WO2013118223A1 - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
WO2013118223A1
WO2013118223A1 PCT/JP2012/007879 JP2012007879W WO2013118223A1 WO 2013118223 A1 WO2013118223 A1 WO 2013118223A1 JP 2012007879 W JP2012007879 W JP 2012007879W WO 2013118223 A1 WO2013118223 A1 WO 2013118223A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat transfer
transfer support
cooling
plate portion
Prior art date
Application number
PCT/JP2012/007879
Other languages
French (fr)
Japanese (ja)
Inventor
美里 柴田
泰仁 田中
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201280061317.5A priority Critical patent/CN103999212B/en
Publication of WO2013118223A1 publication Critical patent/WO2013118223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the heat transfer support plate is fixedly supported by a plurality of heat transfer path forming members. According to this configuration, since the heat transfer support plate portion is fixedly supported by the plurality of heat transfer path forming members, it is possible to increase the heat transfer cross-sectional area to the cooling body and to efficiently dissipate heat generating circuit components. it can.
  • the said heat-transfer member is comprised with the insulator.
  • the heat transfer member is formed of an insulator, the insulation between the circuit component mounted on the mounting board and the heat transfer support plate can be reliably performed, and the distance between the two is reduced.
  • the heat transfer support plate can be formed of a metal material having a high thermal conductivity.
  • a fourteenth aspect of the power conversion device includes a housing that is disposed on the cooling body and seals the semiconductor power module, the mounting substrate, and the heat transfer support member. According to the fourteenth aspect, since the semiconductor power module, the mounting board, and the heat transfer support member are sealed by the casing disposed on the cooling body, the temperature is generated by the heat generated by the heat generating circuit components mounted on the mounting board. The temperature rise of the sealed gas can be suppressed by absorbing heat from the sealed gas in which the temperature rises in the heat absorbing portion.
  • the cooling body 3 has a cooling water supply port 3 a and a drain port 3 b opened to the outside of the housing 2.
  • the water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose.
  • the cooling body 3 is formed, for example, by injection molding aluminum or aluminum alloy having high thermal conductivity. And as for the cooling body 3, the lower surface is made into a flat surface, and the upper surface is formed with the square-frame-shaped peripheral groove 3d leaving the center part 3c. Further, the cooling body 3 is formed with an insertion hole 3e through which the positive and negative external connection electrodes 4a covered with insulation of the film capacitor 4 held in the lower housing 2A are vertically inserted.
  • a driving circuit board 21 on which a driving circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16.
  • a control circuit including a heat generation circuit component having a relatively large heat generation amount or a high heat generation density for controlling the IGBT built in the semiconductor power module 11 with a predetermined interval above the drive circuit board 21 is mounted.
  • a control circuit board 22 as a mounting board is fixed.
  • a power supply circuit board 23 as a mounting board on which a power supply circuit including a heating circuit component for supplying power to the IGBT built in the semiconductor power module 11 is mounted at a predetermined interval above the control circuit board 22 is fixed. ing.
  • the heat transfer support side plate portion 33 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3.
  • the connecting plate portion 33d extending upward and the upper plate portion 33e extending rightward from the upper end of the connecting plate portion 33d are formed in an inverted L-shaped cross section.
  • the connecting plate portion 33 d extends upward through the left side surface on the long side of the semiconductor power module 11.
  • the heat transfer support side plate portion 32c of the heat transfer support member 32 that supports the control circuit board 22 is provided on the right end of the upper surface of the case body 12 of the semiconductor power module 11, as shown in FIGS.
  • An opening 32h is formed at a position facing the formed two positive and negative DC input terminals 11a.
  • the opening 32h is a connection for electrically connecting the DC input terminal 11a of the case body 12 and the two positive and negative external connection electrodes 4a of the film capacitor 4 individually.
  • Two bus bars 50p and 50n as conductors are inserted.
  • a crimp terminal 53 connected to the ends of two positive and negative power cables 52 for supplying DC power to the DC input terminal 11a is inserted through the opening 32h.
  • the heat transfer support side plate portion 33 c of the heat transfer support member 33 that supports the power circuit board 23 has an upper left end on the upper surface of the case body 12 of the semiconductor power module 11. Openings 33h, 33i, and 33j are formed at positions facing the three U-phase, V-phase, and W-phase AC output terminals 11b. In these openings 33h, 33i and 33j, there are U-phase, V-phase and W AC output terminals 11b formed on the upper surface of the case body 12, and crimp terminals 59 attached to the tips of the three motor connection cables 58. Busbars 55u, 55v, and 55w are inserted as three connection conductors that connect the two.
  • the power supply circuit board 23 and the heat transfer support plate portion 33 a are connected to each other by an interval adjusting member having a heat transfer plate portion management height H lower than the thickness T of the heat transfer member 37.
  • a spacer 40 is used.
  • the spacer 40 is temporarily fixed by bonding or the like to the outer peripheral side of the female screw portion 41 into which the fixing screw 38 formed on the heat transfer support plate portion 33a is screwed.
  • the heat transfer plate portion management height H of the spacer 40 is set so that the compression rate of the heat transfer member 37 is about 5 to 30%.
  • the heat resistance is reduced and an efficient heat transfer effect can be exhibited.
  • the connection of the control circuit board 22 and the heat transfer support plate portion 32a through the heat transfer member 35 is performed in the same manner as the heat transfer member 37.
  • Insulating sheets 42 and 43 are attached to the lower surfaces of the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33 in order to shorten the insulation distance.
  • the common bottom plate portion 34 of the heat transfer support members 32 and 33 has a fixing member insertion hole 34 a at a position facing the insertion hole 15 through which the fixing screw 14 of the semiconductor power module 11 is inserted. Is formed.
  • an opening 34b that passes through the central portion 3c of the cooling body 3 is formed in the central portion of the bottom plate portion 34, as clearly shown in FIG.
  • a plate-like elastic member 45 is interposed between the upper surface of the bottom plate portion 34 and the lower surface of the cooling member 13 formed in the semiconductor power module 11.
  • the fixing screw 14 is inserted into the insertion hole 15 of the semiconductor power module 11 and the cooling member 13 and the fixing member insertion hole 34 a of the bottom plate portion 34, and the fixing screw 14 is screwed into the female screw portion 3 f formed in the cooling body 3. By doing so, the semiconductor power module 11 and the bottom plate portion 34 are fixed to the cooling body 3.
  • control circuit board 22, the heat transfer member 35, and the heat transfer support plate portion 32a are fixed in a state where the heat transfer member 35 is compressed at a compression rate of about 5 to 30% by the fixing screw 36, and the control circuit unit U2 is fixed. Is formed.
  • the drive circuit board 21 is mounted on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above. And the heat-transfer support plate part 32a is connected with the heat-transfer support side plate part 32c with the fixing screw 32b. Then, the control circuit board 22 of the control circuit unit U ⁇ b> 2 is placed on the upper surface of the joint screw 24 and is fixed by the four joint screws 25. Further, the power supply circuit board 23 of the power supply circuit unit U 3 is placed on the upper surface of the joint screw 25 and fixed by the four fixing screws 26. And the heat-transfer support plate part 33a is connected with the heat-transfer support side plate part 33c by the fixing screw 33b.
  • two positive and negative bus bars 50p and 50n are connected to the positive and negative DC input terminals of the semiconductor power module 11 through the opening 32h of the heat transfer support member 32, and the bus bars 50p and 50n are connected.
  • a positive and negative external connection electrode 4 a of the film capacitor 4 that penetrates the cooling body 3 is connected to the other end by a fixing screw 51.
  • a crimp terminal 53 fixed to the ends of two connection cables 52 connected to an external converter (not shown) is fixed to the DC input terminal 11 a of the semiconductor power module 11.
  • the IGBT built in the semiconductor power module 11 generates heat.
  • the generated heat is cooled by the cooling water supplied to the cooling body 3 because the cooling member 13 formed in the semiconductor power module 11 is in direct contact with the central portion 3 c of the cooling body 3.
  • the control circuit and the power supply circuit mounted on the control circuit board 22 and the power supply circuit board 23 include a heat generating circuit component 39, and the heat generating circuit component 39 generates heat.
  • the heat generating circuit component 39 is mounted on the lower surface side of the control circuit board 22 and the power supply circuit board 23.
  • Heat transfer support plate portions 32a and 33a of heat transfer support members 32 and 33 are provided on the lower surfaces of the control circuit board 22 and the power supply circuit board 23 through heat transfer members 35 and 37 having high thermal conductivity and elasticity. It has been. Therefore, the heat generated by the heat generating circuit component 39 is transferred to the heat transfer support plate portions 32a and 33a via the heat transfer members 35 and 37 as shown in FIG. And since the heat transfer support side plate portions 32c and 33c are connected to the heat transfer support plate portions 32a and 33a, the heat transferred to the heat transfer support plate portions 32a and 33a is as shown in FIG. It is transmitted to the common bottom plate portion 34 through the heat transfer support side plate portions 32c and 33c. Since the bottom plate portion 34 is in direct contact with the circumferential groove 3 d of the cooling body 3, the transmitted heat is radiated to the cooling body 3.
  • the heat transmitted to the bottom plate portion 34 is transmitted from the upper surface side to the cooling member 13 of the semiconductor power module 11 via the plate-like elastic member 45, and the central portion 3 c of the cooling body 3 via this cooling member 13. It is transmitted to and dissipated.
  • the heat transfer support side plate portion 33c of the heat transfer support member 33 has a U-shape at the lower side edge position connecting the front and rear side edges and the lower portions of the front and rear side edges to form openings 33h to 33j.
  • a slit 33k is formed by forming a slit, and the openings 33h to 33j are formed by bending outward with reference to the upper edge portion of the tongue 33k, and a bent portion 33m serving as a heat absorbing portion is formed. Forming.
  • the bent portions 33m projecting outward are formed on the upper sides of the openings 33h to 33j, the surface area of the side surface of the heat transfer support side plate portion 33c can be increased at each bent portion 33m. Can do. Therefore, as shown by an arrow in a dotted line shown in FIG. 10, in the bent portion 33m, it absorbs heat better efficiency of heat of the air sealed by the surrounding upper housing 2B of the control circuit board 22 and the power supply circuit board 23 be able to. Therefore, the temperature of the control circuit board 22 and the power supply circuit board 23 can be reduced.
  • the piece 33k was bent outward to form the bent portions 33mu to 33mw.
  • the outer surface area of the heat transfer support side plate portion 33c can be enlarged by the bent portions 33mu to 33mw, and heat is absorbed from the atmosphere around the heat transfer support side plate portion 33c sealed by the upper housing 2B. Heat can be radiated to the cooling body 3. Therefore, an increase in the ambient temperature around the heat transfer support side plate portion 33c can be suppressed, and an increase in the temperature of the control circuit board 22 and the power supply circuit board 23 can also be suppressed.
  • the bent portion 33mu ⁇ 33mw since its upper edge is directly connected to the heat transfer support plate portion 33c, it is possible to suppress the thermal resistance at the connection portion may efficiency endothermic of the ambient atmosphere It can be carried out. Since the heat transfer members 35 and 37 themselves are compressed at a compression rate of about 5 to 30% to increase the thermal conductivity, the heat transfer members 35 and 37 are transferred to the heat transfer members 35 and 37 as shown in FIG. Heat is efficiently transmitted to the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33.
  • heat generated by the heat generating circuit component 39 mounted on the control circuit board 22 and the power supply circuit board 23 is directly transferred to the heat transfer members 35 and 37 without passing through the control circuit board 22 and the power supply circuit board 23 having a large thermal resistance. Therefore, efficient heat dissipation can be performed.
  • the heat transferred to the heat transfer members 35 and 37 is transferred to the heat transfer support plate portions 32a and 33a, and further transferred to the heat transfer support side plate portions 32c and 33c. At this time, the heat transfer support side plate portions 32 c and 33 c are provided along the long side of the semiconductor power module 11.
  • the heat transport amount Q can be expressed by the following equation (1).
  • Q ⁇ ⁇ (A / L) ⁇ T (1)
  • T the temperature difference [° C.] substrate temperature T 1 -cooling body temperature T 2
  • A the minimum heat transfer cross section [m 2 ]
  • L the heat transfer length [m ].
  • the housing 2 is not included in the heat dissipation path from the control circuit board 22 and the power circuit board 23 on which the heat generating circuit component 39 is mounted to the cooling body 3, the housing 2 is required to have heat conductivity. Absent. Therefore, it is not necessary to use a metal having a high thermal conductivity such as aluminum as a constituent material of the casing 2, and the casing 2 can be configured with a synthetic resin material, and the weight can be reduced.
  • the metal heat transfer support plate portions 32a and 33a are fixed to the control circuit board 22 and the power circuit board 23, the rigidity of the control circuit board 22 and the power circuit board 23 can be increased.
  • bent portions 33mu to 33mw are formed on the side surfaces of the heat transfer support side plate portion 33c of the heat transfer support member 33, and the rigidity of the heat transfer support side plate portion 33c can be increased by the bent portions 33mu to 33mw. .
  • the members 32 and 33 can increase the rigidity. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibrations and rolls.
  • the present invention is not limited to the above-described configuration.
  • the configuration as shown in FIG. May be. That is, the heat transfer support side plates 32c and 32L are provided on both the left and right sides of the control circuit board 22, respectively, and the heat radiation paths are formed on both sides of the heat transfer support plate 32a.
  • the thermal radiation effect can be improved more by forming the thermal radiation path in the both sides of the heat-transfer support plate part 32a.
  • the cooling fins 61 are formed on the cooling member 13 of the semiconductor power module 11, and the cooling fins 61 are immersed in the cooling water in the cooling water at the immersion part 62, so that the semiconductor power module 11 is more efficiently used. Can be cooled.
  • the case where the heat-transfer support plate part 32a and 33a of the heat-transfer support members 32 and 33 and the heat-transfer support side plate part 32c and 33c were comprised separately was demonstrated.
  • the present invention is not limited to the above configuration, and as shown in FIG. 15, the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be configured integrally. Good.
  • the heat resistance is reduced and more efficient heat dissipation is performed. Can do.
  • the present invention is not limited to the above-described configuration.
  • an insulating layer 72 is provided on a heat dissipation plate 71 mainly composed of aluminum or an aluminum alloy as the control circuit board 22 and the power supply circuit board.
  • a metal base circuit board 74 on which a circuit pattern 73 is formed can be applied. In this case, as shown in FIG.
  • the heat transfer members 35 and 37 and the heat transfer support plate portions 32a and 33a are omitted, and the heat dissipation plate 71 of the metal base circuit board 74 is directly connected to the heat transfer support side plate portion 32c and What is necessary is just to make it connect to 33c.
  • the control circuit board 22 and the power supply circuit board 23 on which the heat generating circuit component 39 is mounted are connected to the heat transfer member 35 and the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33.
  • the case where it supports via 37 was demonstrated.
  • the present invention is not limited to the above configuration. As shown in FIG. 17, the heat transfer members 35 and 37 are omitted, and the control circuit board 22 and the power supply circuit board are provided on the heat transfer support plates 32a and 33a.
  • the heat transfer substrate support 75 that directly supports the heat transfer substrate 23 may be integrally formed.
  • the heat transfer substrate support portion 75 is formed integrally with the heat transfer support plate portions 32a and 33a, the thermal resistance between the heat transfer substrate support portion 75 and the heat transfer support plate portions 32a and 33a. It can be made into the state which has almost no. For this reason, by disposing the heat transfer substrate support portion 75 in the vicinity of the heat generating circuit component 39, it is possible to efficiently dissipate the heat generating circuit component 39.
  • An insulating sheet 76 is provided on the upper surface of the heat transfer support plate portion 33a.
  • the base is located at the front and back positions sandwiching the openings 32h and 33h to 33j in the heat transfer support side plates 32c and 33c of the heat transfer support members 32 and 33.
  • a plurality of heat absorption fins 82 extending in the vertical direction on 81 are arranged in the front-rear direction at a predetermined interval to form a heat absorption portion 83.
  • the base 81 of the heat absorption part 83 is being fixed to the heat-transfer support side board parts 32c and 33c using joining methods, such as welding and brazing.
  • the heat absorbing portions 83 having the plurality of heat absorbing fins 82 are formed at the front and rear end positions of the heat transfer supporting side plate portions 32c and 33c, the outer side surfaces of the heat transfer supporting side plate portions 32c and 33c are formed.
  • the surface area can be remarkably increased as compared with the bent portions 33mu to 33mw in the first embodiment described above. For this reason, the temperature of the surrounding atmosphere of the heat-transfer support side plate parts 32c and 33c can be absorbed more efficiently, and the temperature rise of the surrounding atmosphere can be reliably suppressed.
  • the heat absorbing fins 82 are formed at the front and rear end positions of the heat transfer support side plates 32c and 33c has been described. However, the lower side and the upper side of the openings 32h and 33h to 33j. Alternatively, an endothermic fin 82 may be disposed.
  • a cooling rib is applied instead of the cooling fin as the heat absorbing portion. That is, in the third embodiment, as shown in FIGS. 21 and 22, the heat absorbing portion 83 configured by the base 81 and the cooling fin 82 in the second embodiment described above is omitted, and instead of these, A plurality of triangular cylindrical cooling ribs 91 extending in the direction are arranged at predetermined intervals in the front-rear direction. In this case, the cooling rib 91 is formed by rib processing integrally when the heat transfer support members 32 and 33 are press-molded.
  • the heat absorbing ribs 91 are formed by rib processing on the front and rear end sides of the heat transfer support side plates 32c and 33c of the heat transfer support members 32 and 33. For this reason, the surface areas of the heat transfer support side plates 32c and 33c can be increased in the same manner as in the first embodiment described above, and the heat absorption effect by the heat transfer support side plates 32c and 33c can be improved. And since the heat absorption rib 91 is integrally formed in the heat-transfer support side plate part 32c and 33c, the thermal resistance in the connection part of the cooling rib 91 and the heat-transfer support side plate part 32c and 33c can be made small. Therefore, by forming the cooling rib 91, a good endothermic effect can be exhibited by the heat transfer support side plate portions 32c and 33c.
  • the cooling rib 91 is formed in a triangular cylindrical shape.
  • the present invention is not limited to this, and an arbitrary shape such as a semicircular cross section, a trapezoidal cross section, etc. It can be formed in a cross-sectional shape.
  • the case where the bent portions 33mu to 33mw, the cooling fins 82, and the cooling ribs 91 are individually provided as the cooling portions has been described.
  • the present invention is not limited to this.
  • the bent portions 33 mu to 33 mw and one of the cooling fins 82 and the cooling ribs 91 may be provided simultaneously.
  • the present invention is not limited to this, and the present invention is also applied to a rail vehicle traveling on a rail.
  • the invention can be applied and can be applied to any electric drive vehicle.
  • the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.
  • the heat of the heat generating circuit component mounted on the substrate is efficiently dissipated to the cooling body through the heat conduction path, and the heat absorbing portion is provided in the heat conduction path, so that the heat generating circuit component is surrounded by the heat. It is possible to provide a power converter that can suppress an increase in temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Provided is an electric power conversion device in which the heat of a heating circuit component mounted on a substrate can be efficiently dissipated to a cooling body without interposing a housing in the heat dissipation path of the heat of the heating circuit component, and it is possible to suppress a rise in ambient temperature due to the heat of the heating circuit component. A semiconductor switching element used for electric power conversion is housed in a case, and a semiconductor power module provided with a cooling member for cooling the semiconductor switching element on one side of the case, a mounting substrate on which is mounted a circuit component including a heating circuit component for driving the semiconductor switching element, a cooling body for cooling the cooling member of the semiconductor power module, and a heat transfer support member for directly transferring heat generated by the heating circuit component mounted on the mounted substrate to the cooling body are provided, and the heat transfer support member is configured from a heat transfer support plate for supporting the mounted substrate, and a heat transfer support side plate for forming a heat transfer path between the heat transfer support plate and the cooling body, and a heat-sink part for absorbing heat from the surrounding atmosphere is formed in the heat transfer support side plate.

Description

電力変換装置Power converter
 本発明は、電力変換用の半導体スイッチング素子を内蔵した半導体パワーモジュール上に、所定間隔を保って上記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板を支持するようにした電力変換装置に関する。 The present invention supports a mounting board on which a circuit component including a heat generating circuit component for driving the semiconductor switching element is mounted at a predetermined interval on a semiconductor power module including a semiconductor switching element for power conversion. The present invention relates to a power conversion device.
 この種の電力変換装置としては、特許文献1に記載された電力変化装置が知られている。この電力変換装置は、筐体内に、水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵した半導体パワーモジュールを配置して冷却するようにしている。また、筐体内には、半導体パワーモジュールの水冷ジャケットとは反対側に所定距離を保って制御回路基板を配置し、この制御回路基板で発生する熱を、放熱部材を介して制御回路基板を支持する金属ベース板に伝達し、さらに金属ベース板に伝達された熱を、この金属ベース板を支持する筐体の側壁を介して水冷ジャケットに伝達するようにしている。 As this type of power conversion device, a power change device described in Patent Document 1 is known. In this power conversion device, a water cooling jacket is disposed in a casing, and a semiconductor power module including an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket to cool the power conversion apparatus. In addition, a control circuit board is disposed in the housing at a predetermined distance on the opposite side of the semiconductor power module from the water-cooling jacket, and the heat generated by the control circuit board is supported by the heat dissipation member. The heat transmitted to the metal base plate is further transmitted to the water cooling jacket through the side wall of the casing that supports the metal base plate.
特許第4657329号公報Japanese Patent No. 4657329
 ところで、上記特許文献1に記載された従来例にあっては、制御回路基板で発生する熱を、制御回路基板→放熱部材→金属ベース板→筐体→水冷ジャケットという経路で放熱するようにしている。このため、筐体が伝熱経路の一部として利用されることにより、筐体にも良好な伝熱性が要求されることになり、材料が熱伝導率の高い金属に限定され、小型軽量化の要求される電力変換装置おいて、樹脂等の軽量な材料の選択が不可能となり軽量化が困難となるという未解決の課題がある。 By the way, in the conventional example described in Patent Document 1, the heat generated in the control circuit board is radiated through the path of the control circuit board → the heat radiating member → the metal base plate → the housing → the water cooling jacket. Yes. For this reason, when the housing is used as a part of the heat transfer path, the housing is also required to have good heat transfer properties, and the material is limited to a metal having high thermal conductivity, which is reduced in size and weight. However, there is an unsolved problem that it is difficult to select a lightweight material such as a resin and it is difficult to reduce the weight.
 また、筐体には、防水・防塵が要求されることが多いため、金属ベース板と筐体との間、筐体と水冷ジャケットとの間には液状シール剤の塗布やゴム製パッキンの挟み込みなどが一般的に行われている。液状シール剤やゴム製パッキンは熱伝導率が一般的に低く、これらが熱冷却経路に介在することで熱抵抗が増え冷却効率が低下するという未解決の課題もある。 Also, since the housing is often required to be waterproof and dustproof, apply a liquid sealant or sandwich rubber packing between the metal base plate and the housing and between the housing and the water cooling jacket. Etc. are generally performed. Liquid sealants and rubber packings generally have a low thermal conductivity, and there is an unsolved problem that the thermal resistance increases and the cooling efficiency decreases due to the presence of these in the thermal cooling path.
 この未解決の課題を解決するためには、基板や実装部品の除去しきれない発熱を筐体や筐体蓋からの自然対流による放熱も必要となり、筐体や筐体蓋の表面積を大きくするために、筐体や筐体蓋の外形が大きくなり電力変換装置が大型化することになる。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、基板に実装された発熱回路部品の熱の放熱経路に筐体を介在させることなく、発熱回路部品の熱を効率よく冷却体に放熱し、さらに発熱回路部品の熱による周囲温度の上昇を抑制することができる電力変換装置を提供することを目的としている。
In order to solve this unresolved issue, it is necessary to dissipate the heat generated by the substrate and mounted components by natural convection from the case and case cover, increasing the surface area of the case and case cover. For this reason, the outer shape of the housing and the housing lid is increased, and the power converter is increased in size.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and without having a housing interposed in the heat radiation path of the heat generating circuit component mounted on the substrate, An object of the present invention is to provide a power conversion device that can efficiently dissipate heat to a cooling body and further suppress an increase in ambient temperature due to heat of a heat generating circuit component.
 上記目的を達成するために、本発明に係る電力変換装置の第1の態様は、一面を冷却体に接合する半導体パワーモジュールと、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、前記実装基板の熱を前記冷却体に伝熱させる熱伝導路とを備えている。そして、前記熱伝導路は、周囲雰囲気から吸熱する吸熱部を有している。 In order to achieve the above object, a first aspect of a power conversion device according to the present invention includes a semiconductor power module in which one surface is joined to a cooling body and a circuit component including a heat generating circuit component that drives the semiconductor power module. And a heat conduction path for transferring heat of the mounting substrate to the cooling body. The heat conduction path has an endothermic part that absorbs heat from the ambient atmosphere.
 この構成によると、実装基板に実装されている発熱回路部品の熱を、熱伝導路を介して冷却体に直接放熱することができる。また、伝熱支持側板部には、周囲雰囲気から吸熱する吸熱部を有しているので、伝熱支持側板部の周辺部の周辺雰囲気から吸熱することにより、周囲雰囲気の温度上昇を抑制することができる。 According to this configuration, the heat of the heat generating circuit components mounted on the mounting board can be directly radiated to the cooling body through the heat conduction path. In addition, the heat transfer support side plate part has a heat absorption part that absorbs heat from the surrounding atmosphere, so by suppressing the temperature rise of the ambient atmosphere by absorbing heat from the surrounding atmosphere of the peripheral part of the heat transfer support side plate part Can do.
 本発明に係る電力変換装置の第2の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に当該半導体スイッチング素子を冷却する冷却部材を設けた半導体パワーモジュールと、前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、前記半導体パワーモジュールの冷却部材を冷却する冷却体と、前記実装基板に実装された発熱回路部品の発熱を前記冷却体へ直接伝熱する伝熱支持部材とを備えている。そして、前記伝熱支持部材は、前記実装基板を支持する伝熱支持板部と、該伝熱支持板と前記冷却体との間の伝熱経路を形成する伝熱支持側板部とで構成され、前記伝熱支持側板部に周囲雰囲気から吸熱する吸熱部を形成している。 A second aspect of the power conversion device according to the present invention includes a semiconductor power module in which a semiconductor switching element for power conversion is built in a case body, and a cooling member for cooling the semiconductor switching element is provided on one surface of the case body. A mounting substrate on which circuit components including a heat generating circuit component for driving the semiconductor switching element are mounted, a cooling body for cooling a cooling member of the semiconductor power module, and heat generated by the heat generating circuit component mounted on the mounting substrate. And a heat transfer support member that directly transfers heat to the cooling body. The heat transfer support member includes a heat transfer support plate portion that supports the mounting substrate, and a heat transfer support side plate portion that forms a heat transfer path between the heat transfer support plate and the cooling body. An endothermic part that absorbs heat from the ambient atmosphere is formed in the heat transfer support side plate part.
 この構成によると、実装基板に実装されている発熱回路部品の熱を伝熱支持部材の伝熱支持板部及び伝熱支持側板部によって筐体を介することなく冷却体に直接放熱することができる。また、伝熱支持側板部には、周囲雰囲気から吸熱する吸熱部を有しているので、伝熱支持側板部の周辺部の周辺雰囲気から吸熱することにより、周囲雰囲気の温度上昇を抑制することができる。 According to this configuration, the heat of the heat generating circuit component mounted on the mounting board can be directly radiated to the cooling body without the housing through the heat transfer support plate portion and the heat transfer support side plate portion of the heat transfer support member. . In addition, the heat transfer support side plate part has a heat absorption part that absorbs heat from the surrounding atmosphere, so by suppressing the temperature rise of the ambient atmosphere by absorbing heat from the surrounding atmosphere of the peripheral part of the heat transfer support side plate part Can do.
 また、本発明に係る電力変換装置の第3の態様は、前記吸熱部が、前記伝熱経路形成部材の前記半導体パワーモジュールと対向する側面の外側に設けた前記半導体パワーモジュールの外部接続端子に接続する接続導体を挿通する開口を形成する外側に折り曲げた折曲部で構成されている。
 この構成によると、伝熱経路形成部材に例えばU字状のスリットによって形成した舌片を折り曲げて、半導体パワーモジュールの外部接続端子に接続する接続導体を挿通する開口を形成するとともに折曲部を形成することができ、別途吸熱部材を装着することなく吸熱効果を発揮することができる。
Moreover, the 3rd aspect of the power converter device which concerns on this invention is an external connection terminal of the said semiconductor power module in which the said heat absorption part was provided in the outer side of the side facing the said semiconductor power module of the said heat-transfer path | route formation member. It is comprised by the bending part bent outward which forms the opening which penetrates the connecting conductor to connect.
According to this configuration, the tongue formed by, for example, a U-shaped slit is bent on the heat transfer path forming member to form an opening through which the connection conductor connected to the external connection terminal of the semiconductor power module is inserted, and the bent portion is The heat absorption effect can be exhibited without attaching a separate heat absorption member.
 また、本発明に係る電力変換装置の第4の態様は、前記吸熱部が、前記伝熱経路形成部材の前記半導体パワーモジュールと対向する側面の外側に設けた複数の吸熱フィンで構成されている。
 この構成によると、伝熱経路形成部材に複数の吸熱フィンを設けたので、吸熱面積を増加させて、吸熱効果を向上させることができる。
Moreover, the 4th aspect of the power converter device which concerns on this invention is comprised with the several heat absorption fin with which the said heat absorption part was provided in the outer side of the side facing the said semiconductor power module of the said heat-transfer path | route formation member. .
According to this configuration, since the plurality of heat absorption fins are provided on the heat transfer path forming member, the heat absorption area can be increased and the heat absorption effect can be improved.
 また、本発明に係る電力変換装置の第5の態様は、前記吸熱部が、前記伝熱経路形成部材の前記半導体パワーモジュールと対向する側面の外側に設けた複数の吸熱リブで構成されている。
 この構成によると、伝熱経路形成部材に吸熱リブを設けたので、吸熱面積を増加させて、吸熱効果を向上させることができる。
Moreover, the 5th aspect of the power converter device which concerns on this invention is comprised by the several heat absorption rib with which the said heat absorption part was provided in the outer side of the side facing the said semiconductor power module of the said heat-transfer path | route formation member. .
According to this configuration, since the heat absorption rib is provided on the heat transfer path forming member, the heat absorption area can be increased and the heat absorption effect can be improved.
 また、本発明に係る電力変換装置の第6の態様は、前記伝熱支持板が、複数の伝熱経路形成部材に固定支持されている。
 この構成によると、伝熱支持板部複数の伝熱経路形成部材に固定支持されているので、冷却体への伝熱断面積を増加させて、発熱回路部品の効率の良い放熱を行うことができる。
In a sixth aspect of the power conversion device according to the present invention, the heat transfer support plate is fixedly supported by a plurality of heat transfer path forming members.
According to this configuration, since the heat transfer support plate portion is fixedly supported by the plurality of heat transfer path forming members, it is possible to increase the heat transfer cross-sectional area to the cooling body and to efficiently dissipate heat generating circuit components. it can.
 また、本発明に係る電力変換装置の第7の態様は、前記伝熱支持板が、伝熱部材を介して前記実装基板を支持している。
 この構成によると、実装基板に実装された発熱回路部品の熱を、伝熱部材を介して伝熱支持板に伝熱することができ、広い伝熱断面積を確保して効率の良い伝熱を行うことができる。
Moreover, as for the 7th aspect of the power converter device which concerns on this invention, the said heat-transfer support plate is supporting the said mounting substrate via the heat-transfer member.
According to this configuration, the heat of the heat generating circuit components mounted on the mounting board can be transferred to the heat transfer support plate via the heat transfer member, ensuring a wide heat transfer cross section and efficient heat transfer. It can be performed.
 また、本発明に係る電力変換装置の第8の態様は、前記伝熱部材が、絶縁体で構成されている。
 この構成によると、伝熱部材が絶縁体で構成されているので、実装基板に実装された回路部品と伝熱支持板との間の絶縁を確実に行うことができ、両者の間隔を狭めることができるとともに、伝熱支持板を熱伝導率の高い金属材料で形成することができる。
Moreover, as for the 8th aspect of the power converter device which concerns on this invention, the said heat-transfer member is comprised with the insulator.
According to this configuration, since the heat transfer member is formed of an insulator, the insulation between the circuit component mounted on the mounting board and the heat transfer support plate can be reliably performed, and the distance between the two is reduced. In addition, the heat transfer support plate can be formed of a metal material having a high thermal conductivity.
 また、本発明に係る電力変換装置の第9の態様は、前記伝熱部材が、伸縮性を有する弾性体で構成されている。
 この構成によると、伝熱部材が伸縮性を有する弾性体で構成されているので、実装基板に実装された回路部品との接触面積を広くすることができ、発熱回路部品の発熱を伝熱支持板に効率よく伝熱することができる。
Moreover, the 9th aspect of the power converter device which concerns on this invention is comprised by the elastic body in which the said heat-transfer member has a stretching property.
According to this configuration, since the heat transfer member is made of an elastic body having elasticity, the contact area with the circuit component mounted on the mounting board can be widened, and the heat generation of the heat generating circuit component is supported. Heat can be efficiently transferred to the board.
 また、本発明に係る電力変換装置の第10の態様は、前記実装基板と前記伝熱支持部材の伝熱支持板とを締付固定部材で前記伝熱部材を圧縮しながら固定している。
 この構成によると、伝熱部材を締め付け固定部材で圧縮しながら固定するので、例えばフィラーを混入して形成した伝熱部材を使用した場合に、圧縮によって伝熱部材の熱伝導率を向上させることができる。
In a tenth aspect of the power conversion device according to the present invention, the heat transfer member is fixed while the mounting substrate and the heat transfer support plate of the heat transfer support member are compressed by a fastening fixing member.
According to this configuration, since the heat transfer member is fixed while being compressed by the fastening and fixing member, for example, when a heat transfer member formed by mixing a filler is used, the thermal conductivity of the heat transfer member is improved by compression. Can do.
 また、本発明に係る電力変換装置の第11の態様は、前記締付固定部材の周囲に前記実装基板と前記伝熱支持部材の伝熱支持板との間隔を所定値に維持する間隔調整部材が介挿されている。
 この構成によると、伝熱部材がフィラーを混入した弾性体である場合に、伝熱部材の圧縮高さを正確に規定することができ、伝熱部材の熱伝導率を正確に調整することができる。
An eleventh aspect of the power conversion device according to the present invention is an interval adjusting member that maintains a predetermined interval between the mounting substrate and the heat transfer support plate of the heat transfer support member around the fastening and fixing member. Is inserted.
According to this configuration, when the heat transfer member is an elastic body mixed with a filler, the compression height of the heat transfer member can be accurately defined, and the thermal conductivity of the heat transfer member can be accurately adjusted. it can.
 また、本発明に係る電力変換装置の第12の態様は、前記伝熱支持板が、前記実装基板を支持する伝熱基板支持部を有する。
 この構成によると、伝熱支持板に一体に形成された伝熱基板支持部で実装基板を支持するので、伝熱基板支持部と伝熱支持板との間の熱抵抗を抑制して、効率の良い熱伝導を行うことができる。
Moreover, the 12th aspect of the power converter device which concerns on this invention has a heat-transfer board | substrate support part in which the said heat-transfer support plate supports the said mounting board | substrate.
According to this configuration, since the mounting substrate is supported by the heat transfer substrate support unit formed integrally with the heat transfer support plate, the thermal resistance between the heat transfer substrate support unit and the heat transfer support plate is suppressed, and the efficiency is increased. Good heat conduction.
 また、本発明に係る電力変換装置の第13の態様は、前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記半導体パワーモジュールの異なる側面を通って前記冷却部材に接触されている。
 この第13の態様によると、実装基板と伝熱支持板部との組が複数存在する場合に、実装基板毎に異なる放熱経路を形成することができ、より効率の良い放熱を行うことができる。
Further, a thirteenth aspect of the power conversion device according to the present invention includes a plurality of sets of the mounting substrate and the heat transfer support member, and the heat transfer support side plate portion of the heat transfer support member is provided for each set. While making the height different, the heat transfer support side plate portion is in contact with the cooling member through different side surfaces of the semiconductor power module.
According to the thirteenth aspect, when there are a plurality of sets of mounting substrates and heat transfer support plate portions, different heat dissipation paths can be formed for each mounting substrate, and more efficient heat dissipation can be performed. .
 また、本発明に係る電力変換装置の第14の態様は、前記冷却体上に配置され、前記半導体パワーモジュール、前記実装基板及び前記伝熱支持部材を密封する筐体を備えている。
 この第14の態様によると、冷却体上に配置された筐体によって、半導体パワーモジュール、実装基板及び伝熱支持部材が密封されているので、実装基板に実装された発熱回路部品の発熱によって温度が上昇する封入気体から吸熱部で吸熱することにより、封入気体の温度上昇を抑制することができる。
A fourteenth aspect of the power conversion device according to the present invention includes a housing that is disposed on the cooling body and seals the semiconductor power module, the mounting substrate, and the heat transfer support member.
According to the fourteenth aspect, since the semiconductor power module, the mounting board, and the heat transfer support member are sealed by the casing disposed on the cooling body, the temperature is generated by the heat generated by the heat generating circuit components mounted on the mounting board. The temperature rise of the sealed gas can be suppressed by absorbing heat from the sealed gas in which the temperature rises in the heat absorbing portion.
 本発明によれば、実装基板に実装した発熱回路部品の発熱を、熱伝導路を介して冷却体に伝熱することにより、効率の良い放熱を行うことができる。
 また、熱伝導路に折曲部、吸熱フィン、吸熱リブ等の吸熱部材が形成されているので、熱伝導路の周囲の雰囲気から吸熱を行うことができ、周囲雰囲気の温度上昇を抑制することができる。
According to the present invention, efficient heat dissipation can be performed by transferring heat generated by the heat generating circuit component mounted on the mounting board to the cooling body via the heat conduction path.
In addition, since heat absorbing members such as bent portions, heat absorbing fins, and heat absorbing ribs are formed in the heat conduction path, heat can be absorbed from the atmosphere around the heat conduction path, and temperature rise in the surrounding atmosphere is suppressed. Can do.
本発明に係る電力変換装置の第1の実施形態の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of 1st Embodiment of the power converter device which concerns on this invention. 第1の実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing the important section of a 1st embodiment. 実装基板を取り付け状態の具体的構成を示す拡大断面図である。It is an expanded sectional view which shows the specific structure of the mounting state of the mounting substrate. 実装基板の伝熱支持部材への取り付け方法を示す図である。It is a figure which shows the attachment method to the heat-transfer support member of a mounting board | substrate. 実装基板を伝熱支持部材へ取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the mounting board | substrate to the heat-transfer support member. 伝熱部材の変形例を示す断面図である。It is sectional drawing which shows the modification of a heat-transfer member. 半導体パワーモジュール及び基板を装着した伝熱支持部材を示す平面図である。It is a top view which shows the heat-transfer support member with which the semiconductor power module and the board | substrate were mounted | worn. 半導体パワーモジュール及び基板を装着した伝熱支持部材を示す斜視図である。It is a perspective view which shows the heat-transfer support member which mounted | wore the semiconductor power module and the board | substrate. 伝熱支持部材を示す斜視図である。It is a perspective view which shows a heat-transfer support member. 発熱回路部品の放熱経路と周囲雰囲気の吸熱経路とを説明する図である。It is a figure explaining the thermal radiation path | route of a heat generating circuit component, and the thermal absorption path | route of ambient atmosphere. 電力変換装置に対して上下振動や横揺れが作用した状態を示す図である。It is a figure which shows the state which the vertical vibration and the roll acted with respect to the power converter device. 伝熱支持部材の他の例における放熱経路を説明する図である。It is a figure explaining the heat dissipation path in other examples of a heat transfer support member. 半導体パワーモジュールの冷却部材の他の例を示す全体構成の断面図である。It is sectional drawing of the whole structure which shows the other example of the cooling member of a semiconductor power module. 図13の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of FIG. 伝熱支持部材の他の例を示す断面図である。It is sectional drawing which shows the other example of a heat-transfer support member. 実装基板の他の例を示す断面図である。It is sectional drawing which shows the other example of the mounting substrate. 伝熱支持板部の他の例を示す断面図である。It is sectional drawing which shows the other example of a heat-transfer support plate part. 本発明の第2の実施形態を示す全体構成の断面図である。It is sectional drawing of the whole structure which shows the 2nd Embodiment of this invention. 第2の実施形態における半導体パワーモジュール及び実装基板を装着した伝熱支持部材を示す斜視図である。It is a perspective view which shows the heat-transfer support member with which the semiconductor power module and mounting board | substrate in 2nd Embodiment were mounted | worn. 第2の実施形態における伝熱支持部材を示す斜視図である。It is a perspective view which shows the heat-transfer support member in 2nd Embodiment. 本発明の第3の実施形態を示す半導体パワーモジュール及び実装基板を装着した伝熱支持部材を示す斜視図である。It is a perspective view which shows the heat-transfer support member equipped with the semiconductor power module and the mounting substrate which show the 3rd Embodiment of this invention. 第3の実施形態における伝熱支持部材を示す斜視図である。It is a perspective view which shows the heat-transfer support member in 3rd Embodiment.
 以下、本発明の実施の形態を図面について説明する。
 図1は本発明に係る電力変換装置の全体構成を示す断面図である。
 図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the overall configuration of a power converter according to the present invention.
In the figure, reference numeral 1 denotes a power converter, and the power converter 1 is housed in a housing 2. The casing 2 is formed by molding a synthetic resin material, and includes a lower casing 2A and an upper casing 2B that are divided vertically with a cooling body 3 having a water-cooling jacket structure interposed therebetween.
 下部筐体2Aは有底角筒体で構成されている。この下部筐体2Aは開放上部が冷却体3で覆われ、内部に平滑用のフィルムコンデンサ4が収納されている。
 上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
The lower housing 2A is a bottomed rectangular tube. The lower casing 2A has an open upper portion covered with a cooling body 3, and a smoothing film capacitor 4 is accommodated therein.
The upper housing 2B includes a rectangular tube 2a having an open upper end and a lower end, and a lid 2b that closes the upper end of the rectangular tube 2a. The lower end of the rectangular tube 2a is closed by the cooling body 3. Although not shown, a sealing material such as application of a liquid sealant or sandwiching rubber packing is interposed between the lower end of the rectangular tube 2a and the cooling body 3.
 冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口されている。これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。この冷却体3は例えば熱伝導率の高いアルミニウム、アルミニウム合金を射出成形して形成されている。そして、冷却体3は、下面が平坦面とされ、上面が中央部3cを残して角枠状の周溝3dが形成されている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の外部接続電極4aを上下に挿通する挿通孔3eが形成されている。 The cooling body 3 has a cooling water supply port 3 a and a drain port 3 b opened to the outside of the housing 2. The water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose. The cooling body 3 is formed, for example, by injection molding aluminum or aluminum alloy having high thermal conductivity. And as for the cooling body 3, the lower surface is made into a flat surface, and the upper surface is formed with the square-frame-shaped peripheral groove 3d leaving the center part 3c. Further, the cooling body 3 is formed with an insertion hole 3e through which the positive and negative external connection electrodes 4a covered with insulation of the film capacitor 4 held in the lower housing 2A are vertically inserted.
 電力変換装置1は、図2とともに参照して明らかなように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵した半導体パワーモジュール11を備えている。この半導体パワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、ケース体12の下面に金属製の冷却部材13が形成されている。ケース体12及び冷却部材13には平面からみて四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。また、ケース体12の上面には、挿通孔15の内側における4箇所に所定高さの基板固定部16が突出形成されている。 As is apparent from FIG. 2, the power conversion apparatus 1 includes a semiconductor power module 11 that incorporates, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element that constitutes, for example, an inverter circuit for power conversion. . The semiconductor power module 11 includes an IGBT in a flat rectangular parallelepiped insulating case body 12, and a metal cooling member 13 is formed on the lower surface of the case body 12. The case body 12 and the cooling member 13 are formed with insertion holes 15 through which fixing screws 14 as fixing members are inserted at the four corners when viewed from the plane. In addition, on the upper surface of the case body 12, substrate fixing portions 16 having a predetermined height are formed to protrude at four locations inside the insertion hole 15.
 この基板固定部16の上端には、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。また、駆動回路基板21の上方に所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTを制御する相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等を実装した実装基板としての制御回路基板22が固定されている。さらに、制御回路基板22の上方に所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTに電源を供給する発熱回路部品を含む電源回路等を実装した実装基板としての電源回路基板23が固定されている。 A driving circuit board 21 on which a driving circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16. In addition, a control circuit including a heat generation circuit component having a relatively large heat generation amount or a high heat generation density for controlling the IGBT built in the semiconductor power module 11 with a predetermined interval above the drive circuit board 21 is mounted. A control circuit board 22 as a mounting board is fixed. Further, a power supply circuit board 23 as a mounting board on which a power supply circuit including a heating circuit component for supplying power to the IGBT built in the semiconductor power module 11 is mounted at a predetermined interval above the control circuit board 22 is fixed. ing.
 そして、駆動回路基板21は、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
 また、制御回路基板22は継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ25の雄ねじ部25aを挿通し、この雄ねじ部25aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
Then, the drive circuit board 21 is inserted into the insertion hole 21 a formed at a position facing the board fixing part 16, and the male screw part 24 a of the joint screw 24 is inserted, and the male screw part 24 a is formed on the upper surface of the board fixing part 16. It is fixed by screwing into the part 16a.
Further, the control circuit board 22 inserts the male screw portion 25 a of the joint screw 25 into an insertion hole 22 a formed at a position facing the female screw portion 24 b formed at the upper end of the joint screw 24, and this male screw portion 25 a is inserted into the joint screw 24. It is fixed by screwing into the female screw portion 24b.
 さらに、電源回路基板23は継ぎねじ25の上端に形成した雌ねじ部25bに対向する位置に形成した挿通孔23a内に固定ねじ26を挿通し、この固定ねじ26を継ぎねじ25の雌ねじ部25bに螺合することにより固定されている。
 また、制御回路基板22及び電源回路基板23は、熱伝導路としての伝熱支持部材32及び33によって筐体2を介することなく冷却体3への放熱経路を独自に形成するように支持されている。これら伝熱支持部材32及び33は、熱伝導率が高い(例えば100W・m-1・K-1以上)金属例えばアルミニウム又はアルミニウム合金で形成されている。
Further, the power supply circuit board 23 inserts a fixing screw 26 into an insertion hole 23 a formed at a position facing the female screw portion 25 b formed at the upper end of the joint screw 25, and this fixing screw 26 is inserted into the female screw portion 25 b of the joint screw 25. It is fixed by screwing.
The control circuit board 22 and the power supply circuit board 23 are supported by heat transfer support members 32 and 33 as heat conduction paths so as to independently form a heat radiation path to the cooling body 3 without going through the housing 2. Yes. These heat transfer support members 32 and 33 are made of a metal having a high thermal conductivity (for example, 100 W · m −1 · K −1 or more) such as aluminum or an aluminum alloy.
 また、伝熱支持部材32及び33は、制御回路基板22を支持する冷却体3の周溝3d内に配置されて冷却体接触板部となる角枠状の共通の底板部34を有する。したがって、伝熱支持部材32及び33は底板部34によって一体に連結されている。そして、伝熱支持部材32及び33と底板部34とは黒色の表面を有する。これら伝熱支持部材32及び33と底板部34との表面を黒色化にするには、表面に黒色樹脂をコーティングしたり、黒色塗料で塗装したりすればよい。このように、伝熱支持部材32及び33と底板部34との表面を黒色とすることにより、金属の素材色と比較し熱放射率が大きくなり、放射伝熱量を増やすことができる。このため、伝熱支持部材32及び33と底板部34との周囲への放熱が活発化され、制御回路基板22及び電源回路基板23の熱冷却を効率良く行うことができる。なお、底板部34を除いて伝熱支持部材32及び33のみの表面を黒色にするようにしてもよい。 Also, the heat transfer support members 32 and 33 have a square frame-shaped common bottom plate portion 34 that is disposed in the circumferential groove 3d of the cooling body 3 that supports the control circuit board 22 and serves as a cooling body contact plate portion. Therefore, the heat transfer support members 32 and 33 are integrally connected by the bottom plate portion 34. And the heat- transfer support members 32 and 33 and the baseplate part 34 have a black surface. In order to blacken the surfaces of the heat transfer support members 32 and 33 and the bottom plate portion 34, the surface may be coated with a black resin or painted with a black paint. Thus, by making the surfaces of the heat transfer support members 32 and 33 and the bottom plate portion 34 black, the heat emissivity becomes larger than the metal material color, and the amount of radiant heat transfer can be increased. For this reason, the heat dissipation to the circumference | surroundings of the heat- transfer support members 32 and 33 and the baseplate part 34 is activated, and the heat cooling of the control circuit board 22 and the power supply circuit board 23 can be performed efficiently. In addition, you may make it make the surface of only the heat- transfer support members 32 and 33 black except for the baseplate part 34. FIG.
 伝熱支持部材32は、平板上の伝熱支持板部32aと、この伝熱支持板部32aの図2で見て半導体パワーモジュール11の長辺に沿う右端側に固定ねじ32bで固定された伝熱支持側板部32cとで構成されている。そして、伝熱支持側板部32cが共通の底板部34に連結されている。
 伝熱支持板部32aには、伝熱部材35を介して制御回路基板22が固定ねじ36によって固定される。伝熱部材35は、伸縮性を有する弾性体で電源回路基板23と同じ外形寸法に構成されている。この伝熱部材35としては、シリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。
The heat transfer support member 32 is fixed by a fixing screw 32b on the heat transfer support plate portion 32a on the flat plate and the right end side of the heat transfer support plate portion 32a along the long side of the semiconductor power module 11 as seen in FIG. It is comprised with the heat-transfer support side board part 32c. The heat transfer support side plate portion 32 c is connected to the common bottom plate portion 34.
The control circuit board 22 is fixed to the heat transfer support plate portion 32 a by a fixing screw 36 via a heat transfer member 35. The heat transfer member 35 is an elastic body having elasticity, and has the same outer dimensions as the power circuit board 23. As this heat transfer member 35, a member having improved heat transfer performance while exhibiting insulating performance by interposing a metal filler inside silicon rubber is applied.
 また、伝熱支持側板部32cは、図2に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部32dと、この連結板部32dの上端から左方に延長する上板部32eとで断面逆L字状に形成されている。連結板部32dは、半導体パワーモジュール11の長辺側の右側面を通って上方に延長している。 Further, as shown in FIG. 2, the heat transfer support side plate portion 32 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 arranged in the circumferential groove 3 d of the cooling body 3 and extends upward. The connecting plate portion 32d and the upper plate portion 32e extending leftward from the upper end of the connecting plate portion 32d are formed in an inverted L-shaped cross section. The connecting plate portion 32 d extends upward through the right side surface on the long side of the semiconductor power module 11.
 そして、連結板部32dの底板部34及び上板部32eとの連結部を例えば円筒面の一部でなる湾曲面32f及び32gに形成している。このように連結板部32dと底板部34及び上板部32eとの連結部を円筒状の湾曲面32f及び32gとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結板部32dと底板部34及び上板部32eとの連結部に生じる応力集中を緩和することが可能となる。 And the connection part with the bottom board part 34 and the upper board part 32e of the connection board part 32d is formed in the curved surfaces 32f and 32g which are a part of cylindrical surface, for example. As described above, the connecting portion between the connecting plate portion 32d and the bottom plate portion 34 and the upper plate portion 32e is formed into the cylindrical curved surfaces 32f and 32g, thereby improving the vibration resistance against vertical vibration and roll. . That is, it is possible to alleviate the stress concentration generated in the connecting portion between the connecting plate portion 32d, the bottom plate portion 34, and the upper plate portion 32e when the vertical vibration or roll is transmitted to the power converter 1.
 さらに、連結板部32dと底板部34及び上板部32eとの連結部を円筒状の湾曲面32f及び32gとすることにより、連結板部32dと底板部34及び上板部32eとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板部32aから冷却体3までの熱伝導経路を短くして、効率的な熱冷却が可能となる。 Further, by connecting the connecting plate portion 32d to the bottom plate portion 34 and the upper plate portion 32e as cylindrical curved surfaces 32f and 32g, the connecting portion between the connecting plate portion 32d and the bottom plate portion 34 and the upper plate portion 32e. The heat conduction path can be shortened as compared with the case of forming a right-angle L-shape. For this reason, the heat conduction path from the heat transfer support plate portion 32a to the cooling body 3 is shortened, thereby enabling efficient heat cooling.
 伝熱支持部材33は、平板上の伝熱支持板部33aと、この伝熱支持板部33aの図2で見て半導体パワーモジュール11の長辺に沿う左端側に固定ねじ33bで固定された伝熱支持側板部33cとで構成されている。そして、伝熱支持側板部33cが共通の底板部34に連結されている。
 伝熱支持板部33aには、前述した伝熱部材35と同様の伝熱部材37を介して電源回路基板23が固定ねじ38によって固定される。
The heat transfer support member 33 is fixed by a fixing screw 33b on the heat transfer support plate portion 33a on the flat plate and the left end side of the heat transfer support plate portion 33a along the long side of the semiconductor power module 11 as seen in FIG. It is comprised with the heat-transfer support side board part 33c. The heat transfer support side plate portion 33 c is connected to the common bottom plate portion 34.
The power supply circuit board 23 is fixed to the heat transfer support plate portion 33a by a fixing screw 38 via a heat transfer member 37 similar to the heat transfer member 35 described above.
 また、伝熱支持側板部33cは、図2及び図3に示すように、冷却体3の周溝3d内に配置される共通の底板部34の長辺側の外周縁に一体に連結されて上方に延長する連結板部33dと、この連結板部33dの上端から右方に延長する上板部33eとで断面逆L字状に形成されている。連結板部33dは、半導体パワーモジュール11の長辺側の左側面を通って上方に延長している。 Further, as shown in FIGS. 2 and 3, the heat transfer support side plate portion 33 c is integrally connected to the outer peripheral edge on the long side of the common bottom plate portion 34 disposed in the circumferential groove 3 d of the cooling body 3. The connecting plate portion 33d extending upward and the upper plate portion 33e extending rightward from the upper end of the connecting plate portion 33d are formed in an inverted L-shaped cross section. The connecting plate portion 33 d extends upward through the left side surface on the long side of the semiconductor power module 11.
 そして、連結板部33dの底板部34及び上板部33eとの連結部を例えば円筒面の一部でなる湾曲面33f及び33gに形成している。このように連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面33f及び33gとすることにより、上下振動や横揺れ等に対する耐振動性を向上することができる。すなわち、電力変換装置1に上下振動や横揺れが伝達されたときに連結板部33dと底板部34及び上板部33eとの連結部に生じる応力集中を緩和することが可能となる。 And the connection part with the bottom board part 34 and the upper board part 33e of the connection board part 33d is formed in the curved surfaces 33f and 33g which are a part of cylindrical surface, for example. Thus, by making the connecting portions of the connecting plate portion 33d, the bottom plate portion 34, and the upper plate portion 33e into cylindrical curved surfaces 33f and 33g, it is possible to improve vibration resistance against vertical vibration and roll. . That is, it is possible to alleviate the stress concentration generated in the connecting portion between the connecting plate portion 33d, the bottom plate portion 34, and the upper plate portion 33e when vertical vibration or roll is transmitted to the power conversion device 1.
 さらに、連結板部33dと底板部34及び上板部33eとの連結部を円筒状の湾曲面33f及び33gとすることにより、連結板部33dと底板部34及び上板部33eとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板部33aから冷却体3までの熱伝導経路を短くして、効率的な放熱が可能となる。 Further, by connecting the connecting plate portion 33d to the bottom plate portion 34 and the upper plate portion 33e with cylindrical curved surfaces 33f and 33g, the connecting portion between the connecting plate portion 33d and the bottom plate portion 34 and the upper plate portion 33e. The heat conduction path can be shortened as compared with the case of forming a right-angle L-shape. For this reason, the heat conduction path from the heat transfer support plate portion 33a to the cooling body 3 is shortened, and efficient heat radiation becomes possible.
 そして、制御回路基板22を支持する伝熱支持部材32の伝熱支持側板部32cには、図1、図2及び図7に示すように、半導体パワーモジュール11のケース体12の上面右端側に形成された正負2つの直流入力端子11aと対向する位置に開口部32hが形成されている。この開口部32hには、図1、図7及び図8に示すように、ケース体12の直流入力端子11aとフィルムコンデンサ4の正負2本の外部接続電極4aとを個別電気的に接続する接続導体としての正負2本のブスバー50p,50nが挿通されている。また、開口部32hには、図1に示すように、直流入力端子11aに直流電力を供給する正負2本の電源ケーブル52の先端に連結された圧着端子53が挿通されている。 The heat transfer support side plate portion 32c of the heat transfer support member 32 that supports the control circuit board 22 is provided on the right end of the upper surface of the case body 12 of the semiconductor power module 11, as shown in FIGS. An opening 32h is formed at a position facing the formed two positive and negative DC input terminals 11a. As shown in FIG. 1, FIG. 7 and FIG. 8, the opening 32h is a connection for electrically connecting the DC input terminal 11a of the case body 12 and the two positive and negative external connection electrodes 4a of the film capacitor 4 individually. Two bus bars 50p and 50n as conductors are inserted. Further, as shown in FIG. 1, a crimp terminal 53 connected to the ends of two positive and negative power cables 52 for supplying DC power to the DC input terminal 11a is inserted through the opening 32h.
 電源回路基板23を支持する伝熱支持部材33の伝熱支持側板部33cには、図1、図2、図8及び図9に示すように、半導体パワーモジュール11のケース体12の上面左端側に形成されたU相、V相及びW相の3つの交流出力端子11bと対向する位置に開口部33h、33i及び33jが形成されている。
 これら開口部33h、33i及び33jには、ケース体12の上面に形成されたU相、V相及びWの交流出力端子11bと3本のモータ接続ケーブル58の先端に装着された圧着端子59との間を接続する3つの接続導体としてのブスバー55u、55v及び55wが挿通されている。
As shown in FIGS. 1, 2, 8, and 9, the heat transfer support side plate portion 33 c of the heat transfer support member 33 that supports the power circuit board 23 has an upper left end on the upper surface of the case body 12 of the semiconductor power module 11. Openings 33h, 33i, and 33j are formed at positions facing the three U-phase, V-phase, and W-phase AC output terminals 11b.
In these openings 33h, 33i and 33j, there are U-phase, V-phase and W AC output terminals 11b formed on the upper surface of the case body 12, and crimp terminals 59 attached to the tips of the three motor connection cables 58. Busbars 55u, 55v, and 55w are inserted as three connection conductors that connect the two.
 これら開口部33h、33i及び33jを形成するには、先ず、それらの前後側縁及び下側縁を形成する3つのスリットを伝熱支持側板部33cに形成して上縁部のみが伝熱支持側板部33cに接続する舌片33kを形成する。次いで、図8及び図9に示すように、舌片33kをその上縁部を基準にして外側に例えば90度折り曲げて吸熱部としての折曲部33mu、33mv及び33mwを形成するとともに、開口部33h、33i及び33jを形成する。 In order to form these openings 33h, 33i and 33j, first, three slits forming the front and rear side edges and the lower side edge are formed in the heat transfer support side plate part 33c, and only the upper edge part supports the heat transfer. A tongue piece 33k connected to the side plate portion 33c is formed. Next, as shown in FIG. 8 and FIG. 9, the tongue piece 33k is bent outward by, for example, 90 degrees with respect to the upper edge portion to form bent portions 33mu, 33mv and 33mw as heat absorbing portions, and an opening portion. 33h, 33i and 33j are formed.
 さらに、制御回路基板22及び電源回路基板23には、発熱回路部品39が、図4及び図5に示すように、下面側に実装されている。
 そして、制御回路基板22及び電源回路基板23と、伝熱部材35,37及び伝熱支持板部32a,33aとの連結が図4に示すように行われる。これら制御回路基板22及び電源回路基板23と、伝熱支持板部32a及び33aとの連結は左右が逆となることを除いては実質的に同じであるので、電源回路基板23及び伝熱支持板部33aを代表として説明する。
Further, on the control circuit board 22 and the power circuit board 23, a heat generating circuit component 39 is mounted on the lower surface side as shown in FIGS.
Then, the control circuit board 22 and the power supply circuit board 23 are connected to the heat transfer members 35 and 37 and the heat transfer support plate portions 32a and 33a as shown in FIG. The connection between the control circuit board 22 and the power circuit board 23 and the heat transfer support plate portions 32a and 33a is substantially the same except that the left and right are reversed. The plate portion 33a will be described as a representative.
 この電源回路基板23と伝熱支持板部33aとの連結には、図4及び図5に示すように、伝熱部材37の厚みTより低い伝熱板部管理高さHを有する間隔調整部材としての間座40が用いられる。この間座40は、伝熱支持板部33aに形成された固定ねじ38が螺合する雌ねじ部41の外周側に接着等によって仮止めされている。ここで、間座40の伝熱板部管理高さHは、伝熱部材37の圧縮率が約5~30%となるように設定されている。このように、伝熱部材37を約5~30%程度に圧縮することにより、熱抵抗が減り効率良い伝熱効果を発揮することができる。 As shown in FIGS. 4 and 5, the power supply circuit board 23 and the heat transfer support plate portion 33 a are connected to each other by an interval adjusting member having a heat transfer plate portion management height H lower than the thickness T of the heat transfer member 37. A spacer 40 is used. The spacer 40 is temporarily fixed by bonding or the like to the outer peripheral side of the female screw portion 41 into which the fixing screw 38 formed on the heat transfer support plate portion 33a is screwed. Here, the heat transfer plate portion management height H of the spacer 40 is set so that the compression rate of the heat transfer member 37 is about 5 to 30%. Thus, by compressing the heat transfer member 37 to about 5 to 30%, the heat resistance is reduced and an efficient heat transfer effect can be exhibited.
 一方、伝熱部材37には、継ぎねじ25を挿通可能な挿通孔37aと、間座40を挿通可能な挿通孔37bとが形成されている。
 そして、伝熱支持板部33aに仮止めされた間座40を挿通孔37bに挿通されるように伝熱部材37を伝熱支持板部33a上に載置し、この伝熱部材37の上に電源回路基板23を、発熱回路部品39を伝熱部材37側として載置する。
On the other hand, the heat transfer member 37 is formed with an insertion hole 37 a through which the joint screw 25 can be inserted and an insertion hole 37 b through which the spacer 40 can be inserted.
The heat transfer member 37 is placed on the heat transfer support plate 33a so that the spacer 40 temporarily fixed to the heat transfer support plate 33a is inserted into the insertion hole 37b. The power supply circuit board 23 is mounted with the heat generating circuit component 39 on the heat transfer member 37 side.
 この状態で、固定ねじ38を電源回路基板23の挿通孔23bを通じ、間座40の中心開口を通じて伝熱支持板部33aの雌ねじ部41に螺合させる。そして、固定ねじ38を伝熱部材37の上面が間座40の上面と略一致するまで締め付ける。
 このため、伝熱部材37が5~30%程度の圧縮率で圧縮されることになり、熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材37の圧縮率は間座40の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる(図5参照)。
In this state, the fixing screw 38 is screwed into the female screw portion 41 of the heat transfer support plate portion 33a through the insertion hole 23b of the power circuit board 23 and the central opening of the spacer 40. Then, the fixing screw 38 is tightened until the upper surface of the heat transfer member 37 substantially coincides with the upper surface of the spacer 40.
For this reason, the heat transfer member 37 is compressed at a compression rate of about 5 to 30%, and the heat resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression rate of the heat transfer member 37 is managed by the height H of the spacer 40, appropriate tightening is performed without causing insufficient tightening or excessive tightening (see FIG. 5).
 また、電源回路基板23の下面側に実装された発熱回路部品39が伝熱部材37内に押し込まれ、発熱回路部品39と伝熱部材37との接触面積が増加する。
 しかも、伝熱部材37が弾性を有するので、電源回路基板23を固定ねじ38によって伝熱支持板部33aに締付けた状態で、発熱回路部品39の底面と伝熱部材37の上面とを適度な押圧力で接触させることができる。このため、電源回路基板23及び伝熱部材37との接触が良好に行われ、伝熱部材37と電源回路基板23及び伝熱支持板部33aとの間の熱抵抗を減少させることができる。
Further, the heat generating circuit component 39 mounted on the lower surface side of the power circuit board 23 is pushed into the heat transfer member 37, and the contact area between the heat generating circuit component 39 and the heat transfer member 37 increases.
In addition, since the heat transfer member 37 has elasticity, the bottom surface of the heat generating circuit component 39 and the upper surface of the heat transfer member 37 are properly connected with the power supply circuit board 23 fastened to the heat transfer support plate portion 33a by the fixing screw 38. The contact can be made by pressing force. For this reason, contact with the power supply circuit board 23 and the heat transfer member 37 is performed favorably, and the thermal resistance between the heat transfer member 37, the power supply circuit board 23, and the heat transfer support plate portion 33a can be reduced.
 制御回路基板22と伝熱支持板部32aとの伝熱部材35を介在させた連結も上記伝熱部材37と同様にして行われる。
 なお、伝熱支持部材32及び33の伝熱支持板部32a及び33aの下面には、絶縁距離を短くするために絶縁シート42及び43が貼着されている。
 伝熱支持部材32及び33の共通の底板部34には、図2及び図3に示すように、半導体パワーモジュール11の固定ねじ14を挿通する挿通孔15に対向する位置に固定部材挿通孔34aが形成されている。また、底板部34の中央部には、図9で特に明らかなように、冷却体3の中央部3cを挿通する開口部34bが形成されている。さらに、底板部34の上面と半導体パワーモジュール11に形成された冷却部材13の下面との間に板状弾性部材45が介在されている。
The connection of the control circuit board 22 and the heat transfer support plate portion 32a through the heat transfer member 35 is performed in the same manner as the heat transfer member 37.
Insulating sheets 42 and 43 are attached to the lower surfaces of the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33 in order to shorten the insulation distance.
As shown in FIGS. 2 and 3, the common bottom plate portion 34 of the heat transfer support members 32 and 33 has a fixing member insertion hole 34 a at a position facing the insertion hole 15 through which the fixing screw 14 of the semiconductor power module 11 is inserted. Is formed. In addition, an opening 34b that passes through the central portion 3c of the cooling body 3 is formed in the central portion of the bottom plate portion 34, as clearly shown in FIG. Further, a plate-like elastic member 45 is interposed between the upper surface of the bottom plate portion 34 and the lower surface of the cooling member 13 formed in the semiconductor power module 11.
 そして、半導体パワーモジュール11及び冷却部材13の挿通孔15及び底板部34の固定部材挿通孔34aに固定ねじ14を挿通し、この固定ねじ14を冷却体3に形成された雌ねじ部3fに螺合させることにより、半導体パワーモジュール11と底板部34とが冷却体3に固定されている。 Then, the fixing screw 14 is inserted into the insertion hole 15 of the semiconductor power module 11 and the cooling member 13 and the fixing member insertion hole 34 a of the bottom plate portion 34, and the fixing screw 14 is screwed into the female screw portion 3 f formed in the cooling body 3. By doing so, the semiconductor power module 11 and the bottom plate portion 34 are fixed to the cooling body 3.
 次に、上記第1の実施形態の電力変換装置1の組立方法を説明する。
 先ず、図4で前述したように、電源回路基板23を、伝熱支持部材33の伝熱支持板部33aに伝熱部材37を介して重ね合わせる。この状態で、固定ねじ38によって伝熱部材37を5~30%程度の圧縮率で圧縮した状態で電源回路基板23、伝熱部材37及び伝熱支持板部33aを固定して、電源回路ユニットU3を形成しておく。
 同様に、制御回路基板22を、伝熱支持部材32の伝熱支持板部32aに伝熱部材35を介して重ね合わせる。この状態で、固定ねじ36によって伝熱部材35を5~30%程度の圧縮率で圧縮した状態で制御回路基板22、伝熱部材35及び伝熱支持板部32aを固定して制御回路ユニットU2を形成しておく。
Next, a method for assembling the power conversion device 1 according to the first embodiment will be described.
First, as described above with reference to FIG. 4, the power circuit board 23 is superposed on the heat transfer support plate portion 33 a of the heat transfer support member 33 via the heat transfer member 37. In this state, the power supply circuit board 23, the heat transfer member 37, and the heat transfer support plate portion 33a are fixed in a state where the heat transfer member 37 is compressed with a compression rate of about 5 to 30% by the fixing screw 38, and the power supply circuit unit U3 is formed.
Similarly, the control circuit board 22 is superposed on the heat transfer support plate portion 32 a of the heat transfer support member 32 via the heat transfer member 35. In this state, the control circuit board 22, the heat transfer member 35, and the heat transfer support plate portion 32a are fixed in a state where the heat transfer member 35 is compressed at a compression rate of about 5 to 30% by the fixing screw 36, and the control circuit unit U2 is fixed. Is formed.
 一方、冷却体3の周溝3d内に、伝熱支持部材32及び33に共通の底板部34を、その上面と半導体パワーモジュール11に形成した冷却部材13の下面との間に板状弾性部材45を介在させた状態で、半導体パワーモジュール11とともに固定ねじ14で固定する。このように、半導体パワーモジュール11と伝熱支持部材32及び33の共通の底板部34とを同時に冷却体3に固定することができるので、組立工数を減少させることができる。また、底板部34を冷却体3に固定する際に板状弾性部材45を底板部34と半導体パワーモジュール11の冷却部材13との間に介在させるので、この板状弾性部材45によって底板部34が冷却体3の周溝3dの底部に押し付けられて、底板部34が冷却体3に確実に接触されて、広い接触面積を確保することができる。 On the other hand, in the circumferential groove 3 d of the cooling body 3, a bottom plate portion 34 common to the heat transfer support members 32 and 33 is provided between the upper surface and the lower surface of the cooling member 13 formed in the semiconductor power module 11. In the state where 45 is interposed, it is fixed with the fixing screw 14 together with the semiconductor power module 11. Thus, since the semiconductor power module 11 and the common bottom plate portion 34 of the heat transfer support members 32 and 33 can be fixed to the cooling body 3 at the same time, the number of assembling steps can be reduced. Further, since the plate-like elastic member 45 is interposed between the bottom plate portion 34 and the cooling member 13 of the semiconductor power module 11 when the bottom plate portion 34 is fixed to the cooling body 3, the plate-like elastic member 45 causes the bottom plate portion 34 to be interposed. Is pressed against the bottom of the circumferential groove 3d of the cooling body 3, and the bottom plate portion 34 is reliably brought into contact with the cooling body 3, thereby ensuring a wide contact area.
 また、半導体パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。そして、伝熱支持板部32aを伝熱支持側板部32cに固定ねじ32bで連結する。
 そして、継ぎねじ24の上面に制御回路ユニットU2の制御回路基板22を載置し、4本の継ぎねじ25によって固定する。さらに、継ぎねじ25の上面に電源回路ユニットU3の電源回路基板23を載置し、4本の固定ねじ26によって固定する。そして、伝熱支持板部33aを伝熱支持側板部33cに固定ねじ33bによって連結する。
In the semiconductor power module 11, the drive circuit board 21 is mounted on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above. And the heat-transfer support plate part 32a is connected with the heat-transfer support side plate part 32c with the fixing screw 32b.
Then, the control circuit board 22 of the control circuit unit U <b> 2 is placed on the upper surface of the joint screw 24 and is fixed by the four joint screws 25. Further, the power supply circuit board 23 of the power supply circuit unit U 3 is placed on the upper surface of the joint screw 25 and fixed by the four fixing screws 26. And the heat-transfer support plate part 33a is connected with the heat-transfer support side plate part 33c by the fixing screw 33b.
 その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子に11aに、伝熱支持部材32の開口部32hを通じて正負2本ブスバー50p及び50nを接続し、このブスバー50p及び50nの他端に冷却体3を貫通するフィルムコンデンサ4の正負の外部接続電極4aを固定ねじ51で連結する。さらに、半導体パワーモジュール11の直流入力端子11aに外部のコンバータ(図示せず)に接続する2本の接続ケーブル52の先端に固定された圧着端子53を固定する。 After that, as shown in FIG. 1, two positive and negative bus bars 50p and 50n are connected to the positive and negative DC input terminals of the semiconductor power module 11 through the opening 32h of the heat transfer support member 32, and the bus bars 50p and 50n are connected. A positive and negative external connection electrode 4 a of the film capacitor 4 that penetrates the cooling body 3 is connected to the other end by a fixing screw 51. Further, a crimp terminal 53 fixed to the ends of two connection cables 52 connected to an external converter (not shown) is fixed to the DC input terminal 11 a of the semiconductor power module 11.
 さらに、半導体パワーモジュール11の3相交流出力端子11bに伝熱支持部材33の伝熱支持側板部33cに形成された開口部33h~33jを通じて3本のブスバー55u~55wを固定ねじ56で接続し、これら3本のブスバー55u~55wの途中に電流センサ57を配置する。そして、各ブスバー55u~55wの他端に外部の3相電動モータ(図示せず)に接続したモータ接続ケーブル58の先端に固定した圧着端子59を固定ねじ60で固定して接続する。
 その後、冷却体3の下面及び上面に、下部筐体2A及び上部筐体2Bを、シール材を介して固定して電力変換装置1の組立を完了する。
Further, the three bus bars 55u to 55w are connected to the three-phase AC output terminal 11b of the semiconductor power module 11 through the openings 33h to 33j formed in the heat transfer support side plate portion 33c of the heat transfer support member 33 with the fixing screws 56. The current sensor 57 is arranged in the middle of the three bus bars 55u to 55w. Then, a crimp terminal 59 fixed to the tip of a motor connection cable 58 connected to an external three-phase electric motor (not shown) is connected to the other end of each of the bus bars 55u to 55w with a fixing screw 60.
Thereafter, the lower housing 2A and the upper housing 2B are fixed to the lower surface and the upper surface of the cooling body 3 via a sealing material, and the assembly of the power conversion device 1 is completed.
 この状態で、外部のコンバータ(図示せず)から直流電力を供給するとともに、電源回路基板23に実装された電源回路、制御回路基板22に実装された制御回路を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介して半導体パワーモジュール11に供給する。これによって、半導体パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介してモータ接続ケーブル58に供給し、3相電動モータ(図示せず)を駆動制御する。 In this state, DC power is supplied from an external converter (not shown), and the power supply circuit mounted on the power supply circuit board 23 and the control circuit mounted on the control circuit board 22 are set in an operating state. A gate signal that is a pulse width modulation signal is supplied to the semiconductor power module 11 via a drive circuit mounted on the drive circuit board 21. As a result, the IGBT built in the semiconductor power module 11 is controlled to convert DC power into AC power. The converted AC power is supplied from the three-phase AC output terminal 11b to the motor connection cable 58 via the bus bar 55 to drive and control a three-phase electric motor (not shown).
 このとき、半導体パワーモジュール11に内蔵されたIGBTで発熱する。この発熱は半導体パワーモジュール11に形成された冷却部材13が冷却体3の中央部3cに直接接触されているので、冷却体3に供給されている冷却水によって冷却される。
 一方、制御回路基板22及び電源回路基板23に実装されている制御回路及び電源回路には発熱回路部品39が含まれており、これら発熱回路部品39で発熱を生じる。このとき、発熱回路部品39は制御回路基板22及び電源回路基板23の下面側に実装されている。
At this time, the IGBT built in the semiconductor power module 11 generates heat. The generated heat is cooled by the cooling water supplied to the cooling body 3 because the cooling member 13 formed in the semiconductor power module 11 is in direct contact with the central portion 3 c of the cooling body 3.
On the other hand, the control circuit and the power supply circuit mounted on the control circuit board 22 and the power supply circuit board 23 include a heat generating circuit component 39, and the heat generating circuit component 39 generates heat. At this time, the heat generating circuit component 39 is mounted on the lower surface side of the control circuit board 22 and the power supply circuit board 23.
 これら制御回路基板22及び電源回路基板23の下面側には熱伝導率が高く弾性を有する伝熱部材35及び37を介して伝熱支持部材32及び33の伝熱支持板部32a及び33aが設けられている。このため、発熱回路部品39の発熱は、図10に示すように、伝熱部材35及び37を介して伝熱支持板部32a及び33aに伝熱される。
 そして、伝熱支持板部32a及び33aには、伝熱支持側板部32c及び33cが連結されているので、伝熱支持板部32a及び33aに伝達された熱は、図10に示すように、伝熱支持側板部32c及び33cを通って共通の底板部34に伝達される。この底板部34は、冷却体3の周溝3d内に直接接触されているので、伝達された熱は冷却体3に放熱される。
Heat transfer support plate portions 32a and 33a of heat transfer support members 32 and 33 are provided on the lower surfaces of the control circuit board 22 and the power supply circuit board 23 through heat transfer members 35 and 37 having high thermal conductivity and elasticity. It has been. Therefore, the heat generated by the heat generating circuit component 39 is transferred to the heat transfer support plate portions 32a and 33a via the heat transfer members 35 and 37 as shown in FIG.
And since the heat transfer support side plate portions 32c and 33c are connected to the heat transfer support plate portions 32a and 33a, the heat transferred to the heat transfer support plate portions 32a and 33a is as shown in FIG. It is transmitted to the common bottom plate portion 34 through the heat transfer support side plate portions 32c and 33c. Since the bottom plate portion 34 is in direct contact with the circumferential groove 3 d of the cooling body 3, the transmitted heat is radiated to the cooling body 3.
 さらに、底板部34に伝達された熱は、その上面側から板状弾性部材45を介して半導体パワーモジュール11の冷却部材13に伝達され、この冷却部材13を介して冷却体3の中央部3cに伝達されて放熱される。
 また、伝熱支持部材33の伝熱支持側板部33cには、開口部33h~33jを形成するために、前後側縁及びこれら前後側縁の下部を連結する下部側縁位置でU字状のスリットを形成して舌片33kを形成し、この舌片33kの上縁部を基準にして外方に折り曲げることにより、開口部33h~33jを形成するとともに、吸熱部となる折曲部33mを形成している。
Further, the heat transmitted to the bottom plate portion 34 is transmitted from the upper surface side to the cooling member 13 of the semiconductor power module 11 via the plate-like elastic member 45, and the central portion 3 c of the cooling body 3 via this cooling member 13. It is transmitted to and dissipated.
Further, the heat transfer support side plate portion 33c of the heat transfer support member 33 has a U-shape at the lower side edge position connecting the front and rear side edges and the lower portions of the front and rear side edges to form openings 33h to 33j. A slit 33k is formed by forming a slit, and the openings 33h to 33j are formed by bending outward with reference to the upper edge portion of the tongue 33k, and a bent portion 33m serving as a heat absorbing portion is formed. Forming.
 このように、開口部33h~33jの上部側に外方に突出する折曲部33mが形成されているので、各折曲部33mで、伝熱支持側板部33cの側面の表面積を拡大することができる。このため、図10で点線図示の矢印で示すように、折曲部33mで、制御回路基板22及び電源回路基板23の周囲の上部筐体2Bによって密封された空気の熱を率よく吸熱することができる。したがって、制御回路基板22及び電源回路基板23の温度を低減することができる。 Thus, since the bent portions 33m projecting outward are formed on the upper sides of the openings 33h to 33j, the surface area of the side surface of the heat transfer support side plate portion 33c can be increased at each bent portion 33m. Can do. Therefore, as shown by an arrow in a dotted line shown in FIG. 10, in the bent portion 33m, it absorbs heat better efficiency of heat of the air sealed by the surrounding upper housing 2B of the control circuit board 22 and the power supply circuit board 23 be able to. Therefore, the temperature of the control circuit board 22 and the power supply circuit board 23 can be reduced.
 しかも、各開口部33h~33jの上部に形成された吸熱部としての折曲部33mは、上端縁が伝熱支持側板部33cに接続された舌片33kを折り曲げて形成するので、折曲部33mu~33mwと伝熱支持側板部33cとの間の熱抵抗が殆どなく、開口部33h~33jを挿通するブスバー55u~55wや制御回路基板22及び電源回路基板23に実装された発熱回路部品39によって温められた空気の熱を熱抵抗なく冷却体3に放熱することができる。折曲部33mu~33mwの周囲の雰囲気の温度の上昇を抑制することができる。 In addition, the bent portion 33m as the heat absorbing portion formed at the upper part of each of the openings 33h to 33j is formed by bending the tongue piece 33k whose upper end edge is connected to the heat transfer support side plate portion 33c. There is almost no thermal resistance between 33 mu to 33 mw and the heat transfer support side plate portion 33 c, and the heat generating circuit components 39 mounted on the bus bars 55 u to 55 w passing through the openings 33 h to 33 j, the control circuit board 22 and the power supply circuit board 23. The heat of the air warmed by can be radiated to the cooling body 3 without thermal resistance. An increase in the temperature of the atmosphere around the bent portions 33mu to 33mw can be suppressed.
 このように、上記第1の実施形態によると、電源回路基板23を支持する伝熱支持部材33の伝熱支持側板部33cに、ブスバー50u~50wを挿通する開口部33h~33jを形成する舌片33kを、外側に折り曲げて折曲部33mu~33mwを形成するようにした。このため、折曲部33mu~33mwによって伝熱支持側板部33cの外側の表面積を拡大することができ、上部筐体2Bによって密封されている伝熱支持側板部33cの周囲の雰囲気から吸熱して冷却体3に放熱することができる。したがって、伝熱支持側板部33cの周囲の雰囲気温度の上昇を抑制することができ、制御回路基板22及び電源回路基板23の温度上昇も抑制することができる。 As described above, according to the first embodiment, the tongue that forms the openings 33h to 33j through which the bus bars 50u to 50w are inserted in the heat transfer support side plate portion 33c of the heat transfer support member 33 that supports the power supply circuit board 23. The piece 33k was bent outward to form the bent portions 33mu to 33mw. For this reason, the outer surface area of the heat transfer support side plate portion 33c can be enlarged by the bent portions 33mu to 33mw, and heat is absorbed from the atmosphere around the heat transfer support side plate portion 33c sealed by the upper housing 2B. Heat can be radiated to the cooling body 3. Therefore, an increase in the ambient temperature around the heat transfer support side plate portion 33c can be suppressed, and an increase in the temperature of the control circuit board 22 and the power supply circuit board 23 can also be suppressed.
 さらに、折曲部33mu~33mwは、その上端縁が伝熱支持側板部33cと直接接続されているので、この接続部での熱抵抗を抑制することができ、周囲雰囲気の吸熱を率よく行うことができる。
 そして、伝熱部材35及び37自体は5~30%程度の圧縮率で圧縮されて熱伝導率が高められているので、図9に示すように、伝熱部材35及び37に伝熱された熱が効率良く伝熱支持部材32及び33の伝熱支持板部32a及び33aに伝達される。
Further, the bent portion 33mu ~ 33mw, since its upper edge is directly connected to the heat transfer support plate portion 33c, it is possible to suppress the thermal resistance at the connection portion may efficiency endothermic of the ambient atmosphere It can be carried out.
Since the heat transfer members 35 and 37 themselves are compressed at a compression rate of about 5 to 30% to increase the thermal conductivity, the heat transfer members 35 and 37 are transferred to the heat transfer members 35 and 37 as shown in FIG. Heat is efficiently transmitted to the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33.
 また、制御回路基板22及び電源回路基板23に実装された発熱回路部品39の発熱が熱抵抗の大きな制御回路基板22及び電源回路基板23を介することなく直接伝熱部材35及び37に伝熱されるので、効率の良い放熱を行うことができる。
 そして、伝熱部材35及び37に伝達された熱は伝熱支持板部32a及び33aに伝熱され、さらに伝熱支持側板部32c及び33cに伝達される。このとき、伝熱支持側板部32c及び33cが半導体パワーモジュール11の長辺に沿って設けられている。
Further, heat generated by the heat generating circuit component 39 mounted on the control circuit board 22 and the power supply circuit board 23 is directly transferred to the heat transfer members 35 and 37 without passing through the control circuit board 22 and the power supply circuit board 23 having a large thermal resistance. Therefore, efficient heat dissipation can be performed.
The heat transferred to the heat transfer members 35 and 37 is transferred to the heat transfer support plate portions 32a and 33a, and further transferred to the heat transfer support side plate portions 32c and 33c. At this time, the heat transfer support side plate portions 32 c and 33 c are provided along the long side of the semiconductor power module 11.
 このため、伝熱面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱支持側板部32c及び33cは折れ曲がり部が円筒状の湾曲部とされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。ここで、熱輸送量Qは、下記(1)式で表すことができる。
 Q=λ×(A/L)×T   …………(1)
 ただし、λは熱伝導率[W/m℃]、Tは温度差[℃]基板温度T1-冷却体温度T2、Aは伝熱最小断面積[m]、Lは伝熱長さ[m]である。
For this reason, a wide heat transfer area can be taken, and a wide heat dissipation path can be secured. Moreover, since the bent portions of the heat transfer support side plate portions 32c and 33c are cylindrical curved portions, the heat transfer distance to the cooling body 3 is shortened as compared with the case where the bent portions are L-shaped. Can do. Here, the heat transport amount Q can be expressed by the following equation (1).
Q = λ × (A / L) × T (1)
Where λ is the thermal conductivity [W / m ° C.], T is the temperature difference [° C.] substrate temperature T 1 -cooling body temperature T 2, A is the minimum heat transfer cross section [m 2 ], and L is the heat transfer length [m ].
 この(1)式から明らかなように、伝熱長さLが短くなると、熱輸送量Qは増加することになり、良好な冷却効果を発揮することができる。
 また、伝熱支持部材32及び33の伝熱支持側板部32c及び33cが共通の底板部34で一体化されているので、伝熱支持側板部32c及び33cと底板部34との間に部品同士の継ぎ目がなく、熱抵抗を抑制することができる。
As is clear from the equation (1), when the heat transfer length L is shortened, the heat transport amount Q is increased, and a good cooling effect can be exhibited.
Further, since the heat transfer support side plate portions 32c and 33c of the heat transfer support members 32 and 33 are integrated by the common bottom plate portion 34, the components are arranged between the heat transfer support side plate portions 32c and 33c and the bottom plate portion 34. The heat resistance can be suppressed.
 さらに、発熱回路部品39が実装された制御回路基板22及び電源回路基板23から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2に伝熱性が要求されることがない。したがって、筐体2の構成材料としてアルミニウム等の高熱伝導率の金属を使用する必要がなく、合成樹脂材で筐体2を構成することが可能となり、軽量化を図ることができる。 Furthermore, since the housing 2 is not included in the heat dissipation path from the control circuit board 22 and the power circuit board 23 on which the heat generating circuit component 39 is mounted to the cooling body 3, the housing 2 is required to have heat conductivity. Absent. Therefore, it is not necessary to use a metal having a high thermal conductivity such as aluminum as a constituent material of the casing 2, and the casing 2 can be configured with a synthetic resin material, and the weight can be reduced.
 また、放熱経路が筐体2に依存することなく、電力変換装置1単独で放熱経路を形成することができる。このため、半導体パワーモジュール11と、駆動回路基板21、制御回路基板22及び電源回路基板23とで構成される電力変換装置1を種々の異なる形態の筐体2や冷却体3に適用することができ、筐体2の設計の自由度を向上させることができる。 Further, the heat dissipation path can be formed by the power converter 1 alone without the heat dissipation path depending on the housing 2. For this reason, it is possible to apply the power conversion device 1 including the semiconductor power module 11, the drive circuit board 21, the control circuit board 22, and the power supply circuit board 23 to the housing 2 and the cooling body 3 in various different forms. And the degree of freedom in designing the housing 2 can be improved.
 また、制御回路基板22及び電源回路基板23に金属製の伝熱支持板部32a及び33aが固定されているので、制御回路基板22及び電源回路基板23の剛性を高めることができる。さらに、伝熱支持部材33の伝熱支持側板部33cの側面に折曲部33mu~33mwが形成されており、これら折曲部33mu~33mwによって伝熱支持側板部33cの剛性を高めることができる。このため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に図8に示す上下振動や横揺れが作用する場合でも、伝熱支持部材32及び33で剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。 Further, since the metal heat transfer support plate portions 32a and 33a are fixed to the control circuit board 22 and the power circuit board 23, the rigidity of the control circuit board 22 and the power circuit board 23 can be increased. Further, bent portions 33mu to 33mw are formed on the side surfaces of the heat transfer support side plate portion 33c of the heat transfer support member 33, and the rigidity of the heat transfer support side plate portion 33c can be increased by the bent portions 33mu to 33mw. . For this reason, even when the power converter 1 is applied as a motor drive circuit that drives a vehicle driving motor, even when the vertical vibration or roll shown in FIG. The members 32 and 33 can increase the rigidity. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibrations and rolls.
