KR101226107B1 - Anode active material for lithium secondary battery And Lithium secondary battery comprising the same - Google Patents

Anode active material for lithium secondary battery And Lithium secondary battery comprising the same Download PDF

Info

Publication number
KR101226107B1
KR101226107B1 KR1020090037696A KR20090037696A KR101226107B1 KR 101226107 B1 KR101226107 B1 KR 101226107B1 KR 1020090037696 A KR1020090037696 A KR 1020090037696A KR 20090037696 A KR20090037696 A KR 20090037696A KR 101226107 B1 KR101226107 B1 KR 101226107B1
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
secondary battery
core
lithium secondary
Prior art date
Application number
KR1020090037696A
Other languages
Korean (ko)
Other versions
KR20100118809A (en
Inventor
박병천
오정훈
염철
한경희
한정민
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR1020090037696A priority Critical patent/KR101226107B1/en
Publication of KR20100118809A publication Critical patent/KR20100118809A/en
Application granted granted Critical
Publication of KR101226107B1 publication Critical patent/KR101226107B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차전지용 코어-쉘형 음극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다. 본 발명에 따른 리튬 이차전지용 코어-쉘형 음극 활물질은, 탄소재 코어부; 및 상기 코어부 외부에 형성되는 스피넬형 금속 산화물 쉘부를 구비하는 리튬 이차전지용 코어-쉘형 음극 활물질로서, 상기 스피넬형 금속 산화물이 특정 구조를 갖는 것을 특징으로 한다. 본 발명의 코어-쉘형 음극 활물질은 음극 상에 형성되는 SEI 막의 전기화학적 특성을 향상시켜 전지의 성능을 개선할 수 있다.The present invention relates to a core-shell type negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same. Core-shell negative electrode active material for a lithium secondary battery according to the present invention, the carbon material core portion; And a spinel-type metal oxide shell portion formed outside the core portion, wherein the spinel-type metal oxide has a specific structure. The core-shell negative electrode active material of the present invention can improve the performance of the battery by improving the electrochemical properties of the SEI film formed on the negative electrode.

이차전지, 음극 활물질 Secondary Battery, Anode Active Material

Description

리튬 이차전지용 코어-쉘형 음극 활물질과 이를 포함하는 리튬 이차전지{Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}Core-shell type negative electrode active material for lithium secondary battery and lithium secondary battery comprising same {Anode active material for lithium secondary battery And Lithium secondary battery comprising the same}

본 발명은 리튬 이차전지용 코어-쉘형 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것으로서, 보다 상세하게는, SEI 막의 전기화학적 특성을 향상시킬 수 있는 리튬 이차전지용 코어-쉘형 음극 활물질과 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a core-shell type negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a core-shell type negative electrode active material for a lithium secondary battery capable of improving electrochemical properties of an SEI film and a lithium including the same. It relates to a secondary battery.

최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고 용량인 2차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 2차 전지는 경량이고 고 에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 2차 전지의 성능 향상을 위한 연구 개발 노력이 활발하게 진행되고 있다.Recently, with the rapid spread of electronic devices using batteries such as mobile phones, notebook computers, and electric vehicles, the demand for small, lightweight, and relatively high capacity secondary batteries is rapidly increasing. In particular, lithium secondary batteries have attracted attention as a driving power source for portable devices due to their light weight and high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries have been actively conducted.

리튬 2차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.Lithium secondary batteries are used when lithium ions are inserted / desorbed from the positive electrode and the negative electrode in a state in which an organic or polymer electrolyte is charged between a negative electrode and a positive electrode made of an active material capable of intercalations and deintercalation of lithium ions. Produces electrical energy by oxidation and reduction reactions.

리튬 2차 전지의 양극 활물질로는 리튬 코발트 옥사이드(LiCoO2), 리튬 니켈 옥사이드(LiNiO2), 리튬 망간 옥사이드(LiMnO2) 등과 같은 전이금속 화합물이 주로 사용되고 음극 활물질로는 일반적으로 연화 정도가 큰 천연흑연이나 인조흑연과 같은 결정질계 탄소재료, 또는 1000 ~ 1500℃의 낮은 온도에서 탄화수소나 고분자 등을 탄화시켜 얻은 수도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 가지는 비정질계(low crystalline) 탄소재료가 사용된다.As a positive electrode active material of a lithium secondary battery, transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ) are mainly used. Crystalline carbon materials such as natural graphite and artificial graphite, or amorphous-based (pseudo-graphite) structures or turbostratactic structures obtained by carbonizing hydrocarbons or polymers at low temperatures of 1000 to 1500 ° C. crystalline) carbon material is used.

하지만, 이러한 흑연과 같은 탄소계 음극 활물질을 사용하는 경우에는, 탄소계 음극재료는 비가역용량이 크므로 초기 충방전 효율이 낮고, 용량이 감소되는 문제점이 있다. 그리고, 과충전 시 탄소의 표면에 리튬이 석출되어 안전성에 있어서 문제가 발생할 수 있다.However, in the case of using such a carbon-based negative electrode active material such as graphite, the carbon-based negative electrode material has a large irreversible capacity, there is a problem that the initial charge and discharge efficiency is low, the capacity is reduced. In addition, lithium may be deposited on the surface of carbon during overcharging, thereby causing a problem in safety.

이러한 문제를 해결하기 위해, 한국공개 제2006-117247호는 리튬-티타늄 복합금속 산화물을 음극 활물질로 개시하고 있다. 그러나, 한국공개 제2006-117247호에서 개시된 리튬-티타늄 복합금속 산화물은 탄소계 음극 활물질의 문제점을 어느 정도 해소하고 사이클 특성도 개선할 수 있으나, 전도도가 낮아 출력 및 용량 확보가 어려운 단점이 여전히 존재한다.In order to solve this problem, Korean Laid-Open Publication No. 2006-117247 discloses a lithium-titanium composite metal oxide as a negative electrode active material. However, the lithium-titanium composite metal oxide disclosed in Korean Patent Laid-Open Publication No. 2006-117247 can solve the problem of the carbon-based negative electrode active material to some extent and improve cycle characteristics, but it still has a disadvantage in that it is difficult to secure output and capacity due to low conductivity. do.

이에 본 발명이 해결하고자 하는 과제는, 충방전 효율 및 율특성이 우수한 리튬 이차전지를 제조할 수 있는 새로운 리튬 이차전지용 음극 활물질 및 그 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a negative electrode active material for a lithium secondary battery and a method of manufacturing the same, which can manufacture a lithium secondary battery having excellent charge and discharge efficiency and rate characteristics.

또한, 본 발명은 상기 음극 활물질을 사용하여 제조된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지를 제공하는데 있다.The present invention also provides a negative electrode for a lithium secondary battery manufactured using the negative electrode active material and a lithium secondary battery including the same.

상기 과제를 해결하기 위하여, 본 발명의 리튬 이차전지용 코어-쉘형 음극 활물질은, 탄소재 코어부; 및 상기 코어부 외부에 형성되는 스피넬형 금속 산화물 쉘부를 구비하는 리튬 이차전지용 코어-쉘형 음극 활물질로서, 상기 스피넬형 금속 산화물은 하기 화학식 1로 표시되는 것을 특징으로 한다.In order to solve the said subject, the core-shell type negative electrode active material for lithium secondary batteries of this invention is a carbon-material core part; And a spinel-type metal oxide shell portion formed outside the core portion, wherein the spinel-type metal oxide is represented by Chemical Formula 1 below.

M1M22O4 M1M2 2 O 4

상기 화학식 1에서,In Formula 1,

M1은 Na, K, Be, Mg 또는 Ca이고, M2는 Al, Mn, Fe, Co, Ni, Cu, Zn 또는 Zr이다.M 1 is Na, K, Be, Mg or Ca and M 2 is Al, Mn, Fe, Co, Ni, Cu, Zn or Zr.

본 발명에서 사용되는 상기 탄소재 쉘부는 코어부는 타원형상, 비늘상, 휘스커상 또는 파쇄상을 갖는 천연흑연; 인조흑연; 메소카본마이크로 비즈; 메소페즈 피치 미분; 등방성 피치 미분; 수지탄; 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소;로 이루어진 군에서 선택된 어느 하나 또는 이들의 2종 이상의 혼합물일 수 있다.The carbon material shell portion used in the present invention is a natural graphite having a core portion elliptical, scaly, whisker or crushed; Artificial graphite; Mesocarbon micro beads; Mesopez pitch differential; Isotropic pitch differential; Resin coal; And a low crystalline carbon having a pseudo-graphite structure or a turbostratactic structure; or a mixture of two or more thereof.

또한, 본 발명에 사용되는 상기 스피넬형 금속 산화물의 함량은 탄소재 코어 부 100 중량부 대비 0.1 내지 10 중량부인 것이 바람직하다.In addition, the content of the spinel metal oxide used in the present invention is preferably 0.1 to 10 parts by weight relative to 100 parts by weight of the carbon material core part.

본 발명에 따른 음극 활물질의 제조방법은, 전술한 코어부 형성용 탄소재 및 상기 화학식 1로 표시되는 쉘부 형성용 스피넬형 금속 산화물를 혼합하고, 400 내지 700 ℃의 온도로 소성하는 단계를 포함한다.The method for preparing a negative electrode active material according to the present invention includes mixing the above-described carbon material for forming a core part and the spinel-type metal oxide for forming a shell part represented by Chemical Formula 1, and baking the same at a temperature of 400 to 700 ° C.

전술한 본 발명의 음극 활물질은 리튬 이차전지용 음극 및 리튬 이차전지에 사용될 수 있다.The negative electrode active material of the present invention described above can be used in the negative electrode for lithium secondary batteries and lithium secondary batteries.

본 발명의 리튬 이차전지용 코어-쉘형 음극 활물질은 탄소재 코어부와 스피넬형 금속 산화물 쉘부의 코어-쉘 구조를 가짐으로써, 향상된 충방전 효율과 율특성을 나타낼 수 있다.The core-shell negative electrode active material for a lithium secondary battery of the present invention has a core-shell structure of a carbon material core part and a spinel type metal oxide shell part, thereby exhibiting improved charge and discharge efficiency and rate characteristics.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.

전술한 바와 같이, 본 발명의 코어-쉘형 음극 활물질은 탄소재 코어부의 외부에 상기 화학식 1로 표시되는 스피넬형 금속 산화물 쉘부가 형성된 것을 특징으로 한다. 본 발명에 따른 상기 화학식 1로 표시되는 스피넬형 금속 산화물 쉘부는 리튬 이차전지의 음극 상에 형성되는 SEI 막의 전기화학적 특성을 향상시킬 수 있 다. 구체적으로, 본 발명에 따른 상기 스피넬형 금속 산화물은 특정 3차원 구조를 가짐으로써 리튬 이온을 용이하게 삽입/탈리시킬 수 있기 때문에, 음극 상에 형성되는 SEI 막의 전기화학적 특성을 향상시킬 수 있다. SEI 막의 전기화학적 특성이 향상됨으로써 전지의 충방전 특성 및 율특성을 개선할 수 있게 된다.As described above, the core-shell negative electrode active material of the present invention is characterized in that the spinel-type metal oxide shell portion represented by Chemical Formula 1 is formed on the outside of the carbon material core portion. The spinel metal oxide shell portion represented by Chemical Formula 1 according to the present invention may improve the electrochemical characteristics of the SEI film formed on the negative electrode of the lithium secondary battery. Specifically, since the spinel metal oxide according to the present invention has a specific three-dimensional structure, lithium ions can be easily inserted / desorbed, thereby improving the electrochemical properties of the SEI film formed on the cathode. By improving the electrochemical properties of the SEI film it is possible to improve the charge and discharge characteristics and rate characteristics of the battery.

본 발명에서 사용되는 스피넬형 금속 산화물은 탄소재 코어부의 외면에 쉘부를 형성하기 위해서 적절한 평균입경을 갖는 것이 바람직하다. 예를 들면, 평균입경이 50 nm 내지 1 ㎛ 일 수 있으나, 이에 한정되는 것은 아니다. 평균입경이 50 nm 미만이면 입자의 분산이 어려워 표면층 형성이 균일하지 못하고, 1 ㎛ 초과이면 표면 저항의 증가로 전지 특성이 저하될 수 있다.The spinel metal oxide used in the present invention preferably has an appropriate average particle diameter in order to form a shell portion on the outer surface of the carbon material core portion. For example, the average particle diameter may be 50 nm to 1 μm, but is not limited thereto. If the average particle diameter is less than 50 nm, it is difficult to disperse the particles, so that the surface layer is not uniform. If the average particle diameter is larger than 1 μm, battery characteristics may be reduced due to an increase in surface resistance.

본 발명의 코어-쉘형 음극 활물질에 있어서 상기 스피넬형 금속 산화물의 함량은 탄소재 코어부 100 중량부 대비 0.1 내지 10 중량부인 것이 바람직하다. 그 함량이 0.1 중량부 미만이면 첨가 효과가 미미하고, 10 중량부 초과이면 표면 저항의 증가로 전지 특성이 저하될 수 있다.In the core-shell negative electrode active material of the present invention, the content of the spinel metal oxide is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the carbon material core part. If the content is less than 0.1 part by weight, the effect of addition is insignificant, and if the content is more than 10 parts by weight, the battery characteristics may be reduced due to the increase in the surface resistance.

본 발명의 코어-쉘형 음극 활물질에서 코어부로 사용되는 탄소재는 당분야에서 음극 활물질로 통상적으로 사용되는 탄소재이면 특별한 제한 없이 사용이 가능하다. 예를 들면, 구상의 고결정성 천연흑연; 타원형상, 파쇄상, 비늘상 또는 휘스커상인 천연흑연; 인조흑연; 메소카본마이크로 비즈; 메소페이즈 피치; 등방성 피치; 수지탄; 및 수도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계 탄소 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나,이에 한정되는 것은 아니다. 또한 상기 음극 활물질은 피복층을 구비할 수 있으 며, 피복층에 주로 사용되는 재료는 열처리를 통해 탄화가 가능한 재료라면 제한이 없으며, 예를 들면 저결정성의 피치, 전도성 고분자, 유기 용매 등을 각각 단독으로 또는 혼합하여 사용할 수 있지만 이에 한정되는 것은 아니다.The carbon material used as the core in the core-shell negative electrode active material of the present invention may be used without particular limitation as long as the carbon material is commonly used as a negative electrode active material in the art. For example, spherical highly crystalline natural graphite; Natural graphite that is oval, crushed, scaled or whiskered; Artificial graphite; Mesocarbon micro beads; Mesophase pitch; Isotropic pitch; Resin coal; And amorphous carbon having a pseudo-graphite (pseudo-graphite) structure or a turbostratic structure may be used alone or in combination of two or more, respectively, but is not limited thereto. In addition, the negative electrode active material may include a coating layer, and the material mainly used for the coating layer is not limited as long as it is a material that can be carbonized through heat treatment. For example, a low crystalline pitch, a conductive polymer, an organic solvent, etc. may be used alone. Alternatively, the mixture may be used, but is not limited thereto.

본 발명에서 사용되는 탄소재 코어부는 적절한 평균입경을 갖는 것이 바람직하다. 예를 들면, 평균입경이 5 내지 50 ㎛ 일 수 있으나, 이에 한정되는 것은 아니다. 평균입경이 5 ㎛ 미만이면 균일한 코팅층을 형성하기 어렵고, 50 ㎛ 초과이면 쉘부의 함량이 낮아져 전지 특성의 향상이 어려울 수 있다.The carbon material core portion used in the present invention preferably has an appropriate average particle diameter. For example, the average particle diameter may be 5 to 50 μm, but is not limited thereto. If the average particle diameter is less than 5 μm, it is difficult to form a uniform coating layer. If the average particle diameter is more than 50 μm, the content of the shell part may be low, and thus improvement of battery characteristics may be difficult.

본 발명의 리튬 이차전지용 코어-쉘형 음극 활물질은 전술한 코어부 형성용 탄소재와 상기 화학식 1로 표시되는 쉘부 형성용 스피넬형 금속 산화물을 혼합하고, 400 내지 700 ℃의 온도로 소성하여 제조될 수 있다. 상기 소성 온도가 400 ℃ 미만이면 불순물을 충분히 제거하기 어렵고, 700 ℃ 초과이면 스피넬형 금속 산화물의 결정 구조가 붕괴될 수 있다.The core-shell negative electrode active material for a lithium secondary battery of the present invention may be prepared by mixing the above-described core part carbon material and the spinel type metal oxide for shell part represented by Chemical Formula 1 and firing at a temperature of 400 to 700 ° C. have. If the firing temperature is less than 400 ℃, it is difficult to remove impurities sufficiently, if the baking temperature is more than 700 ℃ may be disrupted the crystal structure of the spinel-type metal oxide.

본 발명에 따른 쉘부 형성용 스피넬형 금속 산화물은 당분야에 알려진 다양한 제조방법에 따라 얻을 수 있다. 예를 들면, M1 산화물과 M2 산화물을 혼합한 후에 300 내지 1500 ℃의 온도로 소성 및 분쇄하면 상기 화학식 1로 표시된 스피넬형 금속 산화물을 얻을 수 있다.The spinel metal oxide for forming the shell portion according to the present invention can be obtained according to various manufacturing methods known in the art. For example, when the M1 oxide and the M2 oxide are mixed and calcined and pulverized at a temperature of 300 to 1500 ° C., a spinel metal oxide represented by Chemical Formula 1 may be obtained.

이렇게 제조된 본 발명의 음극 활물질은 통상적인 음극 제조방법에 따라, 도전재, 바인더 및 유기 용매 등과 혼합하여 활물질 페이스트로 제조된 후, 구리 포일(foil)과 같은 통상적으로 사용되는 음극 집전체에 도포된 다음, 건조, 열처리 및 압착하여 리튬 이차전지용 음극을 제조하는 데 사용될 수 있다.The negative electrode active material of the present invention thus prepared is mixed with a conductive material, a binder, an organic solvent, and the like according to a conventional negative electrode manufacturing method, and then prepared into an active material paste, and then applied to a commonly used negative electrode current collector such as copper foil. And then dried, heat treated and pressed to produce a negative electrode for a lithium secondary battery.

또한, 상기와 같이 본 발명에 따라 제조된 음극 및 리튬계 전이금속 화합물이 소정 두께로 양극 집전체에 코팅되어 제조된 양극을 세퍼레이터를 사이에 두고 대향시킨 후 세퍼레이터에 리튬 이차전지용 전해액을 함침시키면 반복적인 충방전이 가능한 리튬 이차전지의 제조도 가능하다. 이러한 리튬 이차전지 제조 방법은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 널리 알려져 있으므로 상세한 설명은 생략하기로 한다. In addition, as described above, the negative electrode and the lithium-based transition metal compound prepared according to the present invention are coated on the positive electrode current collector with a predetermined thickness to face the positive electrode with a separator therebetween, and the separator is impregnated with an electrolyte solution for a lithium secondary battery. It is also possible to manufacture a lithium secondary battery capable of phosphorus charging and discharging. Since such a lithium secondary battery manufacturing method is well known to those skilled in the art to which the present invention pertains, a detailed description thereof will be omitted.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.

실시예 1Example 1

MgO(Aldrich, CAS Number:1309-48-4)와 Al2O3(Aldrich , CAS Number:1344-28-1)을 중량비 1:2로 혼합하여 900℃에서 소성 및 분쇄하여 MgAl2O4 스피넬형 금속 산화물을 합성하였다. 비정질 탄소로 표면처리된 구상의 천연 흑연 탄소재 100 중량부에 1 중량부의 MgAl2O4를 혼합한 후 질소(N2)가스의 불활성 분위기에서 600℃의 온도로 5시간 소성하여 본 발명의 리튬 이차 전지용 음극 활물질을 제조하였다. MgO (Aldrich, CAS Number: 1309-48-4) and Al 2 O 3 (Aldrich, CAS Number: 1344-28-1) were mixed in a weight ratio of 1: 2, calcined and pulverized at 900 ° C. to MgAl 2 O 4 spinel A type metal oxide was synthesized. 1 part by weight of MgAl 2 O 4 is mixed with 100 parts by weight of spherical natural graphite carbon material surface-treated with amorphous carbon, and then calcined at 600 ° C. for 5 hours in an inert atmosphere of nitrogen (N 2 ) gas. A negative electrode active material for a secondary battery was prepared.

이렇게 제조된 음극 활물질 100g을 500ml의 반응기에 넣고 소량의 N-메틸피 톨리돈(NMP)과 Binder(PVDF)를 투입, Mixer을 이용하여 혼합하여 슬러리를 제조하였다. 상기 슬러리를 12㎛ 두께의 구리박에 균일하게 도포하고, 120℃에서 진공 건조하여 전극을 제조하였다. 상기 제조된 음극, 양극 활물질로 LiCoO2을 사용하여 제조된 양극, 세퍼레이터로 Celgard 2400, 및 비수 전해액으로 EC:DEC=3:7로 혼합한 1M LiPF6를 사용하여 코인형 전지(coin cell)를 제조하였다.100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, and a small amount of N-methylpytolidone (NMP) and Binder (PVDF) were added and mixed using a mixer to prepare a slurry. The slurry was uniformly applied to a copper foil having a thickness of 12 μm, and vacuum dried at 120 ° C. to prepare an electrode. A coin cell was fabricated using 1M LiPF 6 , a cathode prepared by using LiCoO 2 as a cathode, a cathode active material, Celgard 2400 as a separator, and EC: DEC = 3: 7 as a nonaqueous electrolyte. Prepared.

실시예 2Example 2

MgAl2O4를 5 중량부 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코어-쉘형 음극 활물질, 음극 및 코인형 전지를 제조하였다.A core-shell negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 5 parts by weight of MgAl 2 O 4 was used.

실시예 3Example 3

MgAl2O4를 10 중량부 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코어-쉘형 음극 활물질, 음극 및 코인형 전지를 제조하였다.A core-shell-type negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 10 parts by weight of MgAl 2 O 4 was used.

비교예 1Comparative Example 1

MgAl2O4를 20 중량부 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코어-쉘형 음극 활물질, 음극 및 코인형 전지를 제조하였다.A core-shell-type negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that 20 parts by weight of MgAl 2 O 4 was used.

비교예 2Comparative Example 2

MgAl2O4를 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 코어-쉘형 음극 활물질, 음극 및 코인형 전지를 제조하였다.A core-shell-type negative electrode active material, a negative electrode, and a coin-type battery were manufactured in the same manner as in Example 1, except that MgAl 2 O 4 was not used.

실험예Experimental Example

상기 실시예 1~3 및 비교예 1~2에 대해 다음과 같은 시험을 실시하여 특성을 평가하였다. 그 평가결과는 하기 표 1과 같다The following test was done about the said Examples 1-3 and Comparative Examples 1-2, and the characteristic was evaluated. The evaluation results are shown in Table 1 below.

(1) 전지 특성(1) battery characteristics

충방전 시험은 전위를 0.0~1.5V의 범위로 규제하여, 충전 전류 0.5mA/㎠로 0.01V 될 때까지 충전하였으며, 또한 0.01V의 전압을 유지하면서 충전전류가 0.02mA/㎠ 될 때까지 충전을 계속하였다. 그리고 0.5mA/㎠의 방전전류로 1.5V까지의 방전시험을 행하였다. 상기 과정을 반복하여 사이클 특성을 확인한 결과를 하기 표 1에 기재하였다.In the charge and discharge test, the potential was regulated in the range of 0.0 to 1.5 V, and charged until 0.01 V at the charging current of 0.5 mA / cm 2. Continued. And the discharge test to 1.5V was performed with the discharge current of 0.5mA / cm <2>. The results of checking the cycle characteristics by repeating the above process are shown in Table 1 below.

하기 표 1에서 사이클 효율은 1회 충방전 과정에서 충전한 전기용량에 대한 방전한 전기용량의 비율을 나타낸다.In Table 1 below, the cycle efficiency indicates the ratio of the discharged capacity to the charge capacity during the single charge and discharge process.

또한, 율 특성은 상기 충방전시험에서 평가된 전지를 하기 수학식 1에 따른 결과로 평가하였다.In addition, the rate characteristic was evaluated as a result according to the formula 1 to the battery evaluated in the charge and discharge test.

Figure 112009026128653-pat00001
Figure 112009026128653-pat00001

Figure 112009026128653-pat00002
Figure 112009026128653-pat00002

상기 표 1에 나타난 바와 같이, 본원발명에 따른 실시예1 내지 실시예3은 전반적인 전지특성이 모두 비교예들의 전지보다 우수하며, 특히 율특성이 비교예들보다 현저하게 우수함을 알 수 있다.As shown in Table 1, Examples 1 to 3 according to the present invention, the overall battery characteristics are all superior to the batteries of the comparative examples, in particular, it can be seen that the rate characteristics are significantly superior to the comparative examples.

Claims (10)

탄소재 코어부; 및Carbon core part; And 상기 코어부 외부에 형성되는 스피넬형 금속 산화물 쉘부를 구비하는 리튬 이차전지용 코어-쉘형 음극 활물질로서,A core-shell negative electrode active material for a lithium secondary battery having a spinel metal oxide shell portion formed outside the core portion, 상기 스피넬형 금속 산화물은 하기 화학식 1로 표시되는 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질:The spinel-type metal oxide core-shell-type negative electrode active material for a lithium secondary battery, characterized in that represented by the following formula (1): [화학식 1][Formula 1] M1M22O4 M1M2 2 O 4 상기 화학식 1에서,In Formula 1, M1은 Na, K, Be, Mg 또는 Ca이고, M2는 Al, Mn, Fe, Co, Ni, Cu, Zn 또는 Zr이다.M 1 is Na, K, Be, Mg or Ca and M 2 is Al, Mn, Fe, Co, Ni, Cu, Zn or Zr. 제1항에 있어서,The method of claim 1, 상기 탄소재 코어부는 구상의 고결정성 천연흑연; 타원형상, 비늘상, 휘스커상 또는 파쇄상을 갖는 천연흑연; 인조흑연; 메소카본마이크로 비즈; 메소페즈 피치 미분; 등방성 피치 미분; 수지탄; 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소;로 이루어진 군에서 선택된 어느 하나 또는 이들의 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질.The carbon material core portion is spherical high crystalline natural graphite; Natural graphite having an oval, scaly, whisker or crushed phase; Artificial graphite; Mesocarbon micro beads; Mesopez pitch differential; Isotropic pitch differential; Resin coal; And a low crystalline carbon having a pseudo-graphite structure or a turbostratactic structure; any one or a mixture of two or more thereof selected from the group consisting of: Shell type negative electrode active material. 제1항에 있어서,The method of claim 1, 상기 탄소재 코어부의 평균입경은 5 내지 50 ㎛인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질.An average particle diameter of the carbon material core portion is 5 to 50 ㎛ core-shell-type negative electrode active material for a lithium secondary battery. 제1항에 있어서,The method of claim 1, 상기 스피넬형 금속 산화물의 평균입경은 50 nm 내지 1 ㎛인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질.The spinel-type metal oxide has an average particle diameter of 50 nm to 1 ㎛ core-shell-type negative electrode active material for a lithium secondary battery. 제1항에 있어서,The method of claim 1, 상기 스피넬형 금속 산화물의 함량은 탄소재 코어부 100 중량부 대비 0.1 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질.The content of the spinel metal oxide is a lithium secondary battery core-shell type negative electrode active material, characterized in that 0.1 to 10 parts by weight based on 100 parts by weight of the carbon material core. 코어부 형성용 탄소재 및 하기 화학식 1로 표시되는 쉘부 형성용 스피넬형 금속 산화물를 혼합하고, 400 내지 700 ℃의 온도로 소성하는 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질의 제조방법:Method for producing a core-shell-type negative electrode active material for a lithium secondary battery, characterized in that the carbon material for forming the core portion and the spinel-type metal oxide for forming the shell portion represented by the following formula (1) are mixed and calcined at a temperature of 400 to 700 ℃: [화학식 1][Formula 1] M1M22O4 M1M2 2 O 4 상기 화학식 1에서,In Formula 1, M1은 Na, K, Be, Mg 또는 Ca이고, M2는 Al, Mn, Fe, Co, Ni, Cu, Zn 또는 Zr이다.M 1 is Na, K, Be, Mg or Ca and M 2 is Al, Mn, Fe, Co, Ni, Cu, Zn or Zr. 제6항에 있어서,The method of claim 6, 상기 코어부 형성용 탄소재는 구상의 고결정성 천연흑연; 타원형상, 비늘상, 휘스커상 또는 파쇄상을 갖는 천연흑연; 인조흑연; 메소카본마이크로 비즈; 메소페즈 피치 미분; 등방성 피치 미분; 수지탄; 및 슈도-그라파이트(pseudo-graphite) 구조 또는 터보스트래틱 구조를 갖는 비정질계(low crystalline) 탄소;로 이루어진 군에서 선택된 어느 하나 또는 이들의 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질의 제조방법.The core material for forming the carbon material is spherical high crystalline natural graphite; Natural graphite having an oval, scaly, whisker or crushed phase; Artificial graphite; Mesocarbon micro beads; Mesopez pitch differential; Isotropic pitch differential; Resin coal; And a low crystalline carbon having a pseudo-graphite structure or a turbostratactic structure; any one or a mixture of two or more thereof selected from the group consisting of: Method for producing a shell-type negative electrode active material. 제6항에 있어서,The method of claim 6, 상기 스피넬형 금속 산화물의 함량은 탄소재 100 중량부 대비 0.1 내지 10 중량부인 것을 특징으로 하는 리튬 이차전지용 코어-쉘형 음극 활물질의 제조방법.The spinel-type metal oxide content is 0.1 to 10 parts by weight based on 100 parts by weight of the carbon material, the method of manufacturing a core-shell type negative electrode active material for a lithium secondary battery. 음극 활물질 및 바인더가 음극 집전체 상에 코팅되어 형성된 리튬 이차전지용 음극에 있어서,In the negative electrode for a lithium secondary battery formed by coating a negative electrode active material and a binder on a negative electrode current collector, 상기 음극 활물질은 제1항 내지 제5항 중 어느 한 항에 따른 코어-쉘형 음극 활물질인 것을 특징으로 하는 리튬 이차전지용 음극.The negative electrode active material is a negative electrode for a lithium secondary battery, characterized in that the core-shell-type negative electrode active material according to any one of claims 1 to 5. 음극, 양극, 상기 음극과 양극 사이에 개재된 세퍼레이터, 및 전해액을 구비 하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution, 상기 음극은 제9항에 따른 음극인 것을 특징으로 하는 리튬 이차전지.The negative electrode is a lithium secondary battery, characterized in that the negative electrode according to claim 9.
KR1020090037696A 2009-04-29 2009-04-29 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same KR101226107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090037696A KR101226107B1 (en) 2009-04-29 2009-04-29 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090037696A KR101226107B1 (en) 2009-04-29 2009-04-29 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20100118809A KR20100118809A (en) 2010-11-08
KR101226107B1 true KR101226107B1 (en) 2013-01-25

Family

ID=43404998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090037696A KR101226107B1 (en) 2009-04-29 2009-04-29 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR101226107B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310430B1 (en) * 2010-11-15 2013-09-24 삼성전기주식회사 Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
KR101288973B1 (en) * 2011-05-04 2013-07-24 삼성전자주식회사 Electrode active material, preparation method thereof, and electrode and lithium battery containing the same
KR101439595B1 (en) * 2012-04-06 2014-09-15 울산대학교 산학협력단 Potassium-Iron Oxide Nano Particle as Anode Material for Secondary Battery, Method for Preparing the Same, and Lithium Secondary Battery Containing the Same
KR102311507B1 (en) 2014-11-11 2021-10-12 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
CN114122391B (en) * 2021-11-10 2024-02-13 云南中晟新材料有限责任公司 High-power graphite composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888685B1 (en) * 2007-11-05 2009-03-13 주식회사 코캄 Core-shell type anode active material for lithium secondary batteries and method of preparing for the same and lithium secondary batteries comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888685B1 (en) * 2007-11-05 2009-03-13 주식회사 코캄 Core-shell type anode active material for lithium secondary batteries and method of preparing for the same and lithium secondary batteries comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문2 ; CERAMICS INTERNATIONAL *

Also Published As

Publication number Publication date
KR20100118809A (en) 2010-11-08

Similar Documents

Publication Publication Date Title
US9786903B2 (en) Positive electrode active material for lithium secondary battery, method of preparing the same and lithium secondary battery including the same
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
JP5063948B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5363497B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery including the same, and lithium secondary battery
JP7038951B2 (en) Negative electrode active material and negative electrode for all-solid-state battery containing it
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP7427629B2 (en) A positive electrode and a lithium battery including the positive electrode
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
KR20080031151A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
KR101626026B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP2020525993A (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
EP2738844B1 (en) High capacity anode active material and rechargeable lithium battery comprising same
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR20090020882A (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
JP2023513029A (en) Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery containing the same
KR20160001651A (en) Lithium secondary battery
KR101226107B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
US20180040875A1 (en) Negative electrode active material and method of preparing the same
CN109935801B (en) Anode active material for lithium secondary battery
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR101278832B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
US20120070732A1 (en) Negative active material for secondary battery, and electrode and secondary battery including the same
KR101091546B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 8