KR101140866B1 - Anode active material for lithium secondary battery And Lithium secondary battery comprising the same - Google Patents

Anode active material for lithium secondary battery And Lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101140866B1
KR101140866B1 KR1020090038347A KR20090038347A KR101140866B1 KR 101140866 B1 KR101140866 B1 KR 101140866B1 KR 1020090038347 A KR1020090038347 A KR 1020090038347A KR 20090038347 A KR20090038347 A KR 20090038347A KR 101140866 B1 KR101140866 B1 KR 101140866B1
Authority
KR
South Korea
Prior art keywords
negative electrode
secondary battery
lithium secondary
active material
electrode active
Prior art date
Application number
KR1020090038347A
Other languages
Korean (ko)
Other versions
KR20100119305A (en
Inventor
박병천
오정훈
염철
한경희
한정민
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR1020090038347A priority Critical patent/KR101140866B1/en
Publication of KR20100119305A publication Critical patent/KR20100119305A/en
Application granted granted Critical
Publication of KR101140866B1 publication Critical patent/KR101140866B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명에 따른 리튬 이차전지용 음극 활물질은, 리튬-티타늄 복합금속 산화물 코어부; 및 상기 코어부 외부에 형성되는 탄소재 쉘부를 구비하는 리튬 이차전지용 음극 활물질로서 상기 리튬-티타늄 복합금속 산화물이 특정 구조를 갖는 것을 특징으로 한다. 본 발명의 음극 활물질은 리튬 이차전지의 제조에 사용되어 향상된 충방전 효율과 사이클 특성을 나타낼 수 있다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same. The negative electrode active material for a lithium secondary battery according to the present invention includes a lithium-titanium composite metal oxide core portion; And a lithium-titanium composite metal oxide having a specific structure as a negative electrode active material for a lithium secondary battery having a carbon material shell portion formed outside the core portion. The negative electrode active material of the present invention can be used in the production of a lithium secondary battery can exhibit improved charge and discharge efficiency and cycle characteristics.

이차전지, 음극 활물질 Secondary Battery, Anode Active Material

Description

리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지{Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}

본 발명은 리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는, 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있는 리튬 이차전지용 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same, which can improve charge and discharge efficiency and cycle characteristics of a battery. It is about.

최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고 용량인 2차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 2차 전지는 경량이고 고 에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 2차 전지의 성능 향상을 위한 연구 개발 노력이 활발하게 진행되고 있다.Recently, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, and electric vehicles, the demand for small, lightweight, and relatively high capacity secondary batteries is rapidly increasing. In particular, lithium secondary batteries have attracted attention as a driving power source for portable devices due to their light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.

리튬 2차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.Lithium secondary batteries are used when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic or polymer electrolyte is charged between a negative electrode and a positive electrode made of an active material capable of intercalations and deintercalation of lithium ions. Produces electrical energy by oxidation and reduction reactions.

리튬 2차 전지의 양극 활물질로는 리튬 코발트 옥사이드(LiCoO2), 리튬 니켈 옥사이드(LiNiO2), 리튬 망간 옥사이드(LiMnO2) 등과 같은 전이금속 화합물이 주로 사용되고 음극 활물질로는 일반적으로 연화 정도가 큰 천연흑연이나 인조흑연과 같은 결정질계 탄소재료, 또는 1000 ~ 1500℃의 낮은 온도에서 탄화수소나 고분자 등을 탄화시켜 얻은 수도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 가지는 비정질계(low crystalline) 탄소재료가 사용된다.As a positive electrode active material of a lithium secondary battery, transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ) are mainly used. Crystalline carbon materials such as natural graphite and artificial graphite, or amorphous-based (pseudo-graphite) structures or turbostratactic structures obtained by carbonizing hydrocarbons or polymers at low temperatures of 1000 to 1500 ° C. crystalline) carbon material is used.

하지만, 이러한 흑연과 같은 탄소계 음극 활물질을 사용하는 경우에는, 탄소계 음극재료는 비가역용량이 크므로 초기 충방전 효율이 낮고, 용량이 감소되는 문제점이 있다. 그리고, 과충전 시 탄소의 표면에 리튬이 석출되어 안전성에 있어서 문제가 발생할 수 있다.However, in the case of using such a carbon-based negative electrode active material such as graphite, the carbon-based negative electrode material has a large irreversible capacity, there is a problem that the initial charge and discharge efficiency is low, the capacity is reduced. In addition, lithium may be deposited on the surface of carbon during overcharging, thereby causing a problem in safety.

