KR101065248B1 - Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom - Google Patents

Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom Download PDF

Info

Publication number
KR101065248B1
KR101065248B1 KR1020100019537A KR20100019537A KR101065248B1 KR 101065248 B1 KR101065248 B1 KR 101065248B1 KR 1020100019537 A KR1020100019537 A KR 1020100019537A KR 20100019537 A KR20100019537 A KR 20100019537A KR 101065248 B1 KR101065248 B1 KR 101065248B1
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
lithium secondary
secondary battery
carbon
Prior art date
Application number
KR1020100019537A
Other languages
Korean (ko)
Other versions
KR20110100499A (en
Inventor
박병천
오정훈
염철
한정민
장원석
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR1020100019537A priority Critical patent/KR101065248B1/en
Publication of KR20110100499A publication Critical patent/KR20110100499A/en
Application granted granted Critical
Publication of KR101065248B1 publication Critical patent/KR101065248B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 탄소계 모재의 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)을 위치시키는 단계; 및 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)이 위치된 상기 탄소계 모재를, 불활성분위기 하에서 가열하여 탄소계 모재의 표면에 상기 M인 금속 및 금속산화물의 복합체를 형성시키는 단계를 포함하는 리튬 이차전지용 음극 활물질의 제조방법에 관한 것으로, 상기 화학식에서 0 < x < 10, 0 < y < 5, 0 < z < 10이고, M은 Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd 및 Gd 중에서 선택된 1종의 금속이다.
이러한 제조방법은 나노 크기의 암모늄계 금속화합물((NH4)xMy(OH)z)을 건/습식 방법으로 탄소계 음극 활물질 표면에 균일하게 위치시킴으로서 탄소계 물질 자체의 특성을 개선하고, 충방전시 형성되는 피막의 전도도를 향상시킴으로써 전지의 충방전 특성, 수명 특성 및 율특성을 향상시킬 수 있다.
The present invention comprises the steps of placing an ammonium-based metal compound ((NH 4 ) x M y (OH) z ) on the surface of the carbon-based base material; And heating the carbonaceous base material having an ammonium metal compound ((NH 4 ) x M y (OH) z ) positioned on the surface under an inert atmosphere to form a complex of the metal M and the metal oxide on the surface of the carbonaceous base material. It relates to a method of manufacturing a negative electrode active material for a lithium secondary battery comprising the step of forming, in the formula 0 <x <10, 0 <y <5, 0 <z <10, M is Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd and one kind of metal selected from Gd.
This manufacturing method improves the properties of the carbonaceous material itself by placing the nano-sized ammonium-based metal compound ((NH 4 ) x M y (OH) z ) uniformly on the surface of the carbon-based negative electrode active material in a dry / wet method, By improving the conductivity of the film formed during charging and discharging, it is possible to improve the charge and discharge characteristics, the life characteristics and the rate characteristics of the battery.

Description

리튬 이차전지용 음극 활물질의 제조방법과 이로부터 형성된 음극활물질을 포함하는 리튬 이차전지{Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom}A method of manufacturing a negative active material for a lithium secondary battery and a lithium secondary battery including a negative electrode active material formed therefrom {Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom}

본 발명은 리튬 이차전지용 음금활물질의 제조방법에 대한 것이다.The present invention relates to a method of manufacturing a drink active material for a lithium secondary battery.

최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고 용량인 2차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 2차 전지는 경량이고 고 에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 2차 전지의 성능 향상을 위한 연구 개발 노력이 활발하게 진행되고 있다.Recently, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, and electric vehicles, the demand for small, lightweight, and relatively high capacity secondary batteries is rapidly increasing. In particular, lithium secondary batteries have attracted attention as a driving power source for portable devices due to their light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.

리튬 2차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.Lithium secondary batteries are used when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic or polymer electrolyte is charged between a negative electrode and a positive electrode made of an active material capable of intercalations and deintercalation of lithium ions. Produces electrical energy by oxidation and reduction reactions.

