JPWO2013084416A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JPWO2013084416A1
JPWO2013084416A1 JP2013548066A JP2013548066A JPWO2013084416A1 JP WO2013084416 A1 JPWO2013084416 A1 JP WO2013084416A1 JP 2013548066 A JP2013548066 A JP 2013548066A JP 2013548066 A JP2013548066 A JP 2013548066A JP WO2013084416 A1 JPWO2013084416 A1 JP WO2013084416A1
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer support
circuit component
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013548066A
Other languages
Japanese (ja)
Inventor
泰仁 田中
泰仁 田中
鳥羽 章夫
章夫 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013548066A priority Critical patent/JPWO2013084416A1/en
Publication of JPWO2013084416A1 publication Critical patent/JPWO2013084416A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Abstract

基板に搭載された発熱回路部品の熱の放熱経路を筐体から独立させて、効率よく冷却体に放熱するとともに、伝熱部材の絶縁性能を確保することができる電力変換装置を提供する。電力変換装置は、一面を冷却体(3)に接合する半導体パワーモジュール(11)と、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板(23)と、伝熱部材(37)を介して前記実装基板を支持する伝熱支持部材(33a)と、前記実装基板の熱を、前記伝熱支持部材を介して前記冷却体に伝熱させる熱伝導路(33c)とを備え、前記実装基板に実装される回路部品を面実装接続型回路部品(39)としている。  Provided is a power conversion device capable of efficiently dissipating heat to a cooling body while ensuring the insulation performance of a heat transfer member while making a heat radiation path of a heat generating circuit component mounted on a substrate independent of a casing. The power conversion device includes a semiconductor power module (11) whose one surface is joined to a cooling body (3), a mounting board (23) on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted, a heat transfer member A heat transfer support member (33a) for supporting the mounting substrate via (37), and a heat conduction path (33c) for transferring heat of the mounting substrate to the cooling body via the heat transfer support member. The circuit component mounted on the mounting board is a surface mount connection type circuit component (39).

Description

本発明は、電力変換用の半導体スイッチング素子を内蔵した半導体パワーモジュール上に、所定間隔を保って上記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板を支持するようにした電力変換装置に関する。   The present invention supports a mounting board on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted at a predetermined interval on a semiconductor power module including a semiconductor switching element for power conversion. The present invention relates to a power conversion device.

この種の電力変換装置としては、特許文献1に記載された電力変化装置が知られている。この電力変換装置は、筐体内に、水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵した半導体パワーモジュールを配置して冷却するようにしている。また、筐体内には、半導体パワーモジュールの水冷ジャケットとは反対側に所定距離を保って制御回路基板を配置し、この制御回路基板で発生する熱を、放熱部材を介して制御回路基板を支持する金属ベース板に伝達し、さらに金属ベース板に伝達された熱を、この金属ベース板を支持する筐体の側壁を介して水冷ジャケットに伝達するようにしている。   As this type of power conversion device, a power change device described in Patent Document 1 is known. In this power conversion device, a water cooling jacket is disposed in a casing, and a semiconductor power module including an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket to cool the power conversion apparatus. In addition, a control circuit board is disposed in the housing at a predetermined distance on the opposite side of the semiconductor power module from the water-cooling jacket, and the heat generated by the control circuit board is supported by the heat dissipation member. The heat transmitted to the metal base plate is further transmitted to the water cooling jacket through the side wall of the casing that supports the metal base plate.

特許第4657329号公報Japanese Patent No. 4657329

ところで、上記特許文献1に記載された従来例にあっては、制御回路基板で発生する熱を、制御回路基板→放熱部材→金属ベース板→筐体→水冷ジャケットという経路で放熱するようにしている。このため、筐体が伝熱経路の一部として利用されることにより、筐体にも良好な伝熱性が容器希有されることになり、材料が熱伝導率の高い金属に限定され、小型軽量化の要求される電力変換装置おいて、樹脂等の軽量な材料の選択が不可能となり軽量化が困難となるという未解決の課題がある。   By the way, in the conventional example described in Patent Document 1, the heat generated in the control circuit board is radiated through the path of the control circuit board → the heat radiating member → the metal base plate → the housing → the water cooling jacket. Yes. For this reason, when the casing is used as a part of the heat transfer path, the casing also has a good heat transfer property, and the material is limited to a metal having high thermal conductivity, which is small and lightweight. In the power conversion device that is required to be reduced, there is an unsolved problem that it is difficult to select a lightweight material such as a resin and it is difficult to reduce the weight.

また、筐体には、防水・防塵が要求されることが多いため、金属ベース板と筐体との間、筐体と水冷ジャケットとの間には液状シール剤の塗布やゴム製パッキンの挟み込みなどが一般的に行われている。液状シール剤やゴム製パッキンは熱伝導率が一般的に低く、これらが熱冷却経路に介在することで熱抵抗が増え冷却効率が低下するという未解決の課題もある。この未解決の課題を解決するためには、基板や実装部品の除去しきれない発熱を筐体や筐体蓋からの自然対流による放熱も必要となり、筐体や筐体蓋の表面積を大きくするために、筐体や筐体蓋の外形が大きくなり電力変換装置が大型化することになる。   Also, since the housing is often required to be waterproof and dustproof, apply a liquid sealant or sandwich rubber packing between the metal base plate and the housing and between the housing and the water cooling jacket. Etc. are generally performed. Liquid sealants and rubber packings generally have a low thermal conductivity, and there is an unsolved problem that the thermal resistance increases and the cooling efficiency decreases due to the presence of these in the thermal cooling path. In order to solve this unsolved problem, it is also necessary to dissipate the heat generated by the substrate and mounted components by natural convection from the case and case cover, increasing the surface area of the case and case cover. For this reason, the outer shape of the housing and the housing lid is increased, and the power converter is increased in size.

さらに、制御回路基板の熱を、放熱部材を介して金属ベース板に伝熱するようにしているので、制御回路基板に実装した回路部品のリードによって放熱部材の絶縁性能が低下するという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、基板に搭載された発熱回路部品の熱を効率よく冷却体に放熱するとともに、伝熱部材の絶縁性能を確保することができる電力変換装置を提供することを目的としている。
Furthermore, since the heat of the control circuit board is transferred to the metal base plate through the heat radiating member, the insulation performance of the heat radiating member is lowered due to the leads of the circuit components mounted on the control circuit board. There are challenges.
Therefore, the present invention has been made paying attention to the unsolved problems of the above conventional example, and efficiently dissipates the heat of the heat generating circuit components mounted on the substrate to the cooling body, and also the insulating performance of the heat transfer member. It aims at providing the power converter device which can ensure.

上記目的を達成するために、本発明に係る電力変換装置の第1の態様は、一面を冷却体に接合する半導体パワーモジュールと、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、伝熱部材を介して前記実装基板を支持する伝熱支持部材と、前記実装基板の熱を、前記伝熱支持部材を介して前記冷却体に伝熱させる熱伝導路とを備えている。そして、前記実装基板に実装される回路部品を面実装接続型回路部品としている。   In order to achieve the above object, a first aspect of a power conversion device according to the present invention includes a semiconductor power module in which one surface is joined to a cooling body and a circuit component including a heat generating circuit component that drives the semiconductor power module. A mounting substrate, a heat transfer support member that supports the mounting substrate via a heat transfer member, and a heat conduction path that transfers heat of the mounting substrate to the cooling body via the heat transfer support member. I have. The circuit component mounted on the mounting board is a surface mount connection type circuit component.

この構成によると、実装基板に実装された発熱回路部品の発熱を熱伝導路によって伝熱支持部材を介して冷却体に放熱することができ、発熱回路部品の放熱を効率よく行うことができる。
さらに、実装基板に実装する回路部品を面実装接続型回路部品とすることにより、伝熱部材側にリードなどの突起部が突出することがなくなり、伝熱部材の絶縁性を確保することができる。
According to this configuration, the heat generated by the heat generating circuit component mounted on the mounting board can be radiated to the cooling body via the heat transfer support member by the heat conduction path, and the heat generating circuit component can be efficiently radiated.
Furthermore, by making the circuit component to be mounted on the mounting board into a surface mount connection type circuit component, no protrusion such as a lead protrudes on the heat transfer member side, and insulation of the heat transfer member can be ensured. .

また、本発明に係る電力変換装置の第2の態様は、前記伝熱支持部材は、熱伝導率の高い金属材料で構成されている。
この構成によると、この構成によると、伝熱支持部材を熱伝導率の高いアルミニウム、アルミニウム合金、銅等の金属材料で構成するので、冷却体への放熱をより効率よく行うことができる。
Moreover, as for the 2nd aspect of the power converter device which concerns on this invention, the said heat-transfer support member is comprised with the metal material with high heat conductivity.
According to this configuration, according to this configuration, the heat transfer support member is made of a metal material such as aluminum, aluminum alloy, or copper having high thermal conductivity, so that heat can be radiated to the cooling body more efficiently.

また、本発明に係る電力変換装置の第3の態様は、前記伝熱部材は、熱伝導性を有する絶縁体及び熱伝導性を有し且つ伸縮性を有する弾性体の何れか一方で構成されている。
この構成によると、伝熱部材を絶縁体で構成することにより、実装基板と伝熱支持部材との間を確実に絶縁することができる。また、伝熱部材を熱伝導性を有し且つ伸縮性を有する弾性体で構成することにより、伝熱部材が伸縮性を有するので、実装基板に実装された発熱部品等の周囲に接触させることができ、接触面積を増加させて、放熱効果を向上させることができる。
Moreover, the 3rd aspect of the power converter device which concerns on this invention is comprised by the said heat-transfer member in any one of the insulator which has heat conductivity, and the elastic body which has heat conductivity, and has elasticity. ing.
According to this structure, by comprising a heat-transfer member with an insulator, between a mounting substrate and a heat-transfer support member can be insulated reliably. In addition, since the heat transfer member is made of an elastic body having heat conductivity and stretchability, the heat transfer member has stretchability, so that the heat transfer member is brought into contact with the surroundings of a heat-generating component mounted on the mounting board. It is possible to increase the contact area and improve the heat dissipation effect.

また、本発明に係る電力変換装置の第4の態様は、前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成され、当該弾性体は前記実装基板と前記伝熱支持板部とで圧縮した状態で固定されている。
この構成によると、前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成され、当該弾性体は前記実装基板と前記伝熱支持板部とで圧縮した状態で固定されている。
Moreover, the 4th aspect of the power converter device which concerns on this invention WHEREIN: The said heat-transfer member is comprised with the elastic body which has thermal conductivity and has a stretching property, and the said elastic body is the said mounting substrate and the said heat-transfer. It is fixed in a compressed state with the support plate.
According to this configuration, the heat transfer member is formed of an elastic body having thermal conductivity and stretchability, and the elastic body is fixed in a compressed state between the mounting substrate and the heat transfer support plate portion. ing.