이러한 문제를 해결하기 위해, 한국공개 제2008-0023831호는 첨가제가 도입된 Li4Ti5O12를 음극 활물질로 개시하고 있다. 그러나, 한국공개 제2008-0023831호에서 개시된, 첨가제가 도입된 Li4Ti5O12는 산화물이 가지는 전기 전도도 저하를 극복하기 못하여 도전재를 활용해야 하며, 그에 따라 탄소재 음극 활물질에 비해 방전용량이 낮은 단점이 여전히 존재한다.In order to solve this problem, Korean Laid-Open Publication No. 2008-0023831 discloses Li 4 Ti 5 O 12 having an additive as a negative electrode active material. However, Li 4 Ti 5 O 12 with additives disclosed in Korean Unexamined Patent Application Publication No. 2008-0023831 does not overcome the electrical conductivity degradation of oxides, and thus requires the use of a conductive material, and thus a discharge capacity in comparison with a carbonaceous anode active material. This low disadvantage still exists.

이에 본 발명은 리튬 산화물을 포함하고 전기 전도도가 우수한새로운 음극 활물질 및 그 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a novel negative electrode active material containing lithium oxide and excellent electrical conductivity and a method of manufacturing the same.

또한, 본 발명의 다른 목적은 상기 음극 활물질을 사용하여 제조된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공하는데 있다.In addition, another object of the present invention to provide a lithium secondary battery negative electrode and a lithium secondary battery comprising the same prepared using the negative electrode active material.

상기 과제를 해결하기 위하여, 본 발명의 리튬 이차전지용 음극 활물질은, 리튬-티타늄 복합금속 산화물 코어부; 및 상기 코어부 외부에 형성되는 탄소재 쉘부를 구비하는 리튬 이차전지용 음극 활물질로서, 상기 리튬-티타늄 복합금속 산화물은 하기 화학식 1로 표시되는 것을 특징으로 한다.In order to solve the above problems, the negative electrode active material for a lithium secondary battery of the present invention, lithium-titanium composite metal oxide core portion; And a negative electrode active material for a lithium secondary battery having a carbon material shell portion formed outside the core portion, wherein the lithium-titanium composite metal oxide is represented by the following Chemical Formula 1.

Li4Ti5-xMxO12 Li 4 Ti 5-x M x O 12

상기 화학식 1에서,In Chemical Formula 1,

0 ≤ x < 0.5 이고, M은 Ti, Mn, Fe, Co, Ni, Zn, Al, Mg 또는 Zr이다.0 ≦ x <0.5 and M is Ti, Mn, Fe, Co, Ni, Zn, Al, Mg or Zr.

본 발명에서 사용되는 상기 탄소재 쉘부는 석탄계 또는 석유계 피치, 및 탄소 섬유의 혼합물을 소성하여 형성될 수 있으며, 석탄계 또는 석유계 피치의 함량은 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.01 내지 20 중량부일 수 있고, 탄소섬유의 함량은 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.05 내지 15 중량부일 수 있으나, 이에 한정되는 것은 아니다.The carbon material shell portion used in the present invention may be formed by firing a mixture of coal-based or petroleum pitch, and carbon fiber, the content of coal-based or petroleum pitch is 0.01 to 100 parts by weight of the lithium-titanium composite metal oxide core portion To 20 parts by weight, the content of the carbon fiber may be 0.05 to 15 parts by weight relative to 100 parts by weight of the lithium-titanium composite metal oxide core portion, but is not limited thereto.

본 발명에 따른 음극 활물질의 제조방법은, 예를 들면 전술한 코어부 형성용 리튬-티타늄 복합금속 산화물 및 쉘부 형성용 탄소재를 혼합하고, 300 내지 1500 ℃의 온도로 소성하는 단계를 포함한다.The method for producing a negative electrode active material according to the present invention includes, for example, mixing the above-described lithium-titanium composite metal oxide for forming a core part and a carbon material for forming a shell part, and baking the same at a temperature of 300 to 1500 ° C.

전술한 본 발명의 음극 활물질은 리튬 이차전지용 음극 및 리튬 이차전지에 사용될 수 있다.The negative electrode active material of the present invention described above can be used in the negative electrode for lithium secondary batteries and lithium secondary batteries.

본 발명의 리튬 이차전지용 음극 활물질은 리튬-티타늄 복합금속 산화물과 탄소재의 코어-쉘 구조를 가짐으로써, 리튬-티타늄 복합금속 산화물의 장점은 손실없이 유지하면서도 산화물 자체의 단점인 전기 전도도 저하를 방지하여, 충방전특성 및 수명특성과 같은 전지 성능을 향상시킬 수 있다.Since the negative electrode active material for a lithium secondary battery of the present invention has a core-shell structure of a lithium-titanium composite metal oxide and a carbon material, the advantages of the lithium-titanium composite metal oxide are maintained without loss while preventing a decrease in electrical conductivity, which is a disadvantage of the oxide itself. Thus, battery performance such as charge and discharge characteristics and lifespan characteristics can be improved.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.

전술한 바와 같이, 본 발명의 음극 활물질에 포함되는 상기 화학식 1로 표시되는 리튬-티타늄 복합금속 산화물은 고속 충방전이 가능하고 반응열이 낮아 안전성이 우수한 장점이 있어 리튬 이차전지용 음극 활물질로 매우 유용하게 사용될 수 있다.As described above, the lithium-titanium composite metal oxide represented by Chemical Formula 1 included in the negative electrode active material of the present invention has the advantage of high speed charging and discharging and low heat of reaction, which is excellent in safety, thus making it useful as a negative electrode active material for lithium secondary batteries. Can be used.

다만, 본 발명에 따른 리튬-티타늄 복합금속 산화물은 산화물 자체의 낮은 전기 전도도 문제는 여전히 갖고 있다. 따라서 본 발명은 상기 리튬-티타늄 복합금속 산화물의 외부에 탄소재 쉘부를 형성시킴으로써 전기 전도도의 저하를 방지하였 다. 그에 따라 본 발명의 음극 활물질은 충방전 특성이 향상된 리튬 이차전지의 제조에 사용될 수 있으며, 또한 전지의 수명 특성까지도 개선할 수 있음을 확인하였다.However, the lithium-titanium composite metal oxide according to the present invention still has a problem of low electrical conductivity of the oxide itself. Therefore, the present invention prevents a decrease in electrical conductivity by forming a carbon material shell portion outside the lithium-titanium composite metal oxide. Accordingly, it was confirmed that the negative active material of the present invention can be used to manufacture a lithium secondary battery having improved charge / discharge characteristics, and also improve the life characteristics of the battery.

본 발명에서 사용되는 리튬-티타늄 복합금속 산화물은 상기 화학식 1로 표시되는 것을 특징으로 한다. 또한, 본 발명에서 사용되는 리튬-티타늄 복합금속 산화물은 레이저 회절법에 의한 입도 분포 측정 결과, 전체 입자 중 90% 이상의 입자가 지름이 0.1 내지 20 ㎛인 것을 특징으로 한다. 상기 지름이 0.1 ㎛ 미만이면 쉘 형성이 잘 이루어지지 않으며, 20 ㎛ 초과이면 쉘 형성으로 인한 전지 전도도의 향상 효과가 미미하다.Lithium-titanium composite metal oxide used in the present invention is characterized in that represented by the formula (1). In addition, the lithium-titanium composite metal oxide used in the present invention has a particle size distribution measurement result by laser diffraction, characterized in that 90% or more of the particles are 0.1 to 20 ㎛ in diameter. If the diameter is less than 0.1 μm, the shell is not well formed, and if the diameter is more than 20 μm, the effect of improving the cell conductivity due to the shell formation is insignificant.

본 발명의 음극 활물질은 탄소재 쉘부를 구비한다. 본 발명에서 쉘부로 사용되는 탄소재는 석탄계 또는 석유계 피치, 및 탄소 섬유의 혼합물을 소성하여 형성된 탄소재가 바람직하다. The negative electrode active material of the present invention includes a carbon material shell portion. The carbon material used as the shell portion in the present invention is preferably a carbon material formed by firing a mixture of coal-based or petroleum-based pitch and carbon fiber.

본 발명에서 사용할 수 있는 석탄계 또는 석유계 피치는 탄소 함량이 피치 총 중량에 대하여 60 중량% 이상인 것이 바람직하다. 탄소 함량이 60 중량% 이상이 되어야 요구되는 전기 전도도의 향상 효과를 얻을 수 있으며, 탄소 함량이 많을 수록 전기 전도도가 높아지므로, 특별한 상한의 제한은 없다.The coal-based or petroleum-based pitch that can be used in the present invention preferably has a carbon content of 60% by weight or more based on the total weight of the pitch. When the carbon content is 60% by weight or more, it is possible to obtain the required electrical conductivity improvement effect, the higher the carbon content, the higher the electrical conductivity, there is no particular upper limit.

또한, 본 발명에서 사용할 수 있는 석탄계 또는 석유계 피치는 연화점이 100 ℃ 이상인 것이 바람직하다. 피치의 연화점은 탄화 수율과 관련이 있으며, 탄화 수율이 높을수록 전기 전도도에 문제가 없으므로, 연화점에 특별한 상한의 제한은 없다.Moreover, it is preferable that the softening point of the coal type or petroleum pitch which can be used by this invention is 100 degreeC or more. The softening point of the pitch is related to the carbonization yield, and since the higher the carbonization yield, there is no problem in the electrical conductivity, so there is no particular upper limit to the softening point.

본 발명에 따른 석탄계 또는 석유계 피치는 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.01 내지 20 중량부의 함량을 가질 수 있다. 상기 함량이 0.01 중량부 미만이면 쉘부 형성이 어렵고, 20 중량부 초과이면 코어부의 성능 발현이 어렵다.Coal or petroleum pitch according to the present invention may have a content of 0.01 to 20 parts by weight relative to 100 parts by weight of the lithium-titanium composite metal oxide core portion. If the content is less than 0.01 parts by weight, it is difficult to form a shell portion, and if it is more than 20 parts by weight, it is difficult to express the performance of the core portion.

본 발명에 따른 탄소재 쉘부에서 사용될 수 있는 탄소섬유는 당분야에서 사용되는 탄소섬유라면 특별한 제한은 없다. 예를 들면 레이온계 탄소 섬유, PAN계 탄소 섬유, 피치계 탄소 섬유, 기상성장 탄소 섬유 등을 사용할 수 있으며, 기상성장 탄소 섬유는 높은 전기 전도성을 가지므로 보다 바람직하다.Carbon fiber that can be used in the carbon material shell portion according to the present invention is not particularly limited as long as the carbon fiber used in the art. For example, rayon-based carbon fiber, PAN-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, or the like can be used, and vapor-grown carbon fiber is more preferable because it has high electrical conductivity.

또한, 본 발명에 따른 탄소섬유는 탄소섬유 총 중량에 대하여 붕소를 0.1 내지 100,000 중량ppm 포함하는 흑연계 탄소섬유일 수 있다. 탄소섬유 내에 붕소가 0.1 내지 100,000 중량ppm 포함되면 출력이나 수명특성이 향상하는 효과가 있어 유리하다.In addition, the carbon fiber according to the present invention may be a graphite-based carbon fiber containing 0.1 to 100,000 ppm by weight of boron relative to the total weight of the carbon fiber. When boron is contained in an amount of 0.1 to 100,000 ppm by weight in the carbon fiber, there is an effect that the output and life characteristics are improved.

선택적으로, 본 발명에 따른 탄소섬유는 중공(中空) 구조를 가질 수 있으며, 또한 탄소섬유는 X선 회절법에 의한 (002)면의 평균 면 간격 d(002)가 0.344nm 이하일 수 있다.Optionally, the carbon fiber according to the present invention may have a hollow structure, and the carbon fiber may have an average plane spacing d (002) of the (002) plane by X-ray diffraction method of 0.344 nm or less.

본 발명에 따른 탄소섬유는 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.05 내지 15 중량부의 함량을 가질 수 있다. 상기 함량이 0.05 중량부 미만이면 첨가의 효과가 미미하고, 15 중량부 초과이면 탄소 섬유 간의 뭉침현상이 발생하여 코팅 효율이 저하된다.Carbon fiber according to the present invention may have a content of 0.05 to 15 parts by weight relative to 100 parts by weight of the lithium-titanium composite metal oxide core part. If the content is less than 0.05 parts by weight, the effect of the addition is insignificant, if it is more than 15 parts by weight agglomeration between the carbon fibers occurs to reduce the coating efficiency.

본 발명의 리튬 이차전지용 음극 활물질은 상기 화학식 1로 표시되는 코어부 형성용 리튬-티타늄 복합금속 산화물 및 쉘부 형성용 탄소재를 혼합하고, 300 내지 1500 ℃의 온도로 소성하는 단계를 통해 제조될 수 있다.The negative electrode active material for a lithium secondary battery of the present invention may be prepared by mixing the core-forming lithium-titanium composite metal oxide represented by Chemical Formula 1 and the carbon material for forming the shell portion, and baking the same at a temperature of 300 to 1500 ° C. have.

본 발명의 리튬 이차전지용 음극 활물질의 제조방법에 있어서, 코어부 형성용 리튬-티타늄 복합금속 산화물 및 쉘부 형성용 탄소재의 혼합 방법은 건식 혹은 습식 등 통상적인 방법으로 수행될 수 있다.In the manufacturing method of the negative electrode active material for a lithium secondary battery of the present invention, the mixing method of the lithium-titanium composite metal oxide for forming the core portion and the carbon material for forming the shell portion may be performed by a conventional method such as dry or wet.

또한, 상기 소성 온도가 300 ℃ 미만이면 쉘부의 탄화가 충분히 진행되지 못하여 불순물이 함유될 수 있고, 1500 ℃ 초과이면 쉘부의 결정성이 지나치게 발달하여 코어의 전지 성능을 저해할 수 있다.In addition, when the calcination temperature is less than 300 ° C, carbonization of the shell portion may not proceed sufficiently, and impurities may be contained. When the baking temperature is higher than 1500 ° C, crystallinity of the shell portion may be excessively developed, which may inhibit battery performance of the core.

이렇게 제조된 본 발명의 음극 활물질은 통상적인 음극 제조방법에 따라, 도전재, 바인더 및 유기 용매와 혼합하여 활물질 페이스트로 제조된 후, 구리 포일(foil)과 같은 통상적으로 사용되는 음극 집전체에 도포된 다음, 건조, 열처리 및 압착하여 리튬 이차전지용 음극을 제조하는 데 사용될 수 있다.The negative electrode active material of the present invention thus prepared is mixed with a conductive material, a binder, and an organic solvent to prepare an active material paste according to a conventional negative electrode manufacturing method, and then applied to a commonly used negative electrode current collector such as copper foil. And then dried, heat treated and pressed to produce a negative electrode for a lithium secondary battery.

또한, 상기와 같이 본 발명에 따라 제조된 음극 및 리튬계 전이금속 화합물이 소정 두께로 양극 집전체에 코팅되어 제조된 양극을 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 이차전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 이차전지의 제조도 가능하다. 이러한 리튬 이차전지 제조 방법은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로 상세한 설명은 생략하기로 한다. In addition, as described above, the negative electrode and the lithium-based transition metal compound prepared according to the present invention are coated on the positive electrode current collector with a predetermined thickness to face the positive electrode with a separator therebetween, and the separator is impregnated with an electrolyte solution for a lithium secondary battery. It is also possible to manufacture a lithium secondary battery capable of phosphorus charging and discharging. Since such a lithium secondary battery manufacturing method is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하 기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예 1Example 1

LiOH 및 TiO2(Aldrich사)를 4:5의 중량비로 혼합하여, 전기로에서 900 ℃ 까지 1℃/min의 속도로 승온한 뒤, 20 시간 동안 유지시킨 후 자연냉각하여, Li4Ti5O12 화합물을 얻었다.LiOH and TiO 2 (Aldrich) were mixed at a weight ratio of 4: 5, and heated in an electric furnace at a rate of 1 ° C./min up to 900 ° C., maintained for 20 hours, followed by natural cooling, and Li 4 Ti 5 O 12 The compound was obtained.

상기 화합물 100 중량부 대비 5 중량부의 피치 및 1 중량부의 탄소섬유를 혼합기(Nauta Mixer)를 이용하여 1 시간 동안 혼합한 후, 원통형 용기 하부에 교반날이 장착된 혼합기를 이용하여 25m/s의 교반날 회전속도로 10 분동안 추가혼합한 다음, 1000 ℃의 온도로 소성시켜 음극 활물질을 제조하였다.5 parts by weight of pitch and 1 part by weight of carbon fiber were mixed for 1 hour using a mixer (Nauta Mixer), followed by stirring at 25 m / s using a mixer equipped with a stirring blade at the bottom of the cylindrical container. The mixture was further mixed at a blade rotation speed for 10 minutes, and then calcined at a temperature of 1000 ° C. to prepare a negative electrode active material.

이렇게 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 PVDF(바인더)를 투입한 후, Mixer을 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 리튬 이차전지용 음극을 제조하였다. 상기 제조된 음극, 양극 활물질로 LiCoO2을 사용하여 제조된 양극, 세퍼레이터로 Celgard 2400, 및 비수 전해액으로 EC:DEC=3:7로 혼합된 1M LiPF6를 사용하여 코인형 전지(coin cell)를 제조하였다.100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and PVDF (binder) were added, followed by mixing using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare a negative electrode for a lithium secondary battery. A negative electrode, a cathode manufactured using LiCoO 2 as a cathode active material, a Celgard 2400 as a separator, and a 1 M LiPF 6 mixed with EC: DEC = 3: 7 as a nonaqueous electrolyte were used to form a coin cell. Prepared.

실시예 2Example 2

Li4Ti5O12 화합물 100 중량부 대비 피치를 5 중량부, 탄소섬유를 2 중량부로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 5 parts by weight of pitch and 100 parts by weight of Li 4 Ti 5 O 12 compound were mixed in 2 parts by weight of carbon fiber.

실시예 3Example 3

Li4Ti5O12 화합물 100 중량부 대비 피치를 10 중량부, 탄소섬유를 1 중량부로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 10 parts by weight of the pitch of Li 4 Ti 5 O 12 compound and 1 part by weight of carbon fiber were mixed.

실시예 4Example 4

Li4Ti5O12 화합물 100 중량부 대비 피치를 10 중량부, 탄소섬유를 5 중량부로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질, 음극 및 코인형 전지를 제조하였다.A negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 10 parts by weight of pitch and 100 parts by weight of Li 4 Ti 5 O 12 compound were mixed in 5 parts by weight of carbon fiber.

비교예 1Comparative Example 1

LiOH 및 TiO2(Aldrich사)를 4:5의 중량비로 혼합하여, 전기로에서 900 ℃ 까지 1℃/min의 속도로 승온한 뒤, 20 시간 동안 유지시킨 후 자연냉각하여, Li4Ti5O12 화합물을 얻었으며, 이를 음극 활물질로 사용하여 실시예1과 동일한 방법으로 음극 및 코인형 전지를 제조하였다.LiOH and TiO 2 (Aldrich) were mixed at a weight ratio of 4: 5, and heated in an electric furnace at a rate of 1 ° C./min up to 900 ° C., maintained for 20 hours, followed by natural cooling, and Li 4 Ti 5 O 12 A compound was obtained, and a negative electrode and a coin-type battery were prepared in the same manner as in Example 1 using the negative electrode active material.

실험예Experimental Example

상기 실시예 1~4 및 비교예에 대해 다음과 같은 시험을 실시하여 특성을 평가하였다. 그 평가결과는 하기 표 1과 같다The following tests were performed on the Examples 1 to 4 and Comparative Examples to evaluate the properties. The evaluation results are shown in Table 1 below.

(1) 전지 특성(1) battery characteristics

충방전 시험은 전위를 0.0~1.5V의 범위로 규제하여, 충전 전류 0.5mA/㎠로 0.01V 될 때까지 충전하였으며, 또한 0.01V의 전압을 유지하면서 충전전류가 0.02mA/㎠ 될 때까지 충전을 계속하였다. 그리고 0.5mA/㎠의 방전전류로 1.5V까지의 방전시험을 행하였다. 상기 과정을 반복하여 사이클 특성을 확인한 결과를 하기 표 1에 기재하였다.In the charge and discharge test, the potential was regulated in the range of 0.0 to 1.5 V, and charged until 0.01 V at the charging current of 0.5 mA / cm 2. Continued. And the discharge test to 1.5V was performed with the discharge current of 0.5mA / cm <2>. The results of checking the cycle characteristics by repeating the above process are shown in Table 1 below.

하기 표 1에서 충방전 효율은 1회 충방전 과정에서 충전한 전기용량에 대한 방전한 전기용량의 비율을 나타낸다.In the following Table 1, the charge and discharge efficiency indicates the ratio of the discharged capacity to the charge capacity during the single charge and discharge process.

Figure 112009026500871-pat00001
Figure 112009026500871-pat00001

상기 표 1에 나타난 바와 같이, 본원발명에 따른 실시예1 내지 실시예4는 전반적인 전지특성이 모두 비교예의 전지보다 우수함을 알 수 있다.As shown in Table 1, Examples 1 to 4 according to the present invention can be seen that the overall battery characteristics are all superior to the battery of the comparative example.

Claims (14)

리튬-티타늄 복합금속 산화물 코어부; 및Lithium-titanium composite metal oxide core portion; And 상기 코어부 외부에 형성되는 탄소재 쉘부를 구비하는 리튬 이차전지용 음극 활물질로서,As a negative electrode active material for a lithium secondary battery having a carbon material shell portion formed outside the core portion, 상기 리튬-티타늄 복합금속 산화물은 Li4Ti5O12이고, The lithium-titanium composite metal oxide is Li 4 Ti 5 O 12 , 상기 탄소재 쉘부는 석탄계 또는 석유계 피치, 및 탄소섬유의 혼합물을 소성하여 형성되며,The carbon material shell portion is formed by firing a mixture of coal or petroleum pitch, and carbon fiber, 상기 석탄계 또는 석유계 피치의 함량은 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.01 내지 20 중량부, 상기 탄소섬유의 함량은 리튬-티타늄 복합금속 산화물 코어부 100 중량부 대비 0.05 내지 15 중량부인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The content of the coal-based or petroleum-based pitch is 0.01 to 20 parts by weight based on 100 parts by weight of the lithium-titanium composite metal oxide core part, and the content of the carbon fiber is 0.05 to 15 parts by weight based on 100 parts by weight of the lithium-titanium composite metal oxide core part. A negative electrode active material for a lithium secondary battery, characterized in that. 제1항에 있어서,The method of claim 1, 상기 리튬-티타늄 복합금속 산화물은 레이저 회절법에 의한 입도 분포 측정에 있어서 전체 입자 중 90% 이상의 입자가 지름이 0.1 내지 20 ㎛인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The lithium-titanium composite metal oxide is a negative electrode active material for lithium secondary battery, characterized in that 90% or more of the particles in the particle size distribution measurement by the laser diffraction method has a diameter of 0.1 to 20 ㎛. 삭제delete 제1항에 있어서,The method of claim 1, 상기 석탄계 또는 석유계 피치는 피치 총 중량에 대하여 탄소 함량이 60 중량% 이상인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The coal-based or petroleum-based pitch is a lithium secondary battery negative electrode active material, characterized in that the carbon content of 60% by weight or more based on the total weight of the pitch. 제1항에 있어서,The method of claim 1, 상기 석탄계 또는 석유계 피치는 연화점이 100 ℃ 이상인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The coal-based or petroleum-based pitch has a softening point of 100 ℃ or more negative electrode active material for a lithium secondary battery. 제1항에 있어서,The method of claim 1, 상기 탄소섬유는 기상성장 탄소섬유인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbon fiber is a negative electrode active material for lithium secondary battery, characterized in that the vapor-grown carbon fiber. 제1항에 있어서,The method of claim 1, 상기 탄소섬유는 탄소 섬유 총 중량에 대하여 붕소를 0.1 내지 100,000 중량ppm 포함하는 흑연계 탄소섬유인 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbon fiber is a negative electrode active material for lithium secondary battery, characterized in that the graphite-based carbon fiber containing 0.1 to 100,000 ppm by weight relative to the total weight of the carbon fiber. 제1항에 있어서, The method of claim 1, 상기 탄소섬유는 중공(中空) 구조를 갖는 것을 특징으로 하는 리튬 이차전지용 음극 활물질.The carbon fiber has a hollow structure, characterized in that the negative electrode active material for a lithium secondary battery. 삭제delete 삭제delete Li4Ti5O12로 표현되는 코어부 형성용 리튬-티타늄 복합금속 산화물 및 석탄계 또는 석유계 피치, 및 탄소섬유의 혼합물인 쉘부 형성용 탄소재를 혼합하고, 300 내지 1500 ℃의 온도로 소성하는 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.A lithium-titanium composite metal oxide for forming core parts represented by Li 4 Ti 5 O 12 and a carbon material for forming a shell part, which is a mixture of coal-based or petroleum-based pitches and carbon fibers, are mixed and fired at a temperature of 300 to 1500 ° C. Method for producing a negative electrode active material for a lithium secondary battery, characterized in that. 삭제delete 음극 활물질 및 바인더가 음극 집전체 상에 코팅되어 형성된 리튬 이차전지용 음극에 있어서,In the negative electrode for a lithium secondary battery formed by coating a negative electrode active material and a binder on a negative electrode current collector, 상기 음극 활물질은 제1항, 제2항, 제4항 내지 제8항 중 어느 한 항에 따른 음극 활물질인 것을 특징으로 하는 리튬 이차전지용 음극.The negative electrode active material is a negative electrode active material according to any one of claims 1, 2, 4 to 8, the lithium secondary battery negative electrode. 음극, 양극, 상기 음극과 양극 사이에 개재된 세퍼레이터, 및 전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution, 상기 음극은 제13항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.The negative electrode is a lithium secondary battery, characterized in that the negative electrode according to claim 13.
KR1020090038347A 2009-04-30 2009-04-30 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same KR101140866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090038347A KR101140866B1 (en) 2009-04-30 2009-04-30 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090038347A KR101140866B1 (en) 2009-04-30 2009-04-30 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20100119305A KR20100119305A (en) 2010-11-09
KR101140866B1 true KR101140866B1 (en) 2012-05-03

Family

ID=43405393

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090038347A KR101140866B1 (en) 2009-04-30 2009-04-30 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101140866B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180432A1 (en) * 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
WO2017164650A1 (en) * 2016-03-22 2017-09-28 주식회사 엘지화학 Anode active material for secondary battery, and secondary battery comprising same
US10665859B2 (en) 2016-03-22 2020-05-26 Lg Chem, Ltd. Negative electrode active material for secondary battery and secondary battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101536046B1 (en) * 2012-12-03 2015-07-24 한국기초과학지원연구원 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312809A (en) 1997-03-11 1998-11-24 Petoca:Kk Graphite material for high capacity nonaqueous secondary battery negative electrode and manufacture therefor
KR20080112809A (en) * 2007-06-22 2008-12-26 주식회사 엘지화학 Lithium titanate with increased electronic conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312809A (en) 1997-03-11 1998-11-24 Petoca:Kk Graphite material for high capacity nonaqueous secondary battery negative electrode and manufacture therefor
KR20080112809A (en) * 2007-06-22 2008-12-26 주식회사 엘지화학 Lithium titanate with increased electronic conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180432A1 (en) * 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
WO2017164650A1 (en) * 2016-03-22 2017-09-28 주식회사 엘지화학 Anode active material for secondary battery, and secondary battery comprising same
US10665859B2 (en) 2016-03-22 2020-05-26 Lg Chem, Ltd. Negative electrode active material for secondary battery and secondary battery including the same

Also Published As

Publication number Publication date
KR20100119305A (en) 2010-11-09

Similar Documents

Publication Publication Date Title
KR101437074B1 (en) Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
KR101552763B1 (en) Anode comprising silicon based material and carbon material, and lithium secondary battery comprising the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JPH04237971A (en) Nonaqueous electrolyte secondary battery
CN102792491A (en) Cathode for lithium secondary battery and lithium secondary battery including same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR20170048184A (en) Negative electrode material for secondary battery, method for preparing the same and secondary battery having the same
KR101631735B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
US20110262812A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
WO2009125909A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
US20120070732A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2000251885A (en) Negative electrode material for nonaqueous electrolyte secondary battery, and secondary battery using the material
JPH09129236A (en) Negative active material for lithium secondary battery and lithium secondary battery
KR102450634B1 (en) A new composite anode active material, lithium battery including the same, and method for preparing the material
JPH11273728A (en) Nonaqueous electrolyte battery
JP2001023686A (en) Nonaqueous electrolyte battery
JPH09293504A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JPH09306476A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180404

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190403

Year of fee payment: 8