상을 포함하고 있다. 이하에서 설명하는 일련의 용매(비수 용매)는, 단독으로 이용해도 좋고 2종 이상 혼합해서 이용해도 좋다.
비수 용매의 예로서는, 탄산 에틸렌, 탄산 프로필렌, 탄산 부틸렌, 탄산 디메틸, 탄산 디에틸, 탄산 에틸 메틸, 탄산 메틸프로필, γ-부티로락톤, γ-발레로락톤, 1, 2-디메톡시에탄 및 테트라히드로푸란을 들 수 있다. 또, 그의 예에는, 2-메틸테트라히드로푸란, 테트라히드로피란, 1, 3-디옥소란, 4-메틸-1, 3-디옥소란, 1, 3-디옥산 및 1,4-디옥산이 있다. 또, 그의 예에는, 초산 메틸, 초산 에틸, 프로피온산 메틸, 프로피온산 에틸, 낙산 메틸, 이소낙산 메틸, 트리메틸 초산 메틸 혹은 트리메틸 초산 에틸이 있다. 또한, 그의 예에는, 아세토니트릴, 글루타로니트릴, 아디포니트릴, 메톡시아세토니트릴, 3-메톡시프로피오니트릴, N, N-디메틸포름아미드, N-메틸피롤리디논 및 N-메틸옥사졸리디논이 있다. N, N′-디메틸이미다졸리디논, 니트로메탄, 니트로에탄, 술포란, 인산 트리메틸 및 디메틸 술폭시드가 있다. 이것에 의해서, 뛰어난 전지 용량, 사이클 특성 및 보존 특성 등을 얻어지기때문이다
그 중에서도, 탄산 에틸렌, 탄산 프로필렌, 탄산 디메틸, 탄산 디에틸 및 탄산 에틸메틸 중의 적어도 1종이 바람직하며, 뛰어난 전지 용량, 사이클 특성 및 보존 특성 등이 얻어지기 때문이다. 이 경우에는, 탄산 에틸렌 혹은 탄산 프로필렌 등의 고점도(고유전율) 용매(예를 들면 비유전률 ε≥30)와, 탄산 디메틸, 탄산 에틸메틸 혹은 탄산 디에틸 등의 저점도 용매(예를 들면 점도≤1mPa·s)와의 조합이 보다 바람직하다. 이것에 의해서, 전해질염의 해리성{解離性} 및 이온의 이동도가 향상되기 때문이다.
특히, 용매는, 할로겐화 쇄상{鎖狀} 탄산 에스테르 및 할로겐화 환상{環狀} 탄산 에스테르중의 적어도 한쪽을 포함하고 있는 것이 바람직하다. 이것에 의해서, 충방전시에 있어서 부극(22)의 표면에 안정된 보호막이 형성되므로, 전해액의 분해 반응이 억제되기 때문이다. 상기한 "할로겐화"란, 적어도 일부의 수소가 할로겐에 의해 치환되어 있다고 하는 의미이다. 할로겐화 쇄상 탄산 에스테르의 예로서는, 탄산 플루오로메틸 메틸, 탄산 비스(플루오로메틸) 및 탄산 디플루오로메틸 메틸을 들 수 있다. 할로겐화 환상 탄산 에스테르의 예로서는, 4-플루오로-1, 3-디옥소란-2-원 및 4, 5-디플루오로-1, 3-디옥소란-2-원을 들 수 있다. 단, 할로겐화 환상 탄산 에스테르에는, 기하 이성체{幾何異性體; geometric isomer}도 포함된다. 용매중에 있어서의 할로겐화 쇄상 탄산 에스테르 및 할로겐화 환상 탄산 에스테르(단독 혹은 혼합)의 함유량은, 예를 들면 0.01중량% 이상 50중량% 이하이다.
또, 용매는, 불포화 탄소 결합 환상 탄산 에스테르를 포함하고 있는 것이 바람직하다. 이것에 의해서, 충방전시에 있어서 부극(22)의 표면에 안정된 보호막이 형성되므로, 전해액의 분해 반응이 억제되기 때문이다. 불포화 탄소 결합 환상 탄산 에스테르의 예로서는, 탄산 비닐렌 혹은 탄산 비닐 에틸렌을 들 수 있다. 그 용매중에서의 함유량은, 예를 들면 0.01중량% 이상 10중량% 이하이다.
또, 용매는, 슬톤(환상 술폰산 에스테르) 혹은 산 무수물을 포함하고 있는 것이 바람직하며, 전해액의 화학적 안정성이 향상되기 때문이다. 슬톤의 예로서는, 프로판 술톤 및 프로펜 슬톤을 들 수 있다. 그 용매중에서의 함유량은, 예를 들면 0.5중량% 이상 5중량% 이하이다. 산 무수물의 예로서는, 카르본산 무수물, 디술폰산 무수물 및 카르본산 술폰산 무수물을 들 수 있다. 카르본산 무수물의 예로서는, 무수 호박산, 무수 글루타르산 및 무수 말레인산을 들 수 있다. 디술폰산 무수물의 예로서는, 무수 에탄디술폰산 및 무수 프로판디술폰산을 들 수 있다. 카르본산 술폰산 무수물의 예로서는, 무수 술포 안식향산, 무수 술포 프로피온산 및 무수 술포 낙산을 들 수 있다. 용매중에서의 산무수물의 함유량은, 예를 들면 0.5중량% 이상 5중량% 이하이다.
전해질염은, 예를 들면 리튬염 등의 경금속염의 어느것인가 1종류 이상을 포함하고 있다. 이하에서 설명하는 일련의 전해질염은, 단독으로 이용해도 좋고, 2종 이상 혼합해서 이용해도 좋다.
리튬염의 예로서는, 6불화 인산 리튬(LiPF6), 4불화 붕산 리튬(LiBF4), 과염소산 리튬(LiClO4) 및 6불화 비산 리튬(LiAsF6)을 들 수 있다. 또, 그의 예에는, 테트라페닐붕산 리튬(LiB(C6H5)4), 메탄술폰산 리튬(LiCH3SO3), 트리플루오로메탄 술폰산 리튬(LiCF3SO3) 및 테트라클로로알루미늄산 리튬(LiAlCl4)이 있다. 또한, 그의 예에는, 6불화 규산 2리튬(Li2SiF6), 염화 리튬(LiCl) 및 브롬화 리튬(LiBr)이 있다. 이것에 의해서, 뛰어난 전지 용량, 사이클 특성 및 보존 특성 등이 얻어지기 때문이다.
그 중에서도, 6불화 인산 리튬, 4불화 붕산 리튬, 과염소산 리튬 및 6불화 비산 리튬중의 적어도 1종이 바람직하다. 이 경우에는 또, 6불화 인산 리튬 및 4불화 붕산 리튬 중의 적어도 한쪽이 보다 바람직하며, 6불화 인산 리튬이 더욱더 바람직하다. 이것에 의해서, 내부 저항이 저하하므로, 보다 높은 효과가 얻어지기 때문이다.
전해질염의 함유량은, 용매에 대해서 0.3㏖/㎏ 이상 3.0㏖/㎏ 이하인 것이 바람직하다. 이것에 의해서, 높은 이온 전도성이 얻어지기 때문이다.
[2차 전지의 동작]
이 2차 전지에서는, 예를 들면 충방전시에 있어서 이하와 같이 리튬 이온이 흡장 및 방출된다. 충전시에는, 정극(21)으로부터 리튬 이온이 방출되어, 세퍼레이터(23)에 함침된 전해액을 통해서 부극(22)에 흡장된다. 한편, 방전시에는, 부극(22)으로부터 리튬 이온이 방출되어, 세퍼레이터(23)에 함침된 전해액을 통해서 정극(21)에 흡장된다.
[2차 전지의 제조 방법]
이 2차 전지는, 예를 들면 이하의 수순에 의해 제조된다.
우선, 정극(21)을 제작한다. 최초에, 정극 활물질과 필요에 따라서 정극 결착제 및 정극 도전제 등을 혼합해서 정극 합제{合劑; mixture}를 조제{prepare}한 후, 유기 용제에 분산시켜 페이스트형태의 정극 합제 슬러리를 얻는다. 계속해서, 정극 집전체(21A)의 양면에 정극 합제 슬러리를 도포해서, 정극 활물질층(21B)을 형성한다. 최후에, 필요에 따라서 가열하면서 롤 프레스기 등으로 정극 활물질층(21B)을 압축 성형한다. 이 경우에는, 압축 성형을 복수회{여러 차례} 반복해도 좋다.
다음에, 부극(22)을 제작한다. 최초로, 부극 집전체(22A)의 양면에 부극 활물질층(22B)을 형성한다. 부극 활물질층(22B)을 형성하는 경우에는, 상기한 정극(21)과 마찬가지 형성 수순이라도 좋다. 이 경우에는, 부극 활물질과 필요에 따라서 부극 결착제 및 부극 도전제 등을 혼합한 부극 합제를 유기 용제에 분산시켜, 페이스트형태의 부극 합제 슬러리를 조제한 후, 부극 집전체(22A)의 양면에 도포하며, 필요에 따라서 압축 성형한다. 혹은, 부극(22)이 정극(21)과는 다른 형성 수순으로 형성될 수 있다. 이 경우에는, 증착법 등의 기상법을 이용해서 부극 집전체(22A)의 양면에 부극 재료를 퇴적시킨다. 최후에, 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 형성한다. 부극 활물질층 피복막(22C)의 형성 재료로서 바륨 화합물을 이용하는 경우에는, 그것이 용해된 피막 형성 용액을 준비하고, 부극 활물질층(22B)이 형성된 부극 집전체(22A)를 피막 형성 용액중에 수초간 침지시키고 나서 끌어올려 건조시킨다. 혹은, 피막 형성 용액을 부극 활물질층(22B)의 표면에 도포해도 좋다. 한편, 부극 활물질층 피복막(22C)의 형성 재료로서, 금속 바륨을 이용하는 경우에는, 저항 가열법을 이용해서 부극 활물질층(22B)의 표면에 바륨을 퇴적시킨다.
최후에, 정극(21) 및 부극(22)과 함께 전해액을 이용해서, 2차 전지를 조립한다. 최초에, 정극 집전체(21A)에 정극 리드(25)를 용접 등에 의해 접속함과 동시에, 부극 집전체(22A)에 부극 리드(26)를 용접 등에 의해 접속한다. 계속해서, 세퍼레이터(23)를 거쳐서 정극(21)과 부극(22)을 적층 및 권회하여, 권회 전극체(20)를 제작한다. 그 후, 그의 권회 중심에 센터 핀(24)을 삽입한다. 계속해서, 권회 전극체(20)를 한쌍의 절연판(12, 13) 사이에 끼워넣으면서 전지 캔(11)의 내부에 수납한다. 이 경우에는, 정극 리드(25)의 선단부를 안전 밸브 기구(15)에 용접 등에 의해 접속함과 동시에, 부극 리드(26)의 선단부를 전지 캔(11)에 용접 등에 의해 접속한다. 계속해서, 전지 캔(11)의 내부에 전해액을 주입해서 세퍼레이터(23)에 함침시킨다. 최후에, 개스킷(17)을 거쳐서 전지 캔(11)의 개구 단부에 전지 뚜껑(14), 안전 밸브 기구(15) 및 PTC 소자(16)를 코킹해서 고정한다. 이것에 의해, 도 1∼도 3에 도시한 2차 전지가 완성된다.
본 실시형태의 원통형 2차 전지에 따르면, 부극 활물질층(22B)에 금속 바륨 등으로 이루어지는 부극 활물질층 피복막(22C)이 설치되어 있다. 그러므로, 부극(22)의 화학적 안정성이 향상된다. 이것에 의해, 부극(22)의 반응성이 저감하기 때문에, 충방전시에 있어서 전해액의 분해 반응이 억제된다. 따라서, 사이클 특성을 향상시킬 수가 있다. 이 경우에는, 부극 재료로서 고용량화에 유리한 금속계 재료를 이용한 경우에 있어서 뛰어난 사이클 특성이 얻어지기 때문에, 탄소 재료를 이용한 경우보다도 높은 효과를 얻을 수가 있다.
특히, 충방전 전부터 미리 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 설치하고 있기 때문에, 이후에 설명하는 바와 같이, 충방전시에 형성하는 경우보다도 부극 활물질층 피막(22C)의 정착성{定着性} 및 안정성 등이 높아진다. 이 때문에, 사이클 특성을 보다 향상시킬 수가 있다. 또, 피막 형성 용액으로서 수용액을 이용하면, 비수 용매계의 전해액과 조합해서 이용한 경우에, 부극 활물질층 피복막(22C)의 내용해성이 향상되기 때문에, 사이클 특성을 더욱더 향상시킬 수가 있다.