また、本発明に係る電力変換装置の第5の態様は、前記実装基板と前記伝熱支持板部との間に、前記弾性体の圧縮率を決定する間隔調整部材が設けられている。
この構成によると、弾性体の圧縮率を間隔調整部材によって決定することができ、弾性体の圧縮率を一定値に容易に調整することができる。
Moreover, the 5th aspect of the power converter device which concerns on this invention is provided with the space | interval adjustment member which determines the compression rate of the said elastic body between the said mounting substrate and the said heat-transfer support plate part.
According to this configuration, the compression rate of the elastic body can be determined by the interval adjusting member, and the compression rate of the elastic body can be easily adjusted to a constant value.

また、本発明に係る電力変換装置の第6の態様は、一面を冷却体に接合する半導体パワーモジュールと、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、伝熱部材を介して前記実装基板を支持する伝熱支持部材と、前記実装基板の熱を、前記伝熱支持部材を介して前記冷却体に伝熱させる熱伝導路とを備えている。そして、前記実装基板に実装される回路部品を、ハンダ接続リードを有し、当該ハンダ接続リードを半田付けする回路部品とし、少なくとも前記半田接続リードの挿通位置に対応する前記伝熱部材と前記伝熱支持部材との間に電気的絶縁部材を介在させている。   According to a sixth aspect of the power conversion device of the present invention, there is provided a semiconductor power module in which one surface is joined to a cooling body, a mounting board on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted, and a transmission board. A heat transfer support member that supports the mounting substrate via a heat member; and a heat conduction path that transfers heat of the mounting substrate to the cooling body via the heat transfer support member. Then, the circuit component mounted on the mounting substrate is a circuit component having a solder connection lead and soldering the solder connection lead, and at least the heat transfer member corresponding to the insertion position of the solder connection lead and the heat transfer member. An electrically insulating member is interposed between the heat supporting member.

この構成によると、実装基板に実装された発熱回路部品の発熱を熱伝導路によって、伝熱支持部材を介して冷却体に放熱することができ、発熱回路部品の放熱を効率よく行うことができる。
また、回路部品の半田接続リードが実装基板から突出して伝熱部材内に突き刺さって穴が開き、この穴が振動等によって拡大して伝熱部材内に空間が形成されて絶縁性能が低下した場合でも、回路部品の半田接続リードの挿通領域に対応する領域に少なくとも電気的絶縁部材を介在させたので、伝熱部材の絶縁性能低下を電気的絶縁部材で補って必要な絶縁性能を確保できる。
According to this configuration, the heat generated by the heat generating circuit component mounted on the mounting substrate can be radiated to the cooling body via the heat transfer support member through the heat conduction path, and the heat generating circuit component can be efficiently radiated. .
In addition, when the solder connection leads of the circuit components protrude from the mounting board and pierce into the heat transfer member, a hole is opened, and this hole expands due to vibration or the like to form a space in the heat transfer member, resulting in a decrease in insulation performance However, since at least the electrical insulating member is interposed in the region corresponding to the insertion region of the solder connection lead of the circuit component, it is possible to secure the necessary insulating performance by compensating for the decrease in the insulating performance of the heat transfer member with the electrical insulating member.

また、本発明に係る電力変換装置の第7の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成された半導体パワーモジュールと、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、伝熱部材を介して前記実装基板を支持する伝熱支持板部を少なくとも有し、前記半導体パワーモジュール及び前記各実装基板の双方を囲む筐体とは独立した熱伝導路を形成して前記冷却体に接触する伝熱支持部材とを備えている。そして、前記実装基板に実装される回路部品を、半田接続リードを有し、当該半田接続リードを半田付けする回路部品とし、少なくとも前記半田接続リードの挿通位置に対応する前記伝熱部材と前記伝熱支持板部との間に電気的絶縁部材を介在させている。   A seventh aspect of the power conversion device according to the present invention is a semiconductor power module in which a semiconductor switching element for power conversion is built in a case body, and a cooling member that contacts the cooling body is formed on one surface of the case body. And a mounting substrate on which circuit components including a heat generating circuit component that drives the semiconductor switching element are mounted, and a heat transfer support plate portion that supports the mounting substrate via a heat transfer member, the semiconductor power module, A heat transfer support member that forms a heat conduction path independent of the casing that surrounds both of the mounting substrates and contacts the cooling body. The circuit component mounted on the mounting board is a circuit component having a solder connection lead and soldering the solder connection lead, and at least the heat transfer member corresponding to the insertion position of the solder connection lead and the heat transfer member. An electrically insulating member is interposed between the heat support plate portion.

この構成によると、前述した第1の実施形態と同様に、実装基板に実装された発熱回路部品の発熱を筐体から独立した伝熱支持部材を介して冷却体に放熱することができ、発熱回路部品の放熱を効率よく行うことができる。この場合、実装基板と冷却体との間の複数の熱伝導路が半導体パワーモジュール及び各実装基板の双方を囲む筐体とは独立して形成されているので、筐体の熱伝導率を考慮することなく筐体を形成することができ、設計の自由度を向上できる。   According to this configuration, similar to the first embodiment described above, the heat generated by the heat generating circuit components mounted on the mounting board can be radiated to the cooling body via the heat transfer support member independent of the housing, It is possible to efficiently radiate circuit components. In this case, since the plurality of heat conduction paths between the mounting substrate and the cooling body are formed independently of the housing surrounding both the semiconductor power module and each mounting substrate, the heat conductivity of the housing is taken into consideration. Thus, the housing can be formed without increasing the design freedom.

また、回路部品の半田接続リードが実装基板から突出して伝熱部材内に突き刺さって穴が開き、この穴が振動等によって拡大して伝熱部材内に空間が形成されて絶縁性能が低下した場合でも、回路部品の半田接続リードの挿通領域に対応する領域に少なくとも電気的絶縁部材を介在させたので、伝熱部材の絶縁性能低下を電気的絶縁部材で補って必要な絶縁性能を確保できる。   In addition, when the solder connection leads of the circuit components protrude from the mounting board and pierce into the heat transfer member, a hole is opened, and this hole expands due to vibration or the like to form a space in the heat transfer member, resulting in a decrease in insulation performance However, since at least the electrical insulating member is interposed in the region corresponding to the insertion region of the solder connection lead of the circuit component, it is possible to secure the necessary insulating performance by compensating for the decrease in the insulating performance of the heat transfer member with the electrical insulating member.

また、本発明に係る電力変換装置の第8の態様は、前記電気的絶縁部材が、前記回路部品の半田接続リード挿通領域に対向する領域に、当該半田接続リード挿通領域より広い範囲に形成されている。
この構成によると、電気的絶縁部材の形成範囲が回路部品の半田接続リード挿通範囲より広くしたので、伝熱部材への半田接続リードの突き刺さりに起因する絶縁性能の低下を補って必要な絶縁性能を確実に確保することができる。
According to an eighth aspect of the power conversion device of the present invention, the electrically insulating member is formed in a region facing the solder connection lead insertion region of the circuit component in a range wider than the solder connection lead insertion region. ing.
According to this configuration, the formation range of the electrical insulation member is wider than the solder connection lead insertion range of the circuit component, so the necessary insulation performance is compensated for the deterioration of insulation performance caused by the piercing of the solder connection lead to the heat transfer member. Can be ensured.

また、本発明に係る電力変換装置の第9の態様は、前記伝熱支持部材が、熱伝導率の高い金属材料で構成されている。
この構成によると、伝熱支持部材を熱伝導率の高いアルミニウム、アルミニウム合金、銅等の金属材料で構成するので、冷却体への放熱をより効率よく行うことができる。
In a ninth aspect of the power conversion device according to the present invention, the heat transfer support member is made of a metal material having high thermal conductivity.
According to this configuration, since the heat transfer support member is made of a metal material such as aluminum, aluminum alloy, or copper having high thermal conductivity, heat dissipation to the cooling body can be performed more efficiently.

また、本発明に係る電力変換装置の第10の態様は、前記伝熱部材が、熱伝導性を有する絶縁体及び熱伝導性を有し且つ伸縮性を有する弾性体の何れか一方で構成されている。
この構成によると、伝熱部材を絶縁体で構成すると、実装基板と伝熱支持部材との間を確実に絶縁することができる。また、伝熱部材を熱伝導性を有し且つ伸縮性を有する弾性体で構成すると、伝熱部材が伸縮性を有するので、実装基板に実装された発熱部品等の周囲に接触させることができ、接触面積を増加させて、放熱効果を向上させることができる。
Further, a tenth aspect of the power conversion device according to the present invention is such that the heat transfer member is one of an insulator having thermal conductivity and an elastic body having thermal conductivity and stretchability. ing.
According to this structure, if a heat-transfer member is comprised with an insulator, between a mounting board | substrate and a heat-transfer support member can be insulated reliably. In addition, if the heat transfer member is made of an elastic body having thermal conductivity and stretchability, the heat transfer member has stretchability, so that the heat transfer member can be brought into contact with the surroundings of a heat generating component mounted on the mounting board. By increasing the contact area, the heat dissipation effect can be improved.

また、本発明に係る電力変換装置の第11の態様は、前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成され、当該弾性体は前記実装基板と前記伝熱支持板部とで圧縮した状態で固定されている。
この構成によると、実装基板及び伝熱支持板部で弾性体を圧縮した状態で固定するので、実装基板に実装された発熱部品との接触をより良好に行うことができ、放熱効果を向上させることができる。
In an eleventh aspect of the power conversion device according to the present invention, the heat transfer member is formed of an elastic body having thermal conductivity and elasticity, and the elastic body includes the mounting substrate and the heat transfer. It is fixed in a compressed state with the support plate.
According to this configuration, since the elastic body is fixed in a compressed state by the mounting substrate and the heat transfer support plate portion, the contact with the heat-generating component mounted on the mounting substrate can be performed better, and the heat dissipation effect is improved. be able to.

また、本発明に係る電力変換装置の第12の態様は、前記実装基板と前記伝熱支持板部との間に、前記弾性体の圧縮率を決定する間隔調整部材が設けられている。
この構成によると、弾性体の圧縮率を間隔調整部材によって決定することができ、弾性体の圧縮率を一定値に容易に調整することができる。
In a twelfth aspect of the power conversion device according to the present invention, an interval adjusting member that determines a compressibility of the elastic body is provided between the mounting substrate and the heat transfer support plate portion.
According to this configuration, the compression rate of the elastic body can be determined by the interval adjusting member, and the compression rate of the elastic body can be easily adjusted to a constant value.

本発明によれば、発熱回路部品を含む回路部品を実装した実装基板の発熱を伝熱支持板部を介して熱伝導路によって冷却体に放熱するので、熱抵抗を抑えて冷却効率の良い熱冷却を行うことができる。
さらに、実装基板に実装する回路部品を面実装接続型回路部品とすることにより、伝熱部材へのリード等の突起物の突き刺さりを確実に防止することができ、伝熱部材と伝熱支持板部との間の絶縁性能を確実に確保することができる。
According to the present invention, the heat generated by the mounting board on which the circuit components including the heat generating circuit components are mounted is radiated to the cooling body through the heat transfer support plate portion through the heat conduction path, so that the heat resistance is suppressed and the heat with good cooling efficiency is obtained. Cooling can be performed.
Furthermore, by making the circuit component to be mounted on the mounting substrate into a surface mount connection type circuit component, it is possible to reliably prevent the protrusion of protrusions such as leads to the heat transfer member, and the heat transfer member and the heat transfer support plate The insulation performance between the parts can be ensured.

また、実装基板に実装する回路部品を、半田接続リードを有する構成とした場合には、伝熱部材と伝熱支持板部との間に電気的絶縁部材を介在させることにより、半田接続リード等の突起物が伝熱部材に突き刺さることに起因する伝熱部材の絶縁性能が低下したときでも、その絶縁性能の低下を電気的絶縁部材で補って、必要な絶縁性能を確保することができる。   Further, when the circuit component to be mounted on the mounting board is configured to have a solder connection lead, an electrical insulating member is interposed between the heat transfer member and the heat transfer support plate portion, so that the solder connection lead, etc. Even when the insulation performance of the heat transfer member due to the protrusions sticking into the heat transfer member is reduced, the decrease in the insulation performance can be compensated by the electrical insulation member, and the necessary insulation performance can be ensured.

本発明に係る電力変換装置の第1の実施形態の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of 1st Embodiment of the power converter device which concerns on this invention. 第1の実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing the important section of a 1st embodiment. 回路部品を実装した制御回路ユニットの一例を示す断面図である。It is sectional drawing which shows an example of the control circuit unit which mounted the circuit component. 実装基板を取り付けた状態の具体的構成を示す拡大断面図である。It is an expanded sectional view which shows the specific structure of the state which attached the mounting board | substrate. 実装基板の伝熱支持部材への取り付け方法を示す図である。It is a figure which shows the attachment method to the heat-transfer support member of a mounting board | substrate. 実装基板を伝熱支持部材へ取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the mounting board | substrate to the heat-transfer support member. 伝熱板部の変形例を示す断面図である。It is sectional drawing which shows the modification of a heat exchanger plate part. 発熱回路部品の放熱経路を説明する図である。It is a figure explaining the heat dissipation path | route of a heat generating circuit component. 電力変換装置に対して上下振動や横揺れが作用した状態を示す図である。It is a figure which shows the state which the vertical vibration and the roll acted with respect to the power converter device. 回路部品を実装した制御回路ユニットの他の例を示す断面図である。It is sectional drawing which shows the other example of the control circuit unit which mounted the circuit component. 半導体パワーモジュールの冷却部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the cooling member of a semiconductor power module.

以下、本発明の実施の形態を図面について説明する。
図1は本発明に係る電力変換装置の全体構成を示す断面図である。
図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the overall configuration of a power converter according to the present invention.
In the figure, reference numeral 1 denotes a power converter, and the power converter 1 is housed in a housing 2. The casing 2 is formed by molding a synthetic resin material, and includes a lower casing 2A and an upper casing 2B that are divided vertically with a cooling body 3 having a water-cooling jacket structure interposed therebetween.

下部筐体2Aは有底角筒体で構成されている。この下部筐体2Aは開放上部が冷却体3で覆われ、内部にフィルムコンデンサ4が収納されている。
上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
The lower housing 2A is a bottomed rectangular tube. The lower housing 2A is covered with a cooling body 3 at the open top, and a film capacitor 4 is accommodated therein.
The upper housing 2B includes a rectangular tube 2a having an open upper end and a lower end, and a lid 2b that closes the upper end of the rectangular tube 2a. The lower end of the rectangular tube 2a is closed by the cooling body 3. Although not shown, a sealing material such as application of a liquid sealant or sandwiching rubber packing is interposed between the lower end of the rectangular tube 2a and the cooling body 3.

冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口されている。これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。この冷却体3は例えば熱伝導率の高いアルミニウム、アルミニウム合金を射出成形して形成されている。そして、冷却体3は、下面が平坦面とされ、上面が中央部3cを残して角枠状の周溝3dが形成されている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の接続端子4aを上下に挿通する挿通孔3eが形成されている。   In the cooling body 3, a cooling water supply port 3 a and a drain port 3 b are opened to the outside of the housing 2. The water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose. The cooling body 3 is formed, for example, by injection molding aluminum or aluminum alloy having high thermal conductivity. And as for the cooling body 3, the lower surface is made into a flat surface, and the upper surface is formed with the square-frame-shaped peripheral groove 3d leaving the center part 3c. Further, the cooling body 3 is formed with an insertion hole 3e through which the positive and negative connection terminals 4a with insulation coating of the film capacitor 4 held in the lower housing 2A are inserted vertically.

電力変換装置1は、図2とともに参照して明らかなように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵した半導体パワーモジュール11を備えている。この半導体パワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、ケース体12の下面に金属製の冷却部材13が形成されている。ケース体12及び冷却部材13には平面からみて四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。また、ケース体12の上面には、挿通孔15の内側における4箇所に所定高さの基板固定部16が突出形成されている。   As is apparent from FIG. 2, the power conversion apparatus 1 includes a semiconductor power module 11 that incorporates, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element that constitutes, for example, an inverter circuit for power conversion. . The semiconductor power module 11 includes an IGBT in a flat rectangular parallelepiped insulating case body 12, and a metal cooling member 13 is formed on the lower surface of the case body 12. The case body 12 and the cooling member 13 are formed with insertion holes 15 through which the fixing screws 14 as the fixing members are inserted at the four corners when viewed from the plane. In addition, on the upper surface of the case body 12, substrate fixing portions 16 having a predetermined height are formed to protrude at four locations inside the insertion hole 15.

この基板固定部16の上端には、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。また、駆動回路基板21の上方に所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTを制御する相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等を実装した実装基板としての制御回路基板22が固定されている。さらに、制御回路基板22の上方に所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTに電源を供給する発熱回路部品を含む電源回路等を実装した実装基板としての電源回路基板23が固定されている。   A drive circuit board 21 on which a drive circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16. In addition, a control circuit including a heat generation circuit component having a relatively large heat generation amount or a high heat generation density for controlling the IGBT built in the semiconductor power module 11 with a predetermined interval above the drive circuit board 21 is mounted. A control circuit board 22 as a mounting board is fixed. Further, a power supply circuit board 23 as a mounting board on which a power supply circuit including a heating circuit component for supplying power to the IGBT built in the semiconductor power module 11 is mounted at a predetermined interval above the control circuit board 22 is fixed. ing.

そして、駆動回路基板21は、図2に示すように、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
また、制御回路基板22は、継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
さらに、電源回路基板23は継ぎねじ25の上端に形成した雌ねじ部25bに対向する位置に形成した挿通孔23a内に固定ねじ26を挿通し、この固定ねじ26を継ぎねじ25の雌ねじ部25bに螺合することにより固定されている。
Then, as shown in FIG. 2, the drive circuit board 21 inserts the male screw part 24a of the joint screw 24 into the insertion hole 21a formed at a position facing the board fixing part 16, and the male screw part 24a is inserted into the board fixing part. It is fixed by screwing into a female screw portion 16a formed on the upper surface of 16.
Further, the control circuit board 22 inserts the male screw portion 25a of the joint screw 25 into the insertion hole 22a formed at a position facing the female screw portion 24b formed at the upper end of the joint screw 24, and this male screw portion 25a is inserted into the joint screw 24. It is fixed by being screwed into the female screw portion 24b.
Further, the power supply circuit board 23 inserts a fixing screw 26 into an insertion hole 23 a formed at a position facing the female screw portion 25 b formed at the upper end of the joint screw 25, and this fixing screw 26 is inserted into the female screw portion 25 b of the joint screw 25. It is fixed by screwing.

制御回路基板22には、図4に示すように、後述する伝熱部材35と接触する下面側に発熱回路部品27aが実装され、伝熱部材35とは反対側の上面側に面実装接続型回路部品27bが実装されている。この面実装接続型回路部品27bは、制御回路基板22との電気的接続が下面に形成された半田層28で行うようにしている。このため、面実装接続型回路部品27bでは、後述するリード接続型回路部品のように制御回路基板22に形成したスルーホールを通じて下面側に突出する突起物となる半田接続リードが存在せず、後述するように、伝熱部材35を後述するように5〜30%程度の圧縮率で圧縮したときに、伝熱部材35に突起物が突き刺さって穴が開き、この穴が振動等により拡大して伝熱部材の層に空間が形成されて絶縁性能が低下することを防止することができる。   As shown in FIG. 4, the control circuit board 22 is mounted with a heat generating circuit component 27 a on the lower surface side that comes into contact with a heat transfer member 35 to be described later, and a surface mount connection type on the upper surface side opposite to the heat transfer member 35. A circuit component 27b is mounted. In the surface mount connection type circuit component 27b, the electrical connection with the control circuit board 22 is performed by the solder layer 28 formed on the lower surface. For this reason, in the surface mount connection type circuit component 27b, there is no solder connection lead that becomes a protrusion protruding to the lower surface side through a through hole formed in the control circuit board 22 as in a lead connection type circuit component described later. Thus, when the heat transfer member 35 is compressed at a compression rate of about 5 to 30% as will be described later, a protrusion is stuck into the heat transfer member 35 to open a hole, and this hole expands due to vibration or the like. It can be prevented that a space is formed in the layer of the heat transfer member and the insulation performance is deteriorated.

同様に、電源回路基板23でも、後述する伝熱部材37に接触する下面側に発熱回路部品39aが実装され、伝熱部材37とは反対側の上面側に面実装接続型回路部品39bが実装されている。
また、制御回路基板22及び電源回路基板23は、伝熱支持部材32及び33によって冷却体3への放熱経路を形成するように支持されている。これら伝熱支持部材32及び33は、熱伝導率が高い金属例えばアルミニウム、アルミニウム合金、銅等で形成されている。
Similarly, also in the power circuit board 23, a heat generating circuit component 39a is mounted on the lower surface side that comes into contact with a heat transfer member 37 described later, and a surface mount connection type circuit component 39b is mounted on the upper surface side opposite to the heat transfer member 37. Has been.
The control circuit board 22 and the power circuit board 23 are supported by the heat transfer support members 32 and 33 so as to form a heat radiation path to the cooling body 3. These heat transfer support members 32 and 33 are formed of a metal having a high thermal conductivity such as aluminum, an aluminum alloy, or copper.

伝熱支持部材32は、平板上の伝熱支持板部32aと、この伝熱支持板部32aの図2で見て半導体パワーモジュール11の長辺に沿う右端側に固定ねじ32bで固定された伝熱支持側板部32cとで構成されている。そして、伝熱支持側板部32cが冷却体3の周溝3d内に配置される角枠状の共通の底板部34に連結されている。
伝熱支持板部32aには、板状の伝熱部材35を介して制御回路基板22が固定ねじ36によって固定される。伝熱部材35は、伸縮性を有する弾性体で電源回路基板23と同じ外形寸法に構成されている。この伝熱部材35としては、シリコンゴムの内部に金属フィラーを介在させることにより伝熱性を高めたものが適用されている。
The heat transfer support member 32 is fixed by a fixing screw 32b on the heat transfer support plate portion 32a on the flat plate and the right end side of the heat transfer support plate portion 32a along the long side of the semiconductor power module 11 as seen in FIG. It is comprised with the heat-transfer support side board part 32c. The heat transfer support side plate portion 32 c is connected to a square frame-shaped common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3.
The control circuit board 22 is fixed to the heat transfer support plate portion 32 a by a fixing screw 36 via a plate-shaped heat transfer member 35. The heat transfer member 35 is an elastic body having elasticity, and has the same outer dimensions as the power circuit board 23. As the heat transfer member 35, a member having improved heat transfer property by interposing a metal filler inside silicon rubber is applied.

また、伝熱支持側板部32cは、図2に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部32dと、この連結板部32dの上端から左方に延長する上板部32eとで断面逆L字状に形成されている。連結板部32dは、半導体パワーモジュール11の長辺側の右側面を通って上方に延長している。   Further, as shown in FIG. 2, the heat transfer support side plate portion 32 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 arranged in the circumferential groove 3 d of the cooling body 3 and extends upward. The connecting plate portion 32d and the upper plate portion 32e extending leftward from the upper end of the connecting plate portion 32d are formed in an inverted L-shaped cross section. The connecting plate portion 32 d extends upward through the right side surface on the long side of the semiconductor power module 11.

伝熱支持部材33は、平板上の伝熱支持板部33aと、この伝熱支持板部33aの図2で見て半導体パワーモジュール11の長辺に沿う左端側に固定ねじ33bで固定された伝熱支持側板部33cとで構成されている。そして、伝熱支持側板部33cが共通の底板部34に連結されている。
伝熱支持板部33aには、前述した伝熱部材35と同様の伝熱部材37を介して電源回路基板23が固定ねじ38によって固定される。
The heat transfer support member 33 is fixed by a fixing screw 33b on the heat transfer support plate portion 33a on the flat plate and the left end side of the heat transfer support plate portion 33a along the long side of the semiconductor power module 11 as seen in FIG. It is comprised with the heat-transfer support side board part 33c. The heat transfer support side plate portion 33 c is connected to the common bottom plate portion 34.
The power supply circuit board 23 is fixed to the heat transfer support plate portion 33a by a fixing screw 38 via a heat transfer member 37 similar to the heat transfer member 35 described above.

また、伝熱支持側板部33cは、図2及び図3に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部33dと、この連結板部33dの上端から左方に延長する上板部33eとで断面逆L字状に形成されている。連結板部33dは、半導体パワーモジュール11の長辺側の左側面を通って上方に延長している。   Further, as shown in FIGS. 2 and 3, the heat transfer support side plate portion 33 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3. The connecting plate portion 33d extending upward and the upper plate portion 33e extending leftward from the upper end of the connecting plate portion 33d are formed in an inverted L-shaped cross section. The connecting plate portion 33 d extends upward through the left side surface on the long side of the semiconductor power module 11.

そして、連結板部33dの底板部34及び上板部33eとの連結部を円筒状の湾曲面に形成している。このように連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面とすることにより、電力変換装置1に上下振動や横揺れが伝達されたときに連結板部33dと底板部34及び上板部33eとの連結部に生じる応力集中を緩和することができ、上下振動や横揺れ等に対する耐振動性を向上することができる。   And the connection part with the baseplate part 34 of the connection board part 33d and the upper board part 33e is formed in the cylindrical curved surface. Thus, by connecting the connecting plate portion 33d, the bottom plate portion 34, and the upper plate portion 33e to a cylindrical curved surface, the connecting plate portion when vertical vibration or roll is transmitted to the power converter 1. It is possible to alleviate the stress concentration generated at the connecting portion between 33d, the bottom plate portion 34, and the upper plate portion 33e, and to improve the vibration resistance against vertical vibration and roll.

さらに、連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面とすることにより、連結板部33dと底板部34及び上板部33eとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板部33aから冷却体3までの熱伝導経路を短くして、効率的な熱冷却が可能となる。   Further, the connecting portion between the connecting plate portion 33d and the bottom plate portion 34 and the upper plate portion 33e is formed into a cylindrical curved surface, so that the connecting portion between the connecting plate portion 33d and the bottom plate portion 34 and the upper plate portion 33e has a right angle. The heat conduction path can be shortened as compared with the L-shape. For this reason, the heat conduction path from the heat transfer support plate portion 33a to the cooling body 3 is shortened, and efficient heat cooling becomes possible.

また、制御回路基板22及び電源回路基板23には、発熱回路部品39aが、図4及び図5に示すように、下面側に実装されている。
そして、制御回路基板22及び電源回路基板23と、伝熱部材35,37及び伝熱支持板部32a,33aとの連結が図4に示すように行われる。これら制御回路基板22及び電源回路基板23と、伝熱支持板部32a及び33aとの連結は左右が逆となることを除いては実質的に同じであるので、電源回路基板23及び伝熱支持板部33aを代表として説明する。
Further, on the control circuit board 22 and the power supply circuit board 23, a heat generating circuit component 39a is mounted on the lower surface side as shown in FIGS.
Then, the control circuit board 22 and the power supply circuit board 23 are connected to the heat transfer members 35 and 37 and the heat transfer support plate portions 32a and 33a as shown in FIG. The connection between the control circuit board 22 and the power circuit board 23 and the heat transfer support plate portions 32a and 33a is substantially the same except that the left and right are reversed. The plate portion 33a will be described as a representative.

この電源回路基板23と伝熱支持板部33aとの連結には、図4及び図5に示すように、伝熱部材37の厚みTより低い伝熱板部管理高さHを有する間隔調整部材としての間座40が用いられる。この間座40は、伝熱支持板部33aに形成された固定ねじ38が螺合する雌ねじ部41の外周側に接着等によって仮止めされている。ここで、間座40の伝熱板部管理高さHは、伝熱部材37の圧縮率が5〜30%程度となるように設定されている。このように、伝熱部材37を5〜30%程度に圧縮することにより、熱抵抗が減り効率良い伝熱効果を発揮することができる。   As shown in FIGS. 4 and 5, the power supply circuit board 23 and the heat transfer support plate portion 33 a are connected to each other by an interval adjusting member having a heat transfer plate portion management height H lower than the thickness T of the heat transfer member 37. A spacer 40 is used. The spacer 40 is temporarily fixed by bonding or the like to the outer peripheral side of the female screw portion 41 into which the fixing screw 38 formed on the heat transfer support plate portion 33a is screwed. Here, the heat transfer plate portion management height H of the spacer 40 is set so that the compression rate of the heat transfer member 37 is about 5 to 30%. Thus, by compressing the heat transfer member 37 to about 5 to 30%, the thermal resistance can be reduced and an efficient heat transfer effect can be exhibited.

一方、伝熱部材37には、継ぎねじ25を挿通可能な挿通孔37aと、間座40を挿通可能な挿通孔37bとが形成されている。
そして、伝熱支持板部33aに仮止めされた間座40を挿通孔37bに挿通されるように伝熱部材37を伝熱支持板部33aに載置し、この伝熱支持板部33aの上に電源回路基板23を発熱回路部品39aが伝熱部材37に接するように載置する。
On the other hand, the heat transfer member 37 is formed with an insertion hole 37 a through which the joint screw 25 can be inserted and an insertion hole 37 b through which the spacer 40 can be inserted.
The heat transfer member 37 is placed on the heat transfer support plate 33a so that the spacer 40 temporarily fixed to the heat transfer support plate 33a is inserted into the insertion hole 37b. The power supply circuit board 23 is placed thereon so that the heat generating circuit component 39 a is in contact with the heat transfer member 37.

この状態で、固定ねじ38を電源回路基板23の挿通孔23bを通じ、間座40の中心開口を通じて伝熱支持板部33aの雌ねじ部41に螺合させる。そして、固定ねじ38を伝熱部材37の上面が間座40の上面と略一致するまで締め付ける。
このため、伝熱部材37が5〜30%程度の圧縮率で圧縮されることになり、熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材37の圧縮率は間座40の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。
In this state, the fixing screw 38 is screwed into the female screw portion 41 of the heat transfer support plate portion 33a through the insertion hole 23b of the power circuit board 23 and the central opening of the spacer 40. Then, the fixing screw 38 is tightened until the upper surface of the heat transfer member 37 substantially coincides with the upper surface of the spacer 40.
For this reason, the heat transfer member 37 is compressed at a compression rate of about 5 to 30%, so that the heat resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression rate of the heat transfer member 37 is managed by the height H of the spacer 40, appropriate tightening is performed without causing insufficient tightening or excessive tightening.

また、電源回路基板23の下面側に実装された発熱回路部品39aが伝熱部材37の弾性によって伝熱部材37内に埋め込まれる。このため、発熱回路部品39aと伝熱部材37との接触が過不足なく行われるとともに、伝熱部材37と電源回路基板23及び伝熱支持板部33aとの接触が良好に行われ、伝熱部材37と電源回路基板23及び伝熱支持板部33aとの間の熱抵抗を減少させることができる。   Further, the heat generating circuit component 39 a mounted on the lower surface side of the power circuit board 23 is embedded in the heat transfer member 37 by the elasticity of the heat transfer member 37. For this reason, the contact between the heat generating circuit component 39a and the heat transfer member 37 is performed without excess or deficiency, and the contact between the heat transfer member 37, the power supply circuit board 23 and the heat transfer support plate portion 33a is performed satisfactorily. The thermal resistance between the member 37 and the power supply circuit board 23 and the heat transfer support plate portion 33a can be reduced.

また、電源回路基板23には、伝熱部材37とは反対側の上面側に面実装接続型回路部品39bが実装されているので、リード接続型回路部品のように電源回路基板23に形成したスルーホールを通じて下面側に突出する半田接続リードが存在しない。このため、伝熱部材37に半田接続リードが突き刺さって穴が開き、振動等の影響で穴が拡大して伝熱部材37の層に空間が形成されることによって絶縁性能が低下することがない。   Further, since the surface mount connection type circuit component 39b is mounted on the power circuit board 23 on the upper surface side opposite to the heat transfer member 37, it is formed on the power supply circuit board 23 like a lead connection type circuit component. There is no solder connection lead protruding to the lower surface side through the through hole. For this reason, the solder connection lead is pierced into the heat transfer member 37 and a hole is opened, and the hole is enlarged due to the influence of vibration or the like, so that the space is formed in the layer of the heat transfer member 37 and the insulation performance is not deteriorated. .

制御回路基板22と伝熱支持板部32aとの伝熱部材35を介在させた連結も上記と同様にして行われる。
また、伝熱支持部材32及び33の共通の底板部34には、図2及び図3に示すように、半導体パワーモジュール11の固定ねじ14を挿通する挿通孔15に対向する位置に固定部材挿通孔34aが形成されている。さらに、底板部34の上面と半導体パワーモジュール11に形成された冷却部材13の下面との間に弾性部材45が介在されている。
The connection through the heat transfer member 35 between the control circuit board 22 and the heat transfer support plate portion 32a is performed in the same manner as described above.
Further, as shown in FIGS. 2 and 3, the common bottom plate portion 34 of the heat transfer support members 32 and 33 is inserted through the fixing member at a position facing the insertion hole 15 through which the fixing screw 14 of the semiconductor power module 11 is inserted. A hole 34a is formed. Further, an elastic member 45 is interposed between the upper surface of the bottom plate portion 34 and the lower surface of the cooling member 13 formed in the semiconductor power module 11.

そして、半導体パワーモジュール11及び冷却部材13の挿通孔15及び底板部34の固定部材挿通孔34aに固定ねじ14を挿通し、この固定ねじ14を冷却体3に形成された雌ねじ部3fに螺合させることにより、半導体パワーモジュール11と底板部34とが冷却体3に固定されている。   Then, the fixing screw 14 is inserted into the insertion hole 15 of the semiconductor power module 11 and the cooling member 13 and the fixing member insertion hole 34 a of the bottom plate portion 34, and the fixing screw 14 is screwed into the female screw portion 3 f formed in the cooling body 3. By doing so, the semiconductor power module 11 and the bottom plate portion 34 are fixed to the cooling body 3.

次に、上記実施形態の電力変換装置1の組立方法を説明する。
先ず、図5で前述したように、電源回路基板23を伝熱支持部材33の伝熱支持板部33aに伝熱部材37を介して重ね合わせ、固定ねじ38によって伝熱部材37を5〜30%程度の圧縮率で圧縮した状態で電源回路基板23、伝熱部材37及び伝熱支持板部33aを固定して、電源回路ユニットU3を形成しておく。このとき、前述したように、電源回路基板23の上面側に面実装接続型回路部品39bが実装されているので、電源回路基板23の下面側に突出する半田接続リードが存在しない。このため、伝熱部材37を5〜30%程度の圧縮率で圧縮した際に、導電性の細長い突起物が伝熱部材37に突き刺さって穴が空き、この穴が振動等の影響により拡大して伝熱部材の層に空間部が形成されて伝熱部材37の絶縁性能が低下することを確実に防止することができる。
Next, a method for assembling the power conversion apparatus 1 according to the above embodiment will be described.
First, as described above with reference to FIG. 5, the power supply circuit board 23 is superposed on the heat transfer support plate portion 33 a of the heat transfer support member 33 via the heat transfer member 37, and the heat transfer member 37 is placed 5-30 by the fixing screw 38. The power supply circuit board 23, the heat transfer member 37, and the heat transfer support plate 33a are fixed in a state compressed at a compression rate of about% to form the power supply circuit unit U3. At this time, as described above, since the surface mount connection type circuit component 39b is mounted on the upper surface side of the power circuit board 23, there is no solder connection lead protruding on the lower surface side of the power circuit board 23. For this reason, when the heat transfer member 37 is compressed at a compression rate of about 5 to 30%, the conductive elongated protrusions pierce the heat transfer member 37 to form holes, which expand due to the influence of vibration or the like. Thus, it is possible to reliably prevent the space portion from being formed in the heat transfer member layer and the insulation performance of the heat transfer member 37 from being deteriorated.

同様に、制御回路基板22を伝熱支持部材32の伝熱支持板部32aに伝熱部材35を介して重ね合わせ、固定ねじ36によって伝熱部材35を5〜30%程度の圧縮率で圧縮した状態で制御回路基板22、伝熱部材35及び伝熱支持板部32aを固定して制御回路ユニットU2を形成しておく。このとき、前述したように、制御回路基板22の上面側に面実装接続型回路部品27bが実装されているので、制御回路基板22の下面側に突出する半田接続リードが存在しない。このため、伝熱部材35を5〜30%程度の圧縮率で圧縮した際に、導電性の細長い突起物が伝熱部材35に突き刺さって穴が空き、この穴が振動等の影響により拡大して伝熱部材の層に空間部が形成されて伝熱部材37の絶縁性能が低下することを確実に防止することができる。   Similarly, the control circuit board 22 is superposed on the heat transfer support plate portion 32a of the heat transfer support member 32 via the heat transfer member 35, and the heat transfer member 35 is compressed at a compression rate of about 5 to 30% by the fixing screw 36. In this state, the control circuit board 22, the heat transfer member 35, and the heat transfer support plate 32a are fixed to form the control circuit unit U2. At this time, as described above, since the surface mount connection type circuit component 27b is mounted on the upper surface side of the control circuit board 22, there is no solder connection lead protruding on the lower surface side of the control circuit board 22. For this reason, when the heat transfer member 35 is compressed at a compression rate of about 5 to 30%, the conductive elongated protrusions pierce the heat transfer member 35 to make a hole, which expands due to the influence of vibration or the like. Thus, it is possible to reliably prevent the space portion from being formed in the heat transfer member layer and the insulation performance of the heat transfer member 37 from being deteriorated.

一方、冷却体3の周溝3d内に、伝熱支持部材32及び33に共通の底板部34を、その上面と半導体パワーモジュール11に形成した冷却部材13の下面との間に弾性部材45を介在させた状態で、半導体パワーモジュール11とともに固定ねじ14で固定する。
また、半導体パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。そして、伝熱支持板部32aを伝熱支持側板部32cに固定ねじ32bで連結する。
On the other hand, in the circumferential groove 3 d of the cooling body 3, a bottom plate portion 34 common to the heat transfer support members 32 and 33 and an elastic member 45 between the upper surface and the lower surface of the cooling member 13 formed in the semiconductor power module 11. In a state of being interposed, the semiconductor power module 11 and the fixing screw 14 are used for fixing.
In the semiconductor power module 11, the drive circuit board 21 is mounted on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above. And the heat-transfer support plate part 32a is connected with the heat-transfer support side plate part 32c with the fixing screw 32b.

そして、継ぎねじ24の上面に制御回路ユニットU2の制御回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に電源回路ユニットU3の電源回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板部33aを伝熱支持側板部33cに固定ねじ33bによって連結する。   Then, the control circuit board 22 of the control circuit unit U <b> 2 is placed on the upper surface of the joint screw 24 and is fixed by the four joint screws 25. Further, the power supply circuit board 23 of the power supply circuit unit U 3 is placed on the upper surface of the joint screw 25 and fixed by the four fixing screws 26. And the heat-transfer support plate part 33a is connected with the heat-transfer support side plate part 33c by the fixing screw 33b.

その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子に11aに、ブスバー50を接続し、このブスバー50の他端に冷却体3を貫通するフィルムコンデンサ4の正負の接続端子4aを固定ねじ51で連結する。さらに、半導体パワーモジュール11の直流入力端子11aに外部のコンバータ(図示せず)に接続する接続コード52の先端に固定された圧着端子53を固定する。   Thereafter, as shown in FIG. 1, a bus bar 50 is connected to the positive and negative DC input terminals of the semiconductor power module 11 to 11 a, and the positive and negative connection terminals of the film capacitor 4 penetrating the cooling body 3 at the other end of the bus bar 50. 4a is connected with a fixing screw 51. Further, a crimp terminal 53 fixed to the tip of a connection cord 52 connected to an external converter (not shown) is fixed to the DC input terminal 11 a of the semiconductor power module 11.

さらに、半導体パワーモジュール11の3相交流出力端子11bにブスバー55を固定ねじ56で接続し、このブスバー55の途中に電流センサ57を配置する。そして、ブスバー55の他端に外部の3相電動モータ(図示せず)に接続したモータケーブル58の先端に固定した圧着端子59を固定ねじ60で固定して接続する。
その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定して電力変換装置1の組立を完了する。
Further, a bus bar 55 is connected to the three-phase AC output terminal 11 b of the semiconductor power module 11 with a fixing screw 56, and a current sensor 57 is disposed in the middle of the bus bar 55. Then, a crimp terminal 59 fixed to the tip of a motor cable 58 connected to an external three-phase electric motor (not shown) is connected to the other end of the bus bar 55 with a fixing screw 60.
Thereafter, the lower housing 2A and the upper housing 2B are fixed to the lower surface and the upper surface of the cooling body 3 via a sealing material, and the assembly of the power conversion device 1 is completed.

この状態で、外部のコンバータ(図示せず)から直流電力を供給するとともに、電源回路基板23に実装された電源回路、制御回路基板22に実装された制御回路を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介して半導体パワーモジュール11に供給する。これによって、半導体パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介してモータケーブル58に供給し、3相電動モータ(図示せず)を駆動制御する。   In this state, DC power is supplied from an external converter (not shown), and the power supply circuit mounted on the power supply circuit board 23 and the control circuit mounted on the control circuit board 22 are set in an operating state. A gate signal that is a pulse width modulation signal is supplied to the semiconductor power module 11 via a drive circuit mounted on the drive circuit board 21. As a result, the IGBT built in the semiconductor power module 11 is controlled to convert DC power into AC power. The converted AC power is supplied from the three-phase AC output terminal 11b to the motor cable 58 via the bus bar 55 to drive and control a three-phase electric motor (not shown).

このとき、半導体パワーモジュール11に内蔵されたIGBTで発熱する。この発熱は半導体パワーモジュール11に形成された冷却部材13が冷却体3の中央部3cに直接接触されているので、冷却体3に供給されている冷却水によって冷却される。
一方、制御回路基板22及び電源回路基板23に実装されている制御回路及び電源回路には発熱回路部品27a及び39aが含まれており、これら発熱回路部品27a及び39aで発熱を生じる。このとき、発熱回路部品27a及び39aは制御回路基板22及び電源回路基板23の下面側に実装されている。
At this time, the IGBT built in the semiconductor power module 11 generates heat. The generated heat is cooled by the cooling water supplied to the cooling body 3 because the cooling member 13 formed in the semiconductor power module 11 is in direct contact with the central portion 3 c of the cooling body 3.
On the other hand, the control circuit and the power circuit mounted on the control circuit board 22 and the power circuit board 23 include heat generating circuit components 27a and 39a, and the heat generating circuit components 27a and 39a generate heat. At this time, the heat generating circuit components 27 a and 39 a are mounted on the lower surface side of the control circuit board 22 and the power supply circuit board 23.

そして、これら制御回路基板22及び電源回路基板23の下面側には熱伝導率が高く弾性を有する伝熱部材35及び37を介して伝熱支持部材32及び33の伝熱支持板部32a及び33aが設けられている。
このため、発熱回路部品27a及び39aと伝熱部材35及び37との接触面積が大きくなるとともに密着して発熱回路部品27a及び39aと伝熱部材35及び37との熱抵抗が小さくなる。したがって、発熱回路部品27a及び39aの発熱が伝熱部材35及び37に効率よく伝熱される。そして、伝熱部材35及び37自体は5〜30%程度の圧縮率で圧縮されて熱伝導率が高められているので、図8に示すように、伝熱部材35及び37に伝熱された熱が効率良く伝熱支持部材32及び33の伝熱支持板部32a及び33aに伝達される。
The heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33 are provided on the lower surface sides of the control circuit board 22 and the power supply circuit board 23 through heat transfer members 35 and 37 having high thermal conductivity and elasticity. Is provided.
For this reason, the contact area between the heat generating circuit components 27a and 39a and the heat transfer members 35 and 37 increases and the heat resistance between the heat generating circuit components 27a and 39a and the heat transfer members 35 and 37 decreases. Therefore, the heat generated by the heat generating circuit components 27a and 39a is efficiently transferred to the heat transfer members 35 and 37. Since the heat transfer members 35 and 37 themselves are compressed at a compression rate of about 5 to 30% to increase the thermal conductivity, the heat transfer members 35 and 37 are transferred to the heat transfer members 35 and 37 as shown in FIG. Heat is efficiently transmitted to the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33.

そして、伝熱支持板部32a及び33aには、伝熱支持側板部32c及び33cが連結されているので、伝熱支持板部32a及び33aに伝達された熱は、伝熱支持側板部32c及び33cを通って共通の底板部34に伝達される。この底板部34は、冷却体3の周溝3d内に直接接触されているので、伝達された熱は冷却体3に放熱される。
さらに、底板部34に伝達された熱は、その上面側から弾性部材45を介して半導体パワーモジュール11の冷却部材13に伝達され、この冷却部材13を介して冷却体3の中央部3cに伝達されて放熱される。
And since the heat transfer support side plate portions 32c and 33c are connected to the heat transfer support plate portions 32a and 33a, the heat transferred to the heat transfer support plate portions 32a and 33a is transferred to the heat transfer support side plate portions 32c and 33a. It is transmitted to the common bottom plate part 34 through 33c. Since the bottom plate portion 34 is in direct contact with the circumferential groove 3 d of the cooling body 3, the transmitted heat is radiated to the cooling body 3.
Further, the heat transmitted to the bottom plate portion 34 is transmitted from the upper surface side to the cooling member 13 of the semiconductor power module 11 via the elastic member 45, and is transmitted to the central portion 3 c of the cooling body 3 via this cooling member 13. Is dissipated.

このように、上記実施形態によると、制御回路基板22及び電源回路基板23に実装された発熱回路部品27a及び39aの発熱が熱抵抗の大きな制御回路基板22及び電源回路基板23を介することなく直接伝熱部材35及び37に伝熱されるので、効率の良い放熱を行うことができる。
そして、伝熱部材35及び37に伝達された熱は伝熱支持板部32a及び33aに伝熱され、さらに伝熱支持側板部32c及び33cに伝達される。このとき、伝熱支持側板部32c及び33cが半導体パワーモジュール11の長辺に沿って設けられている。
As described above, according to the above embodiment, the heat generation of the heat generating circuit components 27a and 39a mounted on the control circuit board 22 and the power supply circuit board 23 directly occurs without passing through the control circuit board 22 and the power supply circuit board 23 having a large thermal resistance. Since heat is transferred to the heat transfer members 35 and 37, efficient heat dissipation can be performed.
The heat transferred to the heat transfer members 35 and 37 is transferred to the heat transfer support plate portions 32a and 33a, and further transferred to the heat transfer support side plate portions 32c and 33c. At this time, the heat transfer support side plate portions 32 c and 33 c are provided along the long side of the semiconductor power module 11.

このため、伝熱面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱支持側板部32c及び33cは折れ曲がり部が円筒状の湾曲部とされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。
また、伝熱支持部材32及び33の伝熱支持側板部32c及び33cが共通の底板部34で一体化されているので、伝熱支持側板部32c及び33cと底板部34との間に部品同士の継ぎ目がなく、熱抵抗を抑制することができる。
For this reason, a wide heat transfer area can be taken, and a wide heat dissipation path can be secured. Moreover, since the bent portions of the heat transfer support side plate portions 32c and 33c are cylindrical curved portions, the heat transfer distance to the cooling body 3 is shortened as compared with the case where the bent portions are L-shaped. Can do.
Further, since the heat transfer support side plate portions 32c and 33c of the heat transfer support members 32 and 33 are integrated by the common bottom plate portion 34, the components are arranged between the heat transfer support side plate portions 32c and 33c and the bottom plate portion 34. The heat resistance can be suppressed.

さらに、発熱回路部品27a及び39aが実装された制御回路基板22及び電源回路基板23から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2を高伝導率のアルミニウム等の金属を使用する必要がなく、合成樹脂材で構成することができるので、軽量化を図ることができる。
さらに、放熱経路が筐体2に依存することなく、電力変換装置1単独で放熱経路を形成することができるので、半導体パワーモジュール11と、駆動回路基板21、制御回路基板22及び電源回路基板23とで構成される電力変換装置1を種々の異なる形態の筐体2や冷却体3に適用することができる。
Further, since the housing 2 is not included in the heat dissipation path from the control circuit board 22 and the power circuit board 23 on which the heat generating circuit components 27a and 39a are mounted to the cooling body 3, the housing 2 is made of high conductivity aluminum or the like. It is not necessary to use the above metal and can be made of a synthetic resin material, so that the weight can be reduced.
Furthermore, since the heat dissipation path can be formed by the power conversion device 1 alone without the heat dissipation path being dependent on the housing 2, the semiconductor power module 11, the drive circuit board 21, the control circuit board 22, and the power supply circuit board 23. Can be applied to the housing 2 and the cooling body 3 in various different forms.

また、制御回路基板22及び電源回路基板23に金属製の伝熱支持板部32a及び33aが固定されているので、制御回路基板22及び電源回路基板23の剛性を高めることができる。このため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に図9に示す上下振動や横揺れが作用する場合でも、伝熱支持部材32及び33で剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。   Further, since the metal heat transfer support plates 32a and 33a are fixed to the control circuit board 22 and the power circuit board 23, the rigidity of the control circuit board 22 and the power circuit board 23 can be increased. For this reason, even when the power converter 1 is applied as a motor drive circuit for driving a motor for driving a vehicle, even when the vertical vibration or roll shown in FIG. The members 32 and 33 can increase the rigidity. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibration and roll.

さらに、制御回路基板22及び電源回路基板23には、伝熱部材35及び37とは反対側の上面側に面実装接続型回路部品27b及び39bが実装されており、これら面実装接続型回路部品27b及び39bには、下面側の伝熱部材35及び37側に突出する半田接続リード等の導電性の細長い突起物が存在しないので、伝熱部材35及び37の金属フィラーが導通されて絶縁性能が低下することを確実に防止することができる。   Further, the surface mount connection type circuit components 27b and 39b are mounted on the control circuit board 22 and the power supply circuit board 23 on the upper surface side opposite to the heat transfer members 35 and 37. 27b and 39b do not have conductive elongated protrusions such as solder connection leads protruding to the heat transfer members 35 and 37 on the lower surface side, so that the metal fillers of the heat transfer members 35 and 37 are electrically connected to provide insulation performance. Can be reliably prevented from decreasing.

なお、上記実施形態においては、発熱回路部品27a及び39aを実装する制御回路基板22及び電源回路基板23の伝熱部材35及び37とは反対側に面実装接続型回路部品27b及び39bを実装した場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、図10に示すように、制御回路基板22及び電源回路基板23の伝熱部材35及び37とは反対側にリード接続型回路部品46を実装するようにしてもよい。この場合には、リード接続型回路部品46に突出形成された半田接続リード46aの突出領域に対向する伝熱部材35及び37と伝熱支持板部32a及び33aとの間に電気的絶縁部材47を配置する。この電気的絶縁部材47は、半田接続リード46aの突出領域の広さより広い領域に形成することが好ましい。   In the above embodiment, the surface mount connection type circuit components 27b and 39b are mounted on the opposite side of the control circuit board 22 and the power supply circuit board 23 on which the heat generating circuit components 27a and 39a are mounted from the heat transfer members 35 and 37. Explained the case. However, the present invention is not limited to the above-described configuration. As shown in FIG. 10, the lead connection type circuit component 46 is provided on the opposite side of the control circuit board 22 and the power supply circuit board 23 from the heat transfer members 35 and 37. You may make it mount. In this case, the electrically insulating member 47 is interposed between the heat transfer members 35 and 37 and the heat transfer support plate portions 32a and 33a facing the protruding region of the solder connection lead 46a formed to protrude from the lead connection type circuit component 46. Place. The electrical insulating member 47 is preferably formed in a region wider than the width of the protruding region of the solder connection lead 46a.

この図10の構成では、制御回路基板22及び電源回路基板23にの伝熱部材35及び37とは反対側の上面に実装されたリード接続型回路部品46の半田接続リード46aが制御回路基板22及び電源回路基板23に形成されたスルーホールを通じて下面側に突出される。そして、半田接続リード46aが制御回路基板22及び電源回路基板23の下面側で半田付けされて固定される。   In the configuration of FIG. 10, the solder connection leads 46 a of the lead connection type circuit components 46 mounted on the upper surface opposite to the heat transfer members 35 and 37 on the control circuit board 22 and the power supply circuit board 23 are the control circuit board 22. And it protrudes to the lower surface side through a through hole formed in the power supply circuit board 23. The solder connection leads 46a are soldered and fixed on the lower surface sides of the control circuit board 22 and the power circuit board 23.

これら半田接続リード46aは、上述した実施形態で説明したように、制御回路基板22及び電源回路基板23と伝熱支持板部32a及び33aとを固定ねじ36及び38で圧縮した際に図10に示すように伝熱部材35及び37内に突き刺さって伝熱部材35及び37に穴が開き、この穴が振動等の影響により拡大して伝熱部材35及び37の層に空間が形成されて絶縁性能が低下する。   These solder connection leads 46a are shown in FIG. 10 when the control circuit board 22, the power supply circuit board 23, and the heat transfer support plate portions 32a and 33a are compressed by the fixing screws 36 and 38 as described in the above embodiment. As shown in the figure, the heat transfer members 35 and 37 are pierced so that holes are formed in the heat transfer members 35 and 37, and the holes are enlarged due to the influence of vibration or the like so that a space is formed in the layers of the heat transfer members 35 and 37 and insulated. Performance decreases.

しかしながら、上述したように、半田接続リード46aの突出領域に対応する伝熱部材35及び37と伝熱支持板部32a及び33aとの間には、電気的絶縁部材47が配置されている。このため、電気的絶縁部材47によって、半田接続リード46aによる伝熱部材35及び37の絶縁抵抗の低下分を補うことができ、制御回路基板22及び電源回路基板23と伝熱支持板部32a及び33a間で必要な絶縁性能を確保することができる。   However, as described above, the electrical insulating member 47 is disposed between the heat transfer members 35 and 37 corresponding to the protruding region of the solder connection lead 46a and the heat transfer support plate portions 32a and 33a. Therefore, the electrical insulation member 47 can compensate for the decrease in insulation resistance of the heat transfer members 35 and 37 caused by the solder connection leads 46a, and the control circuit board 22, the power supply circuit board 23, the heat transfer support plate portion 32a, The required insulation performance can be ensured between 33a.

また、上記実施形態においては、制御回路ユニットU2及び電源回路ユニットU3で、伝熱部材35及び37を制御回路基板22及び電源回路基板23と同じ外形とした場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、伝熱部材35及び37を図6に示すように発熱回路部品27a及び39aが存在する箇所にのみ設けるようにしてもよい。   Moreover, in the said embodiment, the case where the heat transfer members 35 and 37 were made into the same external shape as the control circuit board 22 and the power supply circuit board 23 by the control circuit unit U2 and the power supply circuit unit U3 was demonstrated. However, the present invention is not limited to the above configuration, and the heat transfer members 35 and 37 may be provided only at locations where the heat generating circuit components 27a and 39a exist as shown in FIG.

また、上記実施形態においては、半導体パワーモジュール11の冷却部材13が冷却体3に接する場合について説明したが、これに限定されるものではなく、図11に示すように、構成することもできる。すなわち、半導体パワーモジュール11に形成されている冷却部材13を冷却体3に流れる冷却水に直接接触する冷却フィン61を備えた構成とし、これに応じて、冷却体3の中央部に冷却フィン61を冷却水の通路に浸漬させる浸漬部62を形成している。そして、浸漬部62を囲む周壁63と冷却部材13との間にOリング等のシール部材66が配設されている。
この場合には、半導体パワーモジュール11の冷却部材13に冷却フィン61が形成され、この冷却フィン61が冷却水に浸漬部62で冷却水に浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
Moreover, in the said embodiment, although the case where the cooling member 13 of the semiconductor power module 11 contacted the cooling body 3 was demonstrated, it is not limited to this, As shown in FIG. 11, it can also comprise. That is, the cooling member 13 formed in the semiconductor power module 11 is provided with a cooling fin 61 that directly contacts the cooling water flowing through the cooling body 3, and the cooling fin 61 is provided at the center of the cooling body 3 accordingly. Is formed in the cooling water passage. A sealing member 66 such as an O-ring is disposed between the peripheral wall 63 surrounding the immersion part 62 and the cooling member 13.
In this case, the cooling fins 61 are formed on the cooling member 13 of the semiconductor power module 11, and the cooling fins 61 are immersed in the cooling water in the cooling water at the immersion part 62, so that the semiconductor power module 11 is more efficiently used. Can be cooled.

また、上記実施形態においては、伝熱支持部材32及び33の伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを一体に構成するようにしてもよい。この場合には、伝熱支持板部32a及び33aと伝熱支持側板部32c及び32cとの間に継ぎ目が形成されることがなくなるので、熱抵抗を小さくしてより効率の良い放熱を行うことができる。   Moreover, in the said embodiment, the case where the heat-transfer support plate part 32a and 33a of the heat-transfer support members 32 and 33 and the heat-transfer support side plate part 32c and 33c were comprised separately was demonstrated. However, the present invention is not limited to the above configuration, and the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be configured integrally. In this case, since no seam is formed between the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 32c, the heat resistance is reduced and more efficient heat dissipation is performed. Can do.

さらに、上記実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。   Furthermore, in the said embodiment, although the case where the power converter device by this invention was applied to an electric vehicle was demonstrated, it is not limited to this, It can apply this invention also to the rail vehicle which drive | works a rail. It can be applied to any electric drive vehicle. Furthermore, the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.

産業上の利用分野Industrial application fields

本発明によれば、基板に搭載された発熱回路部品の熱を効率よく冷却体に放熱するとともに、伝熱部材の絶縁性能を確保することができる電力変換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while the heat | fever of the heat-generation circuit components mounted in the board | substrate can be efficiently radiated | emitted to a cooling body, the power converter device which can ensure the insulation performance of a heat-transfer member can be provided.

1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…半導体パワーモジュール、12…ケース体、13…放熱部材、21…駆動回路基板、22…制御回路基板、23…電源回路基板、24,25…継ぎねじ、27a…発熱回路部品、27b…面実装接続型回路部品、32…伝熱支持部材、32a…伝熱支持板部、32b…固定ねじ、32c…伝熱支持側板部、33…伝熱支持部材、33a…伝熱支持板部、33b…固定ねじ、33c…伝熱支持側板部、34…底板部、35,37…伝熱部材、39a…発熱回路部品、39b…面実装接続型回路部品、40…間座(間隔調整部材)、61…冷却フィン   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Housing | casing, 3 ... Cooling body, 4 ... Film capacitor, 5 ... Storage battery storage part, 11 ... Semiconductor power module, 12 ... Case body, 13 ... Heat dissipation member, 21 ... Drive circuit board, 22 ... Control circuit board, 23 ... Power supply circuit board, 24, 25 ... Joint screw, 27a ... Heat generation circuit part, 27b ... Surface mount connection type circuit part, 32 ... Heat transfer support member, 32a ... Heat transfer support plate part, 32b ... Fixing screw, 32c ... Heat transfer support side plate part, 33 ... Heat transfer support member, 33a ... Heat transfer support plate part, 33b ... Fixing screw, 33c ... Heat transfer support side plate part, 34 ... Bottom plate part, 35, 37 ... Heat transfer Member 39a ... Heat generating circuit component 39b ... Surface mount connection type circuit component 40 ... Spacer (spacing adjusting member) 61 ... Cooling fin

この種の電力変換装置としては、特許文献1に記載された電力変装置が知られている。この電力変換装置は、筐体内に、水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵した半導体パワーモジュールを配置して冷却するようにしている。また、筐体内には、半導体パワーモジュールの水冷ジャケットとは反対側に所定距離を保って制御回路基板を配置し、この制御回路基板で発生する熱を、放熱部材を介して制御回路基板を支持する金属ベース板に伝達し、さらに金属ベース板に伝達された熱を、この金属ベース板を支持する筐体の側壁を介して水冷ジャケットに伝達するようにしている。 As this type of power converter, known power conversion device described in Patent Document 1. In this power conversion device, a water cooling jacket is disposed in a casing, and a semiconductor power module including an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket to cool the power conversion apparatus. In addition, a control circuit board is disposed in the housing at a predetermined distance on the opposite side of the semiconductor power module from the water-cooling jacket, and the heat generated by the control circuit board is supported by the heat dissipation member. The heat transmitted to the metal base plate is further transmitted to the water cooling jacket through the side wall of the casing that supports the metal base plate.

ところで、上記特許文献1に記載された従来例にあっては、制御回路基板で発生する熱を、制御回路基板→放熱部材→金属ベース板→筐体→水冷ジャケットという経路で放熱するようにしている。このため、筐体が伝熱経路の一部として利用されることにより、筐体にも良好な伝熱性が要求されることになり、材料が熱伝導率の高い金属に限定され、小型軽量化の要求される電力変換装置おいて、樹脂等の軽量な材料の選択が不可能となり軽量化が困難となるという未解決の課題がある。 By the way, in the conventional example described in Patent Document 1, the heat generated in the control circuit board is radiated through the path of the control circuit board → the heat radiating member → the metal base plate → the housing → the water cooling jacket. Yes. For this reason, when the casing is used as a part of the heat transfer path, the casing is also required to have good heat transfer properties, and the material is limited to a metal with high thermal conductivity, which is reduced in size and weight. However, there is an unsolved problem that it is difficult to select a lightweight material such as a resin and it is difficult to reduce the weight.

また、本発明に係る電力変換装置の第2の態様は、前記伝熱支持部材は、熱伝導率の高い金属材料で構成されている。
この構成によると、伝熱支持部材を熱伝導率の高いアルミニウム、アルミニウム合金、銅等の金属材料で構成するので、冷却体への放熱をより効率よく行うことができる。
Moreover, as for the 2nd aspect of the power converter device which concerns on this invention, the said heat-transfer support member is comprised with the metal material with high heat conductivity.
According to this configuration, since the heat transfer support member is made of a metal material such as aluminum, aluminum alloy, or copper having high thermal conductivity, heat dissipation to the cooling body can be performed more efficiently.

同様に、制御回路基板22を伝熱支持部材32の伝熱支持板部32aに伝熱部材35を介して重ね合わせ、固定ねじ36によって伝熱部材35を5〜30%程度の圧縮率で圧縮した状態で制御回路基板22、伝熱部材35及び伝熱支持板部32aを固定して制御回路ユニットU2を形成しておく。このとき、前述したように、制御回路基板22の上面側に面実装接続型回路部品27bが実装されているので、制御回路基板22の下面側に突出する半田接続リードが存在しない。このため、伝熱部材35を5〜30%程度の圧縮率で圧縮した際に、導電性の細長い突起物が伝熱部材35に突き刺さって穴が空き、この穴が振動等の影響により拡大して伝熱部材の層に空間部が形成されて伝熱部材3の絶縁性能が低下することを確実に防止することができる。 Similarly, the control circuit board 22 is superposed on the heat transfer support plate portion 32a of the heat transfer support member 32 via the heat transfer member 35, and the heat transfer member 35 is compressed at a compression rate of about 5 to 30% by the fixing screw 36. In this state, the control circuit board 22, the heat transfer member 35, and the heat transfer support plate 32a are fixed to form the control circuit unit U2. At this time, as described above, since the surface mount connection type circuit component 27b is mounted on the upper surface side of the control circuit board 22, there is no solder connection lead protruding on the lower surface side of the control circuit board 22. For this reason, when the heat transfer member 35 is compressed at a compression rate of about 5 to 30%, the conductive elongated protrusions pierce the heat transfer member 35 to make a hole, which expands due to the influence of vibration or the like. space portion is formed in a layer of the heat transfer member Te and the heat transfer member 35 insulating performance can be reliably prevented from being lowered.

また、上記実施形態においては、伝熱支持部材32及び33の伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを一体に構成するようにしてもよい。この場合には、伝熱支持板部32a及び33aと伝熱支持側板部32c及び3cとの間に継ぎ目が形成されることがなくなるので、熱抵抗を小さくしてより効率の良い放熱を行うことができる。 Moreover, in the said embodiment, the case where the heat-transfer support plate part 32a and 33a of the heat-transfer support members 32 and 33 and the heat-transfer support side plate part 32c and 33c were comprised separately was demonstrated. However, the present invention is not limited to the above configuration, and the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be configured integrally. In this case, since there is no the seam is formed between the heat transfer support plate portion 32a and 33a and the heat transfer support plate portion 32c and the 3 3 c, a more efficient heat dissipation by reducing the thermal resistance It can be carried out.

1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…半導体パワーモジュール、12…ケース体、13…熱部材、21…駆動回路基板、22…制御回路基板、23…電源回路基板、24,25…継ぎねじ、27a…発熱回路部品、27b…面実装接続型回路部品、32…伝熱支持部材、32a…伝熱支持板部、32b…固定ねじ、32c…伝熱支持側板部、33…伝熱支持部材、33a…伝熱支持板部、33b…固定ねじ、33c…伝熱支持側板部、34…底板部、35,37…伝熱部材、39a…発熱回路部品、39b…面実装接続型回路部品、40…間座(間隔調整部材)、61…冷却フィン 1 ... power conversion apparatus, 2 ... housing 3 ... cooling body, 4 ... film capacitor, 5 ... battery housing portion, 11 ... semiconductor power module, 12 ... casing, 13 ... intake heat member, 21 ... drive circuit board, 22 ... Control circuit board, 23 ... Power supply circuit board, 24, 25 ... Joint screw, 27a ... Heat generation circuit component, 27b ... Surface mount connection type circuit component, 32 ... Heat transfer support member, 32a ... Heat transfer support plate portion, 32b ... Fixing screw, 32c ... Heat transfer support side plate part, 33 ... Heat transfer support member, 33a ... Heat transfer support plate part, 33b ... Fixing screw, 33c ... Heat transfer support side plate part, 34 ... Bottom plate part, 35, 37 ... Transfer Thermal member, 39a ... Heat generating circuit component, 39b ... Surface mount connection type circuit component, 40 ... Spacer (spacing adjusting member), 61 ... Cooling fin

Claims (12)

一面を冷却体に接合する半導体パワーモジュールと、
前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、
伝熱部材を介して前記実装基板を支持する伝熱支持部材と、
前記実装基板の熱を、前記伝熱支持部材を介して前記冷却体に伝熱させる熱伝導路とを備え、
前記実装基板に実装される回路部品を面実装接続型回路部品とした
ことを特徴とする電力変換装置。
A semiconductor power module that joins one surface to a cooling body;
A mounting board on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted;
A heat transfer support member that supports the mounting substrate via a heat transfer member;
A heat conduction path for transferring heat of the mounting substrate to the cooling body via the heat transfer support member;
The power conversion device, wherein the circuit component mounted on the mounting substrate is a surface mount connection type circuit component.
前記伝熱支持部材は、熱伝導率の高い金属材料で構成されていることを特徴とする請求項1に記載の電力変換装置。   The power conversion device according to claim 1, wherein the heat transfer support member is made of a metal material having high thermal conductivity. 前記伝熱部材は、熱伝導性を有する絶縁体及び熱伝導性を有し且つ伸縮性を有する弾性体の何れか一方で構成されていることを特徴とする請求項1又は2に記載の電力変換装置。   3. The electric power according to claim 1, wherein the heat transfer member is configured by any one of an insulator having thermal conductivity and an elastic body having thermal conductivity and elasticity. Conversion device. 前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成され、当該弾性体は前記実装基板と前記伝熱支持板部とで圧縮した状態で固定されていることを特徴とする請求項1又は2に記載の電力変換装置。   The heat transfer member is formed of an elastic body having thermal conductivity and stretchability, and the elastic body is fixed in a compressed state between the mounting substrate and the heat transfer support plate portion. The power converter according to claim 1 or 2. 前記実装基板と前記伝熱支持板部との間には、前記弾性体の圧縮率を決定する間隔調整部材が設けられていることを特徴とする請求項4に記載の電力変換装置。   The power conversion device according to claim 4, wherein an interval adjusting member that determines a compression rate of the elastic body is provided between the mounting substrate and the heat transfer support plate portion. 一面を冷却体に接合する半導体パワーモジュールと、
前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、
伝熱部材を介して前記実装基板を支持する伝熱支持部材と、
前記実装基板の熱を、前記伝熱支持部材を介して前記冷却体に伝熱させる熱伝導路とを備え、
前記実装基板に実装される回路部品を、ハンダ接続リードを有し、当該ハンダ接続リードを半田付けする回路部品とし、少なくとも前記半田接続リードの挿通位置に対応する前記伝熱部材と前記伝熱支持部材との間に電気的絶縁部材を介在させた
ことを特徴とする電力変換装置。
A semiconductor power module that joins one surface to a cooling body;
A mounting board on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted;
A heat transfer support member that supports the mounting substrate via a heat transfer member;
A heat conduction path for transferring heat of the mounting substrate to the cooling body via the heat transfer support member;
The circuit component mounted on the mounting board is a circuit component having a solder connection lead and soldering the solder connection lead, and at least the heat transfer member and the heat transfer support corresponding to the insertion position of the solder connection lead An electrical insulating member is interposed between the member and the power converter.
電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に冷却体に接触する冷却部材が形成された半導体パワーモジュールと、
前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
伝熱部材を介して前記実装基板を支持する伝熱支持板部を少なくとも有し、前記半導体パワーモジュール及び前記各実装基板の双方を囲む筐体とは独立した熱伝導路を形成して前記冷却体に接触する伝熱支持部材とを備え、
前記実装基板に実装される回路部品を、半田接続リードを有し、当該半田接続リードを半田付けする回路部品とし、少なくとも前記半田接続リードの挿通位置に対応する前記伝熱部材と前記伝熱支持板部との間に電気的絶縁部材を介在させた
ことを特徴とする電力変換装置。
A semiconductor power module in which a semiconductor switching element for power conversion is built in a case body, and a cooling member that contacts the cooling body is formed on one surface of the case body;
A mounting board on which circuit components including a heat generating circuit component for driving the semiconductor switching element are mounted;
The cooling plate has at least a heat transfer support plate portion that supports the mounting substrate via a heat transfer member, and forms a heat conduction path independent of a housing surrounding both the semiconductor power module and each mounting substrate. A heat transfer support member in contact with the body,
The circuit component mounted on the mounting board is a circuit component having a solder connection lead and soldering the solder connection lead, and at least the heat transfer member and the heat transfer support corresponding to the insertion position of the solder connection lead An electrical insulating member is interposed between the plate portion and the power conversion device.
前記電気的絶縁部材は、前記回路部品の半田接続リード挿通領域に対向する領域に、当該半田接続リード挿通領域より広い範囲に形成されていることを特徴とする請求項6又は7に記載の電力変換装置。   8. The electric power according to claim 6, wherein the electrically insulating member is formed in a region facing the solder connection lead insertion region of the circuit component in a range wider than the solder connection lead insertion region. Conversion device. 前記伝熱支持部材は、熱伝導率の高い金属材料で構成されていることを特徴とする請求項6又は7に記載の電力変換装置。   The power conversion device according to claim 6 or 7, wherein the heat transfer support member is made of a metal material having high thermal conductivity. 前記伝熱部材は、熱伝導性を有する絶縁体及び熱伝導性を有し且つ伸縮性を有する弾性体の何れか一方で構成されていることを特徴とする請求項6又は7に記載の電力変換装置。   8. The electric power according to claim 6, wherein the heat transfer member is configured by any one of an insulator having thermal conductivity and an elastic body having thermal conductivity and elasticity. Conversion device. 前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成され、当該弾性体は前記実装基板と前記伝熱支持板部とで圧縮した状態で固定されていることを特徴とする請求項6又は7に記載の電力変換装置。   The heat transfer member is formed of an elastic body having thermal conductivity and stretchability, and the elastic body is fixed in a compressed state between the mounting substrate and the heat transfer support plate portion. The power converter according to claim 6 or 7. 前記実装基板と前記伝熱支持板部との間には、前記弾性体の圧縮率を決定する間隔調整部材が設けられていることを特徴とする請求項11に記載の電力変換装置。   The power conversion device according to claim 11, wherein an interval adjusting member that determines a compression rate of the elastic body is provided between the mounting substrate and the heat transfer support plate portion.
JP2013548066A 2011-12-05 2012-11-14 Power converter Pending JPWO2013084416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548066A JPWO2013084416A1 (en) 2011-12-05 2012-11-14 Power converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011266234 2011-12-05
JP2011266234 2011-12-05
JP2013548066A JPWO2013084416A1 (en) 2011-12-05 2012-11-14 Power converter

Publications (1)

Publication Number Publication Date
JPWO2013084416A1 true JPWO2013084416A1 (en) 2015-04-27

Family

ID=48573810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548066A Pending JPWO2013084416A1 (en) 2011-12-05 2012-11-14 Power converter

Country Status (3)

Country Link
JP (1) JPWO2013084416A1 (en)
CN (1) CN103947095A (en)
WO (1) WO2013084416A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074841B2 (en) 2013-05-15 2018-09-11 Kureha Corporation Structure for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing same structure
US9649059B2 (en) 2013-12-16 2017-05-16 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
CN110518814A (en) * 2019-09-19 2019-11-29 江西精骏电控技术有限公司 A kind of two-sided cooling structure for vehicle-mounted inverter
JP7208550B2 (en) 2021-03-30 2023-01-19 ダイキン工業株式会社 Electrical equipment and refrigeration equipment
JP7183373B1 (en) 2021-11-15 2022-12-05 三菱電機株式会社 power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174180A (en) * 1998-12-02 2000-06-23 Shibafu Engineering Kk Semiconductor device
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2005032912A (en) * 2003-07-10 2005-02-03 Hitachi Industrial Equipment Systems Co Ltd Power conversion apparatus
JP2009240023A (en) * 2008-03-26 2009-10-15 Nidec Shibaura Corp Motor controller, brushless motor, and power tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005011940A1 (en) * 2005-03-14 2006-09-21 Degussa Ag Process for the preparation of coated carbon particles and their use in anode materials for lithium-ion batteries
JP5157431B2 (en) * 2007-12-27 2013-03-06 株式会社デンソー Power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174180A (en) * 1998-12-02 2000-06-23 Shibafu Engineering Kk Semiconductor device
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2005032912A (en) * 2003-07-10 2005-02-03 Hitachi Industrial Equipment Systems Co Ltd Power conversion apparatus
JP2009240023A (en) * 2008-03-26 2009-10-15 Nidec Shibaura Corp Motor controller, brushless motor, and power tool

Also Published As

Publication number Publication date
CN103947095A (en) 2014-07-23
WO2013084416A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP5794306B2 (en) Power converter
WO2014061178A1 (en) Cooling structure and heat generating body
WO2014020806A1 (en) Cooling structure and power converter
WO2014057622A1 (en) Power converter
WO2013111234A1 (en) Power conversion device
WO2013084416A1 (en) Power converter
WO2013105166A1 (en) Power conversion apparatus
WO2013088642A1 (en) Power conversion device
WO2013145508A1 (en) Power conversion apparatus
WO2014125548A1 (en) Cooling structure, and power conversion device
WO2013084417A1 (en) Power conversion apparatus
WO2014024361A1 (en) Cooling structure and power conversion device
WO2013080440A1 (en) Power conversion device
WO2013080441A1 (en) Power conversion device
JP5768902B2 (en) Power converter
JP6187582B2 (en) Power converter
JP5682713B2 (en) Power converter
WO2013080442A1 (en) Power conversion device
WO2014020807A1 (en) Cooling structure and power converter
WO2013140703A1 (en) Power conversion device
JP2017060292A (en) Electric power conversion system
WO2013118223A1 (en) Electric power conversion device
JP2022153094A (en) Power conversion apparatus
JP2022114474A (en) power module
JP2013004850A (en) Semiconductor device and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324