KR20130139997A - 유도 경화 장치 - Google Patents

유도 경화 장치 Download PDF

Info

Publication number
KR20130139997A
KR20130139997A KR1020137012173A KR20137012173A KR20130139997A KR 20130139997 A KR20130139997 A KR 20130139997A KR 1020137012173 A KR1020137012173 A KR 1020137012173A KR 20137012173 A KR20137012173 A KR 20137012173A KR 20130139997 A KR20130139997 A KR 20130139997A
Authority
KR
South Korea
Prior art keywords
workpiece
magnetic
body portion
tool
arrangement
Prior art date
Application number
KR1020137012173A
Other languages
English (en)
Inventor
스티븐 비. 피치
제리 밀즈
윌리엄 스튜어
존 가두스
스티븐 피. 존슨
Original Assignee
더 팀켄 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 팀켄 컴퍼니 filed Critical 더 팀켄 컴퍼니
Publication of KR20130139997A publication Critical patent/KR20130139997A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces
    • H05B6/405Establishing desired heat distribution, e.g. to heat particular parts of workpieces for heating gear-wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Induction Heating (AREA)

Abstract

공작물의 자기 유도 경화를 위한 장치는 대체로 비-자기 재료로 형성되는 본체 부분을 가지는 자기 툴을 포함한다. 본체 부분은 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가진다. 장치는 본체 부분의 표면에서 또는 본체 부분의 표면에 인접하여 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 자기 배열체를 더 포함한다. 공작물 홀더는 자기 툴의 표면에 밀접하게 근접하여 공작물을 지지하도록 구성된다. 회전 축을 중심으로 공작물 홀더에 대해서 자기 툴을 상대적으로 회전시키기 위한 구동 배열체가 제공되어, 미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열한다.

Description

유도 경화 장치{APPARATUS FOR INDUCTION HARDENING}
본원 발명은 성분의 자기 유도 가열에 관한 것이고, 보다 구체적으로 성분의 자기 유도 경화(예를 들어, 케이스 경화(case hardening) 또는 무심 경화(through hardening))에서 이용하기 위한 장치에 관한 것이다.
유도 가열을 통한 케이스 경화는 전원으로부터의 교류 전류로 에너지가 공급되는 구리 코일 또는 유도체를 이용하여 일반적으로 실시된다. 유도체에 의해서 달성되는 경화 깊이는, 전원 및 변환기에 의해서 결정되는 바와 같은, 인가되는 AC 주파수의 함수이다. 경화되는 표면적은 전원으로부터 이용가능한 전력 및 유도체의 기하형태의 함수이다.
부품(part)의 부분의 과열을 방지하기 위해서, 유도체의 기하형태가 경화되는 부품에 대해서 주의 깊게 맞춰져야 한다. 유도체의 이러한 특정의 기하형태는 또한 특별한 주파수 범위의 전원과 주의 깊게 조율되어야 한다. 유도체와 전원 사이의 밀접한 설계적인 결속관계(tie)는, 경화되는 특별한 부품에 의해서 주로 결정되고 그에 따라 그러한 부품에 대해서 전용으로 이용되는(dedicated) 유도 시스템을 초래한다. 다른 부품에 대해서는, 다른 전원을 이용하는 다른 유도체가 반드시 이용되어야 하며, 이는 부품-전용 툴링의 높은 비용을 초래하는 호환성없는(inflexible) 프로세스를 유발한다. 이러한 통상적인 유도 가열 시스템의 전기 소모 역시 높고, 이는 프로세스의 비용을 추가적으로 상승시킨다.
일 실시예에서, 본원 발명은 공작물의 자기 유도 경화를 위한 장치를 제공한다. 그러한 장치는 대체로 비-자기 재료로 형성되는 본체 부분을 가지는 자기 툴을 포함한다. 본체 부분은 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가진다. 장치는 본체 부분의 표면에서 또는 본체 부분의 표면에 인접하여 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 자기 배열체(arrangement)를 더 포함한다. 공작물 홀더는 자기 툴의 표면에 밀접하게 근접하여 공작물을 지지하도록 구성된다. 회전 축을 중심으로 공작물 홀더에 대해서 자기 툴을 상대적으로 회전시키기 위한 구동 배열체가 제공되어, 미세조직 변태(transformation)를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열한다.
본원 발명의 하나의 양태에서, 자기 배열체는 다수의 자극(nP)을 형성하고, 구동 배열체는 소정 속도(RPM)로 툴을 공작물 홀더에 대해서 회전시키고, 그리고 적어도 5 kHz의 주파수가 방정식 Hz = (nP*RPM)/60에 따라서 달성된다.
본원 발명의 다른 양태에서, 장치는 공작물이 공작물 홀더에 의해서 지지되는 동안 가열된 공작물을 급랭(quench)시키도록 동작될 수 있는 급랭 시스템을 더 포함한다.
본원 발명의 또 다른 양태에서, 공작물 홀더는 공작물이 회전 축을 중심으로 회전되는 것을 방지하도록 그리고 공작물 홀더 내의 공작물이 회전 축을 따라서 병진운동되는 것을 방지하도록 공작물을 지지하는 한편, 공작물 홀더 내의 공작물의 열 팽창을 수용한다.
본원 발명의 또 다른 추가적인 양태에서, 자기 배열체는 상기 표면에서 또는 상기 표면에 인접하여 본체 부분에 커플링되고 교번적인(alternating) 극성의 영역을 제공하도록 구성되는 복수의 영구 자석을 포함한다. 본체 부분은, 그 내부에 형성되고 상기 표면으로부터 이격되어 본체의 벽 부분이 상기 표면과 복수의 포켓의 각각의 사이에 형성되게 하는, 복수의 포켓을 포함할 수 있다. 복수의 자석의 각각이 복수의 포켓의 각각의 하나 내에 배치된다.
본원 발명의 다른 양태에서, 자기 배열체는 복수의 자기 영역을 포함하기 위해서 자기화된 부재를 포함하며, 상기 자기 영역은 교번적인 극성의 영역을 형성한다. 부재는 링 형태를 취할 수 있고, 그리고 본체 부분에 연결되어 상기 표면을 형성할 수 있다.
본원 발명의 다른 양태는 구체적인 설명 및 첨부 도면을 고려할 때 명확해질 수 있을 것이다.
도 1은 본원 발명을 구현하는 공작물의 자기 유도 경화를 위한 장치의 부분적인 사시도이다.
도 2는 도 1의 자기 툴의 단면도이다.
도 3은 도 1의 자기 툴의 단부도이다.
도 4는 자석을 수용하기 위한 포켓을 도시하는 자기 툴의 일부의 확대 부분도이다.
도 4a는 자석을 수용하기 위한 대안적인 포켓 배열체를 도시한 개략도이다.
도 5는 도 3에 도시된 것에 대한 대안적인 자석 배열체 및 상응하는 플럭스 도면을 도시한 개략적인 도면이다.
도 6은 또 다른 대안적인 자석 배열체 및 상응하는 플럭스 도면의 개략도이다.
도 7은 도 1에 도시된 자기 유도 경화 장치와 함께 이용될 수 있는 다른 자기 툴의 단면도이다.
도 8은 도 7의 자기 툴의 단부도이다.
도 9는 도 1에 도시된 자기 유도 경화 장치와 함께 이용될 수 있는 또 다른 자기 툴의 단면도이다.
도 10은 도 9의 자기 툴의 단부도이다.
도 11은 본원 발명을 구현하는 급랭 시스템을 도시한 도 1의 부분 단면도이다.
도 12는 본원 발명을 구현하는 대안적인 급랭 시스템을 도시한 도 11과 유사한 부분 단면도이다.
도 13은 본원 발명의 다른 실시예에 따른 통합형 급랭 시스템을 가지는 자기 툴의 단면도이다.
도 14는 본원 발명의 다른 실시예에 따른 통합형 급랭 시스템을 가지는 또 다른 자기 툴의 단면도이다.
도 15는 도 1의 공작물 홀더의 확대 사시도이다.
도 16은 도 15의 공작물 홀더의 단면도이다.
도 17은 도 15의 공작물 홀더와 함께 이용하기 위한 대안적인 콜릿 패드(collet pad)의 사시도이다.
도 18은 공작물 팽창을 수용하기 위한 자기 배열체의 개략도이다.
도 19는 공작물 팽창을 수용하기 위한 다른 자기 배열체의 개략도이다.
도 20은 공작물 팽창을 수용하기 위한 또 다른 자기 배열체의 개략도이다.
도 21은 무심 경화를 위한 자기 툴의 추가적인 실시예의 개략도이다.
도 22는 도 21과 유사하나, 무심 경화 없이 공작물의 2개의 표면을 열처리하는 것을 도시한 도면이다.
도 23a 및 23b는 공작물 표면의 상이한 섹션의 경화를 도시한 개략도이다.
도 24a 및 24b는 공작물 표면 상에서 생성되는 케이스의 길이에 미치는 자석 길이의 영향을 도시한 개략도이다.
도 25는 케이스 깊이에 미치는 자기 폭의 예상되는 영향을 도시한 개략도이다.
도 26a, 26b, 및 26c는 생성되는 케이스의 형상에 미치는 성형된 자석의 예상되는 영향을 도시한 개략도이다.
도 27a 및 27b는 자석을 냉각하기 위한 가능한(potential) 시스템의 개략도이다.
도 28은 자석과 함께 플럭스 집중부(concentrator)의 이용을 도시한 개략도이다.
도 29는 자기 툴과 함께 이용되는 와전류 도관을 도시한 부분 단면도이다.
도 30은 본원 발명을 구현하는 또 다른 자기 툴의 부분 단면도로서, 자기 배열체가 자화된 부재의 형태를 취하는 것을 도시한 부분 단면도이다.
도 31은 도 30의 자기 툴의 단부도이다.
본원 발명의 임의의 실시예를 구체적으로 설명하기에 앞서서, 본원 발명은 이하의 설명에 개진된 또는 첨부 도면에 도시된 성분의 구성 및 배열에 관한 상세한 내용으로 본원 발명의 적용이 제한되지 않는다는 것을 이해하여야 할 것이다. 본원 발명은 다른 실시예로도 가능하고 그리고 여러 가지 방식으로 실시 또는 실행될 수 있을 것이다.
도 1은 본원 발명에 따른 자기 유도 경화 장치(10)를 도시한다. 도시된 장치는 자기 툴(14) 및 유도 경화하고자 하는 공작물(22)을 지지하도록 구성된 공작물 홀더(18)를 포함한다. 도시된 실시예에서, 공작물(22)은 베어링용 레이스웨이(raceway)로서 이용될 수 있는 것과 같은 환형 링이나, 본원 발명은 여러 가지 기하형태의 공작물을 경화하도록 적용 및 구성이 가능하다.
열 처리 및 경화 분야의 소위 당업자가 이해할 수 있는 바와 같이, 자기 툴(14)을 회전 축(30) 주위로 공작물 홀더(18)(및 그에 따른 공작물(22))에 대해서 회전시켜 공작물(22)의 가열을 유도함으로써 공작물(22)의 오스테나이트 영역의 온도를 달성하여 미세조직 변태를 통한 공작물(22)의 경화를 초래하기 위해서, 로터리 구동 유닛(26) 형태의 구동 배열체가 제공된다. 구동 유닛(26)이 회전을 위해서 자기 툴(14)을 지지하도록 동작될 수 있는 스핀들(34)을 포함하는 것으로 도시되어 있지만, 다른 실시예에서, 구동 유닛(26)은, 자기 툴(14)이 정지 상태로 유지되는 동안, 공작물 홀더(18) 또는 공작물(22) 자체를 회전시키도록 동작될 수 있을 것이다. 또 다른 실시예에서, 2개의 구동 유닛(26)이 제공될 수 있을 것이고, 그 중 하나는 자기 툴(14)을 회전시키기 위한 것이고 다른 하나는 공작물 홀더(18) 및 공작물(22)을 회전시키기 위한 것이다.
도시된 장치(10)는, 공작물이 공작물 홀더(18)에 의해서 지지되는 동안, 가열된 공작물(22)을 급랭시키도록 동작될 수 있는 급랭 시스템(38)을 더 포함한다. 급랭 시스템(38)을 유도 경화 장치(10)와 통합하는 것은 유도 경화 프로세스를 단순화하고 경제적이 되게 한다. 도시된 급랭 시스템(38)은, 오스테나이트를 마르텐사이트로 변태시키기 위해서 급랭 매체(예를 들어, 물 또는 기타 급랭 유체)를 이용하여 공작물을 샤워링(showering)하기 위해서 공작물(22)을 둘러싸는 급랭 칼라(42)를 포함한다. 급랭 매체를 수용하고 수집하기 위해서 그리고 유도 경화 프로세스 중에 발생되는 열로부터 작업자를 보호하기 위해서, 장치가 하우징(미도시) 내에서 둘러싸일 수 있다. 이하에서 추가적으로 설명하는 바와 같이, 도시된 급랭 칼라(42)는 장치(10)와 통합될 수 있는 급랭 시스템(38)의 단지 하나의 가능한 타입이다. 또 다른 실시예에서, 급랭 기능이 장치(10)로 통합될 필요가 없으나, 장치(10)로부터 원격지의 분리된 급랭 스테이션에서 실시될 수 있을 것이다. 그러한 경우에, 가열된 공작물(22)이 공작물 홀더(18)로부터 분리되고 급랭을 위한 원격 급랭 스테이션으로 이송될 수 있을 것이다.
도 2-4는 자기 툴(14)을 보다 구체적으로 도시한다. 도시된 자기 툴(14)은 구동 샤프트 형태의 장착 부분(50), 및 상기 장착 부분(50)에 커플링된 본체 부분(54)을 포함한다. 장착 부분(50)은 스핀들(34)에 대해서 해제가능하게 고정될 수 있고, 상기 스핀들은 구동 유닛(26)과 함께 회전하기 위해서 구동 유닛(26)에 커플링된다(도 1 참조). 일반적으로, 장착 부분(50) 및 본체 부분(54) 각각은, 알루미늄 또는 오스테나이트계 스테인리스 스틸과 같은, 비-자기 재료 또는 낮은 상대 투자율(permeability)을 가지는 것으로 간주되는 재료로 형성된다. 본체 부분(54)은 공작물(22)에 밀접하게 근접하여 배치되도록 구성되는 표면(58)을 형성한다. 도 1 및 2에 가장 잘 도시된 바와 같이, 도시된 본체 표면(58)은, 환형 공작물(22)의 내측 표면 상에 존재하는 테이퍼에 상응하도록 테이퍼링된, 방사상 외측-대면(facing) 원주 표면이다. 도 2에 도시된 바와 같이, 공기 갭(G)이 (공작물 홀더(18)에 의해서 지지될 때) 경화되는 공작물(22)의 내측 표면과 표면(58) 사이에 형성된다. 도시된 실시예에서, 공기 갭(G)은 약 0.07 인치 미만이고, 약 0.02 인치와 약 0.06 인치 사이가 될 수 있으며, 그리고 약 0.02 인치인 것으로 도시되어 있다. 물론, 다른 기하형태의 공작물에서, 표면(58)의 기하형태 및 공기 갭(G)의 크기가 희망하는 경화 결과를 달성하기 위해서 그에 따라 조정될 수 있다. 이러한 능력은 이하에서 더 구체적으로 설명할 것이다.
자기 툴(14)은 자기 배열체를 포함하고, 이러한 실시예에서, 상기 자기 배열체는 표면(58)에서 또는 표면(58)에 인접하여 본체 부분(54)에 커플링된 복수의 영구 자석(62)의 형태를 취한다. 도 1-4에 도시된 실시예에서, 복수의 영구 자석(62)이 상기 표면(58)으로부터 이격되도록 본체 부분(54) 내에 형성된 또는 규정된 각각의 포켓(66) 내에 수용되며, 그에 따라 본체 부분(54)의 얇은 벽 부분(70)이 상기 표면(58)과 복수의 포켓(66)의 각각의 사이에 형성된다. 따라서, 자석(62)은, 표면(58)에 인접한 위치에서 포켓(66) 내에서의 그들의 배치를 통해서 본체 부분(54)에 커플링된다. 포켓(66)을 표면(58)으로부터 분리하는 벽 부분(70)은 자석(62)과 가열된 공작물(22) 사이에 열적 배리어를 제공하며, 그에 따라 자석(62)의 온도가 자석(62)의 큐리(Curie) 온도에 또는 자석(62)이 그들의 자기 특성을 잃게 되는(즉, 상자성체가 되기 시작하는) 온도에 도달할 가능성이 낮아진다. 벽 부분(70)은 두께가 0.05 인치 미만일 수 있고, 그리고 도시된 실시예에서는 약 0.02 인치의 두께를 가진다. 희망하는 얇은 벽 부분(70)을 달성하기 위해서 자기 툴(14)의 본체 부분(54)의 제조시에, 마감된 표면(58)을 형성하기 위해서 이용되는 가공 또는 터닝(turning) 프로세스에 앞서서 포켓(66)이 형성될 수 있다.
자석(62)이 포켓(66) 내에서 실질적으로 이동하지 않도록, 자석(62)이 포켓(66) 내로 타이트하게 피팅되어 삽입된다. 만약 자석(62)이 포켓(66) 내에서 실질적으로 이동하도록 허용된다면, 자기 툴(14)의 밸런스에 부정적인 영향을 미칠 수 있을 것이다. 포켓(66)과 주변 환경 사이의 소통을 위해서 개구(74)(도 1 및 2 참조)가 형성된다. 자석(62)이 포켓(66) 내로 삽입될 때, 타이트하게 피팅되는 자석(62)이 포켓(66) 내로 슬라이딩됨에 따라 공기가 개구(74)를 통해서 빠져나올 수 있게 된다. 자석(62)이 포켓(66) 내에 배치되면, 자석(62)을 포켓 내부에서 고정하기 위해서, 커버(78)가 체결부(82)로 본체 부분(54)에 대해서 커플링된다. 자석(62)이 손상되거나 정상적인 이용을 할 수 없도록 등급이 저하된다면, 자석(62)의 교체를 돕기 위해서 커버(78)가 제거될 수 있다.
도시된 실시예에서, 포켓(66)뿐만 아니라 자석(62)의 단면이 실질적으로 정사각형 형상이나, 다른 단면 형상(예를 들어, 원형, 사다리꼴 - 도 4a 참조, 등)으로 대체될 수 있을 것이다. 포켓(66), 및 그에 따른 삽입된 자석(62)은 표면(58)에 대해서 대체로 평행하게 연장하는 길이방향 축(86)(도 2 참조)을 가진다. 도 3에 가장 잘 도시된 바와 같이, 자석(62)의 자극(예를 들어, 북극-N 및 남극-S)이 자석(62)의 2개의 대향하는 세장형 면(face) 상에 위치되고, 그에 따라 포켓(66) 내에 배치될 때 자석의 N-S 축이 방사상으로 연장한다. 다시 말해서, 북극 또는 남극이 표면(58)을 향해서 방사상 외측으로 대면한다. 각각의 자석(62)이 본체 부분(54)의 원주방향 둘레 주위로 인접한 자석(62)으로부터 극성을 교번하도록, 자석(62)이 포켓(66) 내로 삽입된다. 그에 따라, 교번적인 극성의 영역을 제공하도록, 또는 N-S-N-S-N-S 등의 교번적인 자극/극성 배열이 표면(58)에 인접하여 달성되도록, 자석(62)이 포켓(66) 내에서 배향되고 위치된다. 비록, 이하에서 설명하는 바와 같이, 도시된 자기 툴(14)이 32개의 자석(62)을 포함하나, 자석(62)의 수는 원하는 바에 따라 달라질 수 있다. 도시된 자석 배열 중 임의의 배열에서, 경화되는 공작물(22)과 상호작용하기 위한 연속적인 자기장을 제공하도록, 자석(62)이 충분히 근접하여 함께 배열되어야 한다.
바람직하게, 자석(62)은 1 테슬라 보다 큰 연속적인 플럭스 밀도를 전달할 수 있는 희토류 영구 자석이다. 도시된 실시예는 약 1.2 T 및 약 540 ℉의 큐리 온도를 가지는 네오디뮴-철-보론(NdFeB) 자석을 이용하나, 다른 적합한 희토류 자석도 또한 이용될 수 있다. 대안적인 실시예에서, 세라믹 자석이 2개의 NdFeB 자석 마다의 사이에 교번적으로 배치될 수 있다. NdFeB 자석의 배향이 일정할 수 있을 것이다. 세라믹 자석은 NdFeB 자석에 반대되는 극성을 필드를 생성하도록 전기적으로 활성화될 수 있다. 또 다른 실시예에서, 도 30 및 31과 관련하여 이하에서 설명하는 바와 같이, 자기 배열체가 복수의 개별적인 영구 자석을 포함할 필요가 없고, 그 대신에 교번적인 극성의 영역을 제공하도록 자기화된 부재의 형태를 취할 수 있다.
도 5 및 6은 자기 툴(14)과 함께 이용할 수 있는 대안적인 자석 배열체를 도시한다. 도 5에서, 각각의 자석(62)의 자극 축은, 포켓(66) 내에 배치될 때, 원주 방향으로 연장될 수 있으며, 그에 따라 자석(62)이 S-N│N-S│S-N│N-S│S-N│N-S 등과 같이 배열되어 각 자석(62)에 인접한 교번적인 극성의 영역을 제공할 수 있을 것이다. 도시된 바와 같이 자극이 어레이 내에서 서로 마주보도록 배향함으로써, 인접하는 척력(repelling) 자극이 보다 많은 자기장을 방사상 외측으로 공작물(22)을 향해서 지향시킬 수 있는 것을 믿어진다. 도 5는 그러한 배열체에 의해서 생성된 플럭스 패턴을 도시한다.
도 6은 인-라인 배열체를 도시한다. 각각의 자석(62)의 자극 축은, 포켓(66) 내에 배치될 때, 다시 원주 방향으로 연장할 수 있을 것이나, 자석(62)은 N-S│N-S│N-S│S-N│S-N│S-N│N-S│N-S│N-S│, 등과 같이 배열된다. 이러한 배열체에서, 3개의 인접한 자석의 중간 그룹핑(grouping)이 동일한 방향으로 즉, S-N│S-N│S-N 으로 배향되는 한편, 중간 그룹핑의 양 측부(side) 상의 3개의 인접한 자석의 그룹핑은 N-S│N-S│N-S│ 로 배향된다. 이러한 배열체에서, 3개의 인접한 자석(62)의 각각의 그룹핑은 자석(62)의 인접한 그룹핑과 교번적인 극성을 가지는 영역을 형성한다. 도시된 18개의 자석 어레이에서, 6개의 자극이 존재할 것이다. 도 6은 결과적인 플럭스 패턴을 도시한다.
도 4a는 자기 툴(14')에서 이용될 수 있는 자석 포켓(90)의 대안적인 실시예를 도시한다. 복수의 자석(62')의 각각의 표면이 노출되어 본체 부분(54')의 표면(58')을 적어도 부분적으로 형성하도록, 복수의 자석(62')의 각각이 각각의 포켓(90) 내에 배치된다. 자석(62')을 표면(58')으로부터 분리시키는 얇은 벽 부분은 존재하지 않는다. 도 4a에 도시된 바와 같이, 포켓(90) 및 자석(62')은 사다리꼴 또는 도브테일형 구성을 가지며, 그에 따라 자석(62')이 포켓(90) 내로 축방향으로 삽입될 수 있으나, 포켓(90) 및 자석(62')의 기하형태로 인해서 여전히 포켓(90) 내에서 방사상으로 유지된다.
자기 툴(14)(및 그에 따른 자석(62))이 공작물(22)에 대해서 회전되는 필요 속도 또는 회전 레이트(rate)(RPM)는 자석(62)의 구성을 기초로 형성된 자극의 수의 함수이다. 주파수(Hz), 자극의 수(nP), 및 회전 레이트(RPM)를 수식화하는 수식이 Hz = (nP*RPM)/60 으로 기술된다. 60의 인자는 RPM을 초당 회전수(RPS)로 변환하기 위한 것이고, 그에 따라 전원으로부터의 전류의 주파수와 유사한 주파수를 생성한다. 주파수는 자극의 수와 회전 레이트에 대해서 직접적으로 비례한다. 그에 따라, 만약 자극 툴(14)의 회전 레이트가 감소된다면, 자극의 수의 증가에 의해서 동일한 주파수가 달성될 수 있다. 경화를 초래하는 미세조직 변태를 달성하는데 필요한 오스테나이트 온도 범위까지의 공작물 가열을 달성하기 위해서, 적어도 5 kHz의 주파수가 필요하다는 것을 발견하였다. 그에 따라, 충분한 회전 레이트와 커플링된 충분한 수의 자극이 선택될 수 있다. 경화되는 특별한 공작물 및 희망하는 경화 결과에 따라서, 5 kHz 내지 21 kHz의 범위가 유도 경화를 위해서 이용될 수 있다.
자극의 수 및 자기 툴(14)의 회전 레이트를 변화시키는 것에 더하여, 다른 변수가 가열에 영향을 미칠 수 있고, 그에 따라 자기 툴(14)의 경화 능력에 영향을 미칠 수 있다. 희망에 따라서 조정될 수 있는 하나의 변수는, 자기 툴(14)이 희망하는 RPM에 도달하는데 소요되는 시간으로서, "램프(ramp) 시간"으로 지칭될 수 있는 시간이다. 구동 유닛(26)의 마력(토크)은 달성될 수 있는 최소 램프 시간을 결정한다. 희망에 따라서 조정될 수 있는 다른 변수는, 자기 툴(14)이 희망하는 RPM에서 유지되는 시간으로서, "소크(soak) 시간"으로 지칭되는 시간이다. 공기 갭(G)은 희망에 따라서 조정될 수 있는 또 다른 변수이다. 공기 갭(G)의 크기가 구동 유닛(26)의 토크 요건에 영향을 미치는데, 이는 공기 갭(G)이 작을수록 자기 툴(14)과 공작물(22) 사이의 인력(attraction)을 극복하기 위해서 보다 큰 토크가 요구되기 때문이다. 공기 갭(G)의 크기는 또한 희망하는 경도 특성(예를 들어, 케이스 깊이)을 달성하기 위한 가열 시간(즉, 램프 시간 및 소크 시간)에 영향을 미친다. 이러한 변수 모두는, 희망하는 경화 특성(예를 들어, 케이스 깊이)을 달성하기 위해서, 필요에 따라 개별적으로 그리고 서로 결합되어 조정될 수 있다.
자기 툴(14)의 구성 및 필요한 회전 속도에 따라서, 툴링을 밸런싱하기 위해서 동적인 밸런싱 시스템이 통합될 수 있을 것이다. 밸런싱 시스템이 이용되든지 또는 이용되지 않든지 간에, 장착 샤프트(50)와 자석(62) 사이에 약 0.004 인치 또는 그 미만의 동심도(concentricity)가 유지되어야 한다. 이는, 자기 툴(14)의 회전 동안 공기 갭(G)의 변동을 최소화함으로써 공작물(22)의 적절하고 일정한 가열을 제공하는데 도움을 줄 것이고, 그에 따라 희망하는 경화 결과를 달성하는데 도움을 줄 것이다.
도 7 및 8은 장치(10)와 함께 이용될 수 있는 다른 자기 툴(94)을 도시한다. 자기 툴(14)과 마찬가지로, 툴(94)은 구동 샤프트 형태의 장착 부분(98), 및 상기 장착 부분(98)에 커플링된 본체 부분(102)을 포함한다. 장착 부분(98)은 스핀들(34)에 해제 가능하게 고정될 수 있고, 그러한 스핀들은 구동 유닛(26)과 함께 회전하도록 구동 유닛(26)에 커플링된다(도 1 참조). 일반적으로, 장착 부분(98) 및 본체 부분(102) 각각은, 알루미늄 또는 오스테나이트계 스테인리스 스틸과 같은, 비-자기 재료 또는 낮은 상대 투자율(permeability)을 가지는 것으로 간주되는 재료로 형성된다. 본체 부분(102)은 공작물(22)에 밀접하게 근접하여 배치되도록 구성되는 표면(106)을 형성한다. 도 7 및 8에 가장 잘 도시된 바와 같이, 도시된 본체 표면(106)은, 공작물(22)의 단부 표면에 상응하도록 구성된 본체 부분(102)의 축방향-대면 단부 표면이다. 물론, 다른 기하형태의 공작물에서, 표면(106)의 기하형태가 희망하는 경화 결과를 달성하기 위해서 그에 따라 조정될 수 있다.
자기 툴(94)은 자기 배열체를 포함하고, 이러한 실시예에서, 상기 자기 배열체는 표면(106)에서 또는 표면(106)에 인접하여 본체 부분(102)에 커플링된 복수의 영구 자석(110)의 형태를 취한다. 도 7 및 8에 도시된 실시예에서, 복수의 영구 자석(110)이 상기 표면(106)으로부터 이격되도록 본체 부분(102) 내에 형성된 또는 규정된 각각의 포켓(114) 내에 수용되며, 그에 따라 본체 부분(102)의 얇은 벽 부분(118)이 상기 표면(106)과 복수의 포켓(114)의 각각의 사이에 형성된다. 따라서, 자석(110)은, 표면(106)에 인접한 위치에서 포켓(114) 내에서의 그들의 배치를 통해서 본체 부분(102)에 커플링된다. 포켓(114)을 표면(106)으로부터 분리하는 벽 부분(118)은 자석(110)과 가열된 공작물(22) 사이에 열적 배리어를 제공하며, 그에 따라 자석(110)의 온도가 자석(110)의 큐리 온도에 도달할 가능성이 낮아진다. 벽 부분(118)은 두께가 0.05 인치 미만일 수 있고, 그리고 도시된 실시예에서는 약 0.02 인치의 두께를 가진다.
자석(110)이 포켓(114) 내에서 실질적으로 이동하지 않도록, 자석(110)이 포켓(114) 내로 타이트하게 피팅되어 삽입된다. 만약 자석(110)이 포켓(114) 내에서 실질적으로 이동하도록 허용된다면, 자기 툴(94)의 밸런스에 부정적인 영향을 미칠 수 있을 것이다. 도 7 및 8에 도시된 바와 같이, 자석(110)이 포켓(114) 내에 배치되면, 체결부(126)를 이용하여 본체 부분(102)에 커플링되어 본체 부분(102)의 일부(part)를 형성하는 커버(122) 내에 포켓(114)이 형성된다. 대안적인 실시예에서, 포켓(114)은 커버(122)에 인접한 본체 부분(102) 내에 부분적으로 또는 대체로 형성될 수 있을 것이다. 자석(110)이 손상되거나 정상적인 이용을 할 수 없도록 등급이 저하된다면, 자석(110)의 교체를 돕기 위해서 커버(122)가 제거될 수 있다.
도시된 실시예에서, 포켓(114)뿐만 아니라 자석(110)의 단면이 실질적으로 정사각형 형상이나, 다른 단면 형상(예를 들어, 원형, 사다리꼴 - 도 4a 참조, 등)으로 대체될 수 있을 것이다. 포켓(114), 및 그에 따른 삽입된 자석(110)은 표면(106)에 대해서 대체로 평행하게 연장하는 길이방향 축(130)(도 8 참조)을 가진다. 도 8에 가장 잘 도시된 바와 같이, 자석(110)의 자극(예를 들어, 북극-N 및 남극-S)이 자석(110)의 2개의 대향하는 세장형 면 상에 위치되고, 그에 따라 포켓(114) 내에 배치될 때 자석의 N-S 축이 축방향으로 연장한다. 다시 말해서, 북극 또는 남극이 표면(106)을 향해서 축방향으로 대면한다. 본체 부분(102)의 단부 주위로 원주방향을 따라서 관찰할 때, 각각의 자석(110)이 인접한 자석(110)으로부터 극성을 교번하도록, 자석(110)이 포켓(114) 내로 삽입된다. 그에 따라, N-S-N-S-N-S 등의 교번적인 자극/극성 배열이 표면(106)에 인접하여 달성되도록, 자석(110)이 포켓(114) 내에서 배향되고 위치된다. 도시된 자기 툴(94)이 50개의 자석(110)을 포함하나, 자석(110)의 수는 원하는 바에 따라 달라질 수 있다. 경화되는 공작물(22)과 상호작용하기 위한 연속적인 자기장을 제공하도록, 자석(110)이 충분히 근접하여 함께 배열되어야 한다.
자기 툴(94)은 공작물(22)의 단부 표면, 또는 다시 말해서, 자기 툴(94)의 회전 축에 대해서 대체로 수직하는 공작물의 표면을 경화하기 위해서 이용될 수 있다. 이용될 수 있는 대안적인 자석 구성과; 주파수, 자극, 및 회전 속도 사이의 관계와; 램프 시간, 소크 시간, 및 공기 갭과 같은 변수와; 그리고 장착 샤프트 및 자석 사이의 동심도와 관련한 전술한 설명은, 이하에서 설명하는 자기 툴(94) 및 다른 자기 툴 구성에 대해서도 동일하게 적용된다.
도 9 및 10은 장치(10)와 함께 이용될 수 있는 다른 자기 툴(134)을 도시한다. 자기 툴(14 및 94)과 마찬가지로, 툴(134)은 구동 샤프트 형태의 장착 부분(138), 및 상기 장착 부분(138)에 커플링된 본체 부분(142)을 포함한다. 장착 부분(138)은 스핀들(34)에 해제 가능하게 고정될 수 있고, 그러한 스핀들은 구동 유닛(26)과 함께 회전하도록 구동 유닛(26)에 커플링된다(도 1 참조). 일반적으로, 장착 부분(138) 및 본체 부분(142) 각각은, 알루미늄 또는 오스테나이트계 스테인리스 스틸과 같은, 비-자기 재료 또는 낮은 상대 투자율을 가지는 것으로 간주되는 재료로 형성된다. 본체 부분(142)은 공작물(22)에 밀접하게 근접하여 배치되도록 구성되는 표면(146)을 형성한다. 도 9 및 10에 가장 잘 도시된 바와 같이, 도시된 본체 표면(146)은, 환형(또는 원통형) 공작물(22)의 방사상 외측 표면에 상응하도록 구성된 본체 부분(142)의 방사상 내측-대면 원주방향 표면이다. 물론, 다른 기하형태의 공작물에서, 표면(146)의 기하형태가 희망하는 경화 결과를 달성하기 위해서 그에 따라 조정될 수 있다.
자기 툴(134)은 자기 배열체를 포함하고, 이러한 실시예에서, 상기 자기 배열체는 표면(146)에서 또는 표면(146)에 인접하여 본체 부분(142)에 커플링된 복수의 영구 자석(150)의 형태를 취한다. 도 9 및 10에 도시된 실시예에서, 복수의 영구 자석(150)이 본체 부분(142) 내에 형성된 또는 규정된 각각의 포켓(154) 내에 수용되어 표면(146)의 일부를 형성하며, 그에 따라 표면(146)과 복수의 포켓(154)의 각각의 사이에 얇은 벽 부분이 형성되지 않는다. 따라서, 자석(150)은, 표면(146)에 인접한 위치에서 포켓(154) 내에서의 그들의 배치를 통해서 본체 부분(142)에 커플링된다. 포켓(154)은 본체 부분(142)의 링 부분(158), 및 체결부(166)를 이용하여 본체 부분(142)에 커플링되고 본체 부분의 일부를 형성하는 커버(162)에 의해서 부분적으로 형성된다. 자석(150)이 손상되거나 정상적인 이용을 할 수 없도록 등급이 저하된다면, 자석(150)의 교체를 돕기 위해서 커버(162)가 제거될 수 있다. 다른 실시예에서, 포켓(154)이 다른 방식으로 형성될 수 있다. 예를 들어, 포켓(154)이 전술한 포켓(66)과 유사한 방식으로 형성될 수 있을 것이다.
자석(150)이 포켓(154) 내에서 실질적으로 이동하지 않도록, 자석(150)이 포켓(154) 내로 타이트하게 피팅되어 삽입된다. 만약 자석(150)이 포켓(154) 내에서 실질적으로 이동하도록 허용된다면, 자기 툴(134)의 밸런스에 부정적인 영향을 미칠 수 있을 것이다.
도시된 실시예에서, 포켓(154)뿐만 아니라 자석(150)의 단면이 실질적으로 정사각형 형상이나, 다른 단면 형상(예를 들어, 원형, 사다리꼴 - 도 4a 참조, 등)으로 대체될 수 있을 것이다. 포켓(154), 및 그에 따른 삽입된 자석(150)은 표면(146)에 대해서 대체로 평행하게 연장하는 길이방향 축(170)(도 9 참조)을 가진다. 도 10에 가장 잘 도시된 바와 같이, 자석(150)의 자극(예를 들어, 북극-N 및 남극-S)이 자석(150)의 2개의 대향하는 세장형 면 상에 위치되고, 그에 따라 포켓(154) 내에 배치될 때 자석의 N-S 축이 방사상으로 연장한다. 다시 말해서, 북극 또는 남극이 표면(146)을 향해서 방사상으로 대면한다. 각각의 자석(150)이 본체 부분(142)의 표면(146)의 원주방향 주위로 인접한 자석(150)으로부터 극성을 교번하도록, 자석(150)이 포켓(154) 내로 삽입된다. 그에 따라, N-S-N-S-N-S 등의 교번적인 자극/극성 배열이 표면(146)에 인접하여 달성되도록, 자석(150)이 포켓(154) 내에서 배향되고 위치된다. 도시된 자기 툴(134)이 40개의 자석(150)을 포함하나, 자석(150)의 수는 원하는 바에 따라 달라질 수 있다. 경화되는 공작물(22)과 상호작용하기 위한 연속적인 자기장을 제공하도록, 자석(150)이 충분히 근접하여 함께 배열되어야 한다. 자기 툴(134)은 환형 공작물(22)의 방사상 외측-대면 표면을 경화하기 위해서 이용될 수 있다.
도 11은, 공작물(22)이 급랭 시스템(38)에 의해서 급랭될 수 있도록 허용하기 위해서, 공작물 홀더(18)에 대한 가열 위치로부터 축방향을 따라서 멀리 이동된(즉, 도 11에 도시된 바와 같이 위쪽으로 상승된) 자기 툴(14)과 함께 도시된 장치(10)의 단면도이다. 다시 말해서, 자기 툴(14) 및 공작물 홀더(18)는, 공작물(22)을 가열하기 위한 제 1 위치(도 2 참조)와 공작물(22)을 급랭하기 위한 제 2 위치(도 11 참조) 사이에서 회전 축(30)에 평행한 방향을 따라서 서로에 대해서 이동될 수 있다. 급랭 칼라(42)는, 급랭 매체(174)(도 11 참조)를 이용하여 공작물(22)을 샤워링하기 위해서 도 11에 도시된 바와 같이 공작물(22)을 둘러싼다. 도 1 및 도 11에 도시된 바와 같이, 급랭 칼라(42)는, 경사진 벽(182)에 형성되고 급랭 매체(174)가 공급되는 챔버(186)(도 11 참조)와 소통하는 복수의 개구(178)를 포함한다. 연결부(190)는, 급랭 매체(174)를 챔버(186)로 선택적으로 공급하는 공급 라인(미도시)에 유체적으로 연결된다.
도 11에 가장 잘 도시된 바와 같이, 급랭 매체(174)가 개구(178)를 통해서 자기 툴(14)의 표면(58)을 향해서 지향되고 그리고 공작물(22) 상으로 하향 편향되며, 그에 따라 급랭 매체(174)로 공작물(22)을 샤워링한다. 자기 툴(14)의 제 2 위치 또는 급랭 위치가 적절한 샤워링 효과를 달성하기 위해서 요구되는 바에 따라서 조정될 수 있다. 급랭 칼라(42)가 지지 구조물(194)에 의해서 공작물 홀더(18) 위쪽의 제위치에서 지지된다. 다른 급랭 칼라 및 지지 배열체가 도면에 도시된 것을 대신할 수 있다는 것을 이해하여야 할 것이다.
도 12는 장치(10)와 함께 이용될 수 있는 대안적인 급랭 시스템(198)을 도시한다. 그러한 급랭 시스템(198)에서, 도관(202)이 공작물 홀더(18')에 커플링되고 그러한 공작물 홀더 내부로부터 연장하며, 그에 따라 공작물(22)이 공작물 홀더(18')에 의해서 지지될 때, 도관(202)의 말단 단부(206)가 공작물(22) 내에 적어도 부분적으로 배치된다. 도 12에 도시된 바와 같이, 자기 툴(14")이 자기 툴(14)로부터 약간 변형되어, 자기 툴(14")이 공작물(22)을 가열하기 위한 제 1 위치에 있을 때(즉, 표면(58")이 공작물(22)에 밀접하게 근접하여 위치될 때), 도관(202)의 말단 단부(206)의 적어도 일부를 수용하도록 구성되고 크기가 정해진 본체 부분(54") 내의 개구 또는 리세스(210)를 포함한다. 도 12는 공작물(22)을 급랭하기 위한 제 2 위치에서 자기 툴(14")을 도시한다. 급랭 매체(174)는 연결부(214)에 커플링된 공급부로부터 도관(202)을 통해서 유동하고, 그리고 말단 단부(206)에 형성된 개구(218)를 통해서 도관(202)을 빠져나간다. 개구(218)가 말단 단부(206) 주위로 원주방향을 따라서 연장하여, 말단 단부(206) 주위로 그리고 공작물(22) 상으로 완전한 360도로 급랭 매체(174)를 분무한다. 도 12에 도시된 배열체에서, 급랭 시스템(198)은 공작물 홀더(18')와 통합된다.
도 13은 자기 툴(14"')과 통합된 또 다른 대안적인 급랭 시스템(222)을 도시한다. 자기 툴(14"')의 본체 부분(54"') 및 장착 부분(50"')은 도관(226)을 함께 형성하고, 상기 도관을 통해서 급랭 매체(174)가 공급될 수 있다. 급랭 매체(174)의 공급은 스핀들(미도시)을 통해서 제공될 수 있다. 도 13에 도시된 바와 같이, 장착 부분(50"')으로부터 축방향을 따라서 연장하고 도관(226)과 소통하는 방사상으로-배향된, 원주방향으로 배치된 개구(234)를 포함하는 연장부 또는 돌부(230)를 포함하도록 커버(78"')가 변형되고, 상기 개구는, 자기 툴(14"')이 제 2의 급랭 위치로 상승되었을 때, 공작물(22) 상으로 도관(226) 내의 급랭 매체(174)가 분무될 수 있게 허용한다. 개구(234)의 수 및 배치가 충분하다면, 급랭은 자기 툴(14"')의 회전이 없이도 이루어질 수 있을 것이나, 다른 실시예에서, 자기 툴(14"')은 급랭 매체(174)를 보다 양호하게 분배하기 위해서 급랭 스테이지 중에 서서히 회전될 수 있을 것이다.
도 14는 자기 툴(14"")과 통합된 또 다른 대안적인 급랭 시스템(238)을 도시한다. 자기 툴(14"")의 본체 부분(54"") 및 장착 부분(50"")은 도관(242)을 함께 형성하고, 상기 도관을 통해서 급랭 매체(174)가 공급될 수 있다. 개구(246)가 상기 도관(242)으로부터 본체 부분(54"")을 통해서 방사상 외측으로 표면(58"")까지 연장하고, 그리고 인접한 자석(62"") 사이에 배치된다. 이러한 구성에서, 자기 툴(14"")은 급랭을 달성하기 위해서 제 1의 가열 위치로부터 상승될 필요가 없다. 그 대신에, 가열 동작이 완료되면, 자기 툴(14"") 의 회전이 느려지거나 정지될 수 있고 그리고 급랭 매체(174)가 도관(242)으로 공급되어 자기 툴(14"")을 상승시키지 않고 공작물(22)을 급랭시킬 수 있다.
도 15는 공작물 홀더(18)를 도시하고, 그리고 명료한 도시를 위해서 급랭 칼라(42) 및 공작물(22)을 제거한 상태로 도시한다. 공작물 홀더(18)는, 회전 축(30)에 대한 공작물(22)의 회전 및 병진운동 모두를 방지하기에 충분한 클램핑력으로 공작물(22)을 확실하게 지지하도록 설계된 공압식 또는 공기 척(250)을 포함한다. 자기 툴(14)과 공작물(22) 사이의 자기적 인력으로 인해서, 회전 축(30)에 대한 회전 및 병진운동을 방지하도록 공작물(22)이 충분하게 클램핑되는 것이 중요하다. 공기 척(250)은, 복수의 콜릿 패드(254)와의 결합을 통해서 공작물(22)을 방사상으로 클램핑하기 위해서 공기 압력을 이용하여 동작된다. 도 15에 도시된 바와 같이, 6개의 콜릿 패드(254)가 공작물 홀더(18) 상에 제공되어 공작물(22)을 원주방향으로 둘러싸고 지지한다. 다른 실시예에서, 콜릿 패드(254)의 수가 원하는 바에 따라서 변경될 수 있다.
이제 도 15 및 16 모두를 참조하면, 패드(254)는, 각각의 패드(254)에 형성된 원주방향 립(264)(도 16 참조)을 수용하도록 구성된 원주방향 홈(262)(도 16 참조)을 가지는 패드 지지 부재(258)에 의해서 지지된다. 체결 배열체(268)가 제공되어 각 패드(254)를 패드 지지 부재(258)에 대해서 추가적으로 고정한다. 도 16에 도시된 바와 같이, 패드 지지 부재(258)는 상부 지지 부재(280)의 정합 캠 표면(276)과 결합하는 캠 표면(272)을 포함한다. 상부 지지 부재(280)는 체결부(288)를 통해서 그리고 복수의 압축 스프링(292)(하나만이 도시됨)을 통해서 하부 지지 부재(284)에 커플링되어, 패드(254)를 방사상 내측으로 클램핑 방향 또는 고정 방향을 따라 편향시켜 공작물(22)을 클램핑하기 위해서 공기 척(250)으로 공압식 클램핑력이 인가될 때에도, 상부 지지 부재(280)와 하부 지지 부재(284) 사이의 약간의 상대적인 수직 운동을 허용한다. 압축 스프링(292)을 제공함으로써, 그리고 캠 표면(272 및 276)에 의해서, 공작물(22)의 열적 성장(thermal growth) 중에 클램핑 편향에 대항하여 방사상 외측으로 패드(254)가 확장될 수 있게 허용함으로써, 경화 프로세스 중에 공작물(22)의 열 팽창을 공기 척(250)이 보상할 수 있게 된다. 이는, 경화 동작 중에 공작물(22)의 임의의 휘어짐이나 왜곡을 최소화하거나 배제하는데 도움이 된다.
여전히 도 15 및 16을 참조하면, 패드(254)에 의한 방사상 클램핑은 회전 축(30)을 중심으로 하는 공작물의 회전을 실질적으로 방지한다. 패드(254)는 패드(254)의 대체로 수평인 표면(300)으로부터 위쪽으로 돌출하는 돌출부(296)를 각각 포함한다. 공작물(22)의 하부 표면이 각각의 돌출부(296) 상에 놓이며, 그에 따라 점 접촉 또는 작은-면적 접촉이 달성된다. 패드(254)의 각각은 또한, 공작물(22)의 방사상 외측 표면 또는 지름이 접하는, 대체로 수직인 표면(304)을 포함한다. 이러한 각각의 패드(254)에 의한 공작물 지지 배열체가 도 16에서 가장 명확하게 도시되어 있다. 패드(254)는 알루미늄이나 스테인리스 스틸과 같은 상자성 재료로 제조되고, 그리고 각 패드(254)와 공작물(22) 사이의 결합이 전기적으로 비전도성인 패드(254) 상의 위치에서 이루어지도록 추가적으로 구성될 수 있다. 도 15 및 16에 도시된 실시예에서, 돌출부(296) 및 수직 표면(304)의 각각이 테프론, 세라믹 등과 같은 비-전도성 재료로 코팅되며, 그에 따라 공작물 홀더(18)가 공작물(22)을 접지로부터 전기적으로 절연시킨다.
도 17은 공작물 홀더(18)와 함께 이용될 수 있는 콜릿 패드(308)의 대안적인 실시예를 도시한다. 돌출부(296) 대신에, 각 패드는 패드(308)의 방사상 내측 표면에 대해서 (예를 들어, 체결부(316)를 통해서) 커플링된 비-전도성 삽입체 또는 부착부(312)를 포함하며, 그에 따라 삽입체(312)의 일부가 패드(308)에 의해서 형성된 하나 이상의 수평 표면(320) 위로 수직으로 연정한다. 공작물(22)의 하단부는 수평 표면(320) 위에서 삽입체(312) 상에 놓이고 그러한 삽입체(312)에 의해서 지지될 것이다. 도시된 삽입체(312)가 실질적으로 다이아몬드-형상의 세라믹 부분인 것으로 도시되어 있지만, 다른 비-전도성 재료 및 구성이 또한 이용될 수 있다.
추가적으로, 패드(308)는, 공작물(22)의 지름 또는 외측 표면과 결합하여 지지하도록 구성되고 크기가 정해진 복수의 추가적인 비-전도성 삽입체 또는 부착부(324)를 포함한다. 도 17에 도시된 바와 같이, 패드(308)는 패드(308)의 말단 상부 표면(332)에서 종료되는 대체로 수직인 표면(328)을 포함한다. 3개의 비-전도성 삽입체(324)는, 대체로 수직인 표면(328)을 지나서 방사상 내측으로 연장하도록, 상부 표면(332)에 커플링된다. 실질적으로 선 접촉이 각각의 삽입체(324)와 공작물(22)의 외측 표면 사이에서 발생될 것이고, 공작물(22)의 외측 표면이 대체로 수직인 표면(328)과 접촉하지 않을 것이다. 도 17에 도시된 실시예에서, 삽입체(324)가 세라믹 실린더이다. 다른 실시예에서, 다른 비-전도성 재료 및 구성이 이용될 수 있을 것이다. 이와 함께, 공작물 홀더(18)가 공작물(22)을 접지로부터 전기적으로 절연시키도록, 삽입체(312 및 324)가 공작물(22)을 지지한다.
도 15 및 16을 다시 한번 참조하면, 공작물 홀더(18)는, 공작물이 패드(254, 308)에 의해서 지지될 때, 회전 축(30)을 따른 공작물(22)의 병진운동(예를 들어, 상방)을 방지하는데 도움을 주기 위해서 공작물(22)을 고정하도록 동작가능한 하나 이상의 클램프(336)를 추가적으로 포함한다. 도시된 클램프(336)는 외측 둘레를 따라서 공기 척(250)에 연결되고, 그리고 회전 축(30)을 향해서 방사상 내측으로, 패드(245, 308)의 상단부 위에서, 그리고 공작물(22)의 상단부 표면 위에서(도 16 참조) 연장하는 클램프 부재(340)를 포함한다. 클램프 부재(340)는, 다시 공작물(22)을 접지로부터 전기적으로 절연시키기 위해서, 비-전도성의 클램프 부재(340) 상의 위치에서 공작물(22)과 결합된다. 도시된 실시예에서, 클램프(336)(클램프 부재(340)를 포함)가 비-전도성 세라믹 재료로 제조된다. 다른 실시예에서, 상자성 재료가 이용될 수 있고 그리고 비-전도성 코팅이 공작물(22)과 결합하는 클램프 부재(340)의 단부에 적용될 수 있을 것이다. 도시된 클램프 부재(340) 각각은 공작물(22)과 결합하는 2개의 이격된 말단 단부 돌출부(346)를 포함하는 한편, 각각의 클램프 부재(340)의 나머지는 공작물과 결합하지 않으며, 그리고 자기 툴(14)과 간섭하지 않는다. 클램프(336)의 다른 구성이 또한 이용될 수 있다는 것을 이해할 수 있을 것이다. 또한, 필요한 경우에, 둘 초과의 클램프(336)가 이용될 수 있을 것이다.
도시된 공작물 홀더(18)는 장치(10)와 함께 이용될 수 있는 공작물 홀더의 단지 하나의 예이다. 예를 들어, 통상적인 3-조오(jaw) 척이 공작물(22)을 홀딩하기 위해서 이용될 수 있다. 그러나, 전술한 공작물 홀더(18)는 공작물(22)의 회전 및 병진운동을 방지하는데 있어서 매우 적합하고, 가열 중에 일부 공작물(22)의 왜곡을 방지하는데 도움이 되며, 그리고 공작물(22)을 접지로부터 전기적으로 절연시킬 수 있는 능력에서 유리하다.
전술한 바와 같이, 공작물 홀더(18)는 공작물(22)의 열 팽창 또는 성장을 수용하도록 설계될 수 있다. 특별한 공작물(22)이 경화를 위한 가열 중에 경험할 수 있는 열 팽창량에 따라서, 자기 툴(14)의 표면(58)과 공작물(22)의 인접한 표면 사이의 공기 갭(G)을 조정하여 케이스 깊이와 같은 희망하는 경화 특성을 달성하는 것이 바람직할 수 있을 것이다. 도 18은 공작물(22)의 열 팽창을 수용하도록 설계된 그리고 전술한 임의의 자기 툴(도 9의 자기 툴(134)과 유사한 자기 툴로 도시됨)에서 사용될 수 있는 하나의 가능한 자기 배열체를 도시한다. 구체적으로, 자석(62)의 각각은, 제 1의 또는 상부 자석(62a) 및 상기 제 1 자석(62a)으로부터 방사상으로 오프셋된 제 2의 또는 하부 자석(62b)을 가지는 자석의 적층된 세트(예를 들어, 쌍)에 의해서 형성될 수 있다. 다시 말해서, 자석(62)의 전체적인 원형 어레이의 경우에, 상부 자석(62a)의 어레이가 제 1 축방향 위치에서 제 1 자기 지름을 형성한다고 할 수 있을 것이며, 상기 제 1 자기 지름은 제 2 축방향 위치에서 하부 자석(62b)의 어레이에 의해서 형성되는 제 2 자기 지름과 상이하다(예를 들어, 더 작다). 갭(G)을 실질적으로 일정하게 유지하기 위해서, 공작물(22)이 자기 툴(14)(도 18에서 실선으로 도시됨)에 대한 상부 위치에서 시작될 수 있고, 그에 따라 공작물(22)이 상부 자석(62a)의 어레이에 인접하게 된다. 공작물(22)의 지름이 열 팽창으로 인해서 성장됨에 따라, 자기 툴(14)이 공작물(22)에 대해서 상대적으로 이동(예를 들어, 상승)될 수 있고, 그에 따라 공작물(22)(도 18에서 점선으로 도시됨)이 하부 자석(62b)의 어레이에 인접하게 된다. 자석(62a)과 자석(62b) 사이의 방사상 오프셋은 공작물(22)의 예상되는 방사상 성장과 실질적으로 동일하며, 그에 따라 일정한 경화가 달성될 수 있다.
도 19는 공작물(22)의 열 팽창을 수용하기 위한 도 18에 도시된 자기 배열체와 원칙적으로 유사한 대안적인 자기 배열체를 도시한다. 개별적인 자석의 적층된 세트를 가지는 대신에, 자석(62)은, 제 2 축방향 위치에서 자석(62)의 하부 부분에 의해서 규정된 제 2 자기 지름과 상이한(예를 들어, 더 작은) 제 1 위치에서의 제 1 자기 지름을 형성하는 상부 부분을 가지는 것으로 도시된 바와 같이, 성형되거나 형성될 수 있다.
도 20은 공작물(22)의 열 팽창을 수용하도록 설계된 다른 대안적인 자기 배열체를 개략적으로 도시한다. 각각의 자석(62)은, 자석(62)의 어레이에 의해서 형성된 자기 지름을 변화시키기 위해서 방사상 방향을 따라서 이동가능하도록 장착된다. 도시된 실시예에서, 각각의 자석(62)은 곡선형이 되거나 성형되며, 그리고 이동가능한(예를 들어, 피봇팅) 아암(350)에 커플링된다. 아암(350)은 피봇 점(352) 주위로 피봇되고, 그리고 공작물(22)이 팽창함에 따라서 희망하는 갭(G)을 유지 또는 달성하도록 자석(62)의 희망하는 방사상 이동을 유발하기 위해서 아암(350)에 대해서 상대적으로 회전 축(30)을 따라서 조정될 수 있는 캠 표면(354)(예를 들어, 원뿔형 표면)과 결합된다.
도 21은 자기 툴(358)의 다른 배열을 개략적으로 도시한 도면으로서, 상기 자기 툴은 자기 툴(358)의 본체의 제 1의 방사상 내측 표면 부분을 형성하는 내측 링 또는 자석의 어레이(Mi), 및 자기 툴(358)의 본체의 제 2의 방사상 외측 표면 부분을 형성하는 외측 링 또는 자석의 어레이(Mo)를 포함한다. 자석의 내측 및 외측 링(Mi 및 Mo)은 전술한 바와 같이 교번적인 자극을 가진다. 자석의 내측 링(Mi)은 환형-형상의 공작물(22)의 내측 표면(Wi)에 밀접하게 근접하여 위치되는 한편, 자석의 외측 링(Mo)은 공작물(22)의 외측 표면(Wo)에 밀접하게 근접하여 위치된다. 자석의 내측 및 외측 링(Mi 및 Mo)은 공작물(22)에 대해서 회전되며, 그에 따라 자석의 각각의 링이 공작물(22)의 환형 폭의 절반을 가열하고, 그에 따라 공작물(22)은 무심 경화될 것이다(도 21의 공작물(22)의 완전한 섹션 라인 부분에 의해서 표시된 바와 같음). 공작물 외측 표면(Wo)이 공작물 내측 표면(Wi) 보다 더 길다는 사실을 보상하기 위해서, 자석의 내측 및 외측 링(Mi 및 Mo)이 다른 레이트(rate)로 회전될 수 있고, 다른 수의 자극을 가질 수 있고, 다른 레이트로 희망 RPM까지 램프 업될 수 있고, 및/또는 다른 시간의 기간 동안 희망하는 RPM에서 동작될 수 있다. 추가적으로 또는 대안적으로, 공기 갭(G)이 변경될 수 있다.
도 22는 비-무심 경화 용도에서의 자기 툴(358)의 이용을 개략적으로 도시한다. 경화된 케이스(C)가 공작물(22)의 무심 경화 없이 공작물의 내측 표면(Wi) 및 외측 표면(Wo) 상에 형성되도록, 자석(Mi 및 Mo)의 크기가 정해지고(즉, 자기장을 가지며), 또는 자기 툴(358)이 동작된다. 이는 공작물(22)의 보다 전성인(ductile) 내부를 초래할 것이다.
또한, 자기 툴의 자석은, 공작물(22)의 선택된 (그리고 분리될 수도 있는) 구역을 경화시키도록, 가변 깊이의 케이스(C)를 형성하도록, 또는 보다 복잡한 기하형태적 형상(즉, 대체로 원통형이 아닌 형상)을 가지는 공작물(22) 상에 케이스를 형성하도록, 또한 정렬될 수 있다. 도 23a는 공작물(22)의 하부 부분에 인접하여 배치된 자석의 하부 링(ML) 및 공작물(22)의 상부 모서리에 인접하여 배치된 자석의 상부 링(MU)을 가지는 자기 툴(362)을 개략적으로 나타낸다. 이러한 구성은 케이스 경화되지 않은 구역을 사이에 둔 하부의 경화된 케이스(CL) 및 상부의 경화된 케이스(CU)를 생성할 것이다.
도 23b는, 공작물(22)의 희망하는 케이스 경화를 달성하도록 구성되고 크기가 정해진 상부 자석 링(MU) 및 하부 자석 링(ML)을 가지는 다른 자기 툴(366)을 개략적으로 도시한다. 하부의 케이스 경화된 구역(CL)은 상부의 케이스 경화된 구역(CU) 보다 더 길다. 이는, 상부 자석 링(MU)의 유효 축방향 길이보다 더 긴 유효 축방향 길이를 가지는 하부 자석 링(ML)의 이용에 의해서 달성된다. 이는, 하부 자석 링(ML)에서 보다 긴 자석을 이용함으로써, 또는 보다 긴 유효 길이를 가지는 하부 자석 링(ML)을 생성하기 위해서 자석을 적층함으로써 달성될 수 있다.
도 24a는 공작물(22)의 축방향 길이보다 더 짧은 축방향 길이를 가지는 자석 링(M)을 가지는 자기 툴(370)을 개략적으로 도시한다. 도시된 바와 같이, 자석 링(M)은 공작물(22)의 전체 축방향 길이에 걸쳐 연장하지 않는 경화된 케이스(C)를 생성할 것으로 예상되며, 그에 따라 케이스 경화되는 표면 구역 위 및/또는 아래에 경화되지 않은 표면 구역을 남길 것으로 예상된다.
도 24b는 도 24a와 반대되는 상황을 도시한다. 개략적으로 도시된 자기 툴(374)은, 공작물(22)의 축방향 길이보다 더 긴 축방향 길이를 가지는 자석 링(M)을 가진다. 도 24b에 도시된 바와 같이, 이러한 배열체는 공작물(22)의 전체적인 축방향 길이에 걸쳐 연장하는 경화된 케이스(C)를 생성할 것으로 예상된다.
도 25는 자기 툴(378)을 개략적으로 도시하며, 여기에서 하부 자석 링(ML)은 상부 자석 링(MU)의 환형 폭보다 더 넓은 환형 폭을 가진다. 자석 링의 환형 폭을 변화시키는 것은, 보다 넓은 자석 링을 위해서 보다 넓은 자석을 이용하여, 또는 자석을 방사상으로 적층하여 달성될 수 있다. 도 25에 도시된 바와 같이, 2개의 넓은 자석 링과 좁은 자석 링을 동일한 레이트로 램프 업하고, 동일한 희망 속도로 회전시키고, 그리고 동일한 소크 시간을 제공할 때, 넓은 자석 링은 좁은 자석 링 보다 더 얇은 케이스 깊이(CL)를 생성할 것으로 예상된다.
도 26a-c는 자기 툴 내에서 성형된 자석(M)을 이용하는 것에 의한 예상 결과를 도시한다. 도 26a에서, 자석(M)은 대체로 U-형상이고, 서로 축방향으로 이격된 상부 부분(MU) 및 하부 부분(ML)을 가진다. 자석 상부 부분(MU)은 하부 자석 부분(ML) 보다 축방향으로 더 짧고 방사상으로 더 짧다. 확인할 수 있는 바와 같이, 이러한 자석 구성은 상부 케이스(CU) 보다 축방향으로 더 길고 방사상으로 더 깊은 하부 케이스(CL)를 생성할 것으로 기대된다.
도 26b에서, 자석(M)은 희망하는 형상이나 프로파일을 가지는 표면(S)을 가진다. 자석 표면(S)과 대면하는 편평한 표면을 가지는 공작물(22)에서, 표면(S)의 형상이 케이스(C)를 생성할 것으로 예상되며, 이 경우에 케이스와 코어 사이의 전이부(T)의 형상 또는 프로파일이 공작물 표면(S)의 형상에 대체로 상응할 것이다.
도 26c에 도시된 바와 같이, 공작물(22)의 성형된 표면을 케이스 경화시키기 위해서 성형된 자석(M)이 또한 이용될 수 있을 것이다. 이러한 경우에, 자석 표면(S)은 경화하고자 하는 표면의 프로파일에 상응하는 프로파일을 가진다. 이는, 자석(M)과 공작물 표면 사이에서 일정한 공기 갭을 유지할 것이고, 그리고 공작물 표면으로부터 실질적으로 일정한 깊이의 경화된 케이스(C)를 생성하여야 할 것이다.
유도 경화 동작 동안에 자기 툴에서 이용되는 자석이 가열될 것임을 이해할 것이다. 만약 자석이 그들의 큐리 온도를 초과한다면, 그들은 그들의 자기적 성질을 잃을 것이고 그리고 자기 툴은 더 이상 유효하지 않게 될 것이다. 그에 따라, 일부 적용예에서, 자기 툴 내의 자석에 대한 냉각 시스템을 제공하는 것이 유용할 수 있을 것이다. 도 27a 및 27b는, 전술한 임의의 자기 툴과 통합될 수 있는 2가지 가능한 냉각 시스템을 개략적으로 도시한다. 도 27a에서, 자기 툴(382)은 경화하고자 하는 공작물(22)과 대면하는 표면(S)을 가지는 복수의 자석(M)(하나만이 도시됨)을 포함한다. 본체 부분(54)과 통합될 수 있는 벽(386)이 환형 챔버(390)를 형성하고 그리고 열 전달과 관련하여 자석(M)의 링에 인접한다(즉, 표면(S)에 대향하는 표면에 인접한다). 환형 챔버(390)는 적절한 시스템에 의해서 공급되고 순환될 수 있는 냉각제(394)를 포함한다. 벽(386)은 열을 용이하게 전달할 수 있는, 알루미늄과 같은, 재료로 제조된다. 벽(386) 및 냉각제(394)는 자석(M)으로부터 열을 흡수하고 그 열을 자석(M)으로부터 멀리 전도하여 자석(M)을 큐리 온도 미만으로 유지한다.
도 27b는 대안적인 냉각 시스템을 도시한다. 이러한 시스템에서, 자기 툴(398)은, 본체 부분(54)과 통합될 될 수 있고, 자석(M)을 수용하는 포켓(410)을 형성하는 복수의 이격부재(406)를 포함하는, 베이스(402)를 포함한다. 베이스(402)는 자석(M)을 지나는 메인 부분(414a), 및 이격부재(406) 내로 연장하는 핑거 부분(414b)을 가지는 챔버(414)를 포함한다. 냉각제(418)는 챔버(414) 내에 수용되고 그리고 적절한 시스템에 의해서 공급되고 순환된다. 이러한 냉각 시스템에서, 자석(M)은 자석(M)으로부터 열을 제거하기 위해서 베이스(402) 및 냉각제(418)와 열전달 관계를 가지는 3개의 표면을 가진다.
자기 툴(382 및 398) 모두가 냉각제-기반의 냉각 시스템을 가지는 것으로 도시되어 있지만, 냉각 시스템은 높은 열 전달 계수를 가지는 재료로 제조된 고체(solid) 히트 싱크를 대안적으로 또는 추가적으로 포함할 수 있을 것이며, 상기 히트 싱크는 자석으로부터 열을 복사 제거하기 위해서 휜(fin)과 같은 다른 수단을 포함한다.
도 28은 전술한 자기 툴 중의 임의의 자기 툴에 적용될 수 있는 또 다른 변형예를 도시한다. 구체적으로, 하나 이상의 플럭스 집중부(422)가 자기 툴 내에서 자석(M) 주위로 배치되어 희망하는 자기장 강화를 제공할 수 있을 것이고, 그에 따라 희망하는 경화 효과를 달성할 수 있다. 플럭스 집중부(422)는 여러 가지 합금 스틸, 분말형 금속 등으로 제조될 수 있다. 추가적으로, 코딩된(coded) 자석 즉, 자석 표면에 걸쳐서 변화되는 필드가 임프린트된(imprinted) 자석을 이용하여 희망에 따라서 자기장을 변화 또는 변경할 수 있다.
도 29는 전술한 자기 툴 중 하나 이상과 함께 이용될 수 있는 와전류 도관(430)의 이용을 도시한다. 도 29에 도시된 바와 같이, 자기 툴(134)이 와전류 도관(430)과 함께 이용되어 와전류를 표면(146)으로부터, 와전류 도관(430)을 통해서, 그리고 공작물(438)의 표면(434)으로 채널링(channel) 또는 전도한다. 표면(434)에 의해서 형성된 작은 지름으로 인해서, 경화하고자 하는 작은 지름 개구부 내로 피팅되도록 자기 툴을 구성하는 것이 실현할 수 없거나 불가능할 것이다. 작은 공간 내에 위치될 수 있는 자극의 수가 제한되며, 그에 따라 필요 주파수를 달성하기 위해서 요구되는 회전 레이트가 장치(10)에 의해서 달성될 수 있는 것 보다 더 크게 된다. 그러한 경우에, 도관(430)과 같은 와전류 도관(430)이 특별한 적용예를 위해서 설계될 수 있다.
도시된 와전류 도관(430)은 실리콘 스틸의 라미네이션(lamination)으로서 형성된다. 회전하는 툴(134)에 의해서 생성되는 와전류가 도관(430)에 의해서 수용되고, 수용된 와전류는 다시 공작물(438)의 표면(434) 내로 와전류를 유도한다. 실리콘 스틸 라미네이션이 특별한 자기 툴 및 특별한 공작물을 수용하도록 가공 또는 형성될 수 있다. 도관(430)의 표면(442)은, 희망하는 공기 갭(G)을 두고, 표면(146)의 윤곽과 매칭(match)되도록 형성되는 한편, 도관(430)의 표면(446)은, 희망하는 공기 갭(G)을 두고, 표면(434)의 윤곽과 매칭되도록 형성된다. 자기 배열체의 특별한 구성에 대한 도 18, 19 및 21-26과 관련하여 전술한 동일한 원리가 도관(430)의 표면(446)의 형성에 대해서 적용될 수 있다.
도관(430)의 개별적인 시트 스틸 라미네이션이 도관(430) 내의 중심에 위치된 클램프 배열체(450)에 의해서 캡쳐되고 그리고 함께 홀딩된다. 상부 및 하부 클램프 부재(454 및 458) 각각은 하나 이상의 체결부(462)에 의해서 함께 홀딩된다. 도관(430)은 임의의 적합한 방식으로 공작물 홀더(18)에 고정될 수 있는 고정 지지부(466)에 의해서 지지된다. 도시된 실시예에서, 고정 지지부(466), 도관(430), 공작물 홀더(18) 및 공작물(438)이 모두 고정되어 있는 한편, 자기 툴(134)이 회전된다. 다른 실시예에서, 자기 툴(134)과 공작물(438) 사이의 상대적인 회전이, 공작물 홀더(18), 고정 지지부(466) 및 도관(430)을 회전시킴으로써 달성될 수 있다.
필요한 경우에, 도관(430)이 냉각 시스템에 의해서 냉각될 수 있다. 당업자가 이해할 수 있는 바와 같이, 냉각제가 개별적인 라미네이션 사이에서 순환되어 라미네이션으로부터 열을 제거할 수 있다.
도 30 및 31은 본원 발명을 구현하는 또 다른 자기 툴(470)을 도시한다. 자기 배열체가 상이하다는 것을 제외하고, 자기 툴(470)은 전술한 자기 툴(134)과 많은 측면에서 유사하다. 보다 구체적으로, 툴(470)의 자기 배열체는 복수의 개별적인 영구 자석으로 구성되지 않고, 그 대신에 교번적인 극성의 영역(478)을 제공하도록 자기화된 부재(474) 형태를 취한다. 영역(478)이 개별적인 자석을 대신하나, 개별적인 자석과 실질적으로 동일한 방식으로 기능한다. 즉, 영역(478)은, 공작물(22)에 대한 부재(474)의 회전을 통해서 공작물(22)의 가열을 가능하게 하는 교번적인 극성의 영역을 제공한다.
도 30 및 31에 도시된 바와 같이, 부재(474)는, 특별한 적용예에 따라, 희망하는 형상으로 형성된 또는 가공된 금속 링의 형태를 취한다. 링은 최대의 형상 선택을 허용하기 위해서 분말화된 금속으로 형성될 수 있다. 자기 배열체의 특별한 구성에 대하여 도 18, 19 및 21-26과 관련하여 전술한 것과 동일한 원리가 링의 포메이션 및 구성에 대해서 적용될 수 있다. 추가적으로, 도 27a 및 27b에 대해서 전술한 것과 같은 냉각 시스템이 부재(474)와 함께 이용될 수 있다.
희망하는 형상이 달성되면, 희망하는 수의 자극을 달성하도록 영역(478)의 희망하는 수 및 배향을 제공하기 위해서 금속 링이 자화된다. 도 31에 도시된 바와 같이, 부재(474)가 40개의 영역을 포함하고, 각각의 영역은 방사상으로 배향된 남극-북극 축을 가진다. 인접 영역(478)은 자기 툴(134)과 관련하여 전술한 배열체와 유사한 효과를 달성하도록 방사상 내측 방향으로 대면하는 교번적인 자극을 가진다. 앞서서 상세히 설명한 여러 가지 자기 툴 중의 임의의 자기 툴의 특별한 자석 배열체와 유사한 효과를 달성하기 위해서, 영역(478)의 다른 배향이 부재(474)에 적용될 수 있다는 것을 이해할 수 있을 것이다. 여기에서 그리고 첨부된 청구항들에서 사용된 바와 같이, "자기 배열체"라는 용어는 복수의 개별적인 영구 자석의 이용뿐만 아니라 전술한 개별적인 자석 구성 중 임의의 자석 구성에 의해서 달성되는 것과 같이 구성되고 그와 동일한 효과를 달성하는 영역을 가지는 부재(474)와 같은 자기화된 부재 또는 다른 자기화된 부재의 이용 모두를 고려한 것이다.
자기화된 후에, 부재(474)가 하나 이상의 체결부(486)를 이용하여 자기 툴(470)의 본체 부분(482)에 커플링될 수 있고 그리고 자기 툴(470)의 표면(490)을 형성할 것이다. 다른 수의 자극, 다른 구성 등을 각각 가지는 복수의 다른 부재(474)가, 특별한 경화 적용예에 따라서, 신속하고 용이한 상호교환성을 위해서 여전히 이용가능할 수 있다. 그 대신에, 부재(474)가 다른 적합한 체결 방법을 통해서 본체 부분(482)에 고정될 수 있다. 하나의 다른 실시예에서, 부재(474)가 본체 부분(482) 내에 형성된 환형 채널 내에 위치될 수 있고, 그에 따라 그러한 환형 채널은, 전술한 실시예에서 개별적인 자석이 내부에 배치되는 복수의 포켓과 같은 기능을 할 수 있다. 다시 말해서, 환형 채널은 부재와 표면 사이에 열적 배리어를 제공하는 얇은 벽 부분을 제공할 수 있다. 커버가, 전술한 커버와 유사한 방식으로, 채널 내에서 부재(474)에 고정될 수 있다.
본원 발명의 여러 가지 특징 및 장점이 이하의 청구항들에 기재되어 있다.

Claims (69)

  1. 공작물의 자기 유도 경화용 장치이며,
    자기 툴로서:
    대체로 비-자기 재료로 형성된 본체 부분으로서, 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가지는 본체 부분; 및
    상기 본체 부분의 표면에서 또는 그에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 자기 배열체를 가지는; 자기 툴;
    상기 자기 툴의 표면에 밀접하게 근접하여 상기 공작물을 지지하도록 구성된 공작물 홀더; 그리고
    미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열하기 위해서, 회전 축을 중심으로 공작물 홀더에 대해서 상기 자기 툴을 회전시키기 위한 구동 배열체를 포함하는, 자기 유도 경화용 장치.
  2. 제 1 항에 있어서,
    가열된 공작물이 상기 공작물 홀더에 의해서 지지되는 동안 상기 가열된 공작물을 급랭시키도록 동작가능한 급랭 시스템을 더 포함하는, 자기 유도 경화용 장치.
  3. 제 2 항에 있어서,
    상기 자기 툴 및 상기 공작물 홀더는 상기 공작물을 가열하기 위한 제 1 위치와 상기 공작물을 급랭하기 위한 제 2 위치 사이에서 상기 회전 축에 평행한 방향을 따라 서로에 대해서 이동가능한, 자기 유도 경화용 장치.
  4. 제 2 항에 있어서,
    상기 급랭 시스템은 급랭 매체를 이용하여 공작물을 샤워링하기 위한, 공작물을 둘러싸는 급랭 칼라를 포함하는, 자기 유도 경화용 장치.
  5. 제 2 항에 있어서,
    상기 급랭 시스템은 상기 공작물 내에 적어도 부분적으로 배치되도록 상기 공작물 홀더에 커플링된 도관을 포함하는, 자기 유도 경화용 장치.
  6. 제 5 항에 있어서,
    상기 자기 툴의 본체 부분은, 상기 본체 부분의 표면이 상기 공작물에 밀접하게 근접하여 배치될 때, 상기 도관의 적어도 일부를 수용하도록 구성되고 크기가 정해진 리세스를 포함하는, 자기 유도 경화용 장치.
  7. 제 2 항에 있어서,
    상기 급랭 시스템은 자기 툴과 통합되는, 자기 유도 경화용 장치.
  8. 제 7 항에 있어서,
    상기 자기 툴의 본체 부분은 급랭 매체가 통과하여 유동하는 도관을 형성하는, 자기 유도 경화용 장치.
  9. 제 1 항에 있어서,
    상기 자기 배열체는 상기 표면에서 또는 상기 표면에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성된 복수의 영구 자석을 포함하는, 자기 유도 경화용 장치.
  10. 제 9 항에 있어서,
    상기 본체 부분은, 본체 부분의 벽 부분이 상기 표면과 복수의 포켓의 각각의 사이에 형성되도록, 상기 표면으로부터 이격되고 상기 본체 부분의 내부에 형성된 복수의 포켓을 포함하고, 상기 복수의 자석의 각각은 상기 복수의 포켓의 각각의 하나의 내부에 위치되는, 자기 유도 경화용 장치.
  11. 제 10 항에 있어서,
    상기 벽 부분은 0.05 인치 미만의 두께를 가지는, 자기 유도 경화용 장치.
  12. 제 11 항에 있어서,
    상기 벽 부분은 약 0.02 인치의 두께를 가지는, 자기 유도 경화용 장치.
  13. 제 9 항에 있어서,
    상기 본체 부분은 내부에 형성된 복수의 포켓을 포함하고, 상기 복수의 자석의 각각의 표면이 노출되어 상기 본체 부분의 표면을 적어도 부분적으로 형성하도록 상기 복수의 자석의 각각이 복수의 포켓 중의 각각의 하나 내에 배치되는, 자기 유도 경화용 장치.
  14. 제 1 항에 있어서,
    상기 본체 부분의 표면은 환형 공작물의 내측 표면을 유도 경화하도록 구성된 방사상 외측-대면 원주방향 표면인, 자기 유도 경화용 장치.
  15. 제 1 항에 있어서,
    상기 본체 부분은 환형 공작물의 외측 표면을 유도 경화하도록 구성된 방사상 내측-대면 원주방향 표면인, 자기 유도 경화용 장치.
  16. 제 1 항에 있어서,
    상기 본체 부분의 표면은 환형 공작물의 단부 표면을 유도 경화하도록 축방향-대면 표면인, 자기 유도 경화용 장치.
  17. 제 1 항에 있어서,
    상기 자기 배열체는 가열 중에 공작물의 열 팽창을 수용하도록 구성되는, 자기 유도 경화용 장치.
  18. 제 17 항에 있어서,
    상기 자기 배열체는 제 1 축방향 위치의 제 1 자기 지름, 및 제 2 축방향 위치의 제 2의 상이한 자기 지름을 형성하는, 자기 유도 경화용 장치.
  19. 제 17 항에 있어서,
    상기 자기 배열체는 상기 표면에서 또는 상기 표면에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 복수의 영구 자석을 포함하고, 상기 복수의 자석은 방사상 방향으로 이동되어 자석에 의해서 형성되는 자기 지름을 변화시킬 수 있는, 자기 유도 경화용 장치.
  20. 제 1 항에 있어서,
    상기 자기 툴은 상기 본체 부분에 커플링된 장착 부분을 포함하고, 상기 장착 부분은 스핀들 내에 수용되도록 구성되고 크기가 정해진 장착 샤프트를 포함하고, 그리고 상기 구동 배열체는 상기 스핀들을 회전시키도록 동작가능한 구동 유닛을 포함하는, 자기 유도 경화용 장치.
  21. 제 20 항에 있어서,
    상기 장착 샤프트 및 상기 복수의 자석은 약 0.004 인치 또는 그 미만의 동심도를 가지는, 자기 유도 경화용 장치.
  22. 제 1 항에 있어서,
    상기 본체 부분은 낮은 투자율을 가지는 재료로 제조되는, 자기 유도 경화용 장치.
  23. 제 22 항에 있어서,
    상기 본체 부분은 알루미늄 및 오스테나이트계 스테인리스 스틸 중 하나로 제조되는, 자기 유도 경화용 장치.
  24. 제 1 항에 있어서,
    상기 자기 툴은 적어도 하나의 플럭스 집중부를 더 포함하는, 자기 유도 경화용 장치.
  25. 제 1 항에 있어서,
    상기 자기 배열체는 북극-남극 축을 각각 가지는 복수의 영역을 포함하고, 상기 복수의 영역의 각각의 북극-남극 축이 대체로 방사상인 방향과 대체로 축방향인 방향 중 적어도 하나의 방향으로 연장하도록 상기 자기 배열체가 배열되는, 자기 유도 경화용 장치.
  26. 제 1 항에 있어서,
    상기 자기 배열체는 북극-남극 축을 각각 가지는 복수의 영역을 포함하고, 상기 복수의 영역의 각각의 북극-남극 축이 대체로 원주방향을 따라서 연장하도록 상기 자기 배열체가 배열되는, 자기 유도 경화용 장치.
  27. 제 1 항에 있어서,
    상기 본체의 표면은 환형-형상의 공작물의 내측 표면에 밀접하여 근접하도록 구성된 제 1의 방사상 내측 표면 부분, 및 환형-형상의 공작물의 외측 표면에 밀접하여 근접하도록 구성된 제 2의 외측 표면 부분을 포함하는, 자기 유도 경화용 장치.
  28. 제 27 항에 있어서,
    상기 공작물은 무심 경화되는, 자기 유도 경화용 장치.
  29. 제 27 항에 있어서,
    경화된 케이스가 환형-형상의 공작물의 내측 표면 및 외측 표면 상에 형성되는, 자기 유도 경화용 장치.
  30. 제 1 항에 있어서,
    상기 공작물 홀더는, 회전 축을 중심으로 하는 공작물의 회전을 방지하기에 충분한 그리고 회전 축을 따른 공작물의 병진운동을 방지하기에 충분한 클램핑력으로 공작물을 지지하는, 자기 유도 경화용 장치.
  31. 제 30 항에 있어서,
    상기 공작물 홀더는 상기 공작물이 회전 축을 중심으로 회전하는 것을 방지하기 위해서 상기 공작물을 고정하도록 동작될 수 있는 복수의 패드를 포함하는, 자기 유도 경화용 장치.
  32. 제 31 항에 있어서,
    상기 패드의 각각은 상기 공작물이 상부에 놓이는 돌출부를 포함하는, 자기 유도 경화용 장치.
  33. 제 31 항에 있어서,
    상기 각각의 패드와 상기 공작물 사이의 결합이 전기적으로 비-전도성인 패드 상의 위치에서 이루어지는, 자기 유도 경화용 장치.
  34. 제 33 항에 있어서,
    상기 위치가 비-전도성 재료로 코팅되는, 자기 유도 경화용 장치.
  35. 제 33 항에 있어서,
    상기 위치는 상기 패드에 커플링된 비-전도성 삽입체에 의해서 형성되는, 자기 유도 경화용 장치.
  36. 제 31 항에 있어서,
    상기 패드의 각각은 고정 방향을 따라서 편향되고, 그리고 상기 공작물의 열 팽창은 상기 편향에 반대되는 방향으로 이동되도록 허용된 패드에 의해서 수용되는, 자기 유도 경화용 장치.
  37. 제 30 항에 있어서,
    상기 공작물 홀더는 상기 회전 축을 따른 공작물의 병진운동을 방지하기 위해서 상기 공작물을 고정하도록 동작가능한 클램프를 포함하는, 자기 유도 경화용 장치.
  38. 제 37 항에 있어서,
    상기 클램프와 상기 공작물 사이의 결합은 전기적으로 비-전도성인 클램프 상의 위치에서 이루어지는, 자기 유도 경화용 장치.
  39. 제 38 항에 있어서,
    상기 위치는 비-전도성 재료로 코팅되는, 자기 유도 경화용 장치.
  40. 제 38 항에 있어서,
    상기 클램프는 비-전도성 재료로 제조되는, 자기 유도 경화용 장치.
  41. 제 1 항에 있어서,
    상기 공작물 홀더는 상기 공작물을 접지로부터 전기적으로 절연시키는, 자기 유도 경화용 장치.
  42. 제 1 항에 있어서,
    상기 공작물 홀더는 상기 공작물의 열 팽창을 수용하는 방식으로 상기 공작물을 지지하는, 자기 유도 경화용 장치.
  43. 제 1 항에 있어서,
    상기 공작물 홀더는 상기 자기 툴의 표면으로부터 이격된 거리에서 상기 공작물을 지지하고, 상기 거리는 약 0.07 인치 미만인, 자기 유도 경화용 장치.
  44. 제 42 항에 있어서,
    상기 거리는 약 0.02 인치 내지 약 0.06 인치인, 자기 유도 경화용 장치.
  45. 제 1 항에 있어서,
    방정식 Hz = (nP*RPM)/60에 따라서 적어도 5 kHz의 주파수가 달성되도록, 상기 자기 배열체는 충분한 수의 자극(nP)을 형성하고 그리고 상기 구동 배열체는 충분한 속도(RPM)로 상기 자기 툴을 상기 공작물 홀더에 대해서 회전시키는, 자기 유도 경화용 장치.
  46. 제 45 항에 있어서,
    상기 주파수는 5 kHz 내지 21 kHz인, 자기 유도 경화용 장치.
  47. 제 1 항에 있어서,
    상기 자기 배열체는 상기 공작물에 대한 희망하는 케이스 경화 프로파일에 상응하는 희망 형상의 표면 프로파일을 형성하는, 자기 유도 경화용 장치.
  48. 제 1 항에 있어서,
    상기 자기 배열체는 상기 공작물의 표면 프로파일에 상응하는 희망 형상의 표면 프로파일을 형성하는, 자기 유도 경화용 장치.
  49. 제 1 항에 있어서,
    상기 자기 배열체는 복수의 자기 영역을 포함하도록 자기화되는 부재를 포함하고, 상기 자기 영역은 교번적인 극성의 영역을 형성하는, 자기 유도 경화용 장치.
  50. 제 49 항에 있어서,
    상기 자기화된 부재는 상기 본체 부분에 연결된 링이고, 상기 링은 상기 표면을 형성하는, 자기 유도 경화용 장치.
  51. 제 1 항에 있어서,
    상기 표면에 인접하여 배치되고 상기 자기 툴로부터 상기 공작물의 표면으로 와전류를 전도하도록 구성된 와전류 도관을 더 포함하는, 자기 유도 경화용 장치.
  52. 제 51 항에 있어서,
    상기 와전류 도관은 실리콘 스틸의 라미네이션을 포함하는, 자기 유도 경화용 장치.
  53. 공작물의 자기 유도 경화용 장치이며,
    자기 툴로서:
    대체로 비-자기 재료로 형성된 본체 부분으로서, 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가지는 본체 부분; 및
    상기 본체 부분의 표면에서 또는 그에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 복수의 영구 자석을 가지는; 자기 툴;
    상기 자기 툴의 표면에 밀접하게 근접하여 상기 공작물을 지지하도록 구성된 공작물 홀더; 그리고
    미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열하기 위해서, 회전 축을 중심으로 공작물 홀더에 대해서 상기 자기 툴을 회전시키기 위한 구동 배열체를 포함하고;
    본체 부분의 벽 부분이 상기 표면과 복수의 포켓의 각각의 사이에 형성되도록 상기 본체 부분은 상기 표면으로부터 이격되고 상기 본체 부분의 내부에 형성된 복수의 포켓을 포함하고, 상기 복수의 자석의 각각은 상기 복수의 포켓의 각각의 하나의 내부에 위치되는, 자기 유도 경화용 장치.
  54. 제 53 항에 있어서,
    상기 벽 부분은 0.05 인치 미만의 두께를 가지는, 자기 유도 경화용 장치.
  55. 제 54 항에 있어서,
    상기 벽 부분은 약 0.02 인치의 두께를 가지는, 자기 유도 경화용 장치.
  56. 공작물의 자기 유도 경화용 장치이며,
    자기 툴로서:
    대체로 비-자기 재료로 형성된 본체 부분으로서, 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가지는 본체 부분; 및
    상기 본체 부분의 표면에서 또는 그에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 자기 배열체를 가지는; 자기 툴;
    상기 자기 툴의 표면에 밀접하게 근접하여 상기 공작물을 지지하도록 구성된 공작물 홀더; 그리고
    미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열하기 위해서, 회전 축을 중심으로 공작물 홀더에 대해서 상기 자기 툴을 회전시키기 위한 구동 배열체를 포함하고;
    상기 공작물 홀더는, 상기 공작물 홀더 내의 공작물의 열 팽창을 수용하면서, 회전 축을 중심으로 하는 공작물의 회전을 방지하도록 그리고 회전 축을 따른 공작물의 병진운동을 방지하도록 공작물을 지지하는, 자기 유도 경화용 장치.
  57. 제 56 항에 있어서,
    상기 공작물 홀더는 상기 공작물을 접지로부터 전기적으로 절연시키는, 자기 유도 경화용 장치.
  58. 제 56 항에 있어서,
    상기 공작물 홀더는 상기 공작물이 회전 축을 중심으로 회전하는 것을 방지하기 위해서 상기 공작물을 고정하도록 동작될 수 있는 복수의 패드를 포함하는, 자기 유도 경화용 장치.
  59. 제 58 항에 있어서,
    상기 패드의 각각은 상기 공작물이 상부에 놓이는 돌출부를 포함하는, 자기 유도 경화용 장치.
  60. 제 58 항에 있어서,
    상기 각각의 패드와 상기 공작물 사이의 결합이 전기적으로 비-전도성인 패드 상의 위치에서 이루어지는, 자기 유도 경화용 장치.
  61. 제 60 항에 있어서,
    상기 위치는 비-전도성 재료로 코팅되는, 자기 유도 경화용 장치.
  62. 제 60 항에 있어서,
    상기 위치는 상기 패드에 커플링된 비-전도성 삽입체에 의해서 형성되는, 자기 유도 경화용 장치.
  63. 제 58 항에 있어서,
    상기 패드의 각각은 고정 방향을 따라서 편향되고, 그리고 상기 공작물의 열 팽창은 상기 편향에 반대되는 방향으로 이동되도록 허용된 패드에 의해서 수용되는, 자기 유도 경화용 장치.
  64. 제 56 항에 있어서,
    상기 공작물 홀더는 상기 회전 축을 따른 공작물의 병진운동을 방지하기 위해서 상기 공작물을 고정하도록 동작가능한 클램프를 포함하는, 자기 유도 경화용 장치.
  65. 제 64 항에 있어서,
    상기 클램프와 상기 공작물 사이의 결합은 전기적으로 비-전도성인 클램프 상의 위치에서 이루어지는, 자기 유도 경화용 장치.
  66. 제 65 항에 있어서,
    상기 위치는 비-전도성 재료로 코팅되는, 자기 유도 경화용 장치.
  67. 제 65 항에 있어서,
    상기 클램프는 비-전도성 재료로 제조되는, 자기 유도 경화용 장치.
  68. 공작물의 자기 유도 경화용 장치이며,
    자기 툴로서:
    대체로 비-자기 재료로 형성된 본체 부분으로서, 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가지는 본체 부분; 및
    상기 본체 부분의 표면에서 또는 그에 인접하여 상기 본체 부분에 커플링되고 그리고 교번적인 극성의 영역을 제공하도록 구성되어 다수의 자극(nP)을 형성하는 자기 배열체를 가지는; 자기 툴;
    상기 자기 툴의 표면에 밀접하게 근접하여 상기 공작물을 지지하도록 구성된 공작물 홀더; 그리고
    미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열하기 위해서, 회전 축을 중심으로 공작물 홀더에 대해서 상기 자기 툴을 소정 속도(RPM)로 회전시키기 위한 구동 배열체를 포함하고;
    방정식 Hz = (nP*RPM)/60에 따라서 적어도 5 kHz의 주파수가 달성되는, 자기 유도 경화용 장치.
  69. 공작물의 자기 유도 경화용 장치이며,
    자기 툴로서:
    대체로 비-자기 재료로 형성된 본체 부분으로서, 경화되는 공작물에 밀접하게 근접하여 배치되도록 구성된 표면을 가지는 본체 부분; 및
    상기 본체 부분의 표면에서 또는 그에 인접하여 상기 본체 부분에 커플링되고 교번적인 극성의 영역을 제공하도록 구성되는 복수의 영구 자석을 가지는; 자기 툴;
    상기 자기 툴의 표면에 밀접하게 근접하여 상기 공작물을 지지하도록 구성된 공작물 홀더;
    미세조직 변태를 통한 공작물의 경화를 초래하는 공작물의 오스테나이트 영역 내의 온도를 달성하도록 공작물을 유도 가열하기 위해서, 회전 축을 중심으로 공작물 홀더에 대해서 상기 자기 툴을 회전시키기 위한 구동 배열체; 그리고
    가열된 공작물이 공작물 홀더에 의해서 지지되는 동안 상기 가열된 공작물을 급랭시키도록 동작될 수 있는 급랭 시스템을 포함하는, 자기 유도 경화용 장치.
KR1020137012173A 2010-10-11 2010-10-11 유도 경화 장치 KR20130139997A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/052154 WO2012050552A1 (en) 2010-10-11 2010-10-11 Apparatus for induction hardening

Publications (1)

Publication Number Publication Date
KR20130139997A true KR20130139997A (ko) 2013-12-23

Family

ID=44063279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137012173A KR20130139997A (ko) 2010-10-11 2010-10-11 유도 경화 장치

Country Status (5)

Country Link
EP (2) EP2619337B1 (ko)
JP (1) JP2014500906A (ko)
KR (1) KR20130139997A (ko)
CN (1) CN103348019A (ko)
WO (1) WO2012050552A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014011230U1 (de) 2013-11-18 2018-09-12 Lg Chem. Ltd. Polymer auf Olefinbasis mit ausgezeichneter Verarbéitbarkeit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572905B2 (ja) * 2014-11-06 2019-09-11 日本製鉄株式会社 渦電流式発熱装置
ITUB20155468A1 (it) * 2015-11-11 2017-05-11 Presezzi Extrusion S P A Forno ad induzione magnetica per riscaldare billette metalliche in materiali non ferrosi da sottoporre a estrusione
JP6120192B1 (ja) 2016-07-25 2017-04-26 Tsk株式会社 電磁誘導加熱装置および軽合金ホイール製造方法
EP3520565B1 (en) 2016-09-27 2020-07-22 Novelis, Inc. Rotating magnet heat induction
DE202017007387U1 (de) 2016-09-27 2021-02-11 Novelis Inc. Kompakte kontinuierliche Glühlösungswärmebehandlung
JP6515397B1 (ja) * 2018-08-07 2019-05-22 Tsk株式会社 電磁誘導加熱装置
CN114134298B (zh) * 2021-12-10 2024-01-12 陕西鑫泰工业炉机械设备有限公司 一种智能热处理生产线
CN114737042B (zh) * 2022-04-18 2024-06-11 福建龙溪轴承(集团)股份有限公司 一种关节轴承内圈外球面的高频感应热处理装置
CN114854947B (zh) * 2022-05-18 2022-12-09 烟台新浩阳轴承有限公司 一种轴承感应淬火扫描无软带起始区域热处理工艺

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH416879A (de) * 1963-04-01 1966-07-15 Baermann Max Ofen zur Erwärmung von metallischen Teilen
JPS57169522A (en) * 1981-04-09 1982-10-19 Mitsubishi Electric Corp Space heater
FR2516641A1 (fr) * 1981-11-13 1983-05-20 Cem Comp Electro Mec Dispositif de chauffage par induction magnetique de produits metalliques rectangulaires plats defilant dans le sens de leur longueur
FR2536943A1 (fr) * 1982-11-26 1984-06-01 Saphymo Stel Procede et dispositif de chauffage par induction d'une piece ferromagnetique a symetrie axiale et a contour irregulier
JPS62127419A (ja) * 1985-11-27 1987-06-09 High Frequency Heattreat Co Ltd 焼入れサイクルタイム短縮方法
US4894501A (en) * 1986-06-25 1990-01-16 Tocco, Inc. Method and apparatus for induction heating of gear teeth
US4675488A (en) * 1986-06-25 1987-06-23 Tocco, Inc. Method for hardening gears by induction heating
JPS6486474A (en) * 1987-09-29 1989-03-31 Sumitomo Heavy Industries Induction heating device
JPH04112485A (ja) * 1990-08-31 1992-04-14 Berumateitsuku:Kk 磁気利用の導体加熱方法並びにその装置
JPH0582248A (ja) * 1991-08-08 1993-04-02 Berumateitsuku:Kk 誘導加熱方法並びにその装置
US5234201A (en) * 1992-06-29 1993-08-10 General Motors Corporation Contour hardening apparatus
JP2709556B2 (ja) * 1992-12-11 1998-02-04 富士電子工業株式会社 薄肉リング状ワークの高周波焼入方法
JP2000087135A (ja) * 1998-09-09 2000-03-28 High Frequency Heattreat Co Ltd 足付軸部材の誘導加熱焼入装置
JP3582783B2 (ja) * 2000-09-08 2004-10-27 電気興業株式会社 トリポート型等速ジョイントの筒状ハウジング部材の内周面の高周波移動焼入方法およびその方法に使用する高周波コイル
ITMI20010835A1 (it) * 2001-04-19 2002-10-19 Paolo Arnaldo Rosastro Dispositivo per la trasformazione di energia magnetica in energia termica particolarmente per operare il riscaldamento di materiale allo sta
EP1400603B1 (en) * 2001-06-07 2009-03-18 Komatsu Ltd. Crawler bushing and method and device for producing the same
US6576877B2 (en) * 2001-09-14 2003-06-10 The Boeing Company Induction processing with the aid of a conductive shield
JP2008115285A (ja) * 2006-11-06 2008-05-22 Mazda Motor Corp 金属部材の接合方法およびその装置
CN201056580Y (zh) * 2007-07-03 2008-05-07 中冶南方工程技术有限公司 组合式细长轴类零件淬火机床
WO2009126850A1 (en) * 2008-04-11 2009-10-15 The Timken Company Inductive heating using permanent magnets for hardening of gear teeth and components alike
FI20095213A0 (fi) * 2009-03-04 2009-03-04 Prizztech Oy Induktiokuumennusmenetelmä ja -laitteisto
FI122466B (fi) * 2009-08-21 2012-01-31 Hollming Oy Menetelmä työstettävän metallikappaleen kuumentamiseksi ja induktiokuumennustyökalu

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014011230U1 (de) 2013-11-18 2018-09-12 Lg Chem. Ltd. Polymer auf Olefinbasis mit ausgezeichneter Verarbéitbarkeit

Also Published As

Publication number Publication date
EP3199647A1 (en) 2017-08-02
CN103348019A (zh) 2013-10-09
JP2014500906A (ja) 2014-01-16
EP2619337B1 (en) 2017-03-15
EP3199647B1 (en) 2019-07-31
EP2619337A1 (en) 2013-07-31
WO2012050552A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
US9920392B2 (en) Apparatus for induction hardening
KR20130139997A (ko) 유도 경화 장치
CN102143824B (zh) 用于夹紧和松开工具的感应夹紧装置
US10034331B2 (en) Controlled electric induction heating of an electrically conductive workpiece in a solenoidal coil with flux compensators
US20080099469A1 (en) Electric induction heat treatment of an end of tubular material
US8475610B2 (en) Induction hardening system and method
JP5774589B2 (ja) ワークピースを加熱するための方法および対応する工具
US8614409B2 (en) Induction heating device with electromagnetic diverter
EP3011063B1 (en) Inductor for single-shot induction heating of complex workpieces
JP2005330545A (ja) 高周波焼入方法および装置
CA3162918A1 (en) Split multiple coil electric induction heat treatment systems for simultaneous heating of multiple features of a bearing component
JP3730192B2 (ja) 内周面焼入装置
US6765181B1 (en) Inductor assembly
JP7305646B2 (ja) 真空ポンプのための磁気シールド
Doyon et al. Low-distortion, high-quality induction hardening of crankshafts and camshafts
JP2008169431A (ja) 鋼球の熱処理装置および鋼球の熱処理方法
CN219305060U (zh) 一种加热效应动态局部可调的磁加热装置
CN116926303A (zh) 一种薄壁圆管退火硬度梯度控制装置
WO2023211718A1 (en) Magnetically enhanced induction heat treating application
JP2015168837A (ja) 焼き入れコイル
UA25365U (en) Device for induction heating the irregular form parts

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid