KR101091546B1 - Anode active material for lithium secondary battery And Lithium secondary battery comprising the same - Google Patents

Anode active material for lithium secondary battery And Lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101091546B1
KR101091546B1 KR1020090036349A KR20090036349A KR101091546B1 KR 101091546 B1 KR101091546 B1 KR 101091546B1 KR 1020090036349 A KR1020090036349 A KR 1020090036349A KR 20090036349 A KR20090036349 A KR 20090036349A KR 101091546 B1 KR101091546 B1 KR 101091546B1
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Application number
KR1020090036349A
Other languages
Korean (ko)
Other versions
KR20100117731A (en
Inventor
박병천
오정훈
염철
한경희
한정민
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR1020090036349A priority Critical patent/KR101091546B1/en
Priority to JP2010101929A priority patent/JP2010257982A/en
Priority to CN201010170254A priority patent/CN101872861A/en
Publication of KR20100117731A publication Critical patent/KR20100117731A/en
Application granted granted Critical
Publication of KR101091546B1 publication Critical patent/KR101091546B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/10Compounds containing silicon, fluorine, and other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명에 따른 탄소계 음극 활물질을 포함하는 리튬 이차전지용 음극 활물질은 Li2SiF6를 더 포함하는 것을 특징으로 한다. Li2SiF6를 포함하는 본 발명에 따른 리튬 이차전지용 음극 활물질은 리튬 이차전지의 제조에 사용되어 향상된 충방전 효율과 사이클 특성을 나타낼 수 있다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same. The negative electrode active material for a lithium secondary battery including the carbon-based negative electrode active material according to the present invention is characterized in that it further comprises Li 2 SiF 6 . The negative electrode active material for a lithium secondary battery according to the present invention including Li 2 SiF 6 may be used to manufacture a lithium secondary battery and may exhibit improved charge and discharge efficiency and cycle characteristics.

이차전지, 음극 활물질 Secondary Battery, Anode Active Material

Description

리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지{Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}

본 발명은 리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는, 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있는 리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same, which can improve charge and discharge efficiency and cycle characteristics of a battery. It is about.

최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고 용량인 2차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 2차 전지는 경량이고 고 에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 2차 전지의 성능 향상을 위한 연구 개발 노력이 활발하게 진행되고 있다.Recently, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, and electric vehicles, the demand for small, lightweight, and relatively high capacity secondary batteries is rapidly increasing. In particular, lithium secondary batteries have attracted attention as a driving power source for portable devices due to their light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.

리튬 2차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.Lithium secondary batteries are used when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic or polymer electrolyte is charged between a negative electrode and a positive electrode made of an active material capable of intercalations and deintercalation of lithium ions. Produces electrical energy by oxidation and reduction reactions.

리튬 2차 전지의 양극 활물질로는 리튬 코발트 옥사이드(LiCoO2), 리튬 니켈 옥사이드(LiNiO2), 리튬 망간 옥사이드(LiMnO2) 등과 같은 전이금속 화합물이 주로 사용된다. As a cathode active material of a lithium secondary battery, transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 ), and the like are mainly used.

그리고 음극 활물질로는 일반적으로 연화 정도가 큰 천연흑연이나 인조흑연과 같은 결정질계 탄소재료, 또는 1000 ~ 1500℃의 낮은 온도에서 탄화수소나 고분자 등을 탄화시켜 얻은 수도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 가지는 비정질계(low crystalline) 탄소재료가 사용된다.In general, the negative electrode active material is a crystalline carbon material such as natural graphite or artificial graphite having a high degree of softening, or a pseudo-graphite structure obtained by carbonizing hydrocarbons or polymers at a low temperature of 1000 to 1500 ° C, or A low crystalline carbon material having a turbostatic structure is used.

하지만, 이러한 흑연과 같은 탄소계 음극 활물질을 사용하는 경우에는, 전해액 성분이 흑연 표면에서 분해되어 흑연표면에 LiF의 피막이 형성되어 전지의 충방전 효율을 저하시키는 원인이 된다. 또한 표면에 두꺼운 피막이 형성됨으로써 임피던스가 상승하여 율별(c-rate) 특성도 저하되게 된다.However, in the case of using such a carbon-based negative electrode active material such as graphite, the electrolyte component is decomposed on the graphite surface to form a film of LiF on the graphite surface, which causes a decrease in charge and discharge efficiency of the battery. In addition, since a thick film is formed on the surface, the impedance is increased, thereby decreasing the c-rate characteristic.

이러한 문제를 해결하기 위해, 한국공개 제2006-0074808호는 규소를 함유하는 음극 활물질을 개시하고 있다. 그러나, 한국공개 제2006-0074808호에서는 규소가 약 30질량% 내지 70질량% 로 함유되는 음극 활물질을 개시하고 있는데, 이렇게 규소 함유랑이 높을 경우 규소 자체로의 음극반응이 진행되어 탄소재에 비해 충방전 효율이 급감하는 단점이 있다.In order to solve this problem, Korean Laid-Open Publication No. 2006-0074808 discloses a negative active material containing silicon. However, Korean Laid-Open Patent Publication No. 2006-0074808 discloses a negative active material containing about 30% by mass to 70% by mass of silicon. There is a disadvantage that the discharge efficiency is sharply reduced.

따라서, 탄소재의 단점을 극복할 수 있는 새로운 음극 활물질에 대한 연구가 여전히 요구되고 있다.Therefore, there is still a need for a study on a new negative electrode active material that can overcome the disadvantages of the carbon material.

이에 본 발명은 LiF의 생성을 억제하여 우수한 전지 성능을 발휘할 수 있는 새로운 음극 활물질을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a new negative electrode active material that can exhibit excellent battery performance by suppressing the generation of LiF.

또한, 본 발명의 다른 목적은 상기 음극 활물질을 사용하여 제조된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공하는데 있다.In addition, another object of the present invention to provide a lithium secondary battery negative electrode and a lithium secondary battery comprising the same prepared using the negative electrode active material.

상기 과제를 해결하기 위하여, 본 발명에 따라 탄소계 음극 활물질을 포함하는 리튬 이차전지용 음극 활물질은, Li2SiF6를 더 포함하는 것을 특징으로 한다.In order to achieve the above object, according to the invention The negative active material including a carbon-based negative active material is characterized in that it further comprises a Li 2 SiF 6.

본 발명의 음극 활물질에 있어서, Li2SiF6는 탄소계 음극 활물질 100 중량부 대비 0.1 내지 10 중량부로 포함될 수 있으나, 이에 한정되는 것은 아니다.In the negative electrode active material of the present invention, Li 2 SiF 6 may be included in 0.1 to 10 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material, but is not limited thereto.

또한, 본 발명의 음극 활물질에 있어서, 전술한 탄소계 음극 활물질은 심재 탄소재의 엣지 일부 또는 전부에 탄화물층이 코팅되어 형성될 수 있으며, 상기 심재 탄소재는 고결정성의 구상 천연흑연이거나, 타원형상, 비늘상, 휘스커상 또는 파쇄상을 갖는 천연흑연, 인조흑연, 메소카본마이크로 비즈, 메소페즈 피치 미분, 등방성 피치 미분, 수지탄, 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소 미분으로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물일 수 있으나, 이에 한정되는 것은 아니다. 그리고, 상기 탄화물층은 상기 심재 탄소재에 석탄계 또는 석유계로부터 유래하는 피치, 타르 또는 이들의 혼합물을 코팅한 후 탄화 소성하여 형성한 저결정성 탄화물층일 수 있다.In addition, in the negative electrode active material of the present invention, the carbon-based negative electrode active material may be formed by coating a carbide layer on part or all of the edges of the core carbon material, and the core carbon material may be spherical natural graphite or elliptical in high crystallinity. Natural graphite, artificial graphite, mesocarbon micro beads, mesopez pitch fine powder, isotropic pitch fine powder, resinous charcoal, and pseudo-graphite structure or turbostraticular structure having scaly, whisker or crushed shape It may be any one or a mixture thereof selected from the group consisting of low crystalline carbon fine powder having, but is not limited thereto. The carbide layer may be a low crystalline carbide layer formed by coating a core carbon material with a pitch, tar, or a mixture thereof derived from coal or petroleum, and carbonizing and firing the same.

또한 선택적으로, 본 발명의 음극 활물질에 있어서, 전술한 탄소계 음극 활물질은 인조흑연일 수 있다.Also optionally, in the negative electrode active material of the present invention, the above-described carbon-based negative electrode active material may be artificial graphite.

본 발명에 따른 음극 활물질의 제조방법은, 예를 들면 탄소계 음극 활물질과 Li2SiF6를 혼합하고 불활성 분위기에서 소성시키는 단계를 포함한다.The method for producing a negative electrode active material according to the present invention includes, for example, mixing the carbon-based negative electrode active material and Li 2 SiF 6 and firing in an inert atmosphere.

전술한 본 발명의 음극 활물질은 리튬 이차전지용 음극 및 리튬 이차전지에 사용될 수 있다.The negative electrode active material of the present invention described above can be used in the negative electrode for lithium secondary batteries and lithium secondary batteries.

본 발명의 리튬 이차전지용 음극 활물질은 탄소계 음극 활물질과 Li2SiF6가 혼합되어 형성됨으로써, 음극 활물질 표면과 구조를 안정화 시켜, 비가역 용량의 주요 원인인 유기전해액 분해반응을 억제할 수 있고, 충방전 중에 전해질이 산화되어 생성되는 산의 영향력을 감소시켜 전지의 효율 및 사이클 특성을 개선할 수 있다.The negative electrode active material for a lithium secondary battery of the present invention is formed by mixing a carbon-based negative electrode active material and Li 2 SiF 6 , thereby stabilizing the surface and structure of the negative electrode active material, thereby suppressing an organic electrolyte solution decomposition reaction, which is a main cause of irreversible capacity, By reducing the influence of the acid produced by oxidation of the electrolyte during discharge, it is possible to improve the efficiency and cycle characteristics of the battery.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미 와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. Based on the principle that the present invention should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

전술한 바와 같이, 본 발명의 음극 활물질은 종래의 탄소계 음극 활물질에 Li2SiF6가 더 포함된 것을 특징으로 한다. 통상적으로 사용되는 탄소계 음극 활물질로서 대표적인 것은 초도 용량이 우수한 천연흑연이다. 하지만, 천연흑연은 효율과 사이클 용량이 저하되는 단점이 있으므로, 이를 극복하기 위해 천연흑연에 저결정성 탄소를 피복하여 사용하기도 한다. As described above, the negative electrode active material of the present invention is characterized in that Li 2 SiF 6 is further included in the conventional carbon-based negative electrode active material. A typical carbon-based negative electrode active material is natural graphite having excellent initial capacity. However, natural graphite has a disadvantage in that efficiency and cycle capacity are reduced, so that low crystalline carbon may be coated on natural graphite to overcome this problem.

그러나, 탄소재 자체가 갖는 문제점을 극복하기에는 한계가 있으며, 그에 따라 본 발명의 음극 활물질은 Li2SiF6를 더 포함한다. 본 발명의 음극 활물질에 포함되는 Li2SiF6는 충방전이 이루어질 때 리튬 이온의 이동을 원활히 하고, 전해액의 분해반응으로 인한 LiF가 형성되기 전에 LixSiFy의 형태를 유지하여 LiF의 형성으로 인한 셀 저항의 증가를 억제한다.However, there is a limit to overcome the problems of the carbon material itself, and thus the negative electrode active material of the present invention further includes Li 2 SiF 6 . Li 2 SiF 6 included in the negative electrode active material of the present invention facilitates the movement of lithium ions during charge and discharge, and maintains the form of Li x SiF y to form LiF before LiF is formed due to the decomposition reaction of the electrolyte. Suppresses the increase in cell resistance caused.

본 발명에 따라 음극 활물질에 포함되는 Li2SiF6의 함량은 함께 사용되는 탄소재 음극 활물질의 구체적인 종류나 리튬 이차전지의 용도 등에 따라 다양하게 채택될 수 있다. 예를 들면, 탄소계 음극 활물질 100 중량부 대비 0.1 내지 10 중량부로 혼합될 수 있으나, 이에 한정되는 것은 아니다. Li2SiF6의 함량이 0.1 중량부 미만이면 Li2SiF6의 사용으로 인한 성능 향상이 미미하며, 10 중량부 초과이면 전지 제조 시 저항 증가를 가져올 수 있다.The content of Li 2 SiF 6 included in the negative electrode active material according to the present invention may be variously selected depending on the specific type of the carbonaceous negative electrode active material used together or the use of the lithium secondary battery. For example, the amount may be 0.1 to 10 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material, but is not limited thereto. If the content of Li 2 SiF 6 is less than 0.1 parts by weight, the performance improvement due to the use of Li 2 SiF 6 is insignificant, and if it is more than 10 parts by weight, resistance may be increased during battery manufacturing.

본 발명의 음극 활물질에 있어서, Li2SiF6와 함께 사용될 수 있는 탄소재 음 극 활물질은 당분야에서 음극 활물질로 통상적으로 사용되는 탄소재라면 특별한 제한은 없다. 상기 탄소재 음극 활물질의 예를 들면, 엣지 일부 또는 전부에 탄화물층이 코팅된 심재 탄소재; 또는 인조흑연 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.In the negative electrode active material of the present invention, the carbon material negative electrode active material that can be used with Li 2 SiF 6 is not particularly limited as long as it is a carbon material commonly used as a negative electrode active material in the art. For example, a core carbon material having a carbide layer coated on part or all of the edges of the carbon material negative electrode active material; Or artificial graphite may be used, but is not limited thereto.

상기 본 발명에 따른 탄소재 음극 활물질에 있어서, 상기 심재 탄소재는 구상의 고결정성 천연흑연일 수 있다. 선택적으로, 상기 심재 탄소재는 타원형상, 파쇄상, 비늘상, 휘스커상 등을 갖는 천연흑연, 메소카본마이크로 비즈, 메소페즈 피치 미분, 등방성 피치 미분, 수지탄, 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소 미분으로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물일 수도 있다.In the carbon material anode active material according to the present invention, the core carbon material may be spherical high crystalline natural graphite. Optionally, the core carbon material may be formed of natural graphite having an elliptical shape, a crushed shape, a scale shape, a whisker shape, or the like, mesocarbon micro beads, mesopeze pitch fine powder, isotropic pitch fine powder, resin charcoal, and pseudo-graphite. It may be any one selected from the group consisting of low crystalline carbon fine powder having a structure or a turbostrattic structure or a mixture thereof.

바람직하게, 상기 탄화물층은 심재 탄소재에 석탄계 또는 석유계로부터 유래하는 피치, 타르 또는 이들의 혼합물을 코팅한 후 탄화 소성하여 형성한 저결정성 탄화물층이다. 여기서, 저결정성이라 함은 심재 탄소재에 비해 탄화물층의 결정화도가 낮다는 것을 의미한다. 탄화물층이 심재 탄소재보다 결정성이 낮으면, 심재 탄소재의 엣지 부분에서 전해액의 분해반응이 유발되는 것을 효과적으로 방지할 수 있다. 또한 전극 제조 공정 시 압착성 등의 공정성을 향상시킬 수 있다.Preferably, the carbide layer is a low crystalline carbide layer formed by coating a core carbon material with a pitch, tar or a mixture thereof derived from coal-based or petroleum-based carbonized and calcined. Here, low crystallinity means that the carbide layer has a lower crystallinity than the core carbon material. If the carbide layer is lower in crystallinity than the core carbon material, it is possible to effectively prevent the decomposition reaction of the electrolyte from occurring at the edge portion of the core carbon material. In addition, it is possible to improve processability such as compressibility in the electrode manufacturing process.

본 발명의 리튬 이차전지용 음극 활물질은 전술한 탄소재 음극 활물질에 Li2SiF6를 혼합하고 산화성 분위기, 환원성 분위기 또는 불활성 분위기에서 소성하는 단계를 통해 제조될 수 있다.The negative electrode active material for a lithium secondary battery of the present invention may be prepared by mixing Li 2 SiF 6 with the carbon material negative electrode active material and firing in an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere.

본 발명의 리튬 이차전지용 음극 활물질의 제조방법에 있어서, 탄소재 음극 활물질과 Li2SiF6의 혼합 방법은 건식 혹은 습식 등 통상적인 방법으로 수행될 수 있다.In the manufacturing method of the negative electrode active material for a lithium secondary battery of the present invention, the mixing method of the carbon material negative electrode active material and Li 2 SiF 6 may be carried out by a conventional method such as dry or wet.

또한, 상기 소성 온도는 400 내지 700 ℃ 일 수 있다. 소성 온도가 400℃ 미만이면 불순물을 제거하기 어렵고, 700℃ 초과이면 Li2SiF6의 결정 구조가 붕괴될 수 있다.In addition, the firing temperature may be 400 to 700 ℃. If the firing temperature is less than 400 ° C, impurities are difficult to remove, and if the baking temperature is higher than 700 ° C, the crystal structure of Li 2 SiF 6 may collapse.

이렇게 제조된 본 발명의 음극 활물질은 통상적인 음극 제조방법에 따라, 도전재, 바인더 및 유기 용매와 혼합하여 활물질 페이스트로 제조된 후, 구리 포일(foil)과 같은 통상적으로 사용되는 음극 집전체에 도포된 다음, 건조, 열처리 및 압착하여 리튬 이차전지용 음극을 제조하는 데 사용될 수 있다. The negative electrode active material of the present invention thus prepared is mixed with a conductive material, a binder, and an organic solvent to prepare an active material paste according to a conventional negative electrode manufacturing method, and then applied to a commonly used negative electrode current collector such as copper foil. And then dried, heat treated and pressed to produce a negative electrode for a lithium secondary battery.

또한, 상기와 같이 본 발명에 따라 제조된 음극 및 리튬계 전이금속 화합물이 소정 두께로 양극 집전체에 코팅되어 제조된 양극을 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 이차전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 이차전지의 제조도 가능하다. 이러한 리튬 이차전지 제조 방법은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로 상세한 설명은 생략하기로 한다. In addition, as described above, the negative electrode and the lithium-based transition metal compound prepared according to the present invention are coated on the positive electrode current collector with a predetermined thickness to face the positive electrode with a separator therebetween, and the separator is impregnated with an electrolyte solution for a lithium secondary battery. It is also possible to manufacture a lithium secondary battery capable of phosphorus charging and discharging. Since such a lithium secondary battery manufacturing method is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서 는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예 1Example 1

구상의 천연흑연에 천연흑연 100 중량부 대비 10 중량부의 피치를 고속으로 약 10 분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1000℃와 2200℃에서 각각 1시간 동안 1차 및 2차 소성 하였고, 분급공정을 통해 미분을 제거하여 탄화물층으로 코팅된 천연흑연으로 이루어진 리튬 이차전지용 음극 활물질을 제조하였다. 이렇게 제조된 탄소재 음극 활물질 100 중량부 대비 2 중량부의 Li2SiF6를 상기 탄소재 음극 활물질에 혼합한 후, 질소가스의 불활성 분위기에서 600℃의 온도로 5시간 하소하여 본 발명의 리튬 이차 전지용 음극 활물질을 제조하였다. The mixture was prepared by dry mixing 10 parts by weight of pitch to 100 parts by weight of spherical natural graphite at high speed for about 10 minutes, and the mixture was calcined for 1 hour at 1000 ° C. and 2200 ° C. for 1 hour, respectively. By removing the fine powder through the classification process to prepare a negative electrode active material for a lithium secondary battery made of natural graphite coated with a carbide layer. 2 parts by weight of Li 2 SiF 6 to 100 parts by weight of the carbonaceous anode active material thus prepared was mixed with the carbonaceous anode active material, and then calcined at a temperature of 600 ° C. under an inert atmosphere of nitrogen gas for 5 hours for the lithium secondary battery of the present invention. A negative electrode active material was prepared.

이렇게 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 PVDF(바인더)를 투입한 후, Mixer을 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬 이차전지용 음극을 제조하였다. 상기 제조된 음극, 양극 활물질로 LiCoO2를 사용하여 제조된 양극, 세퍼레이터로 Celgard 2400, 및 비수 전해액으로 EC:DEC=3:7로 혼합된 1M LiPF6를 사용하여 코인형 전지(coin cell)를 제조하였다.100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and PVDF (binder) were added, followed by mixing using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare a negative electrode for a lithium secondary battery. A negative electrode, a cathode manufactured using LiCoO 2 as a cathode active material, a Celgard 2400 as a separator, and a 1 M LiPF 6 mixed with EC: DEC = 3: 7 as a nonaqueous electrolyte were used to form a coin cell. Prepared.

실시예 2Example 2

Li2SiF6를 탄소재 음극 활물질 100 중량부 대비 4 중량부로 하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that Li 2 SiF 6 was 4 parts by weight based on 100 parts by weight of the carbonaceous negative electrode active material.

실시예 3Example 3

Li2SiF6를 탄소재 음극 활물질 100 중량부 대비 6 중량부로 하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that Li 2 SiF 6 was 6 parts by weight based on 100 parts by weight of the carbonaceous negative electrode active material.

실시예 4Example 4

Li2SiF6를 탄소재 음극 활물질 100 중량부 대비 8 중량부로 하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that Li 2 SiF 6 was 8 parts by weight based on 100 parts by weight of the carbonaceous negative electrode active material.

실시예 5Example 5

Li2SiF6를 탄소재 음극 활물질 100 중량부 대비 10 중량부로 하는 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that Li 2 SiF 6 was 10 parts by weight based on 100 parts by weight of the carbonaceous negative electrode active material.

실시예 6Example 6

Cokes를 3000℃에서 24시간 동안 소성하였고, 분급하고 미분을 제거하여 리튬 이차전지용 음극 활물질인 인조흑연을 제조하였다. 이렇게 제조된 인조흑연 100 중량부 대비 2 중량부의 Li2SiF6를 상기 탄소재 음극 활물질에 혼합한 후, 질소 가스의 불활성 분위기에서 600℃의 온도로 5시간 하소하여 본 발명의 리튬 이차전지용 음극 활물질을 제조하였다. Cokes were calcined at 3000 ° C. for 24 hours, Classify and remove derivatives Artificial graphite, which is a negative electrode active material for a lithium secondary battery, was prepared. 2 parts by weight of Li 2 SiF 6 to 100 parts by weight of the artificial graphite thus prepared is mixed with the carbon material negative electrode active material, and then calcined at a temperature of 600 ° C. under an inert atmosphere of nitrogen gas for 5 hours to produce a lithium secondary battery negative electrode active material of the present invention. Was prepared.

음극 및 코인형 전지의 제조는 실시예1과 동일하다.Preparation of the negative electrode and the coin-type battery was the same as in Example 1.

실시예 7Example 7

Li2SiF6를 탄소재 음극 활물질 100 중량부 대비 4 중량부 사용한 것을 제외하고는, 실시예 3과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 3, except that 4 parts by weight of Li 2 SiF 6 was used based on 100 parts by weight of the carbonaceous negative electrode active material.

비교예 1Comparative Example 1

구상의 천연흑연에 천연흑연 100 중량부 대비 10 중량부의 피치를 고속으로 약 10 분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1000℃와 2200℃에서 각각 1시간 동안 1차 및 2차 소성하였고, 분급공정을 통해 미분을 제거하여 탄화물층으로 코팅된 천연흑연으로 이루어진 리튬 이차전지용 음극 활물질을 제조하였다.The mixture was prepared by dry mixing the spherical natural graphite with a pitch of 10 parts by weight relative to 100 parts by weight of natural graphite at a high speed for about 10 minutes, and the mixture was calcined for 1 hour at 1000 ° C and 2200 ° C for 1 hour, respectively. By removing the fine powder through the classification process to prepare a negative electrode active material for a lithium secondary battery made of natural graphite coated with a carbide layer.

이렇게 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피 톨리돈(NMP)과 PVdF(바인더)를 투입한 후, Mixer을 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬 이차전지용 음극을 제조하였다. 상기 제조된 음극, 양극 활물질로 LiCoO2를 사용하여 제조된 양극, 세퍼레이터로 Celgard 2400, 및 비수 전해액으로 EC:DEC=3:7로 혼합된 1M LiPF6를 사용하여 코인형 전지(coin cell)를 제조하였다.100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, and a small amount of N-methylpytolidone (NMP) and PVdF (binder) were added thereto, followed by mixing using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare a negative electrode for a lithium secondary battery. A negative electrode, a cathode manufactured using LiCoO 2 as a cathode active material, a Celgard 2400 as a separator, and a 1 M LiPF 6 mixed with EC: DEC = 3: 7 as a nonaqueous electrolyte were used to form a coin cell. Prepared.

비교예 2Comparative Example 2

Cokes를 3000℃에서 24시간 동안 소성한 후, 분급하고 미분을 제거하여 리튬 이차전지용 음극 활물질로서 인조흑연을 제조한 것을 제외하고는 비교예 1과 동일한 방법으로 리튬 이차전지용 음극 및 코인형 전지를 제조하였다.After firing Cokes at 3000 ° C. for 24 hours, Classify and remove derivatives A negative electrode and a coin-type battery for a lithium secondary battery were manufactured in the same manner as in Comparative Example 1 except that artificial graphite was manufactured as a negative electrode active material for a lithium secondary battery.

실험예Experimental Example

상기 실시예 및 비교예에 대해 다음과 같은 시험을 실시하여 특성을 평가하였다. 그 평가결과는 하기 표 1과 같다The following test was performed about the said Example and the comparative example, and the characteristic was evaluated. The evaluation results are shown in Table 1 below.

(1) 전지 특성(1) battery characteristics

충방전 시험은 전위를 0.01~1.5V의 범위로 규제하여, 충전 전류 0.5mA/㎠로 0.01V 될 때까지 충전하고, 또한 0.01V의 전압을 유지하며, 충전전류가 0.02mA/㎠ 될 때까지 충전을 계속하였다. 그리고 방전전류는 0.5mA/㎠로 1.5V까지의 방전을 행하였다. 표에서 충방전 효율은 충전한 전기용량에 대한 방전한 전기용량의 비율을 나타낸다.The charge / discharge test regulates the potential in the range of 0.01 to 1.5V, charges until it becomes 0.01V at a charging current of 0.5mA / cm 2, maintains a voltage of 0.01V, and charges until 0.02mA / cm 2. Charging continued. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2. The charge and discharge efficiency in the table represents the ratio of the discharged capacity to the charged capacity.

Figure 112009025270245-pat00001
Figure 112009025270245-pat00001

상기 표 1에 나타난 바와 같이, 본원발명에 따른 실시예1 내지 실시예7은 전반적인 전지특성이 비교예들의 전지보다 우수함을 알 수 있다. 실시예6의 경우에는 방전용량이 비교예 2보다 다소 낮지만, 사이클 효율 및 용량 유지율이 비교예2보다 우수하기 때문에 전체적으로는 비교예 2보다 개선된 전지특성을 보이는 것을 알 수 있다.As shown in Table 1, Examples 1 to 7 according to the present invention can be seen that the overall battery characteristics are superior to the battery of the comparative examples. In Example 6, although the discharge capacity is somewhat lower than Comparative Example 2, the cycle efficiency and the capacity retention rate are superior to Comparative Example 2, it can be seen that the overall improved battery characteristics than Comparative Example 2.

Claims (13)

삭제delete 탄소계 음극 활물질을 포함하는 리튬 이차전지용 음극 활물질에 있어서, 상기 음극 활물질은 Li2SiF6를 포함하고, 상기 Li2SiF6는 상기 탄소계 음극 활물질 100 중량부 대비 0.1 내지 10 중량부로 포함되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질.In the negative electrode active material for a lithium secondary battery including a carbon-based negative electrode active material, the negative electrode active material includes Li 2 SiF 6 , wherein the Li 2 SiF 6 is included in 0.1 to 10 parts by weight relative to 100 parts by weight of the carbon-based negative electrode active material A negative electrode active material for lithium secondary battery, characterized in that. 제2항에 있어서,3. The method of claim 2, 상기 탄소계 음극 활물질은 심재 탄소재의 엣지 일부 또는 전부에 탄화물층이 코팅되어 형성된 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbon-based negative electrode active material is a lithium secondary battery negative electrode active material, characterized in that the carbide layer is formed on a portion or all of the edge of the core carbon material. 제3항에 있어서,The method of claim 3, 상기 심재 탄소재는 고결정성의 구상 천연흑연인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The core carbon material is a high crystalline spherical natural graphite negative electrode active material, characterized in that. 제3항에 있어서,The method of claim 3, 상기 심재 탄소재는 타원형상, 비늘상, 휘스커상 또는 파쇄상을 갖는 천연흑연, 메소카본마이크로 비즈, 메소페즈 피치 미분, 등방성 피치 미분, 수지탄, 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소 미분으로 이루어진 군에서 선택된 어느 하나 또는 이들의 혼합물임을 특징으로 하는 리튬 이차전지용 음극 활물질.The core carbon material may be oval, scaled, whiskered or crushed, natural graphite, mesocarbon micro beads, mesopeze pitch fine powder, isotropic pitch fine powder, resin charcoal, and pseudo-graphite structure or turbos. A negative active material for a lithium secondary battery, characterized in that any one or a mixture thereof selected from the group consisting of low crystalline carbon fine powder having a tratic structure. 제3항에 있어서,The method of claim 3, 상기 탄화물층의 결정화도가 심재 탄소재의 결정화도보다 낮은 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The crystallinity of the carbide layer is lower than the crystallinity of the core carbon material negative electrode active material for a lithium secondary battery. 제3항에 있어서,The method of claim 3, 상기 탄화물층은 석탄계 또는 석유계로부터 유래하는 피치, 타르 또는 이들의 혼합물을 코팅한 후 탄화 소성하여 형성한 저결정성 탄화물층임을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbide layer is a negative active material for a lithium secondary battery, characterized in that a low crystalline carbide layer formed by coating a carbon, petroleum-based pitch, tar or a mixture thereof and then carbonized firing. 제2항에 있어서,3. The method of claim 2, 상기 탄소계 음극 활물질은 인조흑연인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbon-based negative electrode active material is a lithium secondary battery negative electrode active material, characterized in that the artificial graphite. 탄소계 음극 활물질과 Li2SiF6를 혼합하고 산화성 분위기, 환원성 분위기 또 는 불활성 분위기에서 소성시키는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.A method of manufacturing a negative electrode active material for a lithium secondary battery, comprising mixing a carbon-based negative electrode active material and Li 2 SiF 6 and baking in an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere. 제9항에 있어서,10. The method of claim 9, 상기 Li2SiF6는 상기 탄소계 음극 활물질 100 중량부 대비 0.1 내지 10 중량부로 혼합되는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.The Li 2 SiF 6 is 0.1 to 10 parts by weight based on 100 parts by weight of the carbon-based negative electrode active material manufacturing method of a negative electrode active material for a lithium secondary battery. 제9항에 있어서,10. The method of claim 9, 상기 소성온도는 400 ~ 700 ℃인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.The firing temperature is a manufacturing method of the negative electrode active material for a lithium secondary battery, characterized in that 400 ~ 700 ℃. 음극 활물질 및 바인더가 음극 집전체 상에 코팅되어 형성된 리튬 이차전지용 음극에 있어서,In the negative electrode for a lithium secondary battery formed by coating a negative electrode active material and a binder on a negative electrode current collector, 상기 음극 활물질은 제2항 내지 제8항 중 어느 한 항에 따른 음극 활물질인 것을 특징으로 하는 리튬 이차전지용 음극.The negative electrode active material is a negative electrode for a lithium secondary battery, characterized in that the negative electrode active material according to any one of claims 2 to 8. 음극, 양극, 상기 음극과 양극 사이에 개재된 세퍼레이터, 및 전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution, 상기 음극은 제12항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.The negative electrode is a lithium secondary battery, characterized in that the negative electrode according to claim 12.
KR1020090036349A 2009-04-27 2009-04-27 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same KR101091546B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090036349A KR101091546B1 (en) 2009-04-27 2009-04-27 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP2010101929A JP2010257982A (en) 2009-04-27 2010-04-27 Anode active material for lithium secondary battery, and lithium secondary battery including the same
CN201010170254A CN101872861A (en) 2009-04-27 2010-04-27 The active material of positive electrode of lithium secondary battery and contain the lithium secondary battery of this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090036349A KR101091546B1 (en) 2009-04-27 2009-04-27 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20100117731A KR20100117731A (en) 2010-11-04
KR101091546B1 true KR101091546B1 (en) 2011-12-13

Family

ID=42997612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090036349A KR101091546B1 (en) 2009-04-27 2009-04-27 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Country Status (3)

Country Link
JP (1) JP2010257982A (en)
KR (1) KR101091546B1 (en)
CN (1) CN101872861A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510084B2 (en) * 2010-06-03 2014-06-04 ソニー株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP6035054B2 (en) 2011-06-24 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing electrode of power storage device
KR101459729B1 (en) * 2012-12-27 2014-11-10 주식회사 포스코 Carbon composite materials and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033128A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
KR100853327B1 (en) 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
KR100868135B1 (en) 2007-04-16 2008-11-10 엘에스엠트론 주식회사 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831404A (en) * 1994-07-18 1996-02-02 Toray Ind Inc Electrode and secondary battery using this electrode
KR100315232B1 (en) * 1999-02-24 2001-11-26 김순택 Negative active material for lithium secondary battery and method of preapring the same
WO2001036206A1 (en) * 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
WO2004030122A1 (en) * 2002-09-27 2004-04-08 Nederlandse Organisatie Voor Toegepast-Natuurwe Tenschappelijk Onderzoek Tno Rechargeable lithium battery
KR100686783B1 (en) * 2006-01-16 2007-02-26 엘에스전선 주식회사 Anode material for secondary battery, method for producing of itself and secondary batteries using the same
JP2008234988A (en) * 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
JP5205788B2 (en) * 2007-04-05 2013-06-05 株式会社デンソー Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and method for producing nonaqueous electrolyte secondary battery
JP2009158335A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033128A (en) * 2000-07-17 2002-01-31 Matsushita Electric Ind Co Ltd Lithium polymer secondary battery
KR100853327B1 (en) 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
KR100868135B1 (en) 2007-04-16 2008-11-10 엘에스엠트론 주식회사 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode

Also Published As

Publication number Publication date
CN101872861A (en) 2010-10-27
JP2010257982A (en) 2010-11-11
KR20100117731A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101586015B1 (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the material, and method of preparing the material
KR101631735B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
KR20100118808A (en) Method of preparing a composition for making anode of lithium secondary battery and lithium secondary battery prepared by using the same
KR101340267B1 (en) Secondary battery having improved charging and discharging properties
JP2010522969A (en) Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
KR20090112127A (en) Negative active material used for secondary battery, secondary battery including the same, and method thereof
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR100269918B1 (en) A negative active material for a lithium-based secondary cell and a method of preparing the same
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
KR20090111289A (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof
JPH11273728A (en) Nonaqueous electrolyte battery
JP2001023686A (en) Nonaqueous electrolyte battery
JP2004095203A (en) Negative electrode and nonaqueous secondary battery using the same
JP2004095204A (en) Nonaqueous secondary battery
JP2004095205A (en) Nonaqueous secondary battery
JP2016157648A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151005

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161005

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171010

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191119

Year of fee payment: 9