 なお、上記第1の実施形態においては、伝熱支持側板部33cのみに折曲部33mu~33mwを形成した場合について説明したが、これに限定されるものではなく、伝熱支持側板部32cにも折曲部を形成するようにしてもよい。この場合には、筐体2内に密封される空気の吸熱効果をより向上させることができる。
 また、上記実施形態においては、制御回路ユニットU2及び電源回路ユニットU3で、伝熱部材35及び37を制御回路基板22及び電源回路基板23と同じ外形とした場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、伝熱部材35及び37を図6に示すように発熱回路部品39が存在する箇所にのみ設けるようにしてもよい。
In the first embodiment, the case where the bent portions 33mu to 33mw are formed only on the heat transfer support side plate portion 33c has been described. However, the present invention is not limited to this, and the heat transfer support side plate portion 32c is not limited to this. Alternatively, a bent portion may be formed. In this case, the heat absorption effect of the air sealed in the housing 2 can be further improved.
Moreover, in the said embodiment, the case where the heat transfer members 35 and 37 were made into the same external shape as the control circuit board 22 and the power supply circuit board 23 by the control circuit unit U2 and the power supply circuit unit U3 was demonstrated. However, the present invention is not limited to the above-described configuration, and the heat transfer members 35 and 37 may be provided only at a location where the heat generating circuit component 39 exists as shown in FIG.
 また、上記実施形態においては、発熱回路部品39を実装した基板が2種類存在する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、発熱回路部品39を実装した基板が例えば制御回路基板22の一枚だけである場合には、図12(a)に示すように構成してもよい。すなわち、制御回路基板22の左右両側にそれぞれ伝熱支持側板部32c及び32Lを設けて、伝熱支持板部32aの両側に放熱経路を形成する。このように構成することにより、伝熱支持板部32aの両側に放熱経路が形成されることにより、放熱効果をより向上させることができる。 In the above embodiment, the case where there are two types of boards on which the heat generating circuit component 39 is mounted has been described. However, the present invention is not limited to the above-described configuration. For example, when the substrate on which the heat generating circuit component 39 is mounted is only one piece of the control circuit substrate 22, the configuration as shown in FIG. May be. That is, the heat transfer support side plates 32c and 32L are provided on both the left and right sides of the control circuit board 22, respectively, and the heat radiation paths are formed on both sides of the heat transfer support plate 32a. By comprising in this way, the thermal radiation effect can be improved more by forming the thermal radiation path in the both sides of the heat-transfer support plate part 32a.
 さらには、図12(b)に示すように伝熱支持側板部32cに各回路ユニットU2及びU3を支持する上板部32eを複数形成して、複数の回路基板を支持するようにしてもよい。
 また、上記第1の実施形態においては、半導体パワーモジュール11の冷却部材13を冷却体3の上面に接触させた場合について説明した。しかしながら、本発明は上記構成に限らず、冷却部材13を、図13及び図14に示すように構成することもできる。
Furthermore, as shown in FIG. 12B, a plurality of upper plate portions 32e that support the circuit units U2 and U3 may be formed on the heat transfer support side plate portion 32c to support a plurality of circuit boards. .
Moreover, in the said 1st Embodiment, the case where the cooling member 13 of the semiconductor power module 11 was made to contact the upper surface of the cooling body 3 was demonstrated. However, the present invention is not limited to the above configuration, and the cooling member 13 can be configured as shown in FIGS. 13 and 14.
 すなわち、本実施形態では、半導体パワーモジュール11に形成されている冷却部材13が冷却体3に流れる冷却水に直接接触する冷却フィン61を備えた構成とされている。これに応じて、冷却体3の中央部に冷却フィン61を冷却水の通路に浸漬させる浸漬部62を形成している。
 そして、浸漬部62を囲む周壁63と冷却部材13との間にOリング等のシール部材66が配設されている。
That is, in the present embodiment, the cooling member 13 formed in the semiconductor power module 11 includes the cooling fins 61 that directly contact the cooling water flowing in the cooling body 3. Accordingly, an immersion part 62 is formed in the central part of the cooling body 3 so that the cooling fins 61 are immersed in the passage of the cooling water.
A sealing member 66 such as an O-ring is disposed between the peripheral wall 63 surrounding the immersion part 62 and the cooling member 13.
 その他の構成については前述した第1の実施形態と同様の構成を有し、図1及び図2との対応部分には同一符号を付しその詳細説明はこれを省略する。
 この構成によると、半導体パワーモジュール11の冷却部材13に冷却フィン61が形成され、この冷却フィン61が冷却水に浸漬部62で冷却水に浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
Other configurations have the same configurations as those of the first embodiment described above, and the same reference numerals are given to corresponding portions to those in FIGS. 1 and 2, and the detailed description thereof will be omitted.
According to this configuration, the cooling fins 61 are formed on the cooling member 13 of the semiconductor power module 11, and the cooling fins 61 are immersed in the cooling water in the cooling water at the immersion part 62, so that the semiconductor power module 11 is more efficiently used. Can be cooled.
 また、上記実施形態においては、伝熱支持部材32及び33の伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、図15に示すように、伝熱支持板部32a及び33aと伝熱支持側板部32c及び33cとを一体に構成するようにしてもよい。この場合には、伝熱支持板部32a及び33aと伝熱支持側板部32c及び32cとの間に継ぎ目が形成されることがなくなるので、熱抵抗を小さくしてより効率の良い放熱を行うことができる。 Moreover, in the said embodiment, the case where the heat-transfer support plate part 32a and 33a of the heat- transfer support members 32 and 33 and the heat-transfer support side plate part 32c and 33c were comprised separately was demonstrated. However, the present invention is not limited to the above configuration, and as shown in FIG. 15, the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 33c may be configured integrally. Good. In this case, since no seam is formed between the heat transfer support plate portions 32a and 33a and the heat transfer support side plate portions 32c and 32c, the heat resistance is reduced and more efficient heat dissipation is performed. Can do.
 また、上記第1の実施形態においては、制御回路基板22及び電源回路基板23に伝熱部材35及び37を介して伝熱支持板部32a及び33aを結合した場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、制御回路基板22及び電源回路基板として、図16に示すように、アルミニウム又はアルミニウム合金を主体とした放熱板71上に絶縁層72を介して回路パターン73を形成した金属ベース回路基板74を適用することができる。この場合には、図16に示すように、伝熱部材35及び37と伝熱支持板部32a及び33aを省略して、金属ベース回路基板74の放熱板71を直接伝熱支持側板部32c及び33cに接続するようにすればよい。 In the first embodiment, the case where the heat transfer support plate portions 32a and 33a are coupled to the control circuit board 22 and the power supply circuit board 23 via the heat transfer members 35 and 37 has been described. However, the present invention is not limited to the above-described configuration. As shown in FIG. 16, an insulating layer 72 is provided on a heat dissipation plate 71 mainly composed of aluminum or an aluminum alloy as the control circuit board 22 and the power supply circuit board. A metal base circuit board 74 on which a circuit pattern 73 is formed can be applied. In this case, as shown in FIG. 16, the heat transfer members 35 and 37 and the heat transfer support plate portions 32a and 33a are omitted, and the heat dissipation plate 71 of the metal base circuit board 74 is directly connected to the heat transfer support side plate portion 32c and What is necessary is just to make it connect to 33c.
 また、上記第1の実施形態においては、発熱回路部品39を実装した制御回路基板22及び電源回路基板23を伝熱支持部材32及び33の伝熱支持板部32a及び33aで伝熱部材35及び37を介して支持する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、図17に示すように、伝熱部材35及び37を省略して伝熱支持板部32a及び33a上に制御回路基板22及び電源回路基板23を直接支持する伝熱基板支持部75を一体に形成するようにしてもよい。この場合には、伝熱基板支持部75が伝熱支持板部32a及び33aに一体に形成されているので、伝熱基板支持部75と伝熱支持板部32a及び33aとの間の熱抵抗が殆どない状態とすることができる。このため、発伝熱基板支持部75を発熱回路部品39の近傍に配置することにより、発熱回路部品39の放熱を効率よく行うことができる。なお、伝熱支持板部33aの上面には絶縁シート76が配設されている。 In the first embodiment, the control circuit board 22 and the power supply circuit board 23 on which the heat generating circuit component 39 is mounted are connected to the heat transfer member 35 and the heat transfer support plate portions 32a and 33a of the heat transfer support members 32 and 33. The case where it supports via 37 was demonstrated. However, the present invention is not limited to the above configuration. As shown in FIG. 17, the heat transfer members 35 and 37 are omitted, and the control circuit board 22 and the power supply circuit board are provided on the heat transfer support plates 32a and 33a. The heat transfer substrate support 75 that directly supports the heat transfer substrate 23 may be integrally formed. In this case, since the heat transfer substrate support portion 75 is formed integrally with the heat transfer support plate portions 32a and 33a, the thermal resistance between the heat transfer substrate support portion 75 and the heat transfer support plate portions 32a and 33a. It can be made into the state which has almost no. For this reason, by disposing the heat transfer substrate support portion 75 in the vicinity of the heat generating circuit component 39, it is possible to efficiently dissipate the heat generating circuit component 39. An insulating sheet 76 is provided on the upper surface of the heat transfer support plate portion 33a.
 次に、本発明の第2の実施形態を図18~図20について説明する。
 この第2の実施形態では、吸熱部として折曲部に代えて吸熱フィンを適用したものである。
 すなわち、第2の実施形態では、図18~図20に示すように、伝熱支持部材32及び33の伝熱支持側板部32c及び33cにおける開口部32h及び33h~33jを挟む前後位置に基台81上に上下方向に延長する複数の吸熱フィン82を、所定間隔を保って前後方向に配列して吸熱部83を形成している。そして、吸熱部83の基台81を溶接やロー付け等の接合方法を使用して伝熱支持側板部32c及び33cに固定している。
Next, a second embodiment of the present invention will be described with reference to FIGS.
In this 2nd Embodiment, it replaces with a bending part as an endothermic part, and an endothermic fin is applied.
That is, in the second embodiment, as shown in FIGS. 18 to 20, the base is located at the front and back positions sandwiching the openings 32h and 33h to 33j in the heat transfer support side plates 32c and 33c of the heat transfer support members 32 and 33. A plurality of heat absorption fins 82 extending in the vertical direction on 81 are arranged in the front-rear direction at a predetermined interval to form a heat absorption portion 83. And the base 81 of the heat absorption part 83 is being fixed to the heat-transfer support side board parts 32c and 33c using joining methods, such as welding and brazing.
 この第2の実施形態では、伝熱支持側板部32c及33cの前後端部位置にそれぞれ複数の吸熱フィン82を有する吸熱部83を形成したので、伝熱支持側板部32c及び33cの外側面の表面積を前述した第1の実施形態における折曲部33mu~33mwに比較して格段に増加させることができる。このため、伝熱支持側板部32c及び33cの周囲雰囲気の温度をより効率よく吸熱することができ、周囲雰囲気の温度上昇を確実に抑制することができる。
 なお、上記第2の実施形態においては、伝熱支持側板部32c及び33cの前後端部位置に吸熱フィン82を形成した場合について説明したが、開口部32h及び33h~33jの下部側や上部側にも吸熱フィン82を配置するようにしてもよい。
In the second embodiment, since the heat absorbing portions 83 having the plurality of heat absorbing fins 82 are formed at the front and rear end positions of the heat transfer supporting side plate portions 32c and 33c, the outer side surfaces of the heat transfer supporting side plate portions 32c and 33c are formed. The surface area can be remarkably increased as compared with the bent portions 33mu to 33mw in the first embodiment described above. For this reason, the temperature of the surrounding atmosphere of the heat-transfer support side plate parts 32c and 33c can be absorbed more efficiently, and the temperature rise of the surrounding atmosphere can be reliably suppressed.
In the second embodiment, the case where the heat absorbing fins 82 are formed at the front and rear end positions of the heat transfer support side plates 32c and 33c has been described. However, the lower side and the upper side of the openings 32h and 33h to 33j. Alternatively, an endothermic fin 82 may be disposed.
 次に、本発明の第3の実施形態を図20及び図21について説明する。
 この第3の嫉視形態では吸熱部として冷却フィンに代えて冷却リブを適用するようにしたものである。
 すなわち、第3の実施形態では、図21及び図22に示すように、前述した第2の実施形態における基台81及び冷却フィン82で構成される吸熱部83を省略し、これらに代えて上下方向に延長する三角筒状の冷却リブ91を前後方向に所定間隔を保って複数配置するようにしている。この場合、冷却リブ91は、伝熱支持部材32及び33をプレス成形する際に、一体にリブ加工して形成する。
Next, a third embodiment of the present invention will be described with reference to FIGS.
In the third aspect, a cooling rib is applied instead of the cooling fin as the heat absorbing portion.
That is, in the third embodiment, as shown in FIGS. 21 and 22, the heat absorbing portion 83 configured by the base 81 and the cooling fin 82 in the second embodiment described above is omitted, and instead of these, A plurality of triangular cylindrical cooling ribs 91 extending in the direction are arranged at predetermined intervals in the front-rear direction. In this case, the cooling rib 91 is formed by rib processing integrally when the heat transfer support members 32 and 33 are press-molded.
 この第3の実施形態によると、伝熱支持部材32及び33の伝熱支持側板部32c及び33cにおける前後端部側にリブ加工によって吸熱リブ91を形成するようにしている。このため、伝熱支持側板部32c及び33cの表面積を前述した第1の実施形態と同様に増加させることができ、伝熱支持側板部32c及び33cによる吸熱効果を向上させることができる。しかも、吸熱リブ91が伝熱支持側板部32c及び33cに一体に形成されているので、冷却リブ91と伝熱支持側板部32c及び33cとの連結部での熱抵抗を小さくすることができる。したがって、冷却リブ91を形成することにより、伝熱支持側板部32c及び33cで良好な吸熱効果を発揮することができる。 According to the third embodiment, the heat absorbing ribs 91 are formed by rib processing on the front and rear end sides of the heat transfer support side plates 32c and 33c of the heat transfer support members 32 and 33. For this reason, the surface areas of the heat transfer support side plates 32c and 33c can be increased in the same manner as in the first embodiment described above, and the heat absorption effect by the heat transfer support side plates 32c and 33c can be improved. And since the heat absorption rib 91 is integrally formed in the heat-transfer support side plate part 32c and 33c, the thermal resistance in the connection part of the cooling rib 91 and the heat-transfer support side plate part 32c and 33c can be made small. Therefore, by forming the cooling rib 91, a good endothermic effect can be exhibited by the heat transfer support side plate portions 32c and 33c.
 なお、上記第3の実施形態においては、冷却リブ91が三角筒状に形成されている場合について説明したが、これに限定されるものではなく、断面半円形状、断面台形状等の任意の断面形状に形成することができる。
 また、上記第1~第3の実施形態では、冷却部として折曲部33mu~33mw、冷却フィン82、冷却リブ91を個別に設けた場合について説明したが、これに限定されるものではなく、折曲部33mu~33mwと冷却フィン82及び冷却リブ91の一方とを同時に設けるようにしてもよい。
In the third embodiment, the case where the cooling rib 91 is formed in a triangular cylindrical shape has been described. However, the present invention is not limited to this, and an arbitrary shape such as a semicircular cross section, a trapezoidal cross section, etc. It can be formed in a cross-sectional shape.
In the first to third embodiments, the case where the bent portions 33mu to 33mw, the cooling fins 82, and the cooling ribs 91 are individually provided as the cooling portions has been described. However, the present invention is not limited to this. The bent portions 33 mu to 33 mw and one of the cooling fins 82 and the cooling ribs 91 may be provided simultaneously.
 さらに、上記第1~第3の実施形態では、平滑用のコンデンサとしてフィルムコンデンサ4を適用した場合について説明したが、これに限定されるものではなく、円柱状の電解コンデンサを適用するようにしてもよい。
 さらに、上記第1~第3の実施形態では、冷却体3への熱伝導路として伝熱支持部材32,33を適用した場合について説明したが、これに限定されるものではない。すなわち、上部筐体2Bが熱伝導率の高い材料で形成されている場合には、伝熱支持側板部32c,33cを省略して、伝熱支持板部32a,33aを直接上部筐体2Bに連結し、実装基板22,23の熱を上部筐体2Bを介して冷却体3に伝熱するようにしてもよい。
Furthermore, in the first to third embodiments, the case where the film capacitor 4 is applied as the smoothing capacitor has been described. However, the present invention is not limited to this, and a cylindrical electrolytic capacitor is applied. Also good.
Further, in the first to third embodiments, the case where the heat transfer support members 32 and 33 are applied as the heat conduction path to the cooling body 3 has been described. However, the present invention is not limited to this. That is, when the upper housing 2B is formed of a material having high thermal conductivity, the heat transfer support side plates 32c and 33c are omitted, and the heat transfer support plates 32a and 33a are directly attached to the upper housing 2B. They may be connected so that the heat of the mounting boards 22 and 23 is transferred to the cooling body 3 via the upper housing 2B.
 また、上記第1~第3の実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。 In the first to third embodiments, the case where the power conversion device according to the present invention is applied to an electric vehicle has been described. However, the present invention is not limited to this, and the present invention is also applied to a rail vehicle traveling on a rail. The invention can be applied and can be applied to any electric drive vehicle. Furthermore, the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.
 本発明によれば、基板に実装された発熱回路部品の熱を熱伝導路を介して効率よく冷却体に放熱し、さらに熱伝導路に吸熱部を設けることにより、発熱回路部品の熱による周囲温度の上昇を抑制することができる電力変換装置を提供することができる。 According to the present invention, the heat of the heat generating circuit component mounted on the substrate is efficiently dissipated to the cooling body through the heat conduction path, and the heat absorbing portion is provided in the heat conduction path, so that the heat generating circuit component is surrounded by the heat. It is possible to provide a power converter that can suppress an increase in temperature.
 1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…半導体パワーモジュール、12…ケース体、13…冷却部材、21…駆動回路基板、22…制御回路基板、23…電源回路基板、24,25…継ぎねじ、32…伝熱支持部材、32a…伝熱支持板部、32b…固定ねじ、32c…伝熱支持側板部、33…伝熱支持部材、33a…伝熱支持板部、33b…固定ねじ、33c…伝熱支持側板部、33h~33j…開口部、33k…舌片、33mu~33mw…折曲部、 34…底板部、35,37…伝熱部材、39…発熱回路部品、40…間座(間隔調整部材)、61…冷却フィン、71…放熱板、72…絶縁層、73…回路パターン、74…金属ベース回路基板、75…伝熱基板支持部、81…基台、82…冷却フィン、83…吸熱部、91…冷却リブ DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Housing | casing, 3 ... Cooling body, 4 ... Film capacitor, 5 ... Storage battery accommodating part, 11 ... Semiconductor power module, 12 ... Case body, 13 ... Cooling member, 21 ... Drive circuit board, 22 ... Control circuit board, 23 ... Power supply circuit board, 24, 25 ... Joint screw, 32 ... Heat transfer support member, 32a ... Heat transfer support plate, 32b ... Fixing screw, 32c ... Heat transfer support side plate, 33 ... Heat transfer Support member, 33a ... Heat transfer support plate portion, 33b ... Fixing screw, 33c ... Heat transfer support side plate portion, 33h to 33j ... Opening portion, 33k ... Tongue piece, 33mu-33mw ... Bent portion, 34 ... Bottom plate portion, 35 37 ... Heat transfer member, 39 ... Heat generating circuit component, 40 ... Spacer (spacing adjusting member), 61 ... Cooling fin, 71 ... Heat sink, 72 ... Insulating layer, 73 ... Circuit pattern, 74 ... Metal base circuit board, 75 ... Heat transfer substrate support, 81 Base, 82 ... cooling fins 83 ... heat absorption part, 91 ... cooling ribs

Claims (14)

  1.  一面を冷却体に接合する半導体パワーモジュールと、
     前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した実装基板と、
     前記実装基板の熱を前記冷却体に伝熱させる熱伝導路とを備え、
     前記熱伝導路は、周囲雰囲気から吸熱する吸熱部を有する
     ことを特徴とする電力変換装置。
    A semiconductor power module that joins one surface to a cooling body;
    A mounting board on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted;
    A heat conduction path for transferring heat of the mounting substrate to the cooling body,
    The heat conduction path includes a heat absorption part that absorbs heat from an ambient atmosphere.
  2.  電力変換用の半導体スイッチング素子をケース体に内蔵し、当該ケース体の一面に当該半導体スイッチング素子を冷却する冷却部材を設けた半導体パワーモジュールと、
     前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板と、
     前記半導体パワーモジュールの冷却部材を冷却する冷却体と、
     前記実装基板に実装された発熱回路部品の発熱を前記冷却体へ直接伝熱する伝熱支持部材とを備え、
     前記伝熱支持部材は、前記実装基板を支持する伝熱支持板部と、該伝熱支持板と前記冷却体との間の伝熱経路を形成する伝熱支持側板部とで構成され、前記伝熱支持側板部に周囲雰囲気から吸熱する吸熱部を形成したことを特徴とする電力変換装置。
    A semiconductor power module in which a semiconductor switching element for power conversion is built in a case body, and a cooling member for cooling the semiconductor switching element is provided on one surface of the case body;
    A mounting board on which circuit components including a heat generating circuit component for driving the semiconductor switching element are mounted;
    A cooling body for cooling the cooling member of the semiconductor power module;
    A heat transfer support member that directly transfers heat generated by the heat generating circuit component mounted on the mounting substrate to the cooling body,
    The heat transfer support member includes a heat transfer support plate portion that supports the mounting substrate, and a heat transfer support side plate portion that forms a heat transfer path between the heat transfer support plate and the cooling body, and A power conversion device characterized in that a heat-absorbing part that absorbs heat from an ambient atmosphere is formed on a heat-transfer support side plate part.
  3.  前記吸熱部は、前記伝熱支持側板部の前記半導体パワーモジュールと対向する側面の外側に設けた前記半導体パワーモジュールの外部接続端子に接続する接続導体を挿通する開口を形成する外側に折り曲げた折曲部で構成されていることを特徴とする請求項1又は2に記載の電力変換装置。 The heat absorption part is folded outward to form an opening through which a connection conductor connected to an external connection terminal of the semiconductor power module provided outside a side surface of the heat transfer support side plate facing the semiconductor power module. The power conversion device according to claim 1, wherein the power conversion device includes a curved portion.
  4.  前記吸熱部は、前記伝熱支持側板部の前記半導体パワーモジュールと対向する側面の外側に設けた複数の吸熱フィンで構成されていることを特徴とする請求項1又は2に記載の電力変換装置。 3. The power converter according to claim 1, wherein the heat absorption unit includes a plurality of heat absorption fins provided outside a side surface of the heat transfer support side plate that faces the semiconductor power module. 4. .
  5.  前記吸熱部は、前記伝熱支持側板部の前記半導体パワーモジュールと対向する側面の外側に設けた複数の吸熱リブで構成されていることを特徴とする請求項1又は2に記載の電力変換装置。 3. The power converter according to claim 1, wherein the heat absorption part is configured by a plurality of heat absorption ribs provided outside a side surface of the heat transfer support side plate part facing the semiconductor power module. 4. .
  6.  前記伝熱支持板は、複数の伝熱支持側板部に固定支持されていることを特徴とする請求項1又は2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the heat transfer support plate is fixedly supported by a plurality of heat transfer support side plates.
  7.  前記伝熱支持板部は、伝熱部材を介して前記実装基板を支持していることを特徴とする請求項1又は2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the heat transfer support plate portion supports the mounting substrate via a heat transfer member.
  8.  前記伝熱部材は、絶縁体で構成されていることを特徴とする請求項7に記載の電力変換装置。 The power conversion device according to claim 7, wherein the heat transfer member is made of an insulator.
  9.  前記伝熱部材は、伸縮性のある弾性体で構成されていることを特徴とする請求項7に記載の電力変換装置。 The power conversion device according to claim 7, wherein the heat transfer member is made of an elastic body having elasticity.
  10.  前記実装基板と前記伝熱支持部材の伝熱支持板部とを締付固定部材で前記伝熱部材を圧縮しながら固定したことを特徴とする請求項9に記載の電力変換装置。 The power conversion device according to claim 9, wherein the mounting substrate and the heat transfer support plate portion of the heat transfer support member are fixed while being compressed with a fastening fixing member.
  11.  前記締付固定部材の周囲に前記実装基板と前記伝熱支持部材の伝熱支持板部との間隔を所定値に維持する間隔調整部材が介挿されていることを特徴とする請求項10に記載の電力変換装置。 The space | interval adjustment member which maintains the space | interval of the said mounting substrate and the heat-transfer support plate part of the said heat-transfer support member to the predetermined value is inserted in the circumference | surroundings of the said clamping fixing member. The power converter described.
  12.  前記伝熱支持板部は、前記実装基板を支持する伝熱基板支持部を有することを特徴とする請求項1又は2に記載の電力変換装置。 The power conversion device according to claim 1, wherein the heat transfer support plate portion includes a heat transfer substrate support portion that supports the mounting substrate.
  13.  前記実装基板と前記伝熱支持部材との組を複数組備え、前記組毎に前記伝熱支持部材の前記伝熱支持側板部の高さを異ならせるとともに、当該伝熱支持側板部が前記半導体パワーモジュールの異なる側面を通って前記冷却部材に接触されていることを特徴とする請求項1又は2に記載の電力変換装置。 A plurality of sets of the mounting substrate and the heat transfer support member are provided, the height of the heat transfer support side plate portion of the heat transfer support member is varied for each set, and the heat transfer support side plate portion is the semiconductor. The power conversion device according to claim 1, wherein the power conversion device is in contact with the cooling member through different side surfaces of the power module.
  14.  前記冷却体上に配置され、前記半導体パワーモジュール、前記実装基板及び前記伝熱支持部材を密封する筐体を備えていることを特徴とする請求項1又は2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, further comprising a housing that is disposed on the cooling body and seals the semiconductor power module, the mounting substrate, and the heat transfer support member.
PCT/JP2012/007879 2012-02-07 2012-12-10 Electric power conversion device WO2013118223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280061317.5A CN103999212B (en) 2012-02-07 2012-12-10 Electric power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012024318 2012-02-07
JP2012-024318 2012-02-07

Publications (1)

Publication Number Publication Date
WO2013118223A1 true WO2013118223A1 (en) 2013-08-15

Family

ID=48947032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007879 WO2013118223A1 (en) 2012-02-07 2012-12-10 Electric power conversion device

Country Status (2)

Country Link
CN (1) CN103999212B (en)
WO (1) WO2013118223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015107870A1 (en) * 2014-01-16 2017-03-23 パナソニックIpマネジメント株式会社 Semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626772A (en) * 1992-07-09 1994-02-04 Mitsubishi Cable Ind Ltd Heat pipe
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JPH1126660A (en) * 1997-06-30 1999-01-29 Pfu Ltd Heat radiation structure of high heat generating device
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2005036753A (en) * 2003-07-17 2005-02-10 Denso Corp Electric compressor
JP2005036773A (en) * 2003-07-18 2005-02-10 Denso Corp Inverter-integrated motor-driven compressor for vehicle
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2007159204A (en) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Inverter device
JP2008125240A (en) * 2006-11-13 2008-05-29 Hitachi Ltd Power conversion device
JP2009026784A (en) * 2007-07-17 2009-02-05 Furukawa Electric Co Ltd:The Heat dissipating component
JP2010073998A (en) * 2008-09-19 2010-04-02 Toshiba Tec Corp Electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657329B2 (en) * 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 Power converter and electric vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626772A (en) * 1992-07-09 1994-02-04 Mitsubishi Cable Ind Ltd Heat pipe
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JPH1126660A (en) * 1997-06-30 1999-01-29 Pfu Ltd Heat radiation structure of high heat generating device
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2005036753A (en) * 2003-07-17 2005-02-10 Denso Corp Electric compressor
JP2005036773A (en) * 2003-07-18 2005-02-10 Denso Corp Inverter-integrated motor-driven compressor for vehicle
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2007159204A (en) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Inverter device
JP2008125240A (en) * 2006-11-13 2008-05-29 Hitachi Ltd Power conversion device
JP2009026784A (en) * 2007-07-17 2009-02-05 Furukawa Electric Co Ltd:The Heat dissipating component
JP2010073998A (en) * 2008-09-19 2010-04-02 Toshiba Tec Corp Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015107870A1 (en) * 2014-01-16 2017-03-23 パナソニックIpマネジメント株式会社 Semiconductor device
US10453776B2 (en) 2014-01-16 2019-10-22 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
CN103999212A (en) 2014-08-20
CN103999212B (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5794306B2 (en) Power converter
WO2014061178A1 (en) Cooling structure and heat generating body
WO2014057622A1 (en) Power converter
WO2014020806A1 (en) Cooling structure and power converter
WO2013111234A1 (en) Power conversion device
WO2013105166A1 (en) Power conversion apparatus
JP5664472B2 (en) Power converter
WO2013145508A1 (en) Power conversion apparatus
WO2013088642A1 (en) Power conversion device
WO2014125548A1 (en) Cooling structure, and power conversion device
WO2013084416A1 (en) Power converter
WO2013084417A1 (en) Power conversion apparatus
WO2013080440A1 (en) Power conversion device
WO2021053975A1 (en) Power converter and motor-integrated power converter
WO2014024361A1 (en) Cooling structure and power conversion device
JP5768902B2 (en) Power converter
WO2013080441A1 (en) Power conversion device
WO2014020808A1 (en) Cooling structure and power converter
JP5682713B2 (en) Power converter
WO2013118223A1 (en) Electric power conversion device
JP6187582B2 (en) Power converter
JP2012005191A (en) Power conversion apparatus
WO2013080442A1 (en) Power conversion device
WO2014020807A1 (en) Cooling structure and power converter
WO2013140703A1 (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868238

Country of ref document: EP

Kind code of ref document: A1