여기서, 미리 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 설치한 경우에 있어서의 2차 전지의 특징에 대해서 언급해 둔다. 도 3에 도시한 바와 같이, 부극 활물질층 피복막(22C)은, 부극(22)의 완성시(충방전 전)에 이미 형성되어 있기 때문에, 영역 R1 뿐만이 아니라 영역 R2에도 존재하고 있다. 정극 활물질층(21B)과 부극 활물질층(22B)이 대향하고 있는 영역 R1은 충방전 반응에 관여하기 때문에, 그 영역 R1에 형성되어 있는 부극 활물질층 피복막(22C)은 충방전 반응의 영향을 받아 분해 등을 일으킬 가능성이 있다. 그렇지만, 정극 활물질층(21B)과 부극 활물질층(22B)이 대향하고 있지 않은 영역 R2는 충방전 반응에 관여하지 않기 때문에, 그 영역 R2에 형성되어 있는 부극 활물질층 피복막(22C)은 충방전을 거쳐도 영향을 받지 않고 그대로 잔존하고 있을 것이다. 따라서, 부극 활물질층 피복막(22C)이 2차 전지의 충방전 전에 이미 형성되어 있었는지 여부를 확인하기 위해서는, 영역 R2에 부극 활물질층 피복막(22C)이 존재하고 있는지 여부를 조사하면 좋다. 충방전 후에 있어서 영역 R2에 부극 활물질층 피복막(22C)이 존재하고 있다고 하는 것은, 그것이 충방전 전부터 이미 형성되어 있던 것으로 된다.
<1-1-2.부극 활물질 입자 피복막>
또한, 피막으로서 부극 활물질층 피복막(22C)을 설치하는 대신에, 도 4에 도시한 바와 같이, 다른 피막인 부극 활물질 입자 피복막(222)에 의해 덮인 복수의 입자모양{粒子狀}의 부극 활물질(부극 활물질 입자(221))을 이용해도 좋다. 부극 활물질 입자 피복막(222)은, 부극 활물질층 피복막(22C)과 마찬가지로, 금속 바륨 등을 포함하고 있다. 이 활물질 입자 피복막(222)에 의해 피복된 부극 활물질 입자(221)를 형성하는 경우에는, 예를 들면 피막 형성 용액중에 부극 활물질 입자(221)를 수초간 침지시키고{담가 두고} 나서 끌어올려 건조시키면 좋다. 이것 이외의 부극(22)의 제작 수순은, 부극 활물질층 피복막(22C)을 형성한 경우와 마찬가지이다. 이 경우에서도, 부극 활물질층 피복막(22C)을 설치한 경우와 마찬가지 이유에 의해, 부극(22)의 화학적 안정성이 향상되기 때문에, 사이클 특성을 향상시킬 수가 있다.
물론, 부극 활물질층 피복막(22C)만을 이용해도 좋고, 부극 활물질 입자 피복막(222)에 의해 덮인 부극 활물질 입자(221)만을 이용해도 좋다. 그렇지만, 부극 활물질층 피복막(22C)과 부극 활물질 입자(221)를 병용해도 좋다. 병용하면, 부극(22)의 화학 안정성이 현저하게 높아지기 때문에, 사이클 특성을 더욱더 향상시킬 수가 있다.
<1-2.래미네이트 필름형 2차 전지>
본 실시형태의 2차 전지는, 원통형 이외의 2차 전지에 적용되어도 좋다. 도 5는 래미네이트 필름형 2차 전지의 분해 사시 구성을 도시하고 있다. 도 6은 도 5에 도시한 권회 전극체(30)의 Ⅵ-Ⅵ선을 따라 절단한 확대 단면을 도시하고 있다. 도 7은 도 6에 도시한 정극(33) 및 부극(34)의 평면 구성을 각각 도시하고 있다. 또한, 이하에서는, 래미네이트 필름형 2차 전지의 구성요소에 대해서, 원통형 2차 전지의 구성요소를 수시로 인용하면서 설명한다.
이 2차 전지는, 예를 들면 주로, 필름모양의 외장 부재(40)의 내부에 권회 전극체(30)가 수납된 리튬 이온 2차 전지이다. 이 권회 전극체(30)에는, 정극 리드(31) 및 부극 리드(32)가 부착{取付; attach}되어 있다.
정극 리드(31) 및 부극 리드(32)는, 예를 들면 외장 부재(40)의 내부로부터 외부를 향해서 동일 방향으로 각각 도출{導出; derive}되어 있다. 정극 리드(31)는, 예를 들면 알루미늄 등의 금속 재료에 의해 구성되어 있다. 부극 리드(32)는, 예를 들면 구리, 니켈 혹은 스테인리스 등의 금속 재료에 의해 구성되어 있다. 이들 재료는, 예를 들면 박판모양[薄板狀} 혹은 그물코모양{網目狀; mesh}으로 되어 있다.
외장 부재(40)는, 예를 들면 융착층{融着層; fusion bonding layer}, 금속층 및 표면 보호층이 이 순으로 적층된 래미네이트 필름이다. 이 래미네이트 필름은, 예를 들면 융착층이 권회 전극체(30)와 대향하도록 2장의 필름의 융착층에 있어서의 외연부{外緣部; outer edge} 끼리가 융착 혹은 접착제 등에 의해 서로 접합{貼合}되어 있다. 융착층의 예로서는, 폴리에틸렌 및 폴리프로필렌을 들 수 있다. 금속층의 예로서는, 알루미늄박과 같은 금속박을 들 수 있다. 표면 보호층의 예로서는, 나일론, 폴리에틸렌 테레프탈레이트 등의 고분자 필름을 들 수 있다.
그 중에서도, 외장 부재(40)로서는, 폴리에틸렌 필름, 알루미늄박 및 나일론 필름이 이 순으로 적층된 알루미늄 래미네이트 필름이 바람직하다. 단, 외장 부재(40)는, 알루미늄 래미네이트 필름 대신에, 다른 적층 구조를 가지는 래미네이트 필름이라도 좋고, 폴리프로필렌 등의 고분자 필름 혹은 금속 필름이라도 좋다.
외장 부재(40)와 정극 리드(31) 및 부극 리드(32) 사이에는, 외기의 침입을 방지하기 위한 밀착 필름(41)이 삽입되어 있다. 이 밀착 필름(41)은, 정극 리드(31) 및 부극 리드(32)에 대해서 밀착성을 가지는 재료에 의해 구성되어 있다. 이와 같은 재료의 예로서는, 폴리에틸렌, 폴리프로필렌, 변성 폴리에틸렌 및 변성 폴리프로필렌과 같은 폴리올레핀 수지를 들 수 있다.
권회 전극체(30)는, 세퍼레이터(35) 및 전해질 층(36)을 거쳐서 정극(33)과 부극(34)이 적층 및 권회된 것이다. 그의 최외주부{最外周部}는, 보호 테이프(37)에 의해 보호되어 있다. 정극(33)은, 정극 집전체(33A)의 양면에 정극 활물질층(33B)이 설치된 것이다. 정극 집전체(33A)와 정극 활물질층(33B)은 각각, 정극 집전체(21A) 및 정극 활물질층(21B)과 마찬가지 구성을 가지고 있다. 부극(34)은, 예를 들면 부극 집전체(34A)의 양면에 부극 활물질층(34B) 및 부극 활물질층 피복막(34C)이 설치된 것이다. 부극 집전체(34A)와 부극 활물질층(34B) 및 부극 활물징층 피복막(34C)은 각각, 부극 집전체(22A), 부극 활물질층(22B) 및 부극 활물질층 피복막(22C)과 마찬가지 구성을 가지고 있다. 세퍼레이터(35)는, 세퍼레이터(23)와 마찬가지 구성을 가지고 있다.
전해질 층(36)은, 고분자 화합물에 의해 전해액이 보존유지된 것이며, 필요에 따라서 각종 첨가제 등의 다른 재료를 포함하고 있어도 좋다. 이 전해질 층(36)은, 이른바 겔상의 전해질이다. 겔상의 전해질은, 높은 이온 전도율(예를 들면, 실온에서 1mS/㎝ 이상)(을)이 얻어짐과 동시에 전해액의 누액{漏液}이 방지되므로 바람직하다.
고분자 화합물의 예로서는, 폴리아크릴로니트릴, 폴리불화 비닐리덴, 폴리테트라플루오로에틸렌, 폴리헥사플루오로프로필렌, 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드, 폴리포스파젠, 폴리실록산 및 폴리불화 비닐중의 적어도 1종을 들 수 있다. 또, 그의 예에는, 폴리초산 비닐, 폴리비닐 알콜, 폴리메타크릴산 메틸, 폴리아크릴산, 폴리메타크릴산, 스틸렌-부타디엔 고무, 니트릴-부타디엔 고무, 폴리스틸렌 및 폴리카보네이트가 있다. 또, 그의 예에는, 불화 비닐리덴과 헥사플루오로피렌과의 공중합체가 있다. 이들 고분자 화합물의 1종을 단독으로 이용해도 좋고, 이들의 복수종을 혼합해서 이용해도 좋다. 그 중에서도, 폴리불화 비닐리덴, 또는 불화 비닐리덴과 헥사플루오로피렌과의 공중합체가 바람직하며, 전기 화학적으로 안정하기 때문이다.
전해액은, 원통형 2차 전지에서의 전해액과 마찬가지 조성을 가지고 있다. 단, 겔상의 전해질인 전해질 층(36)에서의 용매란, 액상의 용매 뿐만 아니라, 전해질염을 해리시키는 것이 가능한 이온 전도성을 가지는 것까지 포함하는 넓은 개념이다. 이 때문에, 이온 전도성을 가지는 고분자 화합물을 이용하는 경우에는, 그 고분자 화합물도 용매에 포함된다.
또한, 고분자 화합물에 의해 전해액이 보존유지된 겔상의 전해질 층(36) 대신에, 전해액을 그대로 이용해도 좋다. 이 경우에는, 전해액이 세퍼레이터(35)에 함침된다.
이 2차 전지에서는, 충전시에 있어서, 예를 들면 정극(33)으로부터 리튬 이온이 방출되어, 전해질 층(36)을 통해서 부극(34)에 흡장된다. 한편, 방전시에 있어서, 예를 들면 부극(34)으로부터 리튬 이온이 방출되어, 전해질 층(36)을 통해서 정극 활물질층(33)에 흡장된다.
이 겔상의 전해질 층(36)을 구비한 2차 전지는, 예를 들면 이하의 3종류의 수순에 의해 제조된다.
제1 제조 방법에서는, 최초에, 정극(21) 및 부극(22)과 마찬가지 수순에 의해, 정극(33) 및 부극(34)을 제작한다. 구체적으로는, 정극 집전체(33A)의 양면에 정극 활물질층(33B)을 형성해서 정극(33)을 제작함과 동시에, 부극 집전체(34A)의 양면에 부극 활물질층(34B) 및 부극 활물질층 피복막(34C)을 형성해서 부극(34)을 제작한다. 계속해서, 전해액, 고분자 화합물 및 용제를 포함하는 전구{前驅} 용액을 조제한다. 정극(33) 및 부극(34)에 전구 용액을 도포한 후, 그 용제를 휘발시켜 겔상의 전해질 층(36)을 형성한다. 계속해서, 정극 집전체(33A)에 정극 리드(31)를 접속함과 동시에, 부극 집전체(34A)에 부극 리드(32)를 접속한다. 계속해서, 전해질층(36)이 형성된 정극(33)과 부극(34)을 세퍼레이터(35)를 거쳐서 적층 및 권회하여, 적층체를 얻는다. 그 후, 그의 최외주부에 보호 테이프(37)를 접착시켜, 권회 전극체(30)를 제작한다. 최후에, 2장의 필름모양의 외장 부재(40) 사이에 권회 전극체(30)를 끼워넣은 후, 그 외장 부재(40)의 외연부 끼리를 열 융착 등에 의해 접착시켜, 권회 전극체(30)를 봉입{封入; enclose}한다. 이 때, 정극 리드(31) 및 부극 리드(32)와 외장 부재(40)와의 사이에 밀착 필름(41)을 삽입한다. 이것에 의해, 도 5∼도 7에 도시한 2차 전지가 완성된다.
제2 제조 방법에서는, 최초에, 정극(33)에 정극 리드(31)를 접속함과 동시에, 부극(34)에 부극 리드(32)를 접속한다. 계속해서, 세퍼레이터(35)를 거쳐서 정극(33)과 부극(34)을 적층하고 권회한다. 그 후, 그의 최외주부에 보호 테이프(37)를 접착시켜, 권회 전극체(30)의 전구체인 권회체를 제작한다. 계속해서, 2장의 필름모양의 외장 부재(40) 사이에 권회체를 끼워넣은 후, 한 변의 외주연부{최외주부}를 제외한 나머지 외주연부를 열 융착 등에 의해 접착시켜, 주머니모양{袋狀; pouch-like}의 외장 부재(40)의 내부에 권회체를 수납한다. 계속해서, 전해액과, 고분자 화합물의 원료인 모노머와, 중합 개시제와, 필요에 따라서 중합 금지제 등의 다른 재료를 포함하는 전해질용 조성물을 조제해서, 주머니모양의 외장 부재(40)의 내부에 주입한다. 그 후, 그 외장 부재(40)의 개구부를 열 융착 등에 의해 밀봉{hermetically seal}한다. 최후에, 모노머를 열중합시켜 고분자 화합물로 하는 것에 의해, 겔상의 전해질 층(36)을 형성한다. 이것에 의해, 2차 전지가 완성된다.
제3 제조 방법에서는, 최초에, 고분자 화합물이 양면에 도포된 세퍼레이터(35)를 이용하는 것을 제외하고는, 제2 제조 방법과 마찬가지로, 권회체를 형성해서 주머니 모양의 외장 부재(40)의 내부에 수납한다. 이 세퍼레이터(35)에 도포하는 고분자 화합물의 예로서는, 불화 비닐리덴을 성분으로 하는 중합체(단독 중합체, 공중합체 혹은 다원 공중합체 등)를 들 수 있다. 그의 구체적인 예로서는, 폴리불화 비닐리덴, 불화 비닐리덴 및 헥사플루오로 프로필렌을 성분으로 하는 2원계 공중합체, 혹은 불화 비닐리덴, 헥사 플루오로 프로필렌 및 클로로트리플루오로에틸렌을 성분으로 하는 3원계 공중합체를 들 수 있다. 또한, 고분자 화합물로서는, 상기한 불화 비닐리덴을 성분으로 하는 중합체에 부가해서, 다른 1종 혹은 2종 이상의 고분자 화합물을 포함해도 좋다. 계속해서, 전해액을 조제해서 외장 부재(40)의 내부에 주입한다. 그 후, 그 외장 부재(40)의 개구부를 열 융착 등에 의해 밀봉한다. 최후에, 외장 부재(40)에 하중을 가하면서 가열해서, 고분자 화합물을 거쳐서 세퍼레이터(35)를 정극(33) 및 부극(34)에 밀착시킨다. 이것에 의해, 전해액이 고분자 화합물에 함침되고, 그 고분자 화합물이 겔화해서 전해질 층(36)이 형성된다. 따라서, 2차 전지가 완성된다.
이 제3 제조 방법에서는, 제1 제조 방법보다도 전지 팽윤{swollenness}이 억제됨과 동시에, 제2 제조 방법보다도 고분자 화합물의 원료인 모노머 혹은 용매 등이 전해질 층(36) 중에 거의 남지 않아, 고분자 화합물의 형성 공정이 양호하게 제어된다. 이 때문에, 정극(33), 부극(34) 및 세퍼레이터(35)와 전해질 층(36)과의 사이에서 충분한 밀착성이 얻어진다.
본 실시형태의 래미네이트 필름형 2차 전지에 따르면, 부극 활물질층(34B)에 금속 바륨 등으로 이루어지는 부극 활물질층 피복막(34C)이 설치되어 있으므로, 부극(34)의 화학적 안정성이 높아진다. 따라서, 원통형 2차 전지와 마찬가지 작용이 얻어지기 때문에, 사이클 특성을 향상시킬 수가 있다. 그 이외의 효과는, 원통형 2차 전지와 마찬가지이다.
또한, 래미네이트 필름형 2차 전지에서도, 원통형 2차 전지와 마찬가지로, 부극 활물질층(34B)에 부극 활물질층 피복막(34C)을 설치하는 대신에, 부극 활물질 입자 피복막(222)에 의해 덮인 부극 활물질 입자(221)를 이용해서 부극 활물질층(34B)을 형성해도 좋다. 이 경우에서도, 사이클 특성을 향상시킬 수가 있다.
<1-3. 코인형 2차 전지>
또, 본 실시형태의 2차 전지는, 코인형 2차 전지에 적용되어도 좋다. 도 8은, 코인형 2차 전지의 단면 구성을 도시하고 있다. 또한, 이하에서는, 코인형 2차 전지의 구성요소에 대해서, 원통형 2차 전지의 구성요소를 수시로 인용하면서 설명한다. 이 2차 전지는, 정극(51)을 수용하는 외장 캔(54)과 부극(52)을 수용하는 외장 컵(55)이 세퍼레이터(53) 및 개스킷(56)을 거쳐서 코킹된 리튬 이온 2차 전지이다.
외장 캔(54) 및 외장 컵(55)과 개스킷(56)은, 전지 캔(11) 및 개스킷(17)과 마찬가지 구성을 가지고 있다.
정극(51)은, 예를 들면 정극 집전체(51A)의 한면에 정극 활물질층(51B)이 설치된 것이다. 정극 집전체(51A)와 정극 활물질층(51B)은 각각, 정극 집전체(21A) 및 정극 활물질층(21B)과 마찬가지 구성을 가지고 있다. 부극(52)은, 예를 들면 부극 집전체(52A)에 부극 활물질층(52B) 및 부극 활물질층 피복막(52C)이 설치된 것이다. 부극 집전체(52A), 부극 활물질층(52B) 및 부극 활물질층 피복막(52C)은 각각, 부극 집전체(22A), 부극 활물질층(22B) 및 부극 활물질층 피복막(22C)과 마찬가지 구성을 가지고 있다. 세퍼레이터(53)는, 세퍼레이터(23)와 마찬가지 구성을 가지고 있다. 전해액은, 원통형 2차 전지에서의 전해액과 마찬가지 조성을 가지고 있다.
이 2차 전지는, 예를 들면 이하의 수순에 의해 제조된다. 최초에, 정극(21) 및 부극(22)과 마찬가지 수순에 의해, 정극 집전체(51A)에 정극 활물질층(51B)을 형성해서 정극(51)을 제작함과 동시에, 부극 집전체(52A)에 부극 활물질층(52B) 및 부극 활물질층 피복막(52C)을 형성해서 부극(52)을 제작한다. 계속해서, 소정의 직경을 가지는 펠렛{pellet}으로 되도록 정극(51) 및 부극(52)을 구멍뚫는다{펀칭한다}. 최후에, 정극(51)을 외장 캔(54)에 수용함과 동시에, 부극(52)을 외장 컵(55)에 접착하고, 그들을 전해액이 함침된 세퍼레이터(53)를 거쳐서 적층한다. 그 후, 얻어진 것{resultant}을 개스킷(56)을 거쳐서 코킹한다. 이것에 의해, 도 8에 도시한 2차 전지가 완성된다.
본 실시형태의 코인형 2차 전지에 따르면, 부극 활물질층(52B)에 금속 바륨 등으로 이루어지는 부극 활물질층 피복막(52C)이 설치되어 있다. 그러므로, 부극(52)의 전기 화학적 안정성이 높아진다. 따라서, 원통형 2차 전지와 마찬가지 작용이 얻어지기 때문에, 사이클 특성을 향상시킬 수가 있다. 그 이외의 효과는, 원통형 2차 전지와 마찬가지이다.
또한, 코인형 2차 전지에서도, 원통형 2차 전지와 마찬가지로, 부극 활물질층(52B)에 부극 활물질층 피복막(52C)을 설치하는 대신에, 부극 활물질 입자 피복막(222)에 의해 덮인 부극 활물질 입자(221)를 이용해서 부극 활물질층(52B)을 형성해도 좋다. 이 경우에 있어서도, 사이클 특성을 향상시킬 수가 있다.
<2. 제2 실시형태(정극이 금속 바륨 등을 포함하는 2차 전지)>
다음에, 본 발명의 제2 실시형태에 대해서 설명한다. 도 9는 권회 전극체(20)의 단면 구성을 도시하고, 도 2에 대응하고 있다. 도 10은, 도 9에 도시한 정극(21) 및 부극(22)의 평면 구성을 도시하고, 도 3에 대응하고 있다.
이 2차 전지는, 충방전 전에 있어서 부극 활물질층 피복막(22C)이 이미 형성되어 있던 제1 실시형태와는 달리, 충방전시에 있어서 처음으로 부극 활물질층 피복막(22C)이 형성되는 것이다. 또한, 본 실시형태의 2차 전지는, 예를 들면 이하에서 설명하는 것을 제외하고는, 제1 실시형태와 마찬가지 구성을 가지는 원통형 2차 전지이다.
정극(21)의 정극 활물질층(21B)은, 충방전 전에 있어서, 정극 활물질과 함께 금속 바륨 등을 포함하고 있다. 이 정극 활물질층(21B)에 포함되어 있는 금속 바륨 등은, 충방전시에 있어서 부극 활물질층(22B)에 활물질층 피복막(22C)을 형성하기 위해서 이용되는 것이다. 이 때문에, 충방전시에 있어서 활물질층 피복막(22C)이 형성된 후는, 정극 활물질층(21B)은 금속 바륨 등을 포함하고 있어도 좋고 포함하고 있지 않아도 좋다. 또한, 정극 활물질층(21B)중에서의 금속 바륨 등의 함유량은, 특별히 한정되지 않는다.
부극(22)의 부극 활물질층(22B)에는, 도 9 및 도 10에 도시한 바와 같이, 충방전 전에 있어서 부극 활물질층 피복막(22C)이 설치되어 있지 않다. 그렇지만, 도 2 및 도 3에 도시한 바와 같이, 충방전 후에는 부극 활물질층 피복막(22C)이 설치되어 있다. 이 때문에, 충방전 후의 부극(22)에서는, 제1 실시형태와 마찬가지로, XPS를 이용한 표면 분석에 의해 Ba3d5/2에 귀속하는 피크가 778eV 이상 782eV 이하의 범위에서 얻어진다. 또, TOF-SIMS를 이용한 표면 분석에 의해, 정2차 이온으로서 Ba+, BaOH+, BaF+, BaOLi+, BaOHFLi+, BaF2Li+, BaOLi2F+, BaO2Li3 +, BaOHLi2F2 +, BaLi2F3 +, BaCO3Li+, BaSO4Li+ 및 BaLi2PO4 + 중의 적어도 1종의 피크가 얻어진다.
이 2차 전지에서는, 충방전시에 있어서, 정극(21)과 부극(22) 사이에 리튬 이온이 전해액을 통해서 흡장 및 방출될 때에, 정극 활물질층(21B)에 포함되어 있는 금속 바륨 등을 이용해서 부극 활물질층(22B)에 부극 활물질층 피복막(22C)이 형성된다. 이 부극 활물질층 피복막(22C)을 형성하기 위해서 필요로 하는 충방전의 회수는, 적어도 1회이면 좋다.
이 2차 전지는, 예를 들면 정극 활물질과 함께 금속 바륨 등을 포함하는 정극 합제를 이용해서 정극 활물질층(21B)을 형성함과 동시에, 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 형성하지 않는 것을 제외하고는, 제1 실시형태와 마찬가지 수순에 의해 제조된다.
본 실시형태의 원통형 2차 전지에 따르면, 충방전 전에 있어서 정극(21)의 정극 활물질층(21B)이 금속 바륨 등을 포함하고 있다. 이 때문에, 충방전 전에 미리 부극 활물질층 피복막(22C)을 형성해 두지 않아도, 충방전시에 있어서 부극 활물질층(22B)에 부극 활물질층 피복막(22C)이 형성된다. 따라서, 제1 실시형태와 마찬가지 작용이 얻어지기 때문에, 사이클 특성을 향상시킬 수가 있다. 그 이외의 효과는, 제1 실시형태와 마찬가지이다.