리튬 2차 전지의 양극 활물질로는 리튬 코발트 옥사이드(LiCoO2), 리튬 니켈 옥사이드(LiNiO2), 리튬 망간 옥사이드(LiMnO2) 등과 같은 전이금속 화합물이 주로 사용되고 음극 활물질로는 일반적으로 연화 정도가 큰 천연흑연이나 인조흑연과 같은 결정질계 탄소재료, 또는 1000 ~ 1500℃의 낮은 온도에서 탄화수소나 고분자 등을 탄화시켜 얻은 수도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 가지는 비정질계(low crystalline) 탄소재료가 사용된다.As a positive electrode active material of a lithium secondary battery, transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ) are mainly used. Crystalline carbon materials such as natural graphite and artificial graphite, or amorphous-based (pseudo-graphite) structures or turbostratactic structures obtained by carbonizing hydrocarbons or polymers at low temperatures of 1000 to 1500 ° C. crystalline) carbon material is used.

하지만, 이러한 흑연과 같은 탄소계 음극 활물질을 사용하는 경우에는, 탄소계 음극재료는 비가역용량이 크므로 초기 충방전 효율이 낮고, 용량이 감소되는 문제점이 있다. 그리고, 과충전 시 탄소의 표면에 리튬이 석출되어 안전성에 있어서 문제가 발생할 수 있다.However, in the case of using such a carbon-based negative electrode active material such as graphite, the carbon-based negative electrode material has a large irreversible capacity, there is a problem that the initial charge and discharge efficiency is low, the capacity is reduced. In addition, lithium may be deposited on the surface of carbon during overcharging, thereby causing a problem in safety.

이러한 문제를 해결하기 위해, 'Journal of the electrochemical society, 152(8) A1595-1599(2005)'에서는 탄소재를 금속산화물인 나노물질로 코팅하여 표면개질하여 탄소재의 특성을 개선하였지만, 나노입자끼리의 뭉치는 현상이 심하여 표면 개질 공정의 균일성을 확보하기가 어려운 단점이 여전히 존재한다.In order to solve this problem, 'Journal of the electrochemical society, 152 (8) A1595-1599 (2005)' improved the properties of carbon materials by coating them with surface-modified carbon materials with nanomaterials. There is still a disadvantage that it is difficult to ensure the uniformity of the surface modification process due to the agglomeration of each other.

이에 본 발명은 탄소재를 금속산화물로 균일하게 코팅하여 음극 활물질을 제조하는 신규한 방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a novel method for producing a negative electrode active material by uniformly coating a carbon material with a metal oxide.

또한, 본 발명의 다른 목적은 상기 음극 활물질을 사용하여 제조된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공하는데 있다.In addition, another object of the present invention to provide a lithium secondary battery negative electrode and a lithium secondary battery comprising the same prepared using the negative electrode active material.

본 발명의 리튬 이차전지용 음극 활물질의 제조방법은 탄소계 모재의 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)을 위치시키는 단계; 및 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)이 위치된 상기 탄소계 모재를, 불활성분위기 하에서 가열하여 탄소계 모재의 표면에 상기 M인 금속 및 금속산화물의 복합체를 형성시키는 단계를 포함한다:Method of manufacturing a negative active material for a lithium secondary battery of the present invention comprises the steps of placing an ammonium metal compound ((NH 4 ) x M y (OH) z ) on the surface of the carbon-based base material; And heating the carbonaceous base material having an ammonium metal compound ((NH 4 ) x M y (OH) z ) positioned on the surface under an inert atmosphere to form a complex of the metal M and the metal oxide on the surface of the carbonaceous base material. Forming includes:

상기 화학식에서 0 < x < 10, 0 < y < 5, 0 < z < 10이고, M은 Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd 및 Gd 중에서 선택된 1종의 금속이다.In the formula 0 <x <10, 0 <y <5, 0 <z <10, M is Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, It is one kind of metal selected from Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd and Gd .

이러한 상기 암모늄계 금속화합물((NH4)xMy(OH)z)은 질산금속수화물이 용해된 수용액 또는 에탄올 용액에 수산화 암모늄(NH4OH)을 첨가하여 제조되는 것이 바람직하다.The ammonium metal compound ((NH 4 ) x M y (OH) z ) is preferably prepared by adding ammonium hydroxide (NH 4 OH) to the aqueous solution or ethanol solution in which the metal nitrate hydrate is dissolved.

또한, 탄소계 모재는 음극활물질용 탄소재료 또는 표면에 피복용 탄소재료가 피복된 음극활물질용 탄소재료인 것을 사용할 수 있으며, 이러한 음극활물질용 탄소재료는 천연흑연, 인조흑연, 소프트카본 및 하드카본 등을 사용할 수 있고, 이러한 피복용 탄소재료는 피치(pitch), 타르(tar), 페놀수지, 퓨란수지 및 풀푸릴알콜 등을 사용할 수 있다.In addition, the carbon-based base material may be a carbon material for the negative electrode active material or a carbon material for the negative electrode active material coated with a coating carbon material on the surface, the carbon material for the negative electrode active material is natural graphite, artificial graphite, soft carbon and hard carbon And the like, and the coating carbon material may be pitch, tar, phenol resin, furan resin, or furfuryl alcohol.

이러한 금속 및 금속산화물의 복합체의 함량은 0.01 내지 3중량%인 것이 바람직하다.The content of such a complex of metal and metal oxide is preferably 0.01 to 3% by weight.

전술한 본 발명의 음극 활물질은 리튬 이차전지용 음극 및 리튬 이차전지에 사용될 수 있다.The negative electrode active material of the present invention described above can be used in the negative electrode for lithium secondary batteries and lithium secondary batteries.

본 발명은 나노 크기의 암모늄계 금속화합물((NH4)xMy(OH)z)을 건/습식 방법으로 탄소계 음극 활물질 표면에 균일하게 위치시킴으로서 탄소계 물질 자체의 특성을 개선하고, 충방전시 형성되는 피막의 전도도를 향상시킴으로써 전지의 충방전 특성, 수명 특성 및 율특성을 향상시킬 수 있다.The present invention improves the properties of the carbonaceous material itself by uniformly placing nano-sized ammonium metal compound ((NH 4 ) x M y (OH) z ) on the surface of the carbonaceous anode active material by dry / wet method. By improving the conductivity of the film formed at the time of discharging, it is possible to improve the charge / discharge characteristics, life characteristics and rate characteristics of the battery.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.

본 발명에 따라 금속 및 금속산화물 복합체가 탄소계 모재의 표면에 형성된 리튬 이차전지용 음극활물질의 제조방법은 다음과 같다.According to the present invention, a method of manufacturing a negative active material for a lithium secondary battery in which a metal and metal oxide composite is formed on a surface of a carbon-based base material is as follows.

먼저, 탄소계 모재의 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)을 위치시키킨다.First, an ammonium metal compound ((NH 4 ) x M y (OH) z ) is placed on the surface of the carbonaceous base material.

탄소계 모재는 음극활물질용 탄소재료 또는 표면에 피복용 탄소재료가 피복된 음극활물질용 탄소재료를 모두 사용할 수 있다. 이러한 탄소모재의 표면에 암모늄계 이온을 함유하고 있는 금속화합물인 암모늄계 금속화합물((NH4)xMy(OH)z)을 위치시킨다. 이때에 암모늄계 금속화합물((NH4)xMy(OH)z)을 탄소모재의 표면에 위치시키는 방법은 특별히 한정하지는 않지만, 일반적인 피복용 탄소재료가 피복된 탄소계 음극활물질의 제조방법이 적용가능하며, 건식방법 및 습식방법 모두 가능하다. 습식방법의 경우를 예로들면, 암모늄계 금속화합물((NH4)xMy(OH)z)을 함유하는 용매에 탄소계 모재를 담지시킨 후에 용매를 제거하여, 탄소계 모재의 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)을 균일하게 위치시킨다.As the carbon-based base material, both the carbon material for the negative electrode active material or the carbon material for the negative electrode active material having the coating carbon material coated on the surface may be used. An ammonium metal compound ((NH 4 ) x M y (OH) z ), which is a metal compound containing ammonium ions, is placed on the surface of the carbon base material. At this time, the method of placing the ammonium metal compound ((NH 4 ) x M y (OH) z ) on the surface of the carbon base material is not particularly limited, but the manufacturing method of the carbon-based negative electrode active material coated with a general coating carbon material Applicable, both dry and wet methods are possible. For example, in the case of the wet method, after the carbon-based base material is supported in a solvent containing an ammonium-based metal compound ((NH 4 ) x M y (OH) z ), the solvent is removed to remove the ammonium-based surface from the surface of the carbon-based base material. The metal compound ((NH 4 ) x M y (OH) z ) is placed uniformly.

이러한 암모늄계 금속화합물((NH4)xMy(OH)z)은 암모늄계 금속화합물((NH4)xMy(OH)z)은 질산금속수화물이 용해된 수용액 또는 에탄올 용액에 수산화 암모늄(NH4OH)을 첨가하여 제조할 수 있다.The ammonium metal compound ((NH 4 ) x M y (OH) z ) is an ammonium metal compound ((NH 4 ) x M y (OH) z ) is an ammonium hydroxide in an aqueous solution or an ethanol solution in which metal nitrate hydrate is dissolved. It can be prepared by adding (NH 4 OH).

암모늄계 금속화합물((NH4)xMy(OH)z)의 금속으로는 Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd 및 Gd 등이 사용가능하다.Examples of the metal of the ammonium metal compound ((NH 4 ) x M y (OH) z ) include Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo , W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd, Gd and the like can be used.

이어서, 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)이 위치된 상기 탄소계 모재를, 불활성분위기 하에서 가열하여 탄소계 모재의 표면에 상기 금속 및 금속산화물의 복합체를 형성시킨다.Subsequently, the carbonaceous base material having an ammonium metal compound ((NH 4 ) x M y (OH) z ) positioned on the surface thereof is heated under an inert atmosphere to form a complex of the metal and metal oxide on the surface of the carbonaceous base material. Let's do it.

가열온도는 300 내지 500℃인 것이 바람직하고, 이렇게 형성된 금속 및 금속산화물 복합체의 입자크기는 10nm이하의 크기를 갖게된다.The heating temperature is preferably 300 to 500 ° C., and the particle size of the metal and metal oxide composite thus formed has a size of 10 nm or less.

상기와 같이 나노 크기의 암모늄계 금속화합물((NH4)xMy(OH)z)을 건/습식 방법으로 탄소계 음극 활물질 표면에 균일하게 위치시킴으로서 탄소계 물질 자체의 특성을 개선하고, 충방전시 형성되는 피막의 전도도를 향상시킴으로써 전지의 충방전 특성, 수명 특성 및 율특성을 향상 시킬 수 있다.As described above, the nano-sized ammonium metal compound ((NH 4 ) x M y (OH) z ) is uniformly positioned on the surface of the carbon-based negative electrode active material by a dry / wet method to improve the properties of the carbon-based material itself, and By improving the conductivity of the film formed during discharging, it is possible to improve the charge and discharge characteristics, life characteristics and rate characteristics of the battery.

또한 이러한 금속 및 금속산화물의 복합체의 함량은 0.01 내지 3중량%인 것이 바람직하다.In addition, the content of the composite of the metal and the metal oxide is preferably 0.01 to 3% by weight.

이렇게 제조된 본 발명의 음극 활물질은 통상적인 음극 제조방법에 따라, 도전재, 바인더 및 유기 용매 등과 혼합하여 활물질 페이스트로 제조된 후, 구리 포일(foil)과 같은 통상적으로 사용되는 음극 집전체에 도포된 다음, 건조, 열처리 및 압착하여 리튬 이차전지용 음극을 제조하는 데 사용될 수 있다.The negative electrode active material of the present invention thus prepared is mixed with a conductive material, a binder, an organic solvent, and the like according to a conventional negative electrode manufacturing method, and then prepared into an active material paste, and then applied to a commonly used negative electrode current collector such as copper foil. And then dried, heat treated and pressed to produce a negative electrode for a lithium secondary battery.

또한, 상기와 같이 본 발명에 따라 제조된 음극 및 리튬계 전이금속 화합물이 소정 두께로 양극 집전체에 코팅되어 제조된 양극을 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 이차전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 이차전지의 제조도 가능하다. 이러한 리튬 이차전지 제조 방법은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로 상세한 설명은 생략하기로 한다.
In addition, as described above, the negative electrode and the lithium-based transition metal compound prepared according to the present invention are coated on the positive electrode current collector with a predetermined thickness to face the positive electrode with a separator therebetween, and the separator is impregnated with an electrolyte solution for a lithium secondary battery. It is also possible to manufacture a lithium secondary battery capable of phosphorus charging and discharging. Since such a lithium secondary battery manufacturing method is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예Example

실시예 1Example 1

모재의 준비:Preparation of the base material:

구상의 천연흑연에 5%의 피치를 고속으로 약 10 분 건식 혼합하여 혼합물을 제조하고 이 혼합물을 1000℃에서 1시간 동안 소성 하였고, 분급을 하여 미분을 제거하여 리튬 이차 전지용 음극 활물질인 천연흑연을 제조하였다.
The mixture was prepared by dry mixing 5% pitch at high speed for about 10 minutes in spherical natural graphite. The mixture was calcined at 1000 ° C. for 1 hour, and the fine powder was removed to classify the fine graphite, which is a negative active material for lithium secondary batteries. Prepared.

암모늄 금속화합물의 준비:Preparation of Ammonium Metal Compounds:

에탄올에 모재 대비 1중량%의 Mg(NO3)2·6H2O을 용해시킨 뒤 NH4OH를 투입하여 침전물이 형성되도록 가라앉힌다.
After dissolving 1% by weight of Mg (NO 3 ) 2 .6H 2 O in ethanol, NH 4 OH was added to settle the precipitate.

표면 개질:Surface modification:

상기 제조된 천연흑연을 암모늄금속화합물이 형성되어 있는 에탄올 용액에 담지 시킨 뒤 80℃에서 서서히 교반하여 에탄올을 증발시켰다. 이렇게 얻어진 물질을 질소(N2)가스의 불활성 분위기에서 400℃ 5시간 열처리하여 본 발명의 리튬 이차 전지용 음극 활물질을 제조하였다.
The natural graphite prepared above was immersed in an ethanol solution in which an ammonium metal compound was formed, and then slowly stirred at 80 ° C. to evaporate ethanol. The material thus obtained was heat-treated at 400 ° C. for 5 hours in an inert atmosphere of nitrogen (N 2 ) gas to prepare a negative electrode active material for a lithium secondary battery of the present invention.

코인형 전지의 제조:Preparation of coin type battery:

상기 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVDF)를 투입, 믹서를 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하였다. 건조된 전극을 압착하여 전극으로 사용하여 코인형 전지(coin cell)를 제조하였다.
100g of the prepared negative electrode active material was put into a 500ml reactor, and a small amount of N-methylpytolidone (NMP) and a binder (PVDF) were added and mixed using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare an electrode. The dried electrode was pressed and used as an electrode to prepare a coin cell.

실시예 2Example 2

Mg(NO3)2·6H2O를 2중량%를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질 및 코인형 전지를 제조하였다.
A negative electrode active material and a coin-type battery were prepared in the same manner as in Example 1, except that 2% by weight of Mg (NO 3 ) 2 .6H 2 O was used.

실시예 3Example 3

Mg(NO3)2·6H2O 대신에 Zr(NO3)4·5H2O를 2중량%를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질 및 코인형 전지를 제조하였다.
A negative electrode active material and a coin-type battery were prepared in the same manner as in Example 1, except that 2% by weight of Zr (NO 3 ) 4 .5H 2 O was used instead of Mg (NO 3 ) 2 .6H 2 O. .

실시예 4Example 4

인조흑연 제조 원료인 코크스(Cokes)를 3000℃에서 24시간 동안 소성하였고, 분급하고 미분을 제거하여 인조흑연을 제조하여 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 활물질 및 코인형 전지를 제조하였다.
Cokes, an artificial graphite raw material, were calcined at 3000 ° C. for 24 hours, Classify and remove derivatives A negative electrode active material and a coin-type battery were manufactured in the same manner as in Example 1, except that artificial graphite was prepared and used.

비교예 1Comparative Example 1

구상의 천연흑연에 5%의 피치를 고속으로 약 10 분 건식 혼합하여 혼합물을 제조하고 이 혼합물을 1000℃에서 1시간 동안 소성 하였고, 분급을 하여 미분을 제거하여 리튬 이차전지용 음극 활물질인 천연흑연을 제조하였다. 이렇게 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피톨리돈(NMP)과 바인더(PVdF)를 투입, 믹서를 이용해서 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하였다. 건조된 전극을 압착하여 전극으로 사용하여 코인형 전지를 제조하였다.
The mixture was prepared by dry mixing 5% pitch at high speed for about 10 minutes in spherical natural graphite, and calcining the mixture at 1000 ° C. for 1 hour. The fine powder was removed to classify and remove natural graphite, a negative active material for a lithium secondary battery. Prepared. 100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, and a small amount of N-methyl pitolidon (NMP) and a binder (PVdF) were added and mixed using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare an electrode. The dried electrode was pressed and used as an electrode to prepare a coin-type battery.

비교예 2Comparative Example 2

인조흑연 제조 원료인 코크스(Cokes)를 3000℃에서 24시간 동안 소성 하였고, 분급하고 미분을 제거하여 인조흑연을 제조하여 사용하는 것을 제외하고는 상기 비교예 1과 동일한 방법으로 음극 활물질 및 코인형 전지를 제조하였다.
Cokes, a raw material for artificial graphite, were calcined at 3000 ° C. for 24 hours, Classify and remove derivatives A negative electrode active material and a coin-type battery were manufactured in the same manner as in Comparative Example 1, except that artificial graphite was prepared and used.

시험예. 전지특성 평가Test example. Battery characteristic evaluation

충방전 시험은 전위를 0.01~1.5V의 범위로 규제하여, 충전전류 0.5mA/cm2로 0.01V 될때 까지 충전하고, 또한 0.01V의 전압을 유지하며, 충전전류가 0.02mA/cm2 될때까지 충전을 계속하였다. 그리고 방전전류는 0.5mA/cm2로 1.5V까지의 방전을 행하였다. 하기 표 1의 충방전 효율은 충전한 전기용량에 대해 방전한 전기용량의 비율을 나타낸다.The charge / discharge test regulates the potential in the range of 0.01 to 1.5V, charges until it becomes 0.01V at the charging current of 0.5mA / cm 2 , and maintains the voltage of 0.01V until the charging current becomes 0.02mA / cm 2 . Charging continued. The discharge current was discharged up to 1.5 V at 0.5 mA / cm 2 . The charging and discharging efficiency of Table 1 shows the ratio of the discharged electric capacity to the charged electric capacity.

전지의 율특성은 1.5V까지 0.5mA/cm2의 전류로 방전한 용량 대비 25mA/cm2의 전류로 방전한 용량의 비율을 나타낸다.The rate characteristic of the battery represents the ratio of the capacity discharged at a current of 25 mA / cm 2 to the capacity discharged at a current of 0.5 mA / cm 2 up to 1.5V.

Figure 112010014035042-pat00001
Figure 112010014035042-pat00001

같은 음극 활물질에서 실시예 1-4의 경우가 비교예 1-2의 경우에 비해 효율 및 사이클 특성 및 고율특성 등 전기화학적 특성이 향상되는 것을 확인할 수 있다.In the same negative electrode active material it can be seen that in the case of Example 1-4, compared with the case of Comparative Example 1-2, the electrochemical characteristics such as efficiency, cycle characteristics and high rate characteristics are improved.

Claims (8)

탄소계 모재의 표면에 암모늄계 금속화합물((NH4)xMy(OH)z)을 위치시키는 단계; 및
표면에 암모늄계 금속화합물((NH4)xMy(OH)z)이 위치된 상기 탄소계 모재를, 불활성분위기 하에서 가열하여 탄소계 모재의 표면에 상기 M인 금속 및 금속산화물의 복합체를 형성시키는 단계;
를 포함하는 리튬 이차전지용 음극 활물질의 제조방법:
상기 화학식에서 0 < x < 10, 0 < y < 5, 0 < z < 10이고,
M은 Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd 및 Gd 중에서 선택된 1종의 금속이다.
Placing an ammonium metal compound ((NH 4 ) x M y (OH) z ) on the surface of the carbon-based base material; And
The carbonaceous base material having an ammonium metal compound ((NH 4 ) x M y (OH) z ) positioned on the surface thereof is heated under an inert atmosphere to form a complex of the metal M and the metal oxide on the surface of the carbonaceous base material. Making a step;
Method for producing a negative electrode active material for a lithium secondary battery comprising:
In the formula, 0 <x <10, 0 <y <5, 0 <z <10,
M is Li, Na, K, Mg, Ca, Sr, Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Ga, In, Ge, Sn, Hf, Bi, Sb, La, Ce, Sm, Nd and Gd is one kind of metal selected from.
제 1항에 있어서,
상기 암모늄계 금속화합물((NH4)xMy(OH)z)은 질산금속수화물이 용해된 수용액 또는 에탄올 용액에 수산화 암모늄(NH4OH)을 첨가하여 제조된 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
The method of claim 1,
The ammonium metal compound ((NH 4 ) x M y (OH) z ) is A method of manufacturing a negative electrode active material for a lithium secondary battery, characterized in that the ammonium hydroxide (NH 4 OH) is added to an aqueous solution or an ethanol solution in which metal nitrate hydrate is dissolved.
제 1항에 있어서,
상기 탄소계 모재는 음극활물질용 탄소재료 또는 표면에 피복용 탄소재료가 피복된 음극활물질용 탄소재료인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
The method of claim 1,
The carbon-based base material is a carbon material for a negative electrode active material or a carbon active material for a negative electrode active material coated with a coating carbon material on the surface.
제 3항에 있어서,
상기 음극활물질용 탄소재료는 천연흑연, 인조흑연, 소프트카본 및 하드카본 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
The method of claim 3, wherein
The carbon material for the negative electrode active material is a method for producing a negative electrode active material for a lithium secondary battery, characterized in that the compound or two or more kinds selected from natural graphite, artificial graphite, soft carbon and hard carbon.
제 3항에 있어서,
상기 피복용 탄소재료는 피치(pitch), 타르(tar), 페놀수지, 퓨란수지 및 풀푸릴알콜 중에서 선택된 1종의 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
The method of claim 3, wherein
The coating carbon material is a compound selected from pitch, tar, phenol resin, furan resin, and furfuryl alcohol, or a mixture of two or more kinds thereof.
제 1항에 있어서,
상기 금속 및 금속산화물의 복합체의 함량이 0.01 내지 3중량%인 것을 특징으로 하는 리튬 이차전지용 음극 활물질의 제조방법.
The method of claim 1,
Method for producing a negative active material for a lithium secondary battery, characterized in that the content of the composite of the metal and metal oxide is 0.01 to 3% by weight.
음극 활물질 및 바인더가 음극 집전체 상에 코팅되어 형성된 리튬 이차전지용 음극에 있어서,
상기 음극 활물질은 제1항 내지 제6항 중 어느 한 항에 따른 음극 활물질인 것을 특징으로 하는 리튬 이차전지용 음극.
In the negative electrode for a lithium secondary battery formed by coating a negative electrode active material and a binder on a negative electrode current collector,
The negative electrode active material is a negative electrode for a lithium secondary battery, characterized in that the negative electrode active material according to any one of claims 1 to 6.
음극, 양극, 상기 음극과 양극 사이에 개재된 세퍼레이터, 및 전해액을 구비하는 리튬 이차전지에 있어서,
상기 음극은 제 7항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.
In a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution,
The negative electrode is a lithium secondary battery, characterized in that the negative electrode according to claim 7.
KR1020100019537A 2010-03-04 2010-03-04 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom KR101065248B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100019537A KR101065248B1 (en) 2010-03-04 2010-03-04 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100019537A KR101065248B1 (en) 2010-03-04 2010-03-04 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom

Publications (2)

Publication Number Publication Date
KR20110100499A KR20110100499A (en) 2011-09-14
KR101065248B1 true KR101065248B1 (en) 2011-09-19

Family

ID=44952908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100019537A KR101065248B1 (en) 2010-03-04 2010-03-04 Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom

Country Status (1)

Country Link
KR (1) KR101065248B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548490B2 (en) 2014-02-26 2017-01-17 Samsung Electronics Co., Ltd. Anode active material, lithium battery comprising the same, and method of preparing the anode active material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201517661D0 (en) * 2015-10-06 2015-11-18 Faradion Ltd Process for preparing hard carbon composite materials
CN112811418B (en) * 2020-12-31 2023-04-14 宁波杉杉新材料科技有限公司 Quick-charging composite graphite material, preparation method and application thereof, and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615859B1 (en) * 2004-10-07 2006-08-25 한국전기연구원 Transition metal phosphates active anode material for lithium secondary batteries and manufacturing method thereof
KR20070059569A (en) * 2005-12-07 2007-06-12 주식회사 소디프신소재 Anode active material for lithium secondary battery having coating layer of carbon and non-carbon material and preparation thereof
KR100835883B1 (en) * 2006-07-14 2008-06-09 금호석유화학 주식회사 Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
KR20090103135A (en) * 2008-03-27 2009-10-01 엘에스엠트론 주식회사 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615859B1 (en) * 2004-10-07 2006-08-25 한국전기연구원 Transition metal phosphates active anode material for lithium secondary batteries and manufacturing method thereof
KR20070059569A (en) * 2005-12-07 2007-06-12 주식회사 소디프신소재 Anode active material for lithium secondary battery having coating layer of carbon and non-carbon material and preparation thereof
KR100835883B1 (en) * 2006-07-14 2008-06-09 금호석유화학 주식회사 Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
KR20090103135A (en) * 2008-03-27 2009-10-01 엘에스엠트론 주식회사 Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548490B2 (en) 2014-02-26 2017-01-17 Samsung Electronics Co., Ltd. Anode active material, lithium battery comprising the same, and method of preparing the anode active material

Also Published As

Publication number Publication date
KR20110100499A (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR101475922B1 (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
JP6667985B2 (en) Lithium ion secondary battery
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
KR101445692B1 (en) Anode active material for lithium secondary battery and Lithium secondary battery containing the same for anode
JP2011519143A (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
EP2266157A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP6374348B2 (en) Lithium phosphorus-based vanadium composite oxide carbon composite, method for producing the same, lithium ion secondary battery, and electrochemical device
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
KR100978422B1 (en) Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
KR20110115844A (en) Method for improving cycle performance of lithium secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP6326366B2 (en) Lithium phosphorus composite oxide carbon composite, method for producing the same, electrochemical device, and lithium ion secondary battery
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
CN112867932A (en) Method for using ultra-high capacity battery unit
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee