JP5318921B2 - Graphite particles for lithium ion secondary batteries - Google Patents

Graphite particles for lithium ion secondary batteries Download PDF

Info

Publication number
JP5318921B2
JP5318921B2 JP2011161193A JP2011161193A JP5318921B2 JP 5318921 B2 JP5318921 B2 JP 5318921B2 JP 2011161193 A JP2011161193 A JP 2011161193A JP 2011161193 A JP2011161193 A JP 2011161193A JP 5318921 B2 JP5318921 B2 JP 5318921B2
Authority
JP
Japan
Prior art keywords
graphite particles
graphite
lithium ion
negative electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161193A
Other languages
Japanese (ja)
Other versions
JP2011233541A (en
Inventor
隆伸 河井
健一 本川
隼人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2011161193A priority Critical patent/JP5318921B2/en
Publication of JP2011233541A publication Critical patent/JP2011233541A/en
Application granted granted Critical
Publication of JP5318921B2 publication Critical patent/JP5318921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ノートブック型パソコン、携帯電話等に使用するリチウムイオン二次電池用のカーボン系負極活物質に関し、高容量で容量ロスが少なく、充放電の繰り返し特性(サイクル特性)に優れる負極及び負極活物質、更には電動自転車(E-bike)やハイブリッド電気自動車(HEV)用等の中・大型のリチウムイオン二次電池用のカーボン負極に関し、高容量で高出力な負極及び負極活性物質に関する。   The present invention relates to a carbon-based negative electrode active material for a lithium ion secondary battery used in a notebook computer, a mobile phone, etc., and a negative electrode having high capacity, low capacity loss, and excellent charge / discharge repetition characteristics (cycle characteristics) and Negative electrode active materials, and also carbon negative electrodes for medium and large-sized lithium ion secondary batteries for electric bicycles (E-bikes) and hybrid electric vehicles (HEV), high capacity and high output negative electrodes and negative electrode active materials .

リチウムイオン二次電池は高容量、高電圧、小型軽量の二次電池として携帯電話、ビデオカメラ等の可搬型機器類に多く使用されている。また、近時、大電力を必要とする電動工具用電源としても高出力型のものが普及しつつある。
可搬型機器類の小型化及び高性能化、高機能化への流れは止まるところを知らず、リチウムイオン二次電池も小型・軽量化、更には高容量化が要求されている。
リチウムイオン電池の高密度化、高容量化のために黒鉛粒子を球形化することなどが提案されている。
Lithium ion secondary batteries are often used in portable devices such as mobile phones and video cameras as high-capacity, high-voltage, small and lightweight secondary batteries. In addition, recently, high-power-type power tools that require a large amount of power are becoming popular.
The trend toward miniaturization, higher performance, and higher functionality of portable devices is not known, and lithium ion secondary batteries are also required to be smaller, lighter, and have higher capacity.
In order to increase the density and capacity of a lithium ion battery, it has been proposed to spheroidize graphite particles.

特開平11−73963号公報JP-A-11-73963

以上のことから、リチウムイオン二次電池を構成するパーツや材料も高性能化が求められ、電池の性能を左右するカーボン系負極材についても例外ではない。
カーボン系負極材について単位重量当たりの放電容量についてみると、ほぼ理論値近くまでに到達しており、電池の容量を高めるためにはより多くの負極材を電池内に詰めること、即ち、電極密度1.7g/cm3更には1.8g/cm3以上の負極を構成できるようにすること、更には、生産性に優れると共に、高容量を維持できる安価な負極及びそれを可能にする負極材が求められている。
From the above, parts and materials constituting the lithium ion secondary battery are required to have high performance, and the carbon-based negative electrode material that affects the performance of the battery is no exception.
Regarding the discharge capacity per unit weight of the carbon-based negative electrode material, it has almost reached the theoretical value, and in order to increase the capacity of the battery, more negative electrode material is packed in the battery, that is, the electrode density. 1.7 g / cm 3 Furthermore, it is possible to construct a negative electrode of 1.8 g / cm 3 or more, and furthermore, an inexpensive negative electrode that is excellent in productivity and can maintain a high capacity, and a negative electrode material that enables it Is required.

一方、環境問題から電気自動車、特にニッケル水素電池とガソリンエンジンを組み合わせたハイブリッド電気自動車(HEV)が開発され、販売台数を伸ばしている。HEVに現在用いられているニッケル水素電池に比べ、エネルギー密度が高く、高電圧のリチウムイオン電池は、その特徴から次世代のHEV用の電源として関心が高まりつつある。
HEV用電源としてのリチウムイオン電池には、従来の可搬型機器類に使用されている小型リチウムイオン電池に比べて高い入出力特性が求められているが、開発が端緒についたばかりである。
On the other hand, electric vehicles, especially hybrid electric vehicles (HEV) combining nickel metal hydride batteries and gasoline engines, have been developed due to environmental problems, and the number of vehicles sold has increased. Compared to nickel-metal hydride batteries currently used for HEV, lithium ion batteries with high energy density and high voltage are gaining interest as power sources for next-generation HEVs due to their characteristics.
Lithium ion batteries as HEV power sources are required to have higher input / output characteristics than small lithium ion batteries used in conventional portable devices, but development has just started.

安価な電池を製造するためには性能を維持しつつ安価な材料を使用する必要があり、負極材においても同様である。
安価で、量的供給に不安がなく、しかも高容量を実現するためには鱗片状天然黒鉛を利用することが好ましいが、鱗片状天然黒鉛は、充放電効率が90%に満たず、電極として銅箔上に塗工した場合、粒子が面方向に極端に配向するため、サイクル特性面で問題があり、また、低温特性にも問題がある。
更に、電極密度を高くすると粒子同士が固着し、電解液が通るべき粒子間の連続した流路が閉塞してしまい、電池の特性低下をもたらすなどの問題があり、鱗片状天然黒鉛をそのまま使用することは実用上できない。
In order to manufacture an inexpensive battery, it is necessary to use an inexpensive material while maintaining performance, and the same applies to the negative electrode material.
In order to realize a high capacity, it is preferable to use scaly natural graphite in order to realize a high capacity at a low cost. However, scaly natural graphite has a charge / discharge efficiency of less than 90% and is used as an electrode. When coated on a copper foil, the particles are extremely oriented in the plane direction, so there is a problem in terms of cycle characteristics, and there is also a problem in low temperature characteristics.
Furthermore, when the electrode density is increased, the particles adhere to each other, and the continuous flow path between the particles through which the electrolyte solution should pass may be blocked, resulting in deterioration of battery characteristics. Use scaly natural graphite as it is. It is practically impossible to do.

この問題を解決するために鱗片状天然黒鉛を球形に賦形し、その表面を被覆処理した黒鉛粒子が開発されているが、被覆方法によってコストが大きく左右されるものとなる。例えば、CVDにより熱分解炭素を黒鉛粒子表面に蒸着する方法は、高価な設備や操業に高度な技術を必要とし、加えて生産性に難があるため安価に製品を供給するのは難しい。
樹脂やピッチを被覆する方法は、例えば、加熱ニーダーや機械的処理(メカノケミカル法)によってなされるものである。加熱ニーダーによる場合は、比較的安価に製造可能であるが、メカノケミカル法による場合は、生産性の点で加熱ニーダーによる方法に比較して劣るものとなる。
前記のいずれの方法によって製造される黒鉛粒子の表面に形成された被膜は、平滑なものである。
In order to solve this problem, graphite particles in which scaly natural graphite is shaped into a spherical shape and the surface thereof is coated have been developed, but the cost greatly depends on the coating method. For example, the method of depositing pyrolytic carbon on the surface of graphite particles by CVD requires advanced equipment and operation, and in addition, it is difficult to supply products at low cost because of the difficulty in productivity.
The method of coating the resin or pitch is performed by, for example, a heating kneader or a mechanical treatment (mechanochemical method). In the case of using a heating kneader, it can be produced at a relatively low cost, but in the case of using a mechanochemical method, it is inferior to the method using a heating kneader in terms of productivity.
The coating film formed on the surface of the graphite particles produced by any of the above methods is smooth.

従来の被覆方法によって製造された黒鉛粒子は、概略球形で表面が平滑なため、この黒鉛粒子を使用して電極を構成して充放電を繰り返すと、負極材の膨張収縮の繰り返しにより負極材粒子間の接点の数が減少し、電極内の導電性ネットワークが崩れてしまい、サイクル特性に問題が出やすい。
本発明は、単位体積当たりの放電容量が高く、初期充放電時の容量ロスが小さく、しかも、急速充放電性等の負荷特性に優れるリチウムイオン二次電池用負極材となる黒鉛粒子とこれを使用した負極を提案するものである。
Since the graphite particles produced by the conventional coating method are approximately spherical and have a smooth surface, when the electrode is configured using these graphite particles and charging and discharging are repeated, the negative electrode material particles are repeatedly expanded and contracted. The number of contacts in between decreases, and the conductive network in the electrode collapses, which tends to cause problems in cycle characteristics.
The present invention provides a graphite particle as a negative electrode material for a lithium ion secondary battery having a high discharge capacity per unit volume, a small capacity loss at the time of initial charge / discharge, and excellent load characteristics such as rapid charge / discharge characteristics. The used negative electrode is proposed.

本発明者は、鱗片状天然黒鉛を球状に賦形し、その表面を被覆処理した黒鉛粒子について検討を進めた結果、以下の方法によって前記の課題を解決できることを見出した。
鱗片状天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2〜50重量部、及びピッチを混合して含浸・被覆後、900℃〜1500℃で焼成し、表面に微小突起が形成されたリチウムイオン二次電池用黒鉛粒子である。表面に形成されたこれらの微小突起同士が接触することによって複雑な導電ネットワークが形成されるので、従来の黒鉛粒子に見られた負極材の膨張収縮の繰り返しによって負極材粒子間の接点の数が減少して電極内の導電性ネットワークが崩壊することが防止でき、サイクル特性の向上が図れるのである。
The present inventor has found that the above-mentioned problem can be solved by the following method as a result of studying graphite particles obtained by forming scaly natural graphite into a spherical shape and coating the surface thereof.
After impregnating and coating 100 parts by weight of a base material obtained by spherically shaping flaky natural graphite with 2-50 parts by weight of carbon black and pitch, and then firing at 900 ° C. to 1500 ° C., microprotrusions are formed on the surface. It is the graphite particle for lithium ion secondary batteries made. Since these microprotrusions formed on the surface come into contact with each other to form a complicated conductive network, the number of contacts between the negative electrode material particles is reduced by repeated expansion and contraction of the negative electrode material found in conventional graphite particles. It is possible to prevent the conductive network in the electrode from collapsing and to improve the cycle characteristics.

本発明の黒鉛粒子は、球状に賦形した天然黒鉛100重量部に2〜50重量部のカーボンブラック、及びピッチを含浸・混合し、混捏することによって表面をカーボンブラック及びピッチで被覆し、これを900〜1500℃で焼成して炭素化、あるいは黒鉛化がおきる高温で焼成して黒鉛化して解砕し、篩いを通して整粒することによって得られるものである。球状天然黒鉛、カーボンブラック、ピッチを混合後に混捏しても、また、球状天然黒鉛とピッチを混捏しながらカーボンブラックを添加してもどちらでも構わない。
カーボンブラック量は、天然黒鉛100重量部に対して2〜50重量部とする。カーボンブラック量が天然黒鉛に対して2%未満の場合、微小突起量が少なく、十分な効果が得られない。カーボンブラック量が50%を超えると表面積が大きくなりすぎて、容量ロスが大きくなり好ましくない。
The graphite particles of the present invention are coated with carbon black and pitch by impregnating and mixing 2 to 50 parts by weight of carbon black and pitch with 100 parts by weight of natural graphite formed into a spherical shape. Is calcined at 900-1500 ° C. and carbonized, or calcined at a high temperature where graphitization occurs, pulverized, pulverized, and sized through a sieve. Either spherical natural graphite, carbon black or pitch may be mixed after mixing, or carbon black may be added while mixing spherical natural graphite and pitch.
The amount of carbon black is 2 to 50 parts by weight with respect to 100 parts by weight of natural graphite. When the amount of carbon black is less than 2% with respect to natural graphite, the amount of fine protrusions is small and a sufficient effect cannot be obtained. If the amount of carbon black exceeds 50%, the surface area becomes too large, and the capacity loss increases, which is not preferable.

熱処理温度は900℃〜3200℃である。熱処理温度が900℃未満では粒子表面の官能基が残存し、リチウムイオンと反応するため容量ロスの増加や放電曲線1V付近の変極点の発生があり好ましくない。
黒鉛化処理は、一般に2000℃以上で熱処理することを指す。従って、黒鉛粒子(A)を製造する場合は、900℃〜2000℃での処理となる。しかし2000℃近くでの処理は、放電容量が最も低くなる付近の処理温度であるので、
実際には900℃〜1500℃以下、好ましくは900℃〜1200℃以下である。
また、黒鉛粒子(B)を製造する場合の黒鉛化処理は、最低でも2000℃以上必要であるが、少しでも放電容量・充放電効率を高めるために、なるべく高温で黒鉛化することが好ましい。このため黒鉛化温度は、2600℃以上、好ましくは2800℃以上、更に好ましくは3000℃以上である。熱処理温度が3400℃を超えると黒鉛は昇華してしまうので、現実的には3200℃での熱処理が限界である。
The heat treatment temperature is 900 ° C to 3200 ° C. When the heat treatment temperature is less than 900 ° C., the functional group on the particle surface remains and reacts with lithium ions, which causes an increase in capacity loss and generation of an inflection point near the discharge curve of 1 V.
Graphitization generally refers to heat treatment at 2000 ° C. or higher. Therefore, when manufacturing graphite particle (A), it becomes a process at 900 to 2000 degreeC. However, since the treatment near 2000 ° C. is the treatment temperature near the lowest discharge capacity,
Actually, it is 900 ° C. to 1500 ° C. or less, preferably 900 ° C. to 1200 ° C. or less.
The graphitization treatment for producing the graphite particles (B) requires at least 2000 ° C., but it is preferable to graphitize at as high a temperature as possible in order to increase the discharge capacity and charge / discharge efficiency as much as possible. For this reason, the graphitization temperature is 2600 ° C. or higher, preferably 2800 ° C. or higher, more preferably 3000 ° C. or higher. If the heat treatment temperature exceeds 3400 ° C., the graphite will sublime, so the heat treatment at 3200 ° C. is practically the limit.

本発明の黒鉛粒子を使用して電極を構成する場合、ノートブック型パソコン、携帯電話用等の場合、従来一般に使用されている粒度、即ち平均粒子径D50は、8〜25μm程度が好ましい。一方、電動自転車(E-bike)やハイブリッド電気自動車(HEV)用等の中・大型のリチウムイオンの場合、電極の導電性を確保し、出力特性を発現させるため比較的薄く塗布するので平均粒子径D50=3〜15μm程度、更に好ましくは、5〜13μm程度である。また、いずれの用途でも最大粒子径は、電極の厚さを超えることのない大きさまでに押さえる必要がある。なお、補助導電剤を添加して使用しても構わない。   In the case of constituting an electrode using the graphite particles of the present invention, in the case of a notebook type personal computer, a mobile phone and the like, the particle size generally used conventionally, that is, the average particle size D50 is preferably about 8 to 25 μm. On the other hand, for medium- and large-sized lithium ions such as for electric bicycles (E-bikes) and hybrid electric vehicles (HEVs), the average particle size is applied because the electrodes are relatively thin to ensure the conductivity of the electrodes and to develop output characteristics. Diameter D50 = about 3 to 15 μm, more preferably about 5 to 13 μm. In any application, the maximum particle size must be suppressed to a size that does not exceed the thickness of the electrode. An auxiliary conductive agent may be added and used.

一般に黒鉛負極材を用いる場合、電解液はプロピレンカーボネート(PC)を含まない系が使用されている。PCは黒鉛表面で分解反応を起こしやすく、ガス発生による電池内圧の上昇、また、負極材上に分解反応生成物(SEI被膜)を大量に生成させるため電池特性を低下させることになるので好ましくない。
PC添加電解液中でも正常に充放電するためには、負極材上でのPCの分解反応を抑制する必要がある。即ち粒子表面を低結晶にする必要がある。球状天然黒鉛とカーボン及びピッチ混捏物を900℃〜1500℃で焼成して得た黒鉛粒子(A)単体、もしくはこれを更に高温で焼成して黒鉛化した黒鉛粒子(B)の混合物を黒鉛粒子(A)=50〜100%、黒鉛粒子(B)=0〜50%、(A)+(B)=100%とした負極活物質は、PC(電解液中におけるPC濃度は33%以下)添加電解液中においても容量損失が発生することなく充放電が可能である。
但し、黒鉛粒子(B)の割合が50%を超えるとPCの分解量が多くなり、初回充放電効率が低下して好ましくない。また、生成したSEI膜量が多くなるので電気抵抗が上昇し、ハイレート特性、サイクル特性が低下する。
In general, when a graphite negative electrode material is used, an electrolyte solution containing no propylene carbonate (PC) is used. PC is not preferable because it tends to cause a decomposition reaction on the graphite surface, increases the internal pressure of the battery due to gas generation, and reduces the battery characteristics because a large amount of decomposition reaction products (SEI coating) are generated on the negative electrode material. .
In order to charge and discharge normally even in the PC-added electrolyte, it is necessary to suppress the decomposition reaction of PC on the negative electrode material. That is, it is necessary to make the particle surface low crystalline. A graphite particle (A) obtained by firing spherical natural graphite and carbon and pitch mixture at 900 ° C. to 1500 ° C., or a mixture of graphite particles (B) obtained by firing this at a higher temperature to graphitize the graphite particles. The negative electrode active material with (A) = 50 to 100%, graphite particles (B) = 0 to 50%, and (A) + (B) = 100% is PC (PC concentration in the electrolyte is 33% or less) Charging / discharging is possible without causing capacity loss even in the added electrolyte.
However, if the proportion of the graphite particles (B) exceeds 50%, the amount of PC decomposition increases, and the initial charge / discharge efficiency is undesirably lowered. In addition, since the amount of the generated SEI film increases, the electrical resistance increases and the high rate characteristics and cycle characteristics deteriorate.

黒鉛粒子(A)は、表面が非晶質であり粒子表面が固いので、電極密度を1.7g/cm3以上にするのは困難である。電極密度を1.7g/cm3以上にするには粒子が潰れやすくする必要がある。一方、高温で黒鉛化した黒鉛粒子(B)の場合、電極密度は1.7g/cm3以上まで容易に上げることができる。但し、黒鉛粒子(A)に比べると黒鉛粒子(B)は粒子が潰れやすいため、密度を上げたときに電解液の流路が閉塞されやすい傾向がある。 Since the graphite particles (A) have an amorphous surface and a hard particle surface, it is difficult to increase the electrode density to 1.7 g / cm 3 or more. In order to increase the electrode density to 1.7 g / cm 3 or more, the particles need to be easily crushed. On the other hand, in the case of graphite particles (B) graphitized at high temperature, the electrode density can be easily increased to 1.7 g / cm 3 or more. However, the graphite particles (B) tend to be crushed as compared with the graphite particles (A), so that the flow path of the electrolytic solution tends to be blocked when the density is increased.

黒鉛粒子(A)=0〜30%、黒鉛粒子(B)=70〜100%、(A)+(B)=100%としたときに1.7g/cm3以上の電極密度においても容量損失はなく、即ち容積当たりの容量(mAh/cm3)の向上が可能となる。この場合、PCとの反応があるため、電解液中でのPC濃度は10%以下で使用する必要がある。
黒鉛粒子(A)=30%を超えると1.7g/cm3以上に電極密度を上げることは困難になる。
Capacity loss even at an electrode density of 1.7 g / cm 3 or more when graphite particles (A) = 0 to 30%, graphite particles (B) = 70 to 100%, and (A) + (B) = 100% In other words, the capacity per volume (mAh / cm 3 ) can be improved. In this case, since there is a reaction with PC, the PC concentration in the electrolyte must be 10% or less.
If the graphite particle (A) exceeds 30%, it is difficult to increase the electrode density to 1.7 g / cm 3 or more.

本発明の黒鉛粒子の表面には図1に示すように微小突起が多数存在する。黒鉛粒子表面の微小突起は、表面が平滑なものに比較して粒子間の接点が多くなり、その結果、電極内の導電性ネットワークが多数、複雑に構築されて負極の電気抵抗が低くなり、急速充放電、及びパワー特性が優れた負極材となる。
これら負極材は急速充放電やパワー特性が優れているだけでなく、高密度、高容量、高効率であることから、携帯電話やノートブック型パソコンなどの小型電池用から、HEV用等の大型機器の蓄電池用まで幅広く使用することができる。
表面がピッチやカーボンの非晶質である黒鉛粒子(A)単体及びこの黒鉛粒子(A)を更に黒鉛化した黒鉛粒子(B)を混合したものは、プロピレンカーボネート(PC)添加電解液中でも使用が可能である。
As shown in FIG. 1, many fine protrusions exist on the surface of the graphite particle of the present invention. The fine protrusions on the surface of the graphite particles have more contacts between the particles than those with a smooth surface, and as a result, there are many conductive networks in the electrode, and the electrical resistance of the negative electrode is lowered. It becomes a negative electrode material excellent in rapid charge / discharge and power characteristics.
These negative electrode materials not only have excellent rapid charge / discharge and power characteristics, but also have high density, high capacity, and high efficiency, so they can be used for small batteries such as mobile phones and notebook computers, and for large HEVs. It can be used widely for storage batteries of equipment.
Graphite particles (A) having a non-crystalline surface such as pitch or carbon and a mixture of graphite particles (B) obtained by further graphitizing the graphite particles (A) are also used in an electrolyte containing propylene carbonate (PC). Is possible.

本発明の黒鉛粒子の電子顕微鏡写真。The electron micrograph of the graphite particle of this invention. サイクル特性を示すグラフ。Graph showing cycle characteristics. 高密度電極のサイクル特性を示すグラフ。The graph which shows the cycling characteristics of a high-density electrode.

<高密度化・高容量化に関する実施例、比較例>
実施例1
球形に賦形した天然黒鉛100重量部とアセチレンブラック(粒子径62nm、BET比表面積68m2/g)20重量部を混合し、更に等方性ピッチ18重量部を加えた後、加熱ニーダーを使用して150℃で1時間混捏した。これを非酸化性雰囲気下1000℃で焼成して表面に微小突起を有する概略球形の黒鉛粒子(A)を得た。
この黒鉛粒子の電子顕微鏡写真を図1(A)に示す。
<Examples and comparative examples relating to higher density and higher capacity>
Example 1
100 parts by weight of natural graphite formed into a spherical shape and 20 parts by weight of acetylene black (particle diameter 62 nm, BET specific surface area 68 m 2 / g) are mixed, and after adding 18 parts by weight of isotropic pitch, a heating kneader is used. The mixture was mixed at 150 ° C. for 1 hour. This was fired at 1000 ° C. in a non-oxidizing atmosphere to obtain roughly spherical graphite particles (A) having fine protrusions on the surface.
An electron micrograph of the graphite particles is shown in FIG.

これを更に3000℃で黒鉛化して黒鉛粒子(B)を得た。平均粒子径(D50)=11.97μm、最大粒子径(Dtop)=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積はSSA=3.39m2/gであった。
この黒鉛粒子の電子顕微鏡写真を図1(B)に示す。
This was further graphitized at 3000 ° C. to obtain graphite particles (B). The average particle diameter (D50) = 11.97 μm, the maximum particle diameter (Dtop) = 38.9 μm, and the crystal plane spacing by X-ray diffraction was measured by the Gakushin method. D (002) = 3.357 mm, the ratio by the BET method The surface area was SSA = 3.39 m 2 / g.
An electron micrograph of the graphite particles is shown in FIG.

この黒鉛粒子(B)100重量部に対しSBR(スチレンブタジエンラバー)2重量部及びCMC(カルボキシメチルセルロース)2重量部を混合し、蒸留水を溶剤に用いてスラリーを調整し、銅箔上にドクターブレードを用いて塗布し、120℃で乾燥し、1t/cm2の圧力でプレスしたところ、電極密度は1.70g/cm3であった。
電極密度を1.80g/cm3としたときに電解液1M LiPF6/EC:DEC(1:1)2μlを完全に浸透するのに要する時間は1520秒であった。
2 parts by weight of SBR (styrene butadiene rubber) and 2 parts by weight of CMC (carboxymethylcellulose) are mixed with 100 parts by weight of the graphite particles (B), and a slurry is prepared using distilled water as a solvent. When applied with a blade, dried at 120 ° C., and pressed at a pressure of 1 t / cm 2 , the electrode density was 1.70 g / cm 3 .
When the electrode density was 1.80 g / cm 3 , the time required to completely penetrate 2 μl of the electrolyte 1M LiPF 6 / EC: DEC (1: 1) was 1520 seconds.

実施例2
実施例1の黒鉛粒子(B)及び前駆体の黒鉛粒子(A)をA/B=30/70(重量)の配合で混合して負極活物質とした。平均粒径はD50=11.96μm、最大粒径Dtop=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積SSA=3.47m2/gであった。
この負極活物質をバインダーと混合、塗布、乾燥後1t/cm2の圧力でプレスしたときの電極密度は1.65g/cm3であった。
電極密度を1.80g/cm3としたときに電解液1M LiPF6/EC:DEC(1:1)2μlを完全に浸透するのに要した時間は1170秒であった。
Example 2
The graphite particles (B) of Example 1 and the precursor graphite particles (A) were mixed in a composition of A / B = 30/70 (weight) to obtain a negative electrode active material. The average particle size is D50 = 11.96 μm, the maximum particle size Dtop = 38.9 μm, and the crystal plane spacing by X-ray diffraction was measured by the Gakushin method. D (002) = 3.357 mm, specific surface area SSA by BET method = It was 3.47 m 2 / g.
When this negative electrode active material was mixed with a binder, coated, dried, and pressed at a pressure of 1 t / cm 2 , the electrode density was 1.65 g / cm 3 .
When the electrode density was 1.80 g / cm 3 , the time required to completely penetrate 2 μl of the electrolyte 1M LiPF 6 / EC: DEC (1: 1) was 1170 seconds.

比較例1
球形に賦形した天然黒鉛100重量部に対し等方性ピッチ18重量部を加えた後、加熱ニーダーにて150℃で1時間混捏した。これを非酸化性雰囲気下1000℃で焼成して黒鉛粒子を得た。
粒度は、D50=14.0μm、Dtop=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積SSA=1.25m2/gであった。
Comparative Example 1
After adding 18 parts by weight of an isotropic pitch to 100 parts by weight of natural graphite formed into a spherical shape, the mixture was kneaded at 150 ° C. for 1 hour using a heating kneader. This was fired at 1000 ° C. in a non-oxidizing atmosphere to obtain graphite particles.
The particle size was D50 = 14.0 μm, Dtop = 38.9 μm, and the crystal plane spacing by X-ray diffraction was measured by the Gakushin method. D (002) = 3.357 mm, specific surface area SSA by 1.25 m 2 / g.

この黒鉛粒子を負極活物質とし、バインダーと混合、塗布、乾燥後1t/cm2の圧力でプレスしたときの電極密度は1.46g/cm3であった。
電極密度を1.80g/cm3としたときに電解液1M LiPF6/EC:DEC(1:1)2μlを完全に浸透するのに要した時間は1520秒であった。
When the graphite particles were used as a negative electrode active material, mixed with a binder, coated, dried, and pressed at a pressure of 1 t / cm 2 , the electrode density was 1.46 g / cm 3 .
When the electrode density was 1.80 g / cm 3 , the time required to completely penetrate 2 μl of the electrolyte 1M LiPF 6 / EC: DEC (1: 1) was 1520 seconds.

比較例2
比較例1の黒鉛粒子を更に3000℃で黒鉛化した。粒度は、D50=13.1μm、Dtop=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.356Å、BET法による比表面積SSA=1.37m2/gであった。
この負極材をバインダーと混合、塗布、乾燥後1t/cm2の圧力でプレスしたときの電極密度は1.76g/cm3であった。
電極密度を1.80g/cm3としたときに電解液1M LiPF6/EC:DEC(1:1)2μlを完全に浸透するのに要した時間は2990秒であった。
Comparative Example 2
The graphite particles of Comparative Example 1 were further graphitized at 3000 ° C. Particle size, D50 = 13.1μm, Dtop = 38.9μm , d (002) was measured lattice spacing by X-ray diffraction by Gakushin method = 3.356Å, specific surface area by the BET method: SSA = 1.37 m 2 / g.
When this negative electrode material was mixed with a binder, coated, dried, and pressed at a pressure of 1 t / cm 2 , the electrode density was 1.76 g / cm 3 .
When the electrode density was 1.80 g / cm 3 , the time required to completely penetrate 2 μl of the electrolyte 1M LiPF 6 / EC: DEC (1: 1) was 2990 seconds.

表1からわかるように、実施例1及び実施例2の黒鉛粒子は、プレスしたときの電極密度が高くなり、プレス性が良く、尚且つ、電解液浸液時間が短く、浸液性が良いものとなっている。
電極密度を1.80g/cm3にしたものの電解液浸液時間は実施例1、2でそれぞれ1520秒、1170秒であり、従来のものと変わりないか、短くなっており、高密度にしても電解液浸透性が高く、負極活物質として優れたものである。
比較例2が、電解液の浸液時間が2990秒と長いのは、プレスによって黒鉛粒子が潰れ、電解液の流通路を閉塞しているからである。これに対して、実施例1ではプレスによって黒鉛粒子(B)は潰れやすいが、表面の突起の存在によって流路を確保しているため、浸液時間は短くなっている。
As can be seen from Table 1, the graphite particles of Example 1 and Example 2 have high electrode density when pressed, good pressability, and short electrolyte immersion time and good immersion properties. It has become a thing.
The electrolyte immersion time for the electrode density of 1.80 g / cm 3 is 1520 seconds and 1170 seconds in Examples 1 and 2, respectively, which is the same as or shorter than the conventional one. Also has high electrolyte permeability and is excellent as a negative electrode active material.
The reason why the immersion time of the electrolytic solution in Comparative Example 2 is as long as 2990 seconds is that the graphite particles are crushed by the press and block the flow path of the electrolytic solution. On the other hand, in Example 1, the graphite particles (B) are easily crushed by pressing, but the immersion time is shortened because the flow path is secured by the presence of protrusions on the surface.

実施例1及び実施例2の黒鉛粒子を負極活物質として電極密度を1.6、1.7、1.8(g/cm3)に変化させたときの放電容量と放電効率を表2に示す。充放電は対極としてLi金属、電解液に1M LiPF6/EC:MEC(1:2)を用いた二極式コインセルを作製しておこなった。電流値0.5mA/cm2で定電流充電をおこない、電圧値が0.01Vになったところで定電圧充電に切り替え、電流値が0.01mA/cm2に下がるまで充電を行った。充電終了後、電流値0.5mA/cm2で定電流放電をおこない、電圧値が1.5Vとなったところで放電終了した。
本発明の黒鉛粒子は、電極密度を高めても放電容量及び効率が低下することがなく、優れていることがわかる。
Table 2 shows the discharge capacity and discharge efficiency when the graphite density of Example 1 and Example 2 was used as the negative electrode active material and the electrode density was changed to 1.6, 1.7, 1.8 (g / cm 3 ). Show. Charging / discharging was performed by preparing a bipolar coin cell using Li metal as the counter electrode and 1M LiPF 6 / EC: MEC (1: 2) as the electrolyte. Constant current charging was performed at a current value of 0.5 mA / cm 2 , and switching to constant voltage charging was performed when the voltage value reached 0.01 V, and charging was performed until the current value decreased to 0.01 mA / cm 2 . After the end of charging, constant current discharge was performed at a current value of 0.5 mA / cm 2 , and the discharge was terminated when the voltage value reached 1.5V.
It can be seen that the graphite particles of the present invention are excellent in that the discharge capacity and efficiency do not decrease even when the electrode density is increased.

<耐PC特性に関する実施例>
実施例3
実施例1に用いた黒鉛粒子(B)の前駆体である黒鉛粒子(A)をそのまま用いた。黒鉛粒子(A)の粒度は平均粒子径(D50)=11.9μm、最大粒子径(Dtop)=38.9μmであり、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積SSA=3.65m2/gであった。
<Examples regarding PC resistance>
Example 3
The graphite particles (A) that are the precursors of the graphite particles (B) used in Example 1 were used as they were. Graphite particles (A) had an average particle size (D50) = 11.9 μm and a maximum particle size (Dtop) = 38.9 μm. When the crystal plane spacing by X-ray diffraction was measured by the Gakushin method, d (002 ) = 3.357 mm, specific surface area by BET method SSA = 3.65 m 2 / g.

黒鉛粒子(A)100重量部に対してPVdF(ポリフッ化ビニリデン)を5重量部もしくはSBRとCMCをそれぞれ2重量部ずつ混合して作製したスラリーを銅箔上にドクターブレードを用いて塗布し、120℃で乾燥し、ロールプレスをかけ、電極とした。プレス後の電極厚は80μm、電極密度は1.6g/cm3であった。対極としてLi金属、電解液に1M LiPF6/EC:MEC(1:2)及び1M LiPF6/PC:EC:MEC(1:3:6)を用いた二極式コインセルを作製し、充放電測定を行った。電流値0.5mA/cm2で定電流充電をおこない、電圧値が0.01Vになったところで定電圧充電に切り替え、電流値が0.01mA/cm2に下がるまで充電を行った。充電終了後、電流値0.5mA/cm2で定電流放電をおこない、電圧値が1.5Vとなったところで放電終了した。充放電容量は表3のとおりである。
PCを電解液に添加したものとしないものとの間に放電容量及び放電効率に殆ど差が見られず、容量損失が発生することなく充放電が可能である。
A slurry prepared by mixing 5 parts by weight of PVdF (polyvinylidene fluoride) or 2 parts by weight of SBR and CMC with respect to 100 parts by weight of graphite particles (A) was applied onto a copper foil using a doctor blade, It dried at 120 degreeC, the roll press was applied, and it was set as the electrode. The electrode thickness after pressing was 80 μm, and the electrode density was 1.6 g / cm 3 . Bipolar coin cells using Li metal as the counter electrode and 1M LiPF 6 / EC: MEC (1: 2) and 1M LiPF 6 / PC: EC: MEC (1: 3: 6) as the electrolyte were prepared and charged and discharged. Measurements were made. Constant current charging was performed at a current value of 0.5 mA / cm 2 , and switching to constant voltage charging was performed when the voltage value reached 0.01 V, and charging was performed until the current value decreased to 0.01 mA / cm 2 . After the end of charging, constant current discharge was performed at a current value of 0.5 mA / cm 2 , and the discharge was terminated when the voltage value reached 1.5V. Table 3 shows the charge / discharge capacity.
There is almost no difference in discharge capacity and discharge efficiency between the case where PC is added to the electrolytic solution and the case where PC is not added, and charging / discharging is possible without causing capacity loss.

実施例4
実施例1の黒鉛粒子(B)と実施例3の黒鉛粒子(A)をA/B=50/50(重量)の配合で混合して負極活物質とした。平均粒径はD50=11.95μm、最大粒径Dtop=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積SSA=3.52m2/gであった。
Example 4
The graphite particles (B) of Example 1 and the graphite particles (A) of Example 3 were mixed in a composition of A / B = 50/50 (weight) to obtain a negative electrode active material. The average particle size was D50 = 11.95 μm, the maximum particle size Dtop = 38.9 μm, and the crystal plane spacing by X-ray diffraction was measured by the Gakushin method. D (002) = 3.357 mm, specific surface area SSA by BET method = It was 3.52 m 2 / g.

負極厚を80μm、電極密度を1.80g/cm3としたときに0.01Vから1.5Vまでの放電容量は、電解液に1M LiPF6/EC:MEC(1:2)を用いたときは351mAh/g、放電効率は90.5%であり、1M LiPF6/PC:EC:MEC(1:3:6)を用いたときは、351mAh/g、放電効率は90.0%であった。
PC添加電解液での放電容量及び放電効率の低下はなく、良好であった。
When the negative electrode thickness is 80 μm and the electrode density is 1.80 g / cm 3 , the discharge capacity from 0.01 V to 1.5 V is when 1 M LiPF 6 / EC: MEC (1: 2) is used as the electrolyte. Is 351 mAh / g, discharge efficiency is 90.5%. When 1M LiPF 6 / PC: EC: MEC (1: 3: 6) is used, 351 mAh / g and discharge efficiency is 90.0%. It was.
The discharge capacity and discharge efficiency in the PC-added electrolytic solution were not deteriorated and were satisfactory.

<急速充放電に関する実施例、比較例>
実施例5
アセチレンブラックの代わりにファーネスブラック(粒子径68nm、BET比表面積23m2/g)を用いた以外は実施例3と同様である。
粒度はD50=13.5μm、Dtop=38.9μm、X線回折による結晶面間隔を学振法で測定したところd(002)=3.357Å、BET法による比表面積SSA=2.18m2/gであった。
<Examples relating to rapid charging / discharging, comparative examples>
Example 5
The same as Example 3 except that furnace black (particle diameter 68 nm, BET specific surface area 23 m 2 / g) was used instead of acetylene black.
The particle size D50 = 13.5μm, Dtop = 38.9μm, d (002) was measured by Gakushin method lattice spacing by X-ray diffraction = 3.357Å, specific surface area by the BET method: SSA = 2.18m 2 / g.

実施例3、実施例5及び比較例1についてプレス後の負極厚さを40μm、電極密度を1.40g/cm3としたときの0.01Vから1.5Vまでの放電容量及び放電効率、また放電深度(DOD)=50%に調整後、電流値10Cにて1.0Vまでの放電容量及び電流値2Cで0Vまで定電流充電したときの容量は表4のとおりである。実施例3及び実施例5は比較例1と比較して放電容量、放電効率が向上している。また、急速充放電時の容量が高く、ハイパワー特性に優れているといえる。 For Example 3, Example 5 and Comparative Example 1, the discharge capacity and discharge efficiency from 0.01 V to 1.5 V when the negative electrode thickness after pressing was 40 μm and the electrode density was 1.40 g / cm 3 , Table 4 shows the discharge capacity up to 1.0 V at a current value of 10 C and the capacity when constant current charging to 0 V at a current value of 2 C after adjusting the depth of discharge (DOD) = 50%. In Example 3 and Example 5, the discharge capacity and the discharge efficiency are improved as compared with Comparative Example 1. Moreover, it can be said that the capacity | capacitance at the time of rapid charge / discharge is high, and is excellent in the high power characteristic.

<サイクル特性>
実施例1、実施例3及び比較例1の黒鉛粒子を使用して電極密度1.6g/cm3としてサイクル試験を実施した。電流値0.5Cで定電流充電をおこない、電圧値が0.01Vになったところで定電圧充電に切り替え、電流値が0.01mA/cm2に下がるまで充電を行った。充電終了後、電流値0.5Cで定電流放電をおこない、電圧値が1.5Vとなったところで放電終了した。この充電−放電を繰り返しおこない、サイクル試験を行った。その結果を図2に示す。表面に微小突起を有しない比較例1を使用した電極はサイクル数が増加するにつれて放電容量保持率が低下していくのに対し、本発明の黒鉛粒子を負極活物質としたものは、放電容量の低下が小さく、優れたサイクル特性を示している。
<Cycle characteristics>
Using the graphite particles of Example 1, Example 3 and Comparative Example 1, a cycle test was conducted at an electrode density of 1.6 g / cm 3 . Constant current charging was performed at a current value of 0.5 C. When the voltage value reached 0.01 V, switching to constant voltage charging was performed, and charging was performed until the current value decreased to 0.01 mA / cm 2 . After the end of charging, constant current discharge was performed at a current value of 0.5 C, and the discharge was terminated when the voltage value reached 1.5V. This charge-discharge was repeated and a cycle test was conducted. The result is shown in FIG. The electrode using Comparative Example 1 having no microprotrusions on the surface has a lower discharge capacity retention rate as the number of cycles is increased, whereas the one using the graphite particles of the present invention as a negative electrode active material has a discharge capacity. The decrease in the is small, and excellent cycle characteristics are shown.

また、高密度使用タイプの実施例1について電極密度を1.8g/cm3としたときのサイクル特性を図3に示す。電極密度1.6g/cm3と同等のサイクル特性を示し、電極高密度化によるサイクル劣化はなく、優れた特性を示している。 FIG. 3 shows the cycle characteristics when the electrode density is 1.8 g / cm 3 for Example 1 of the high-density use type. Cycle characteristics equivalent to an electrode density of 1.6 g / cm 3 are exhibited, there is no cycle deterioration due to electrode densification, and excellent characteristics are exhibited.

<黒鉛粒子の物理特性>
本発明の実施例1〜5、及び比較例1〜2の黒鉛粒子の平均粒子径、最大粒子径、結晶面間隔、BET法による比表面積の物理特性を表5に示す。
表5からわかるように、本発明の黒鉛粒子の特徴は、比表面積が従来の黒鉛粒子に比べて大きなことである。
<Physical properties of graphite particles>
Table 5 shows the average particle diameter, the maximum particle diameter, the crystal plane spacing, and the physical properties of the specific surface area according to the BET method of Examples 1 to 5 and Comparative Examples 1 and 2 of the present invention.
As can be seen from Table 5, the characteristic of the graphite particles of the present invention is that the specific surface area is larger than that of the conventional graphite particles.

Claims (3)

鱗片状天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2〜50重量部、及びピッチを混合して天然黒鉛粒子を含浸・被覆して900℃〜1500℃で焼成し、表面に微小突起を形成したリチウムイオン二次電池用黒鉛粒子(A)。   Carbon black 2-50 parts by weight and pitch are mixed with 100 parts by weight of a base material obtained by spherically shaping flaky natural graphite, impregnated and coated with natural graphite particles, and fired at 900 ° C. to 1500 ° C. Graphite particles (A) for lithium ion secondary batteries in which fine protrusions are formed. 請求項1において、得られた黒鉛を更に高温で焼成して黒鉛化した表面に微小突起が形成してあるリチウムイオン二次電池用黒鉛粒子(B)。 2. The graphite particle for lithium ion secondary battery (B) according to claim 1, wherein the obtained graphite is further calcined at a high temperature to graphitize the surface, and microprotrusions are formed. 請求項1の黒鉛粒子(A)と請求項2の黒鉛粒子(B)の混合物からなるリチウムイオン二次電池用黒鉛粒子。 A graphite particle for a lithium ion secondary battery comprising a mixture of the graphite particle (A) of claim 1 and the graphite particle (B) of claim 2.
JP2011161193A 2011-07-22 2011-07-22 Graphite particles for lithium ion secondary batteries Active JP5318921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161193A JP5318921B2 (en) 2011-07-22 2011-07-22 Graphite particles for lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161193A JP5318921B2 (en) 2011-07-22 2011-07-22 Graphite particles for lithium ion secondary batteries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006197043A Division JP4974597B2 (en) 2006-07-19 2006-07-19 Negative electrode and negative electrode active material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011233541A JP2011233541A (en) 2011-11-17
JP5318921B2 true JP5318921B2 (en) 2013-10-16

Family

ID=45322619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161193A Active JP5318921B2 (en) 2011-07-22 2011-07-22 Graphite particles for lithium ion secondary batteries

Country Status (1)

Country Link
JP (1) JP5318921B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492407B2 (en) * 2014-03-25 2019-04-03 三菱ケミカル株式会社 Carbon material for non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP6511726B2 (en) * 2014-04-25 2019-05-15 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2023021781A1 (en) * 2021-08-19 2023-02-23

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4974597B2 (en) * 2006-07-19 2012-07-11 日本カーボン株式会社 Negative electrode and negative electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2011233541A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US8728668B2 (en) Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
KR101342601B1 (en) Negative active material, manufacturing method thereof, and lithium battery containing the material
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP6022297B2 (en) Negative electrode material for lithium ion secondary battery, and negative electrode and secondary battery using the same
JP5749339B2 (en) Lithium ion secondary battery
JP2016021393A (en) Negative electrode active material for secondary batteries, and method for manufacturing the same
JP6194794B2 (en) Lithium secondary battery
JP2013054958A (en) Negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JPWO2012144177A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN110828812A (en) Negative electrode material, negative electrode comprising same and preparation method of negative electrode
KR101817418B1 (en) Negative electrode active material and method for preparing the same
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP2009149462A (en) Composite material and production method thereof, electrode structure and power storage device
CN107528065B (en) Lithium secondary battery
JP6709991B2 (en) Lithium ion secondary battery
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101790398B1 (en) Anode active material and lithium secondary battery comprising the same
CN115380407A (en) Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250