여기서, 정극 활물질층(21B)에 금속 바륨 등을 함유시키는 경우에 있어서의 2차 전지의 특징에 대해서 언급해 둔다. 도 10에 도시한 바와 같이, 부극 활물질층 피복막(22C)은, 충방전 전에 있어서는 아직도 형성되어 있지 않기 때문에, 영역 R1, R2의 어느 것에도 존재하지 않는다. 이에 대해서, 부극 활물질층 피복막(22C)은, 충방전 반응을 이용해서 형성되기 때문에, 충방전 반응에 관여하는 영역 R1에만 형성되고, 충방전 반응에 관여하지 않는 영역 R2에는 형성되지 않는 것이다. 따라서, 부극 활물질층 피복막(22C)이 충방전 반응을 이용해서 형성된 것인지 여부를 확인하기 위해서는, 영역 R1에 존재하고 있는데 대해서 영역 R2에 존재하고 있지 않은지 여부를 조사하면 좋다. 충방전 후에 있어서 영역 R1에만 부극 활물질층 피복막(22C)이 존재하고 있다고 하는 것은, 그것이 충방전시에 형성된 것임을 의미한다.
또한, 본 실시형태의 2차 전지는, 제1 실시형태와 마찬가지로, 원통형 2차 전지에 한정되지 않고, 도 11 및 도 12에 도시한 바와 같이, 래미네이트 필름형 2차 전지 혹은 코인형 2차 전지에 적용되어도 좋다. 이 경우에는, 충방전 전에 있어서 부극 활물질층 피복막(34C, 52C)이 형성되지 않고, 정극 활물질층(34B, 52B) 중에 금속 바륨 등이 함유되게 된다. 이들의 경우에 있어서도, 사이클 특성을 향상시킬 수가 있다.
또, 정극(21)이 금속 바륨 등을 포함하는 경우로서, 정극 활물질층(21B)이 금속 바륨 등을 포함하는 경우에 대해서 설명했지만, 반드시 이것에 한정되지 않는다. 여기에서는 구체적으로 도시하고 있지 않지만, 예를 들면 제1 실시형태에서 설명한 바와 같이, 금속 바륨 등을 포함하는 정극 활물질층 피복막이 정극 활물질층(21B)에 형성되어도 좋고, 금속 바륨 등을 포함하는 정극 활물질 입자 피복막에 의해 덮인 정극 활물질 입자를 이용해서 정극 활물질층(21B)을 형성해도 좋다. 이들의 경우에 있어서도, 사이클 특성을 향상시킬 수가 있다. 물론, 상기한 정극(21)이 금속 바륨 등을 포함하는 3종류의 양태{態樣; aspect}는, 단독으로 이용해도 좋고, 그의 2종류 이상을 조합해서 이용해도 좋다.
<3. 제3 실시형태(전해질이 바륨 화합물 등을 포함하는 2차 전지)>
다음에, 본 발명의 제3 실시형태에 대해서 설명한다. 본 실시형태의 2차 전지는, 정극(21) 또는 부극(22)이 금속 바륨 등을 포함하고 있는 제1 및 제2 실시형태와는 달리, 전해질이 산화 바륨, 수산화 바륨, 할로겐화 바륨, 탄산 바륨, 황산 바륨, 질산 바륨, 인산 바륨, 옥살산 바륨 및 초산 바륨중의 적어도 1종(이하, 총칭해서 "바륨 화합물 등"이라고 한다)을 포함하고 있는 것이다. 이 2차 전지는, 이하에서 설명하는 것을 제외하고는, 제1 실시형태와 마찬가지 구성을 가지는 원통형 2차 전지이다.
전해질은, 충방전 전에 있어서, 용매 및 전해질염과 함께 바륨 화합물 등을 포함하고 있다. 이 전해질에 포함되어 있는 바륨 화합물 등은, 충방전시에 있어서 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 형성하기 위해서 이용되는 것이다. 이 때문에, 충방전시에 있어서 부극 활물질층 피복막(22C)이 형성된 후는, 전해질은 바륨 화합물 등을 포함하고 있어도 좋고 포함하고 있지 않아도 좋다. 또한, 전해질에 함유시키는 바륨 화합물 등으로서는, 용매에 충분히 용해가능한 유기산 바륨이 바람직하다. 용매중에서의 바륨 화합물 등의 함유량은, 특별히 한정되지 않는다.
부극(22)의 부극 활물질층(22B)에는, 제2 실시형태와 마찬가지로, 충방전전에 있어서 부극 활물질층 피복막(22C)이 설치되어 있지 않지만, 충방전후에는 부극 활물질층 피복막(22C)이 설치되어 있다. 이 때문에, 충방전 후의 부극(22)에서는, 제1 실시형태와 마찬가지로, XPS를 이용한 표면 분석에 의해, Ba3d5/2에 귀속하는 피크가 778eV 이상 782eV 이하의 범위에서 얻어진다. 또, TOF-SIMS를 이용한 표면 분석에 의해, 정2차 이온으로서 Ba+, BaOH+, BaF+, BaOLi+, BaOHFLi+, BaF2Li+, BaOLi2F+, BaO2Li3 +, BaOHLi2F2+, BaLi2F3 +, BaCO3Li+, BaSO4Li+ 및 BaLi2PO4 + 중의 적어도 1종의 피크가 얻어진다.
이 2차 전지에서는, 충방전시에 있어서, 정극(21)과 부극(22) 사이에 리튬 이온이 전해액을 통해서 흡장 및 방출될 때에, 전해질에 포함되어 있는 바륨 화합물 등을 이용해서 부극 활물질층(22B)에 부극 활물질층 피복막(22C)이 형성된다.
이 2차 전지는, 예를 들면 용매 및 전해질염과 함께 바륨 화합물 등을 포함하도록 전해질을 조제함과 동시에, 부극 활물질층(22B)에 부극 활물질층 피복막(22C)을 형성하지 않는 것을 제외하고는, 제1 실시형태와 마찬가지 수순에 의해 제조된다.
본 실시형태의 원통형 2차 전지에 따르면, 충방전 전에 있어서 전해질이 바륨 화합물 등을 포함하고 있다. 그러므로, 충방전 전에 미리 부극 활물질층 피복막(22C)을 형성해 두지 않아도, 충방전시에 있어서 부극 활물질층(22B)에 부극 활물질층 피복막(22C)이 형성된다. 따라서, 제1 실시형태와 마찬가지 작용가 얻어지기 때문에, 사이클 특성을 향상시킬 수가 있다. 그 이외의 효과는, 제1 실시형태와 마찬가지이다.
또한, 본 실시형태의 2차 전지는, 제1 실시형태와 마찬가지로, 원통형 2차 전지에 한정되지 않고, 도 11 및 도 12에 도시한 바와 같이, 래미네이트 필름형 2차 전지 혹은 코인형 2차 전지에 적용되어도 좋다. 이 경우에는, 충방전전에 있어서 부극 활물질층 피복막(34C, 52C)이 형성되지 않고, 전해질에 바륨 화합물 등이 함유되게 된다. 이들 경우에 있어서도, 사이클 특성을 향상시킬 수가 있다.
이상으로, 본 발명의 제1∼제3 실시형태에 관한 설명을 종료한다. 제1∼제3 실시형태에서 설명한 바륨 화합물 등의 함유 장소(정극, 부극 혹은 전해질)에 관한 일련의 양태는, 단독으로 이용해도 좋고, 그의 2종류 이상을 조합해서 이용해도 좋다. 특히, 바륨 화합물 등의 함유 장소로서는, 전해질보다도 정극 및 부극이 바람직하고, 정극보다도 부극이 바람직하다. 정극 및 부극이 바람직한 이유는, 충방전 반응에 직접 관여하는 정극 및 부극에 바륨 화합물 등을 도입하는 것에 의해, 전해질에 도입하는 경우보다도 안정하고 또한 강고한 피막이 재현성{再現性; reproducibility} 좋게 형성되기 때문이다. 또, 부극이 바람직한 이유는, 충전시에 있어서 부극에 리튬 이온이 흡장 되는 경우에는, 그 흡장처{吸藏先; 흡장되는 곳}인 부극에 바륨 화합물 등을 도입하는 것에 의해, 부극의 화학적 안정성이 비약적으로 향상되기 때문이다.
[실시예]
다음에, 본 발명의 실시예에 대해서 상세하게 설명한다.
(실험예 1-1∼1-9)
이하의 수순에 의해, 도 8에 도시한 코인형의 리튬 이온 2차 전지를 제작했다.
우선, 정극(51)을 제작했다. 최초에, 정극 활물질로서 Li0.98Co0.15Ni0.80Al0.05O2.10(레이저 산란법에 의한 평균 입자 지름: 14㎛) 90질량부와, 정극 도전제로서 그래파이트 5질량부와, 정극 결착제로서 폴리불화 비닐리덴 5질량부를 혼합해서, 정극 합제를 얻었다. 계속해서, 정극 합제를 N-메틸-2-피롤리돈에 분산시켜, 페이스트형태의 정극 합제 슬러리를 얻었다. 계속해서, 알루미늄박(두께: 20㎛)으로 이루어지는 정극 집전체(51A)에 정극 합제 슬러리를 도포했다. 그 후, 얻어진 것을 롤 프레스기로 압축 성형해서, 정극 활물질층(51B)을 형성했다. 최후에, 정극 활물질층(51B)이 형성된 정극 집전체(51A)를 직경 15.5㎜의 펠렛으로 되도록 구멍뚫었다{펀칭했다}.
다음에, 부극(52)을 제작했다. 최초에, 전자빔 증착법을 이용해서 동박(두께: 10㎛)으로 이루어지는 부극 집전체(52A)에 규소를 퇴적시켜, 부극 활물질층(52B)을 형성했다. 계속해서, 부극 활물질층(52B)이 형성된 부극 집전체(52A)를 직경 16㎜의 펠렛으로 되도록 구멍뚫었다. 계속해서, 피막 형성 용액으로서 바륨 화합물의 2% 수용액을 준비했다. 그 후, 그 용액중에 펠렛을 수초간 침지시켰다{담갔다}. 이 바륨 화합물의 종류는, 표 1에 나타낸 대로이며, 복수 종류의 바륨 화합물을 이용하는 경우에는, 각 바륨 화합물의 중량비를 똑같게 했다. 최후에, 피막 형성 용액중으로부터 펠렛을 끌어올려, 부극 활물질층 피복막(52C)을 형성했다.
다음에, 정극(51)과, 부극(52)과, 미다공성{微多孔性; microporous} 폴리프로필렌 필름으로 이루어지는 세퍼레이터(53)를 정극 활물질층(51B)과 부극 활물질층(52B)이 세퍼레이터(53)를 거쳐서 대향하도록 적층했다. 그 후, 얻어진 것을 외장 캔(54)에 수용했다. 계속해서, 용매로서 4-플루오로-1,3-디옥소란-2-원(FEC)과 탄산 디에틸(DEC)을 혼합한 후, 전해질염으로서 LiPF6을 용해시켜, 전해액을 조제했다. 이 때, FEC 및 DEC의 혼합비를 중량비로 50:50으로 하고, LiPF6의 함유량을 용매에 대해서 1㏖/㎏로 했다. 최후에, 세퍼레이터(53)에 전해액을 함침시킨 후, 그 결과물은 개스킷(56)을 거쳐서 외장 컵(55)을 외장 캠(54) 위에 덮어씌워 코킹되었다. 이것에 의해, 코인형의 2차 전지가 완성되었다. 이 2차 전지를 제작하는 경우에는, 정극 활물질층(51B)의 두께를 조절해서, 풀 충전시에 있어서 부극(52)에 리튬 금속이 석출되지 않도록 했다.
(실험예 1-10)
저항 가열법을 이용해서 부극 활물질층(52B)에 금속 바륨을 퇴적시켜 부극 활물질층 피복막(52C)을 형성한 것을 제외하고는, 실시예 1-1∼1-9와 마찬가지 수순을 거쳤다{경유했다}.
(실험예 1-11)
부극 활물질층 피복막(52C)을 형성하지 않은 것을 제외하고는, 실험예 1-1∼1-10과 마찬가지 수순을 거쳤다.
이들 실험예 1-1∼1-11의 2차 전지에 대해서 사이클 특성을 조사했더니, 표 1에 나타낸 결과가 얻어졌다.
사이클 특성을 조사하는 경우에는, 23℃의 분위기중에서 2사이클 충방전해서 방전 용량을 측정한 후, 같은 분위기중에서 사이클수의 합계가 100사이클로 될 때까지 반복 충방전해서 방전 용량을 측정했다. 이 결과로부터, 방전 용량 유지율(%)=(100사이클째의 방전 용량/2사이클째의 방전 용량)×100을 산출했다. 1사이클에서는, 1㎃/㎠의 정전류 밀도에서 전지 전압이 4.2V에 도달할 때까지 충전한 후, 1㎃/㎠의 정전류 밀도에서 전지 전압이 2.5V에 도달할 때까지 방전했다.
또한, 실험예 1-1∼1-11의 2차 전지에 대해서는, XPS 및 TOF-SIMS를 이용해서 부극(52)의 표면 분석도 행했다.
XPS에 의한 분석에서는, 금속 바륨 등의 존재에 기인해서 Ba3d5/2에 귀속하는 피크(XPS 피크)가 778eV 이상 782eV 이하의 범위에서 얻어지는지 여부를 조사했다. 이 경우에는, 분석 장치로서 QUANTERA SXM(ULVAC-PHI사)을 이용함과 동시에, 모노크로화한 AL-kα선(1486.6eV, 빔 사이즈: 약 100㎛ψ)를 조사해서 광전자 스펙트럼을 측정했다. 또한, 대전{帶電} 중화 처리를 행하지 않았다. 또, 스펙트럼의 에너지 보정에 F1s 피크를 이용했다. 상세하게는, 측정 샘플에 대해서 F1s 스펙트럼을 측정한 후, 시판되는 소프트웨어를 이용해서 파형 해석하며, 최저 속박 에너지측에 존재하는 주피크의 위치를 685,1eV로 했다. 도 13은, XPS에 의한 부극의 표면 분석 결과(13A: 실험예 1-9, 13B: 실험예 1-11)를 도시하고 있다.
TOF-SIMS에 의한 분석에서는, 금속 바륨 등의 존재에 기인하는 정2차 이온의 피크(TOF-SIMS 피크)가 얻어지는지 여부를 조사했다. 이 정2차 이온이란, Ba+, BaOH+, BaF+, BaOLi+, BaOHFLi+, BaF2Li+, BaOLi2F+, BaO2Li3 +, BaOHLi2F2 +, BaLi2F3 +, BaCO3Li+, BaSO4Li+ 및 BaLi2PO4 + 중의 적어도 1종이다. 이 경우에는, 분석 장치로서 ION-TOF사제의 TOF-SIMS V를 이용했다. 또, 분석 조건은 다음과 같다: 1차 이온: Bi3 +(9.7952×1011ions/㎠), 이온총의 가속 전압: 25keV, 분석 모드: 번칭{bunching} 모드, 조사 이온의 전류(펄스 빔에서의 계측): 0.3pA, 펄스 주파수:10㎑, 질량 범위: 1amu∼800amu, 주사 범위: 200㎛×200㎛, 질량 분해능: M/ΔM: 6800(C2H5 +), 5900(CH2 -)로 했다. 도 14는, TOF-SIMS에 의한 부극의 표면 분석 결과((A) 및 (B)의 상단{山段; upper section}: 실험예 1-11, 하단{下段; lower section}: 실험예 1-9)를 도시하고 있다.
[표 1]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: Si(전자빔 증착법)
Figure pat00001
부극 활물질층 피복막(52C)을 형성한 실험예 1-1∼1-10에서는, 그것을 형성하지 않은 실험예 1-11과는 달리, 780eV 근방에서 XPS 피크가 얻어짐과 동시에, 정2차 이온에 의한 TOF-SIMS 피크가 얻어졌다. 또, 실험예 1-1∼1-10에서는, 실험예 1-11보다도 방전 용량 유지율이 높아졌다. 이 경우에는, 불화 바륨 혹은 인산 바륨을 이용하면 방전 용량 유지율이 보다 높아지고, 금속 바륨을 이용하면 방전 용량 유지율이 더욱더 높아졌다. 따라서, 본 발명의 2차 전지에서는, 금속 바륨 등을 포함하는 부극 활물질층 피복막(52C)이 부극 활물질층(52B)에 형성되어 있다. 이것에 의해, 부극 활물질로서 규소를 이용함과 동시에 부극 활물질층(52B)의 형성 방법으로서 전자 빔 증착법을 이용한 경우에 있어서, 사이클 특성이 향상된다.
(실험예 2-1∼2-3)
소결법을 이용해서 부극 활물질층(52B)을 형성한 것을 제외하고는, 실험예 1-4, 1-9, 1-11과 마찬가지 수순을 거쳤다. 부극 활물질층(52B)을 형성하는 경우에는, 최초에, 부극 활물질로서 규소 분말(메디안지름=1㎛) 90질량부와, 부극 결착제로서 폴리불화 비닐리덴 10질량부를 혼합해서, 부극 합제를 얻었다. 그 후, 부극 합제를 N-메틸-2-피롤리돈에 분산시켜, 페이스트형태의 부극 합제 슬러리를 얻었다. 계속해서, 부극 집전체(52A)에 부극 합제 슬러리를 도포한 후, 롤 프레스기로 압축 성형해서 부극 활물질층(52B)을 형성했다. 최후에, 400℃×12시간의 조건하에서 부극 활물질층(52B)을 가열했다. 이들의 실험예 2-1∼2-3의 2차 전지에 대해서 사이클 특성 등을 조사했더니, 표 2에 나타낸 결과가 얻어졌다.
[표 2]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: Si(소결법)
Figure pat00002
표 1의 결과와 마찬가지로, 실험예 2-1, 2-2에서는, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 실험예 2-3보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질층(52B)의 형성 방법으로서 소결법을 이용한 경우에 있어서도, 사이클 특성이 향상된다.
(실험예 3-1∼3-3)
부극 활물질로서 SnCoC 함유 재료인 주석 코발트 탄소 합금(SnCoC)을 이용함과 동시에, 부극 활물질층(52B)의 형성 방법으로서 도포법을 이용한 것을 제외하고는, 실험예 1-4, 1-9, 1-11과 마찬가지 수순을 거쳤다.
부극 활물질층(52B)을 형성하는 경우에는, 최초에, 코발트 분말 및 주석 분말을 합금화해서 코발트 주석 합금 분말로 했다. 그 후, 얻어진 것에 탄소 분말을 더해서, 건식 혼합했다. 계속해서, 이토 세이사쿠쇼{伊藤製作所; Ito Seisakusho Co.}제의 유성 볼밀의 반응 용기중에, 상기한 혼합물 20g을 직경 9㎜의 강옥{綱玉} 약 400g과 함께 세트했다. 계속해서, 반응 용기중을 아르곤 분위기로 치환한 후, 매분 250회전의 회전 속도에 의한 10분간의 운전과 10분간의 휴지를 운전 시간의 합계가 30시간이 될 때까지 반복했다. 계속해서, 반응 용기를 실온까지 냉각해서 SnCoC를 꺼냈다{取出; take out}. 그 후, 얻어진 것을 280메시의 체{sieve}로 쳐서, 거친 입자{粗粉}를 제거했다.
SnCoC의 조성을 분석했더니, 주석의 함유량은 48.0질량%, 코발트의 함유량은 23.0질량%, 탄소의 함유량은 20.0질량%, 주석 및 코발트의 비율(Co/(Sn+Co))은 32.4질량%였다. 이 때, 주석 및 코발트의 함유량에 대해서는 유도 결합 플라즈마(ICP) 발광 분석에 의해 측정하고, 탄소의 함유량에 대해서는 탄소 유황 분석 장치에 의해 측정했다. 또, X선 회절법에 의해 SnCoC를 분석했더니, 2θ=20°이상 50°이하의 범위에서 1.0°이상의 반값폭을 가지는 회절 피크가 관찰되었다. 또, XPS에 의해 SnCoC를 분석했더니, 도 15에 도시한 바와 같이, 피크 P1이 얻어졌다. 이 피크 P1을 해석했더니, 표면 오염 탄소의 피크 P2와, 그것보다도 저에너지측(284.5eV보다도 낮은 영역)에 SnCoC 함유 재료중에서의 C1s의 피크 P3이 얻어졌다. 이 결과로부터, SnCoC중의 탄소는 다른 원소와 결합되어 있는 것이 확인되었다.
부극 활물질로서 SnCoC 80질량부와, 부극 도전제로서 그래파이트 11질량부 및 아세틸렌 블랙 1질량부와, 부극 결착제로서 폴리불화 비닐리덴 8질량부를 혼합해서, 부극 합제를 얻었다. 그 후, N-메틸-2-피롤리돈에 분산시켜 페이스트형태의 부극 합제 슬러리로 했다. 최후에, 부극 집전체(52A)에 부극 합제 슬러리를 도포했다. 그 후, 도포막{coating}을 롤 프레스기로 압축 성형했다.
이들 실험예 3-1∼3-3의 2차 전지에 대해서 사이클 특성 등을 조사했더니, 표 3에 나타낸 결과가 얻어졌다.
[표 3]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: SnCoC(도포법)
Figure pat00003
표 1의 결과와 마찬가지로, 실험예 3-1, 3-2에서는, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 실험예 3-3보다도 방전 용량 유지율이 높아졌다. 따라서, 부극 활물질로서 SnCoC 함유 재료를 이용한 경우에 있어서도, 사이클 특성이 향상된다.
(실험예 4-1, 4-2)
부극 활물질로서 인조 흑연을 이용함과 동시에 부극 활물질층(52B)의 형성 방법으로서 도포법을 이용한 것을 제외하고는, 실험예 1-4, 1-9와 마찬가지 수순을 거쳤다. 부극 활물질층(52B)을 형성하는 경우에는, 부극 활물질로서 인조 흑연 분말(메디안지름: 20㎛) 90질량부와, 부극 결착제로서 폴리불화 비닐리덴 10질량부를 혼합해서, 부극 합제를 얻었다. 그 후, 부극 합제를 N-메틸-2-피롤리돈에 분산시켜, 페이스트형태의 부극 합제 슬러리를 얻었다. 그 후, 부극 집전체(52A)에 부극 합제 슬러리를 도포했다. 그 후, 얻어진 것을 압축 성형했다.
(실험예 4-3, 4-4)
부극 활물질층 피복막(52C)을 형성하는 대신에, 부극 활물질 입자 피복막(222)이 형성된 부극 활물질 입자(221)를 이용함과 동시에, 부극 활물질층(52B)의 형성 방법으로서 도포법을 이용한 것을 제외하고는, 실험예 1-4, 1-9와 마찬가지 수순을 거쳤다. 부극 활물질층(52B)을 형성하는 경우에는, 최초에, 피막 형성 용액중에 부극 활물질 입자(221)로서 인조 흑연 분말(메디안지름: 20㎛)을 수초간 침지시켰다. 계속해서, 피막 형성 용액을 여과함과 동시에 건조시켜, 부극 활물질 입자 피복막(222)에 의해 덮인 부극 활물질 입자(221)를 얻었다. 계속해서, 부극 활물질로서 부극 활물질 입자 피복막(222)에 의해 덮인 부극 활물질 입자(221)(인조 흑연) 90질량부와, 부극 결착제로서 폴리불화 비닐리덴 10질량부를 혼합해서, 부극 합제를 얻었다. 그 후, 부극 합제를 N-메틸-2-피롤리돈에 분산시켜, 페이스트형태의 부극 합제 슬러리를 얻었다. 최후에, 부극 집전체(52A)에 부극 합제 슬러리를 도포했다. 그 후, 얻어진 것을 롤 프레스기로 압축 성형했다.
(실험예 4-5∼4-7)
부극 활물질층 피복막(52C)을 형성하지 않고, 또는 금속 산화물인 α-산화 알루미늄(Al2O3 :메디안지름: 1㎛) 혹은 산화 티탄(TiO2: 메디안지름: 1㎛)을 이용해서 피막을 형성한 것을 제외하고는, 실험예 4-1, 4-2와 마찬가지 수순을 거쳤다. 피막을 형성하는 경우에는, 금속 산화물 80질량부와, 비늘조각모양 흑연 10질량부와, 결착제로서 폴리불화 비닐리덴 4질량부와, 분산제로서 카르복시메틸 셀룰로스 1질량부를 혼합했다. 그 후, 그 혼합물에 물을 더해서 혼연{混練; knead}해서, 슬러리를 얻었다. 그 후, 부극 활물질층(52B)에 슬러리를 도포해서 건조시켰다.
(실험예 4-8)
부극 활물질층 피복막(52C)을 형성하는 대신에, 전해액 중에 전해질염으로서 과염소산 리튬(LiClO4)을 함유시킨 것을 제외하고는, 실험예 4-1, 4-2와 마찬가지 수순을 거쳤다. 이 경우에는, LiPF6의 함유량을 용매에 대해서 1㏖/㎏, LiClO4의 함유량을 용매에 대해서 1㏖/㎏로 했다.
이들 실험예 4-1∼4-8의 2차 전지에 대해서 사이클 특성 등을 조사했더니, 표 4에 나타낸 결과가 얻어졌다.
[표 4]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: 인조 흑연(도포법)
Figure pat00004
표 1의 결과와 마찬가지로, 실험예 4-1, 4-2에서는, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 실험예 4-5보다도 방전 용량 유지율이 높아졌다. 또, 실험예 4-3, 4-4에서도, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 실험예 4-5보다도 방전 용량 유지율이 높아졌다. 이에 대해서, 바륨 화합물 이외의 화합물을 이용한 실험예 4-6∼4-8에서는, XPS 피크 및 TOF-SIMS 피크가 얻어지지 않음과 동시에, 실험예 4-5보다도 방전 용량 유지율이 낮아졌다. 이 결과는, 바륨 화합물을 이용하면 전해액의 분해 반응이 억제되지만, 그 이외의 화합물을 이용하면 전해액의 분해 반응이 억제되지 않는 것을 나타내고 있다. 또한, 금속 산화물을 이용한 실험예 4-6, 4-7에서의 피막의 막질은, 부극 활물질층 피복막(52C)과 같이 균일하고 평활하지 않으며, 소결체와 같은 불균일한 입자의 집합체{aggregation}였다. 그 때문에, 이와 같은 막은 더 이상 "막"이라고는 할 수 없는 것이었다. 따라서, 부극 활물질로서 인조 흑연을 이용한 경우에 있어서도, 사이클 특성이 향상된다.
(실험예 5-1, 5-2)
부극 활물질층 피복막(52C)을 형성하는 대신에, 전해액 중에 바륨 화합물을 함유시킨 것을 제외하고는, 실험예 1-1∼1-10과 마찬가지 수순을 거쳤다. 이 바륨 화합물의 종류는, 표 5에 나타낸 대로이며, 용매중에서의 바륨 화합물의 함유량은, 1중량%로 했다.
(실험예 5-3)
전해액 중에 바륨 화합물을 함유시키지 않은 것을 제외하고는, 실험예 5-1, 5-2와 마찬가지 수순을 거쳤다.
이들 실험예 5-1∼5-3의 2차 전지에 대해서 사이클 특성 등을 조사했더니, 표 5에 나타낸 결과가 얻어졌다.
[표 5]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: Si(전자빔 증착법)
Figure pat00005
전해액 중에 바륨 화합물을 함유시킨 실험예 5-1, 5-2에서는, 그것을 함유시키지 않은 실험예 5-3과는 달리, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 높은 방전 용량 유지율이 얻어졌다. 따라서, 전해액 중에 바륨 화합물을 함유시키는 것에 의해, 충방전 반응을 이용해서 부극 활물질층(52B)에 부극 활물질층 피복막(52C)이 형성되기 때문에, 사이클 특성이 향상된다.
(실험예 6-1, 6-2)
부극 활물질층 피복막(52C)을 형성하는 대신에, 정극 활물질 입자 피복막이 형성된 정극 활물질 입자를 이용한 것을 제외하고는, 실험예 1-1, 1-3과 마찬가지 수순을 거쳤다. 정극 활물질층(51B)을 형성하는 경우에는, 최초에, 피막 형성 용액중에 정극 활물질 입자로서 Li0.98Co0.15Ni0.80Al0.05O2.10을 수초간 침지시켰다. 계속해서, 피막 형성 용액을 여과함과 동시에 건조시켜, 정극 활물질 입자 피복막에 의해 덮인 정극 활물질 입자를 얻었다. 계속해서, 정극 활물질로서 정극 활물질 입자 피복막에 의해 덮인 정극 활물질 입자(Li0.98Co0.15Ni0.80Al0.05O2.10) 90질량부와, 정극 도전제로서 그래파이트 5질량부와, 정극 결착제로서 폴리불화 비닐리덴 5질량부를 혼합해서, 정극 합제를 얻었다. 최후에, 정극 합제를 N-메틸-2-피롤리돈에 분산시켜, 페이스트형태의 정극 합제 슬러리를 얻었다, 그 정극 합제 슬러리를 정극 집전체(51A)에 도포했다. 그 후, 얻어진 것을 압축 성형했다.
(실험예 6-3)
정극 활물질 입자 피복막을 형성하지 않은 것을 제외하고는, 실험예 6-1, 6-2와 마찬가지 수순을 거쳤다.
이들 실험예 6-1∼6-3의 2차 전지에 대해서 사이클 특성 등을 조사했더니, 표 6에 나타낸 결과가 얻어졌다.
[표 6]
정극 활물질: Li0.98Co0.15Ni0.80Al0.05O2.10
부극 활물질: Si(전자빔 증착법)
Figure pat00006
정극 활물질 입자 피복막을 형성한 실험예 6-1, 6-2에서는, 그것을 형성하지 않은 실험예 6-3과는 달리, XPS 피크 및 TOF-SIMS 피크가 얻어짐과 동시에, 높은 방전 용량 유지율이 얻어졌다. 따라서, 정극 활물질 입자 피복막을 형성하는 것에 의해, 충방전 반응을 이용해서 부극 활물질층(52B)에 부극 활물질층 피복막(52C)이 형성되기 때문에, 사이클 특성이 향상된다.
또한, 여기에서는, 정극(51), 부극(52) 및 전해질중의 2개 이상에 금속 바륨 등을 함유시킨 구체예를 개시하고 있지 않다. 그렇지만, 정극(51), 부극(52) 혹은 전해질에 금속 바륨 등을 함유시킨 경우에 있어서 사이클 특성이 향상하는 것은, 상기한 결과로부터 명확하다. 또, 정극(51), 부극(52) 및 전해질 중의 2개 이상에 금속 바륨 등을 함유시킨 경우에 있어서, 사이클 특성이 저하할 만한 특별한 이유도 발견되지 않는다. 이 때문에, 정극(51), 부극(52) 및 전해질 중의 2개 이상에 금속 바륨 등을 함유시킨 경우에 있어서도 사이클 특성이 향상하는 것은, 명확하다.
상기한 표 1∼표 6의 결과로부터, 2차 전지에서는, 부극이 금속 바륨 등으로 이루어지는 피막을 가지고 있다. 혹은, 정극이 금속 바륨 등을 포함하고 있다. 또, 전해질이 바륨 화합물 등을 포함하고 있다. 이 때문에, 부극 활물질의 종류 혹은 부극 활물질층의 형성 방법 등에 의존하지 않고, 사이클 특성이 향상된다.
이 경우에는, 부극 활물질로서 탄소 재료(인조 흑연)를 이용한 경우보다도 금속계 재료(규소 혹은 SnCoC 함유 재료)를 이용한 경우에 있어서, 사이클 특성이 보다 향상했다. 따라서, 부극 활물질로서 탄소 재료(인조 흑연)를 이용한 경우보다도 금속계 재료(규소 혹은 SnCoC 함유 재료)를 이용한 경우에 있어서, 보다 높은 효과를 얻을 수가 있다. 이 결과는, 부극 활물질로서 고용량화에 유리한 금속계 재료를 이용하면, 탄소 재료를 이용하는 경우보다도 전해액이 분해하기 쉬워지기 때문에, 전해액의 분해 억제 효과가 두드러지게{현저하게} 발휘된 것이라고 생각된다.
이상, 몇 개의 실시형태 및 실시예를 들어 본 발명을 설명했다. 그렇지만, 본 발명은 상기한 실시형태 및 실시예에서 설명한 양태에 한정되지 않고, 갖가지 변형이 가능하다. 예를 들면, 본 발명의 부극, 정극 및 전해질의 사용 용도는, 반드시 2차 전지에 한정되지 않고, 캐패시터 등의 다른 전기 화학 디바이스라도 좋다.
또, 2차 전지의 종류로서 리튬 이온 2차 전지에 대해서 설명했다. 그렇지만, 반드시 이것에 한정되지 않는다. 본 발명의 2차 전지는, 부극의 용량이 리튬 이온의 흡장 및 방출에 의한 용량과 금속 리튬의 석출 및 용해에 의한 용량을 포함하고, 또한 그들 용량의 합에 의해 표현되는 2차 전지에 대해서도, 마찬가지로 적용가능하다. 이 경우에는, 부극 활물질로서, 리튬 이온을 흡장 및 방출하는 것이 가능한 부극 재료가 이용됨과 동시에, 부극 재료의 충전가능한 용량은 정극의 방전 용량보다도 작아지도록 설정된다.
또, 전지 구조가 원통형, 래미네이트 필름형 혹은 코인형인 경우 및, 전지 소자가 권회 구조를 가지는 경우를 예로 들어 설명했다. 그렇지만, 반드시 이것에 한정되지 않는다. 본 발명의 2차 전지는, 각형{角型; square type} 전지 혹은 버튼형 전지와 같은 다른 전지 구조를 가지는 경우 및, 전지 소자가 적층 구조와 같은 다른 구조를 가지는 경우에 대해서도, 마찬가지로 적용가능하다.
또, 전극 반응물질의 원소로서 리튬을 이용하는 경우에 대해서 설명했다. 그렇지만, 반드시 이것에 한정되지 않는다. 전극 반응물질의 원소로서는, 예를 들면 나트륨(Na) 및 칼륨(K)과 같은 다른 1족 원소나, 마그네슘 및 칼슘과 같은 2족 원소, 또는 알루미늄과 같은 다른 경금속을 이용해도 좋다. 본 발명의 효과는, 전극 반응물질의 원소의 종류에 의존하지 않고 얻어지는 것이기 때문에, 그 종류를 변경해도, 마찬가지 효과를 얻을 수가 있다.
또, 바륨 화합물의 종류에 대해서, 실시예의 결과로부터 도출된 것만(산화 바륨 등)을 설명하고 있다. 그렇지만, 그 설명은, 다른 종류의 바륨 화합물이 이용될 가능성을 완전히 부정하는 것은 아니다. 즉, 상기한 바륨 화합물의 종류는, 어디까지나 본 발명의 효과를 얻는데 있어서 특히 바람직한 종류이기 때문에, 본 발명의 효과가 얻어지는 것이면, 다른 종류의 바륨 화합물을 이용해도 좋다.
본 발명은 첨부하는 특허청구범위 또는 그 균등물의 범위내에서, 설계 요구조건 및 그 밖의 요인에 의거하여 각종 변형, 조합, 수정 및 변경 등을 행할 수 있다는 것은 당업자라면 당연히 이해할 수 있을 것이다.
11…전지 캔, 12, 13…절연판, 14…전지 뚜껑, 15…안전 밸브 기구, 15A…디스크판, 16…열감 저항 소자, 17, 56…개스킷, 20, 30…권회 전극체, 21, 33, 51…정극, 21A, 33A, 51A…정극 집전체, 21B, 33B, 51B…정극 활물질층, 22, 34, 52…부극, 22A, 34A, 52A…부극 집전체, 22B, 34B, 52B…부극 활물질층, 22C, 34C, 52C…부극 활물질층 피복막, 23, 35, 53…세퍼레이터, 24…센터 핀, 25, 31…정극 리드, 26, 32…부극 리드, 36…전해질, 37…보호 테이프, 40…외장 부재, 41…밀착 필름, 54…외장캔, 55…외장 컵, 221…부극 활물질 입자, 222…부극 활물질 입자 피복막.

Claims (7)

  1. 전극 반응물질을 흡장 및 방출하는 것이 가능한 정극 및 부극과, 전해질염 및 용매를 포함하는 전해질을 구비하고, 상기 부극은 금속 바륨, 산화 바륨, 수산화 바륨, 할로겐화 바륨, 탄산 바륨, 황산 바륨, 질산 바륨, 인산 바륨, 옥살산 바륨 및 초산 바륨으로 이루어지는 군에서 선택된 적어도 1종 이상을 포함하는 피막을 갖고, 상기 정극은 정극 활물질로서 다음의 식으로 표현되는 복합 산화물을 포함하는 이차 전지.
    LiaCobNicM1-b-cOd-eXe
    식 중에서, M은 붕소(B), 마그네슘(Mg), 알루미늄(Al), 규소(Si), 인(P), 황(S), 티탄(Ti), 크롬(Cr), 망간(Mn), 철(Fe), 구리(Cu), 아연(Zn), 갈륨(Ga), 게르마늄(Ge), 이트륨(Y), 지르코늄(Zr), 몰리브덴(Mo), 은(Ag), 바륨(Ba), 텅스텐(W), 인듐(In), 주석(Sn), 납(Pb) 및 안티몬(Sb)중의 적어도 1종이고, X는, 할로겐 원소이며. 각 값의 범위는, 이하와 같다: 0.8〈a≤1.2, 0≤b≤0.5, 0.5≤c≤1.0, 1.8≤d≤2.2 및 0≤e≤1.0이다.
  2. 제1항에 있어서,
    상기 부극은 부극 활물질층 상에 피막인 부극 활물질층 피복막을 갖는, 2차 전지.
  3. 제2항에 있어서,
    상기 정극은 정극 집전체상의 일부에 정극 활물질층을 가지고, 상기 부극은, 상기 정극 활물질층과 대항하는 영역 및 대항하지 않는 영역에 상기 부극 활물질층 피복막을 가진, 2차 전지.
  4. 제2항에 있어서.
    상기 정극은, 정극 집전체상의 일부에 정극 활물질층을 가지고, 상기 부극은, 상기 정극 활물질층과 대항하는 영역에만 상기 음극 활물질층 피복막을 가진, 2차 전지.
  5. 제1항에 있어서,
    상기 부극은 피막인 부극 활물질 입자 피복막에 의해 덮인 복수의 부극 활물질 입자를 포함하는, 2차 전지.
  6. 제1항에 있어서,
    상기 부극은 부극 활물질로, 규소(Si) 및 주석(Sn) 중 적어도 하나를 구성 원소로 포함한 재료를 함유하는, 2차 전지.
  7. 제1항에 있어서,
    상기 부극은 부극 활물질로서 탄소 재료를 함유하는, 2차 전지.
KR1020190053751A 2009-07-16 2019-05-08 2차 전지, 부극, 정극 및 전해질 KR102135752B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-168098 2009-07-16
JP2009168098A JP5515476B2 (ja) 2009-07-16 2009-07-16 二次電池、負極、正極および電解質

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170150532A Division KR101978434B1 (ko) 2009-07-16 2017-11-13 2차 전지, 부극, 정극 및 전해질

Publications (2)

Publication Number Publication Date
KR20190055038A true KR20190055038A (ko) 2019-05-22
KR102135752B1 KR102135752B1 (ko) 2020-07-20

Family

ID=42830758

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020100068067A KR101799509B1 (ko) 2009-07-16 2010-07-14 2차 전지, 부극, 정극 및 전해질
KR1020170150532A KR101978434B1 (ko) 2009-07-16 2017-11-13 2차 전지, 부극, 정극 및 전해질
KR1020190053751A KR102135752B1 (ko) 2009-07-16 2019-05-08 2차 전지, 부극, 정극 및 전해질

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020100068067A KR101799509B1 (ko) 2009-07-16 2010-07-14 2차 전지, 부극, 정극 및 전해질
KR1020170150532A KR101978434B1 (ko) 2009-07-16 2017-11-13 2차 전지, 부극, 정극 및 전해질

Country Status (5)

Country Link
US (1) US20110014518A1 (ko)
EP (1) EP2276098A1 (ko)
JP (1) JP5515476B2 (ko)
KR (3) KR101799509B1 (ko)
CN (1) CN101958426A (ko)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994354B2 (ja) 2011-09-05 2016-09-21 ソニー株式会社 セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015111495A (ja) * 2012-03-29 2015-06-18 三洋電機株式会社 非水電解質二次電池
CN102637876B (zh) * 2012-05-07 2014-12-31 昆明理工大学 一种锂电池正极材料及提高电池循环性能的方法
CN102723527A (zh) * 2012-06-29 2012-10-10 上海锦众信息科技有限公司 锂离子二次电池非水电解液的制造方法
US20150303467A1 (en) * 2012-11-21 2015-10-22 3M Innovative Properties Company Anode compositions for sodium-ion batteries and methods of making same
JP6293256B2 (ja) * 2013-03-12 2018-03-14 アップル インコーポレイテッド 先進のカソード材料を用いた高電圧、高体積エネルギー密度のリチウムイオンバッテリ
JP6107494B2 (ja) * 2013-07-16 2017-04-05 富士通株式会社 照合装置、照合方法および照合プログラム
DE102013216302A1 (de) * 2013-08-16 2015-02-19 Robert Bosch Gmbh Lithium-Zelle mit Erdalkalimetallcarboxylat-Separator
US9537154B2 (en) 2013-11-27 2017-01-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery having the same
CN106233524B (zh) 2014-04-23 2020-06-19 株式会社村田制作所 二次电池用电解液、二次电池、电池组、电动车辆、蓄电***、电动工具及电子设备
JP6706461B2 (ja) * 2014-07-18 2020-06-10 株式会社村田製作所 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
KR101666796B1 (ko) * 2014-09-19 2016-10-17 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10497979B2 (en) * 2014-10-10 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
CN104477892B (zh) * 2014-12-12 2016-08-24 盐城市新能源化学储能与动力电源研究中心 一种鳞片状石墨烯的制备方法和使用该方法制备的鳞片状石墨烯器件
CN106558685B (zh) * 2015-09-30 2019-11-22 比亚迪股份有限公司 多孔核壳结构负极材料及其制备方法和电池
WO2017058650A1 (en) 2015-09-30 2017-04-06 Hongli Dai Cathode-active materials, their precursors, and methods of preparation
KR101956827B1 (ko) * 2015-11-11 2019-03-13 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
CN109328409A (zh) 2016-03-14 2019-02-12 苹果公司 用于锂离子电池的阴极活性材料
CN106058224A (zh) * 2016-08-19 2016-10-26 周新凤 一种复合锂电正极材料及其制备方法
US10128537B2 (en) * 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
CN112158891B (zh) 2016-09-20 2023-03-31 苹果公司 具有改善的颗粒形态的阴极活性材料
KR102223565B1 (ko) 2016-09-21 2021-03-04 애플 인크. 리튬 이온 배터리용 표면 안정화된 캐소드 재료 및 이의 합성 방법
JP6782434B2 (ja) * 2016-12-07 2020-11-11 パナソニックIpマネジメント株式会社 固体電解質及びそれを用いた二次電池
JP7018562B2 (ja) * 2016-12-07 2022-02-14 パナソニックIpマネジメント株式会社 二次電池
CN108172895B (zh) * 2016-12-07 2022-08-09 松下知识产权经营株式会社 二次电池
JP2018098027A (ja) * 2016-12-13 2018-06-21 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP7048345B2 (ja) * 2018-02-20 2022-04-05 三星エスディアイ株式会社 リチウムイオン二次電池
JP6583459B2 (ja) * 2018-03-22 2019-10-02 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
CN112823438A (zh) 2019-04-17 2021-05-18 瓦克化学股份公司 锂离子电池
CN113574714A (zh) * 2019-05-16 2021-10-29 Oppo广东移动通信有限公司 供电电路、充放电电路与智能终端
JP2020198297A (ja) * 2019-05-30 2020-12-10 パナソニックIpマネジメント株式会社 二次電池
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
JP7344303B2 (ja) * 2019-08-30 2023-09-13 京セラ株式会社 亜鉛二次電池、二次電池システムおよび制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017053A (ja) * 2001-06-28 2003-01-17 Ise Chemicals Corp 非水電解液二次電池用電極活物質及び非水電解液二次電池
JP2006073482A (ja) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
JP2007265714A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008135382A (ja) * 2006-10-26 2008-06-12 Sony Corp 負極およびその製造方法、ならびに二次電池

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478921A (en) * 1983-09-28 1984-10-23 Union Carbide Corporation Manganese carbonate additive for manganese dioxide-containing nonaqueous cells
JP3077218B2 (ja) * 1991-03-13 2000-08-14 ソニー株式会社 非水電解液二次電池
HU215866B (hu) * 1991-12-19 1999-03-29 Battery Technologies Inc. Katódszerkezet alkáli mangán-dioxid-cink cellákhoz megnövelt kapacitással
JP3809662B2 (ja) 1996-01-30 2006-08-16 宇部興産株式会社 非水二次電池
JP2000012035A (ja) * 1998-06-19 2000-01-14 Yuasa Corp リチウム電池
JP2000077103A (ja) * 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
KR100307453B1 (ko) * 1999-02-19 2001-09-26 김순택 리튬이온 2차 전지의 음극
EP2418713A1 (en) * 2000-03-31 2012-02-15 Sony Corporation Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell empolying the same
US20040042954A1 (en) 2001-10-12 2004-03-04 Hong-Kyu Park Electrode material and preparation method thereof
US7052802B2 (en) * 2002-10-15 2006-05-30 Quallion Llc Fluorinated carbon active material
KR100542213B1 (ko) * 2003-10-31 2006-01-10 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
US20050233214A1 (en) * 2003-11-21 2005-10-20 Marple Jack W High discharge capacity lithium battery
US8124274B2 (en) * 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
JP4958405B2 (ja) * 2005-03-29 2012-06-20 三洋電機株式会社 非水電解質二次電池
JP4739788B2 (ja) 2005-03-30 2011-08-03 三洋電機株式会社 リチウム二次電池の製造方法
JP4573053B2 (ja) * 2006-05-23 2010-11-04 ソニー株式会社 負極および電池
JP4396675B2 (ja) * 2006-06-16 2010-01-13 ソニー株式会社 非水電解質二次電池
KR100853327B1 (ko) * 2007-02-16 2008-08-21 엘에스엠트론 주식회사 리튬 전지용 음극 활물질과 그 제조방법 및 이를 이용한리튬 이차 전지
JP2008234879A (ja) * 2007-03-19 2008-10-02 Hitachi Maxell Ltd リチウムイオン二次電池
JP5378718B2 (ja) * 2007-07-09 2013-12-25 パナソニック株式会社 非水電解質二次電池用電極板およびそれを用いた非水電解質二次電池
JP5049680B2 (ja) * 2007-07-12 2012-10-17 株式会社東芝 非水電解質電池及び電池パック
US8367251B2 (en) * 2007-08-30 2013-02-05 Sony Corporation Anode with lithium containing ionic polymer coat, method of manufacturing same, secondary battery, and method of manufacturing same
JP2009105017A (ja) * 2007-10-25 2009-05-14 Sanyo Electric Co Ltd 非水電解質二次電池
CN101425580A (zh) * 2007-10-29 2009-05-06 比亚迪股份有限公司 锂离子电池负极活性物质及其制备方法以及负极和电池
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
CN101740753A (zh) * 2009-12-24 2010-06-16 苏州星恒电源有限公司 一种锂电池负极极片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017053A (ja) * 2001-06-28 2003-01-17 Ise Chemicals Corp 非水電解液二次電池用電極活物質及び非水電解液二次電池
JP2006073482A (ja) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
JP2007265714A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008135382A (ja) * 2006-10-26 2008-06-12 Sony Corp 負極およびその製造方法、ならびに二次電池

Also Published As

Publication number Publication date
EP2276098A1 (en) 2011-01-19
JP5515476B2 (ja) 2014-06-11
CN101958426A (zh) 2011-01-26
KR20110007584A (ko) 2011-01-24
KR20170129080A (ko) 2017-11-24
US20110014518A1 (en) 2011-01-20
KR102135752B1 (ko) 2020-07-20
KR101978434B1 (ko) 2019-05-14
KR101799509B1 (ko) 2017-11-20
JP2011023241A (ja) 2011-02-03

Similar Documents

Publication Publication Date Title
KR101978434B1 (ko) 2차 전지, 부극, 정극 및 전해질
JP6123858B2 (ja) 非水電解質二次電池およびセパレータ
JP5177361B2 (ja) 二次電池用負極および二次電池
JP4952680B2 (ja) リチウムイオン二次電池およびリチウムイオン二次電池用負極
JP4270109B2 (ja) 電池
JP5382413B2 (ja) 二次電池用負極および二次電池
JP2012142155A (ja) リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP5278657B2 (ja) 二次電池および電子機器
JP2008135273A (ja) 電解液および電池
JP2012142157A (ja) リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP2010080188A (ja) 二次電池
JP2008103148A (ja) 負極および電池
JP2012221824A (ja) リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
JP2010165549A (ja) 二次電池
JP5463632B2 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用正極、リチウムイオン二次電池および電子機器
JP2009170146A (ja) 電解液および二次電池
JP5256798B2 (ja) 二次電池用電解液、二次電池および電子機器
JP5217536B2 (ja) 二次電池および電子機器
JP5217512B2 (ja) 二次電池用電解液、二次電池および電子機器
JP2011124008A (ja) 二次電池、二次電池用電解液、環状炭酸エステル化合物、電動工具、電気自動車および電力貯蔵システム
JP5532328B2 (ja) 負極活物質、二次電池、電動工具、電気自動車および電力貯蔵システム
JP2010073354A (ja) 非水電解質二次電池
JP2009224257A (ja) 電解液および二次電池
JP2010102848A (ja) 負極、二次電池およびそれらの製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant