KR102410568B1 - 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화 - Google Patents

인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화 Download PDF

Info

Publication number
KR102410568B1
KR102410568B1 KR1020150090556A KR20150090556A KR102410568B1 KR 102410568 B1 KR102410568 B1 KR 102410568B1 KR 1020150090556 A KR1020150090556 A KR 1020150090556A KR 20150090556 A KR20150090556 A KR 20150090556A KR 102410568 B1 KR102410568 B1 KR 102410568B1
Authority
KR
South Korea
Prior art keywords
susceptor
distance
processing fixture
top surface
axis
Prior art date
Application number
KR1020150090556A
Other languages
English (en)
Korean (ko)
Other versions
KR20160001683A (ko
Inventor
케빈 그리핀
아브라함 라비드
알렉스 민코비치
소메쉬 칸델왈
조셉 유도브스키
토드 이건
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20160001683A publication Critical patent/KR20160001683A/ko
Priority to KR1020220072232A priority Critical patent/KR102567811B1/ko
Application granted granted Critical
Publication of KR102410568B1 publication Critical patent/KR102410568B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68309Auxiliary support including alignment aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
KR1020150090556A 2014-06-27 2015-06-25 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화 KR102410568B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220072232A KR102567811B1 (ko) 2014-06-27 2022-06-14 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462018224P 2014-06-27 2014-06-27
US62/018,224 2014-06-27
US14/471,884 US10196741B2 (en) 2014-06-27 2014-08-28 Wafer placement and gap control optimization through in situ feedback
US14/471,884 2014-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220072232A Division KR102567811B1 (ko) 2014-06-27 2022-06-14 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화

Publications (2)

Publication Number Publication Date
KR20160001683A KR20160001683A (ko) 2016-01-06
KR102410568B1 true KR102410568B1 (ko) 2022-06-16

Family

ID=54929888

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020150090556A KR102410568B1 (ko) 2014-06-27 2015-06-25 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화
KR1020220072232A KR102567811B1 (ko) 2014-06-27 2022-06-14 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220072232A KR102567811B1 (ko) 2014-06-27 2022-06-14 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화

Country Status (4)

Country Link
US (1) US10196741B2 (zh)
KR (2) KR102410568B1 (zh)
CN (2) CN105225985B (zh)
TW (1) TWI658534B (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658161B2 (en) * 2010-10-15 2020-05-19 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
JP6134191B2 (ja) * 2013-04-07 2017-05-24 村川 惠美 回転型セミバッチald装置
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
JP6305314B2 (ja) * 2014-10-29 2018-04-04 東京エレクトロン株式会社 成膜装置およびシャワーヘッド
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
KR102420015B1 (ko) * 2015-08-28 2022-07-12 삼성전자주식회사 Cs-ald 장치의 샤워헤드
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
CN109219863B (zh) * 2016-06-03 2021-02-09 应用材料公司 基板距离监控
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
JP6640781B2 (ja) * 2017-03-23 2020-02-05 キオクシア株式会社 半導体製造装置
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10361099B2 (en) * 2017-06-23 2019-07-23 Applied Materials, Inc. Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) * 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10847393B2 (en) * 2018-09-04 2020-11-24 Applied Materials, Inc. Method and apparatus for measuring process kit centering
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
CN109671637B (zh) * 2018-11-08 2021-05-07 北京北方华创微电子装备有限公司 一种晶圆检测装置及方法
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
GB201902032D0 (en) * 2019-02-14 2019-04-03 Pilkington Group Ltd Apparatus and process for determining the distance between a glass substrate and a coater
US11133205B2 (en) * 2019-05-24 2021-09-28 Applied Materials, Inc. Wafer out of pocket detection
EP3842732A4 (en) * 2019-08-02 2022-05-04 Shenzhen Yuejiang Technology Co., Ltd. HOUSING, HOUSING MODULE AND MECHANICAL ARM OF MECHANICAL EQUIPMENT, AND ROBOT
JP7330027B2 (ja) * 2019-09-13 2023-08-21 株式会社Screenホールディングス 基板処理装置、および、基板処理方法
JP7098677B2 (ja) * 2020-03-25 2022-07-11 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
EP3905311A1 (de) * 2020-04-27 2021-11-03 Siltronic AG Verfahren und vorrichtung zum abscheiden einer epitaktischen schicht auf einer substratscheibe aus halbleitermaterial
DE102020119873A1 (de) 2020-07-28 2022-02-03 Aixtron Se Verfahren zum Erkennen fehlerhafter oder fehlerhaft in einem CVD-Reaktor eingesetzte Substrate
US20220108907A1 (en) * 2020-10-05 2022-04-07 Applied Materials, Inc. Semiconductor substrate support leveling apparatus
JP7452458B2 (ja) * 2021-02-16 2024-03-19 株式会社デンソー 半導体装置の製造装置
CN113117988B (zh) * 2021-03-08 2022-06-07 同济大学 一种用于座便器杯体与座圈粘接面的点胶路径控制方法
JP2022139625A (ja) * 2021-03-12 2022-09-26 東京エレクトロン株式会社 真空処理装置および傾き調整方法
KR102571198B1 (ko) * 2023-06-16 2023-08-29 디에스이테크 주식회사 동작상태 기반의 진공앵글밸브 진단 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143412A1 (en) 2003-01-16 2004-07-22 Donald James J. Out-of-pocket detection system using wafer rotation as an indicator
JP2010541242A (ja) 2007-09-26 2010-12-24 イーストマン コダック カンパニー 反応性ガスを空間的に分離するガス配送ヘッドを用い、配送ヘッドを通過する基板の移動を伴う、薄膜形成のための方法及び堆積装置
WO2011151996A1 (ja) * 2010-06-01 2011-12-08 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539759A (en) 1968-11-08 1970-11-10 Ibm Susceptor structure in silicon epitaxy
JPH0697676B2 (ja) 1985-11-26 1994-11-30 忠弘 大見 ウエハサセプタ装置
JPH081922B2 (ja) 1991-01-25 1996-01-10 株式会社東芝 ウェハ−保持装置
US6197117B1 (en) 1997-07-23 2001-03-06 Applied Materials, Inc. Wafer out-of-pocket detector and susceptor leveling tool
AU2001288225A1 (en) * 2000-07-24 2002-02-05 The University Of Maryland College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation
US20030209326A1 (en) * 2002-05-07 2003-11-13 Mattson Technology, Inc. Process and system for heating semiconductor substrates in a processing chamber containing a susceptor
TWI307526B (en) * 2002-08-06 2009-03-11 Nikon Corp Supporting device and the mamufacturing method thereof, stage device and exposure device
KR20040022278A (ko) * 2002-09-03 2004-03-12 삼성전자주식회사 반도체를 제조하기 위한 장치
US6823753B1 (en) 2003-05-16 2004-11-30 Asm America, Inc. Sensor signal transmission from processing system
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
JP4916890B2 (ja) * 2005-04-19 2012-04-18 株式会社荏原製作所 基板処理装置及び基板処理方法
US20080246493A1 (en) * 2007-04-05 2008-10-09 Gardner Delrae H Semiconductor Processing System With Integrated Showerhead Distance Measuring Device
JP5156446B2 (ja) 2008-03-21 2013-03-06 株式会社Sumco 気相成長装置用サセプタ
DE102008057005A1 (de) * 2008-11-11 2010-05-12 Jonas & Redmann Automationstechnik Gmbh Verfahren zum Positionieren und/oder Führen mindestens eines beliebigen Prozesskopfes für die Metallisierung von dünnen Substraten in einem definierten Abstand über der Substratoberfläche
DE102009010555A1 (de) 2009-02-25 2010-09-02 Siltronic Ag Verfahren zum Erkennen einer Fehllage einer Halbleiterscheibe während einer thermischen Behandlung
JP5107285B2 (ja) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
US9870937B2 (en) 2010-06-09 2018-01-16 Ob Realty, Llc High productivity deposition reactor comprising a gas flow chamber having a tapered gas flow space
US20120225191A1 (en) 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
US20130196078A1 (en) 2012-01-31 2013-08-01 Joseph Yudovsky Multi-Chamber Substrate Processing System
US20130210238A1 (en) 2012-01-31 2013-08-15 Joseph Yudovsky Multi-Injector Spatial ALD Carousel and Methods of Use
KR20150130524A (ko) * 2013-03-15 2015-11-23 어플라이드 머티어리얼스, 인코포레이티드 Ald 플래튼 서셉터의 위치 및 온도 모니터링

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143412A1 (en) 2003-01-16 2004-07-22 Donald James J. Out-of-pocket detection system using wafer rotation as an indicator
JP2010541242A (ja) 2007-09-26 2010-12-24 イーストマン コダック カンパニー 反応性ガスを空間的に分離するガス配送ヘッドを用い、配送ヘッドを通過する基板の移動を伴う、薄膜形成のための方法及び堆積装置
WO2011151996A1 (ja) * 2010-06-01 2011-12-08 パナソニック株式会社 プラズマ処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
KR20160001683A (ko) 2016-01-06
KR102567811B1 (ko) 2023-08-16
TW201606920A (zh) 2016-02-16
CN110265328B (zh) 2023-09-01
KR20220088394A (ko) 2022-06-27
US10196741B2 (en) 2019-02-05
US20150376782A1 (en) 2015-12-31
CN110265328A (zh) 2019-09-20
CN105225985A (zh) 2016-01-06
CN105225985B (zh) 2019-07-05
TWI658534B (zh) 2019-05-01

Similar Documents

Publication Publication Date Title
KR102567811B1 (ko) 인시튜 피드백을 통한 웨이퍼 배치 및 갭 제어 최적화
US11430680B2 (en) Position and temperature monitoring of ALD platen susceptor
JP6412983B2 (ja) 間隙検出用のインテリジェントなハードストップと制御機構
US10648788B2 (en) Substrate distance monitoring
JP7443430B2 (ja) リアルタイムの力および膜応力制御を備えた基板支持体
US9245786B2 (en) Apparatus and methods for positioning a substrate using capacitive sensors
KR20190130971A (ko) 폐쇄 루프 척킹력 제어를 이용한 실시간 모니터링
US9490154B2 (en) Method of aligning substrate-scale mask with substrate
US7651873B1 (en) Method relating to the accurate positioning of a semiconductor wafer
TW202314778A (zh) 用於決定環在處理套件內的位置的方法和裝置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant