JPWO2009008391A1 - 生体摂取物微粒子の製造方法 - Google Patents

生体摂取物微粒子の製造方法 Download PDF

Info

Publication number
JPWO2009008391A1
JPWO2009008391A1 JP2009503347A JP2009503347A JPWO2009008391A1 JP WO2009008391 A1 JPWO2009008391 A1 JP WO2009008391A1 JP 2009503347 A JP2009503347 A JP 2009503347A JP 2009503347 A JP2009503347 A JP 2009503347A JP WO2009008391 A1 JPWO2009008391 A1 JP WO2009008391A1
Authority
JP
Japan
Prior art keywords
processing
fluid
pressure
drugs
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009503347A
Other languages
English (en)
Other versions
JP4419157B2 (ja
Inventor
榎村 眞一
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Application granted granted Critical
Publication of JP4419157B2 publication Critical patent/JP4419157B2/ja
Publication of JPWO2009008391A1 publication Critical patent/JPWO2009008391A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Transplantation (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

微粒子化する対象物質を溶解している第1溶媒を含む溶液と、その微粒子に対して第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を、対向して配設された近接・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で、生体摂取物微粒子を析出させる方法を用いて得る。生体摂取物微粒子原料を流体中において中和反応により析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において中和反応により生体摂取物微粒子を析出させる。点眼薬主成分である薬物を溶解している第1溶媒を含む溶液と、その薬物に対して第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を、対向して配設された近接・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で、混合させることにより析出した薬物粒子を主成分とする懸濁点眼液を提供する。

Description

本発明は、均一な粒子を作成することができ、且つ、エネルギー効率よく容易に製造可能で大量生産可能な、再分散性が良い生体摂取物微粒子の製造方法に関するものである。そして本発明は、前記製造方法によって製造された生体摂取物微粒子及びこれを含有する分散体、医薬組成物に関するものである。
特開平4−295420号公報 特開2006−104193号公報 特開平7−277729号公報 特開2005−270745号公報 特開2003−159696号公報 特開2003−210957号公報 特開平6−227967号公報 特開2007−77061号公報 「ナノテクノロジーハンドブック-I編 創る」(株式会社オーム社/東京都千代田区神田錦町3−1)平成15年第1版第1刷
ナノテクノロジーが新たな産業革命を引き起こす科学的技術として大きな注目を浴びている。従来の物質を微粒子化することで、その物質に新たな機能を発現させることが出来るため、産業界全般に渡って物質のナノ粒子化が重要テーマとなっており、ナノテクノロジーを前進させる上で、ナノ微粒子化技術への関心が非常に高まっている。(非特許文献1)(非特許文献1)
特に食品及び食品添加物、化粧品、医薬品における薬物などの生体摂取を目的とする物質(生体摂取物)についても微粒子化技術に関心が高まっており、特に医薬品における薬物の微粒子化は、溶解性の向上つまり生体内吸収率の大幅な改善がなされる事が知られており、期待が大きくなっている。
一方、新薬候補品物質の創出には長い開発時間と共に、候補物質の枯渇が問題となっており、その原因の一つに、候補化合物が難水溶性であるため化合物の構造変更が必要になる場合等もあり、開発が遅延、頓挫する場合が増加していることがある。また開発候補となった化合物の溶解度が低いため、製剤化のみならず、毒性試験や動態評価も進められないという問題点がある。しかし、水に対する溶解度が低い化合物でも、膜透過性が高く経口投与後十分な吸収性を示す化合物もあり、溶解性のみで候補化合物をドロップさせた場合、有望な候補化合物までもドロップアウトしてしまう可能性がある。よって、溶解性改善ひいては生体内吸収率を改善するための製剤化技術の開発が望まれている。
難水溶性薬物であっても、微細化することで表面積が増大し、溶解速度が大きくなり生体内への吸収が上がる例が数多く報告されている。例えば、子宮内膜症治療薬のダナゾールは、市販品(平均粒子径:10μm)を懸濁液としてイヌに投与した場合の生物学的利用率(BA)が5.1%であったのに対して、平均粒子径が169nmのナノサスペンジョンとして投与した場合には、BAが82.3%と劇的に増大した(Int J.Pharm 125,1995, 91-97)。抗炎症剤のナプロキセンをラットに投与した場合、20〜30μmの原末を270nmにすることによって4倍も吸収が向上した(Int J.Pharm 125,1995, 309-313)。従って、難水溶性薬物のナノ微粒子化が実現されれば、薬物の吸収性を格段に向上させることが可能になる。
この様な背景から、薬物を微粒子化する製造技術が望まれており、さらにこれらの技術を工業的に活用するためには、安定的に、かつ大量生産可能な製造方法を確立する事が医薬品へのナノテクノロジーの活用における最重要課題である。
一般的に、微粒子の製造方法としてはバルクの原材料を機械的に破砕、微細化して微粒子を得るBreak-down法(粉砕法)と原子・分子を集合させることで適当な大きさの微粒子に成長させるBottom-up法(成長法)がある。
粉砕法としては、ボールミル、アトライターミル、バイブレーダーミル、サンドミル、ローラー、ミルカウレスタイプミキサーなどのミルを用いた機械的粉砕法やレーザーアブレーションのように固体粒子にフェムト秒レーザーを照射する方法がある。しかし機械的粉砕法の場合では、基本的に粉砕による微粒化の限界がある事、また媒体ミルとの接触にる粉砕力を利用するため、ビーズそのものの破断粒子の混入が避けられない事等の問題により、製品に不純物が混入する、また純度が保障できない課題がある。さらに、多大なエネルギーを必要とするため、エネルギーコストの面からも問題を抱えているのが現状である。レーザーアブレーション法については、強力な光による粉砕力を利用したプロセスの為、分子レベルでの光分解の可能性を否定できない。さらに現状での実質的な生産量が0.1mg/h程度であり産業的に実用レベルとは言えない。
さらに、粉砕法で作製された微粒子は物理的な粉砕の結果、その破断面には活性部位を生じやすく、粉砕した微粒子が再び再凝集し、粉砕前よりも粗大な凝集体を形成しやすい。その為に製品としての使用価値が下がる場合や、分散系全体に粘度増加などの異常を起こす場合があり、粉砕法そのものが持つ問題が多い。
また、特許文献1に、薬物微粒子を得る方法、具体的には機械的粉砕手段としてボールミル、アトリッターミル、バイブレーダーミル、サンドミル、ローラー、ミルカウレスタイプミキサーなどのミルにより、250nm未満の粒子を得る方法が記載されているが、メディアの摩耗等による異物混入についても、許容できない汚染を伴なわないという程度の記述にとどまっており、高度な品質が常に要求されている医薬品にとっては、異物混入のリスク等の非常に大きな問題となり得る可能性がある。
次に微粒子の作成方法として用いられている成長法(Bottom-up法)は、化学反応、晶析、昇華等、種々の反応手段を利用し、且つ反応と共に高分子分散法や熱分解法、超臨界法や超音波法などを併用することで、原子・分子を集合させて微粒子を作製する方法である。
反応手段としては例えば特許文献3のようにバッチ式の反応容器を用いた反応法を利用する場合や、特許文献4のような高真空中でのプラズマを用いた気相法を利用する場合がある。さらに、特許文献5や特許文献6のような微小反応器、微小流路式反応器であるマイクロミキサーやマイクロリアクターを用いる場合がある。
バッチ式では一般的にバッチ内の温度管理が難しく、均一な反応を行う事が難しい。さらに完全な均一状態での濃度管理を行うことが出来ないため、反応条件の管理が困難である。さらに反応時間を長く必要とするため、全ての反応条件を管理して均一に反応させる事は困難である。
気相法では、ナノ粒子の時間あたりの生成量が少なく、原料を蒸発させるために電子ビーム、プラズマ、レーザー、誘導加熱などの高エネルギー装置が必要であり、また歩留まりも低いため生産コスト上大量生産にあまり適しているとは言えない。しかもこれらの気相法により得られるナノ粒子は純粋物質の微粒子であるので凝集、融合しやすく、また粒子の大きさがばらつくという問題がある。
マイクロ化学プロセスとして知られている、マイクロリアクターやマイクロミキサーを、前記の微少な生体摂取物微粒子の製造工程として用いる試みがあるが、これらの方法で微粒子を生成した場合に、反応によって生ずる泡や副生成物が流路に詰まることによってマイクロ流路の閉鎖が起こる可能性が高いことや、基本的には分子の拡散だけで反応を進行させるため、全ての反応に対して適応可能ではなかった。また、マイクロ化学プロセスでは、平行して反応器を並べるナンバリングアップというスケールアップ法を用いるが、一つの反応器の製造能力が小さく、大きなスケールアップが現実的でないことや、また各々の反応器の性能を揃えることが難しく、均一な生成物を得られない等の問題があった。さらに、粘度の高い反応液や、粘度上昇を伴うような反応では微少な流路を流通させるためには非常に高い圧力が必要であり、使用できるポンプが限られることや、高圧にさらされるため装置からの漏れが解決出来ないという問題点があった。
特に医薬品の場合には、高度な品質が常に要求されている。医薬品においては結晶形や結晶粒径などの物理化学的品質や、不純物、さらに不溶性微粒子の混入等の品質への要求も高いため、これらの品質への要求に適った高い製造技術が要求されている。しかし、化学工業や食品・医薬品で生産される物質は、微結晶が集合したものや結晶中に母液や不純物を含んでいるものが少なくない。また、メディアを用いる粉砕機を使用して微細化した場合に、メディア由来の異物混入が避けられない。さらに今後は環境問題・省資源・省エネルギーに対する配慮が必要である等、解決しなければならない課題は数多い。さらに、生体摂取微粒子を製造する工程では、製造工程中の異物混入や菌の発生も問題となりうることから、製造時間の短縮化をはかる事で、より安全で安価な生体摂取物微粒子を提供出来る製造方法を提案する必要がある。
難水溶性の薬物は、有機溶剤以外に酸性またはアルカリ性溶液に溶解するものがあるが、その多くの薬物において溶解した水溶液中での化合物の安定性が低いことが知られている。たとえば、ピレノキシンは、pHが6よりも大きい水溶液中に溶解すると、加水分解されてしまう。このため、市販されているピレノキシン点眼薬の多くは、使用時にピレノキシンを添付の溶剤に溶かし、用時調製して用いなければならなかった。
また、難水溶性の薬物を懸濁させた水性懸濁液剤が知られている。しかし、市販されている水性懸濁点眼剤の薬物粒子の粒子径は、数μmから数十μmであり、これらの水性懸濁点眼剤では、濾過滅菌を行うことが困難であるため、製剤の無菌性を保証するためには、最終高圧蒸気滅菌や主剤原料を乾熱滅菌等で無菌化した後、その後の製造工程を全て無菌操作で行う必要がある。しかしながら、最終高圧蒸気滅菌を行なった場合、大小の粒子が混在した状態においては、小さな粒子は、溶解して消滅し、大きな粒子は、より成長する現象(オストワルド熟成)が起こることが知られており、苛烈な温度変化を伴う滅菌操作では、さらに粒子の粗大化が進行する。また、滅菌中に微粒子の表面改質剤/解粒剤が析出し、これに伴い粒子が粗大化するため、分散性を保つことが難しい(特開平6−227967号公報/特許文献7)。また主剤原料の乾熱滅菌を行なった場合、主剤原料の熱変性、溶着や強力な凝集を発生する為、より長時間の機械的粉砕や分散処理が必要になり、その結果、長時間の無菌操作を必要とする。このような滅菌操作を含む製造方法の場合、無菌的な設備や操作を必要とするためのコストは高く、作業性など製造面及び無菌維持の困難など品質保証面の問題があった。
ピレノキシン水性懸濁液剤として、機械的粉砕によりピレノキシンを超微細化し、濾過滅菌可能で安価な点眼薬を提供する方法が示されている(特開2007−77061号公報/特許文献8)。しかしながら、従来の機械的な製造方法は、微細化に要する時間が長く、生産性の問題や処理エネルギーが大きいためコスト負担の増大、工程が複雑化する等の問題があった。また、微細化に使用する機械には、メディアを使用したものが多く、メディアによる異物混入や均一な粒子が得にくい、凝集し易いといった問題も指摘されている。また、粗大粒子が核となり、凝集を促進することも指摘されている。
また、ピレノキシンを微細化することで角膜浸透性を向上させることができ、水性懸濁液剤とすることで光に対する安定性が改善されることは周知であり、他の点眼薬についても同様の効果が期待できる。
医薬組成物を調製するための方法、特に難水溶性薬物の場合、溶解度の改善方法として、pH調整法、有機溶媒法、ミセル法、複合体法、マイクロエマルション法、微粒子化法などがある。微粒子化法以外は、個々の薬物の物性に依存するため、全ての薬物に適用出来るとは限らない方法である。また、機械的な手段で粉砕する微粒子化法は、薬物に幅広く適用可能であるが凝集しやすい、均一な粒子が得にくい、粉砕工程からの不純物が混入するなどの問題が指摘されている。
薬物を微細化する方法としては乾式粉砕法、湿式粉砕法、晶析法等が挙げられる。一般的に医薬品は熱に弱く、乾式粉砕法では、粉砕時の発熱により非晶質化が起こる、粉塵を生ずると言った問題点がある。また、湿式粉砕法においても、処理時間が長時間におよぶこと、達成粒子径の制御が困難であること、またメディアを使用するため、メディアの磨耗に起因する異物の混入が避けられず、混入した異物の分離が困難で、高純度を要する製品には使えないという問題を抱えている。
上記に記載されているような湿式粉砕は処理時間が長時間にわたる場合が多く、細菌の発生が起こりうる可能性がある。また、処理エネルギーが大きく、工程の複雑化などによりコスト負担が大きいという問題もある。
薬物微粒子の製造方法には、化合物を溶媒に溶解し、新たな溶媒と混合して結晶を析出させる方法、或いはpH調整によって化合物を溶媒に溶解し、酸或いはアルカリを加えてpHを変化させることによって結晶を析出させる方法等がある。このような反応方法において、2液の混合には、通常、混合部に可動部分を持つ動的な混合装置、例えばインペラーを有する撹拌混合装置によって行われていた。この様な混合装置を使用した場合、極めて結晶成長速度の速い化合物を扱うときに問題となる。このような化合物では、溶解液と新たな溶媒との混合に時間がかかると、溶液濃度が不均一な状態で結晶の析出が始まり、粒度分布/粒子径分布のブロードな粒子が、また、結晶成長の進行によっては粗大粒子が混じる事となり、目的とするシャープな粒度分布/粒子径分布の結晶が得られないという問題があった。また、表面に微差突起を100個/cm2以上の密度で有する基盤と接触させて微粒子を析出させる方法(特開2006−104193号公報/特許文献2)もあるが、製造量の問題など課題は多い。
容易に粒子径を制御でき、凝集沈殿または凝集を起しにくく、さらに界面活性剤や安定化剤等の主薬以外の添加剤が極めて少なく、再分散性の良い安定なナノサイズの分散性薬物粒子を提供することが望まれている。さらに、機械的摩耗等によるコンタミネーションがなく、安全性、安定性が高く、生体利用効率の高い医薬組成物を提供することが強く要求されている。
本発明は、晶析によって結晶を析出させる粒子の製造方法において、特に生体摂取物の微粒子製造方法を提供すること、および、生体摂取物を微粒子化することにより生体内吸収率を改善することにある。また、菌の発生が問題ともなりうることから、処理時間の短縮化をはかり、より安全で安価な生体摂取物(薬剤)を提供することを目的とする。
また本発明は、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で中和反応により生体摂取物微粒子を析出させる生体摂取物微粒子の製造方法であり、その薄膜流体中での温度の均一性が高く、反応容器の攪拌における均一性が高いことから、目的に応じて単分散の生体摂取物微粒子が作成出来、さらに自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、また生産性も高い、生体摂取物微粒子の製造方法を提供することを目的とする。
また本発明は、安定的な懸濁液の作製により、安全で安価な無菌の懸濁点眼薬剤を提供することを目的とする。
本願の発明者は、安定で分散性の良い生体摂取物微粒子および、結晶化度が高い生体摂取物微粒子の製造方法を発見した。これらの粒子は、著しく高い生体利用効率を示す医薬組成物に製剤することができる。上記の課題は、化合物の溶解液(第1溶媒)と新たな溶媒(第2溶媒)とを対向して配設された近接・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で生体摂取物微粒子を析出させる方法、および対向して設置された処理用面の間にできる薄膜流体中で拡散・攪拌・混合する装置により解決された。なお、上記の生体とは、人体はもとより他の生物を含む。
具体的には、下記の発明により上記の課題を解決する。
本願の請求項1に係る発明は、生体摂取物微粒子原料を流体中において析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする、生体摂取物微粒子の製造方法を提供する。
本願の請求項2に係る発明は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体は、上記生体摂取物微粒子原料を少なくとも1種類、第1溶媒に溶解させた流体であり、上記以外の流体のうちで少なくとも1種類の流体は、上記第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒であり、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の各流体を合流させるものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項3に係る発明は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体は、酸性物質もしくは陽イオン性物質を少なくとも1種類含む流体であり、上記以外の流体のうちで少なくとも1種類の流体は、塩基性物質もしくは陰イオン性物質を少なくとも1種類含む流体であり、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の各流体を合流させるものであり、当該薄膜流体中において中和反応させて生体摂取物微粒子を析出させることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項4に係る発明は、上記析出反応は、被処理流動体に所定の圧力を付与する流体圧付与機構と、第1処理用部、及び、この第1処理用部に対して相対的に接近・離反可能な第2処理用部の、少なくとも2つの処理用部と、上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられており、上記の各処理用面は、上記所定圧力の被処理流動体が流される、密封された流路の一部を構成するものであり、上記の両処理用面間にて、少なくともいずれかに反応物を含む、2種以上の被処理流動体を均一に混合し積極的に反応させるものであり、上記第1処理用部と第2処理用部のうち、少なくとも第2処理用部は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記の第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、
接近・離反可能、且つ相対的に回転する第1処理用面と第2処理用面との間に上記所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面間を通過し、さらに上記所定圧力の被処理流動体が流される流路とは独立した別途の導入路を備えており、上記第1処理用面と第2処理用面の少なくとも何れかに、上記の導入路に通じる開口部を少なくとも一つ備え、上記導入路から送られてきた少なくとも一つの被処理流動体を、上記両処理用面間に導入して、少なくとも上記の各被処理流動体のいずれかに含まれる上記の反応物と、前記被処理流動体とは異なる被処理流動体とが、上記流体膜内での均一攪拌による混合により所望の反応状態を可能なものとすることを特徴とする、請求項1〜3のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項5に係る発明は、上記生体摂取物微粒子の製造方法において、処理用面間を加熱(加温)、もしくは処理用面間に紫外線(UV)を照射、もしくは処理用面間に超音波エネルギーを与えることを特徴とする請求項1〜4のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項6に係る発明は、上記中和反応を減圧・真空状態を確保できる容器内で行い、処理後流体が吐出される2次側を減圧、真空状態とする事で、反応中に発生するガス並びに処理用部より吐出されたガスの脱気、もしくは脱溶剤を行えることを特徴とする、請求項1〜5のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項7に係る発明は、上記流体の少なくとも一方に分散剤、水溶性高分子、安定剤、保存剤、pH調製剤、等張化剤から選ばれた少なくとも一種を含むことを特徴とする、請求項1〜6のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項8に係る発明は、上記処理前、あるいは処理後の各流体を無菌濾過することを特徴とする、請求項1〜7のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項9に係る発明は、上記対象物質が、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、食欲抑制薬、抗肥満薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤、代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニン、ビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン、抗アレルギー薬、興奮薬、食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、からなる群より選ばれる薬物である、請求項1〜8のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項10に係る発明は、上記請求項1〜9のいずれかに記載の製造方法で得られた生体摂取物微粒子を提供する。
本願の請求項11に係る発明は、結晶化度が、得られた生体摂取物微粒子の合計質量を基準として50%以上であり、かつ、該粒子を含む液は、その調製後2日以上目視で凝集沈殿または粒子凝集を示さないことを特徴とする、請求項9に記載の生体摂取物微粒子を提供する。
本願の請求項12に係る発明は、平均一次粒子径が0.5〜10000nmであることを特徴とする、請求項9に記載の生体摂取物微粒子を提供する。
本願の請求項13に係る発明は、粒度分布/粒子径分布の90%粒径が500nm以下である、請求項9に記載の生体摂取物微粒子を提供する。
本願の請求項14に係る発明は、請求項9〜13のいずれかに記載の生体摂取物微粒子を含有する分散体を提供する。
本願の請求項15に係る発明は、請求項14に記載の分散体と、薬学的に許容されるキャリヤとを含んで成る医薬組成物を提供する。
本発明は、許容できない汚染を伴わない多種多様の生体摂取物微粒子が調製できる可能性をひらくものである。また、安定的に単結晶を得ることができるため、生産効率がよく、量産が可能である。また、従来の乾式粉砕法のような許容できない粉塵レベルをもたらすことや湿式粉砕することによるメディアの磨耗もなく、対向して配設された処理面の間隔を調整することで、薬物粒子径を自由にコントロール可能な技術が提供される。また、菌の発生の問題ともなりうる処理時間の短縮化をはかり、より安価な薬剤を提供することが可能となる。
また本発明は、予期できない程高い生体利用効率を示す医薬組成物や、低い水溶性の薬物を含有し、静注に適する医薬組成物を提供できる可能性をひらくものである。
本発明にて得られた生体摂取物微粒子は従来の方法によるものよりも再分散性に優れ、凝集することなく、単分散の生体摂取物微粒子を得ることが可能となる。また本発明は、必要な生産量に応じて一般的なスケールアップ概念を用いて機体の大型化が可能である。さらに、従来の方法に比べ、エネルギー効率を向上できる。
また、本発明に係る製造方法では無菌濾過も可能である。また、分散体が懸濁点眼液である場合においては角膜浸透性が良い。そして、生体摂取物微粒子原料を乾熱滅菌して機械的粉砕や分散を行なった場合に比べて同一最終粒子径への到達時間を大きく短縮できる。
(A)は本願発明の実施に用いる装置の概念を示す略縦断面図であり、(B)は上記装置の他の実施の形態の概念を示す略縦断面図であり、(C)は上記装置のまた他の実施の形態の概念を示す略縦断面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)は図2(C)に示す装置の要部略底面図であり、(B)は上記装置の他の実施の形態の要部略底面図であり、(C)はまた他の実施の形態の要部略底面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略底面図であり、(E)は上記装置のまた更に他の実施の形態の概念を示す略底面図であり、(F)は上記装置の更にまた他の実施の形態の概念を示す略底面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(C)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)及び(B)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図であり、(C)は図1(A)に示す装置の要部略底面図である。 (A)は図1(A)に示す装置の受圧面について、他の実施の形態を示す要部略縦断面図であり、(B)は当該装置の更に他の実施の形態の要部略縦断面図である。 図12(A)に示す装置の接面圧付与機構4について、他の実施の形態の要部略縦断面である。 図12(A)に示す装置に、温度調整用ジャケットを設けた、他の実施の形態の要部略縦断面図である。 図12(A)に示す装置の接面圧付与機構4について、更に他の実施の形態の要部略縦断面図である。 (A)は図12(A)に示す装置の更に他の実施の形態の要部略横断面であり、(B)(C)(E)〜(G)は当該装置のまた他の実施の形態の要部略横断面図であり、(D)は当該装置のまた他の実施の形態の一部切欠要部略縦断面図である。 図12(A)に示す装置の更に他の実施の形態の要部略縦断面図である。 (A)は本願発明の実施に用いる装置の更に他の実施の形態の概念を示す略縦断面図であり、(B)は当該装置の一部切欠要部説明図である。 (A)は図12に示す上記装置の第1処理用部材1の平面図であり、(B)はその要部縦断面図である。 (A)は図12に示す装置の第1及び第2処理用部材1,2の要部縦断面図であり、(B)は微小間隔が開けられた上記第1及び第2処理用部材1,2の要部縦断面図である。 (A)は上記第1処理用部材1の他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は上記第1処理用部材1の、更に他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は第1処理用部材1のまた他の実施の形態の平面図であり、(B)は第1処理用部材1の更にまた他の実施の形態の平面図である。 (A)(B)(C)は、夫々、処理後の被処理物の分離方法について、上記以外の実施の形態を示す説明図である。 本願発明の装置の概要を説明するための縦断面の概略図である。 (A)は図25に示す装置の第1処理用面の略平面図であり、(B)は図25に示す装置の第1処理用面の要部拡大図である。 (A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。 (A)及び(B)は、夫々、処理用部に設けられた傾斜面を説明するための要部拡大断面図である。 処理用部に設けられた受圧面を説明するための図であり、(A)は第2処理用部の底面図、(B)は要部拡大断面図である。
以下、本発明について詳細を説明する。本発明の技術的範囲は、下記実施形態及び実施例によって限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができる。
本発明は、反応物である生体摂取物微粒子原料を流体中において析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする。
本発明で用いる、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる、薄膜流体中で均一に攪拌・混合する方法としては、例えば本願出願人による、特開2004−49957号公報に記載されたものと同原理である装置を使用できる。
以下、この方法の実施に適した流体処理装置について説明する。
図1(A)へ示す通り、この装置は、対向する第1及び第2の、2つの処理用部10,20を備え、少なくとも一方の処理用部材が回転する。両処理用部10,20の対向する面が、夫々処理用面として、両処理用面間にて、被処理流動体の処理を行う。第1処理用部1は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
両処理用面1,2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。
より詳しくは、この装置は、少なくとも2つの被処理流動体の流路を構成すると共に、各流路を、合流させる。
即ち、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1,2間において、両流動体を混合し、反応させる。図1(A)へ示す実施の形態において、上記の各流路は、密閉されたものであり、液密(被処理流動体が液体の場合)・気密(被処理流動体が気体の場合)とされている。
具体的に説明すると、図1(A)に示す通り、この装置は、上記の第1処理用部材10と、上記の第2処理用部20と、第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構4と、回転駆動部と、第1導入部d1と、第2導入部d2と、流体圧付与機構p1と、第2流体供給部p2と、ケース3とを備える。
尚、回転駆動部は図示を省略する。
第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1,2は、接近・離反できる。
この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反する。但し、これとは、逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10,20が互いに接近・離反するものであってもよい。
第2処理用部20は、第1処理用部10の上方に配置されており、第2処理用部20の、下方を臨む面即ち下面が、上記の第2処理用面2であり、第1処理用部10の、上方を臨む面即ち上面が、上記の第1処理用面1である。
図1(A)へ示す通り、この実施の形態において、第1処理用部10及び第2処理用部20は、夫々環状体、即ちリングである。以下、必要に応じて第1処理用部10を第1リング10と呼び、第2処理用部20を第2リング20と呼ぶ。
この実施の形態において、両リング10,20は、金属製の一端が鏡面研磨された部材であり、当該鏡面を第1処理用面1及び第2処理用面2とする。即ち、第1リング10の上端面が第1処理用面1として、鏡面研磨されており、第2リングの下端面が第2処理用面2として、鏡面研磨されている。
少なくとも一方のホルダは、回転駆動部にて、他方のホルダに対して相対的に回転することができる。図1(A)の50は、回転駆動部の回転軸を示している。回転駆動部には電動機を採用することができる。回転駆動部にて、一方のリングの処理用面に対して、他方のリングの処理用面を相対的に回転させることができる。
この実施の形態において、第1ホルダ11は、回転軸50にて、回転駆動部から駆動力を受けて、第2ホルダ21に対して回転するものであり、これにて、第1ホルダ10と一体となっている第1リング10が第2リング20に対して回転する。第1リング10の内側において、回転軸50は、平面視、円形の第1リング10の中心と同心となるように、第1ホルダ11に設けられている。
第1リング10の回転は、リング10の軸心を中心とする。図示はしないが、軸心は、リング10の中心線を指し、仮想線である。
上記の通り、この実施の形態において、第1ホルダ11は、第1リング10の第1処理用面1を上方に向けて、第1リング10を保持し、第2ホルダ21は、第2リング20の第2処理用面2を下方に向けて、第2リング20を保持している。
具体的には、第1及び第2ホルダ11,21は、夫々は、凹状のリング収容部を備える。この実施の形態において、第1ホルダ11のリング収容部に、第1リング11が嵌合し、第1ホルダ11のリング収容部から出没しないように、第1リング10はリング収容部に固定されている。
即ち、上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21側を臨む。
第1リング10の材質は、金属の他、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用する。特に、回転するため、軽量な素材にて第1処理用部10を形成するのが望ましい。第2リング20の材質についても、第1リング10と同様のものを採用して実施すればよい。
一方、第2ホルダ21が備えるリング収容部41は、第2リング20の処理用部2を出没可能に収容する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2リング20は、このリング収容部41内にて、環状のリング収容部41の軸方向について、更に、当該軸方向と交差する方向について、変位することができる。言い換えれば、このクリアランスにより、当該第2リング20は、リング収容部41に対して、リング20の中心線を、上記リング収容部41の軸方向と平行の関係を崩すようにも変位できる。
以下、第2ホルダ21の、第2リング20に囲まれた部位を、中央部分22と呼ぶ。
上記について、換言すると、当該第2リング20は、このリング収容部41内にて、リング収容部41のスラスト方向即ち上記出没する方向について、更に、リング収容部41の中心に対して偏心する方向について、変位することが可能に収容されている。また、リング収容部41に対して、リング20の周方向の各位置にて、リング収容部41からの出没の幅が夫々異なるようにも変位可能に即ち芯振れ可能に、当該第2リング20は収容されている。
上記の3つの変位の自由度、即ち、リング収容部41に対する第2リング20の、軸方向、偏心方向、心振れ方向についての自由度を備えつつも、第2リング20は、第1リング10の回転に追従しないように第2ホルダ21に保持される。図示しないが、この点については、リング収容部41と第2リング20との夫々に、リング収容部41に対してその周方向に対する回転を規制する適当な当たりを設けて実施すればよい。但し、当該当たりは、上記3つの変位の自由度を損なうものであってはならない。
上記の接面圧付与機構4は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構4は、第2ホルダ21に設けられ、第2リング20を第1リング10に向けて付勢する。
接面圧付与機構4は、第2リング20の周方向の各位置即ち処理用面2の各位置を均等に、第1リング10へ向けて付勢する。接面圧付与機構4の具体的な構成については、後に詳述する。
図1(A)へ示す通り、上記のケース3は、両リング10,20外周面の外側に配置されたものであり、処理用面1,2間にて生成され、両リング10,20の外側に排出される生成物を収容する。ケース3は、図1(A)へ示すように、第1ホルダ10と第2ホルダ20を、収容する液密な容器である。但し、第2ホルダ20は、当該ケースの一部としてケース3と一体に形成されたものとして実施することができる。
上記の通り、ケース3の一部とされる場合は勿論、ケース3と別体に形成さる場合も、第2ホルダ21は、両リング10,20間の間隔、即ち、両処理用面1,2間の間隔に影響を与えるようには可動となっていない。言い換えると、第2ホルダ21は、両処理用面1,2間の間隔に影響を与えない。
ケース3には、ケース3の外側に生成物を排出するための排出口32が設けられている。
第1導入部d1は、両処理用面1,2間に、第1の被処理流動物を供給する。
上記の流体圧付与機構p1は、直接或いは間接的に、この第1導入部d1に接続されて、第1被処理流動体に、流圧を付与する。流体圧付与機構p1には、コンプレッサをその他のポンプを採用することができる。
この実施の形態において、第1導入部d1は、第2ホルダ21の上記中央部分22の内部に設けられた流体の通路であり、その一端が、第2ホルダ21の、第2リング20が平面視において呈する円の中心位置にて、開口する。また、第1導入部d1の他の一端は、第2ホルダ20の外部即ちケース3の外部において、上記流体圧付与機構p1と接続されている。
第2導入部d2は、第1の被処理流動体と、反応させる第2の流動体を処理用面1,2へ供給する。この実施の形態において、第2導入部は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第2流体供給部p2が接続されている。
第2流体供給部p2には、コンプレッサ、その他のポンプを採用することができる。
流体圧付与機構p1により、加圧されている、第1の被処理流動体は、第1導入部d1から、両リング10,20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両リング10,20の外側に通り抜けようとする。
このとき、第1被処理流動体の送圧を受けた、第2リング20は、接面圧付与機構4の付勢に抗して、第1リング10から遠ざかり、両処理用面間に微小な間隔を開ける。両処理用面1,2の接近・離反による、両面1,2間の間隔について、後に詳述する。
両処理用面1,2間に置いて、第2導入部d2から第2の被処理流動体が供給され、第1の被処理流動体と合流し、処理用面の回転により、反応が促進される。そして、両流動体の反応による反応生成物が両処理用面1,2から、両リング10,20の外側に排出される。リング10,20の外側に排出された反応生成物は、最終的に、ケースの排出口からケースの外部に排出される。
上記の被処理流動体の混合及び反応は、第2処理用部20に対する第1処理用部材10の駆動部5による回転にて、第1処理用面1と第2処理用面2とによって行われる。
第1及び第2の処理用面1,2間において、第2導入部d2の開口部m2の下流側が、上記の第1の被処理流動体と第2の被処理流動体とを反応させる反応室となる。具体的には、両処理用面1,2間において、第2リング20の底面を示す図11(C)にて、斜線で示す、第2リング20の径の内外方向r1について、第2導入部の開口部m2即ち第2開口部m2の外側の領域Hが、上記の処理室即ち反応室として機能する。従って、この反応室は、両処理用面1,2間において、第1導入部d1と第2導入部d2の両開口部m1,m2の下流側に位置する。
第1開口部m1からリングの内側の空間を経て両処理用面1,2間へ導入された第1の被処理流動体に対して、第2開口部m2から、両処理用面1,2間に導入された第2の被処理流動体が、上記反応室となる領域Hにて、混合され、両被処理流動体は反応する。流体圧付与機構p1により送圧を受けて、流体は、両処理用面1,2間の微小な隙間にて、リングの外側に移動しようとするが、第1リング10は回転しているので、上記反応の領域Hにおいて、混合された流動体は、リングの径の内外方向について内側から外側へ直線的に移動するのではなく、処理用面を平面視した状態において、リングの回転軸を中心として、渦巻き状にリングの内側から外側へ移動する。このように、混合されて反応を行う領域Hにて、渦巻状に内側から外側へ移動することによって、両処理用面1,2間の微小間隔にて、十分な反応に要する区間を確保することができ、均一な反応を促進することができる。
また、反応にて生ずる生成物は、上記の微小な第1及び第2の処理用1,2間にて、均質な反応物となり、特に晶析や析出の場合微粒子となる。
少なくとも、上記の流体圧付与機構p1が負荷する送圧と、上記の接面圧付与機構4の付勢力と、リングの回転による遠心力のバランスの上に、両処理用面1,2間の間隔を好ましい微小な間隔にバランスさせることができ、更に、流体圧付与機構p1が負荷する送圧とリングの回転による遠心力を受けた被処理流動体が、上記の処理用面1,2間の微小な隙間を、渦巻き状に移動して、反応が促進される。
上記の反応は、流体圧付与機構p1が負荷する送圧やリングの回転により、強制的に行われる。即ち、反応は、近接・離反可能に互いに対向して配設され且つ少なくとも一方が他方に対して回転する処理用面1,2で、強制的に均一混合しながら起こる。
従って、特に、反応による生成物の晶出又は析出は、流体圧付与機構p1が負荷する送圧の調整や、リングの回転速度即ちリングの回転数の調整という、比較的コントロールし易い方法により、制御できる。
このように、この処理装置は、送圧や遠心力の調整にて、生成物の大きさ影響を与える処理用面1,2間の間隔の制御行え、更に、生成物の均一な生成に影響を与える上記反応の領域Hにて移動する距離の制御が行える点、優れたものである。
また、上記の反応処理は、生成物が、析出するものに限らず、液体の場合も含む。
尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。処理中、図示は両処理用面1,2間の微細な間隔にて反応がなされるものであり、実質的に重力の影響を排除できるからである。
図1(A)にあっては、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びたものを示している。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するもではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22の他の位置設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。
図12(A)へ、上記装置のより好ましい実施の形態を示す。図示の通り、第2処理用部20は、上記の第2処理用面2と共に、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23とを備える。以下この受圧面23を離反用調整面23とも呼ぶ。図示の通り、この離反用調整面23は、傾斜面である。
前述の通り、第2ホルダ21の底部即ち下部には、リング収容部41が形成され、そのリング収容部41内に、第2処理用部20が受容されている。また、図示はしないが、回り止めにて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。
この実施の形態において、処理用面1,2間の、第1処理用部10及び第2処理用部20の内側が、被処理物の流入部であり、第1処理用部10及び第2処理用部20の外側が、被処理物の流出部である。
前記の接面圧力付与機構4は、第1処理用面1に対して第2処理用面2を、圧接又は近接した状態に押圧するものであり、この接面圧力と流体圧力などの両処理用面1、2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる。言い換えれば、上記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
具体的には、この実施の形態において、接面圧力付与機構4は、上記のリング収容部41と、リング収容部41の奥に即ちリング収容部41の最深部に設けられた発条受容部42と、スプリング43と、エア導入部44とにて構成されている。
但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44の少なくとも、何れか1つを備えるものであればよい。
リング収容部41は、リング収容部41内の第2処理用部20の位置を深く或いは浅く、即ち上下に、変位することが可能なように、第2処理用部20を遊嵌している。
上記のスプリング43の一端は、発条受容部42の奥に当接し、スプリング43の他端は、リング収容部41内の第2処理用部20の前部即ち上部と当接する。図1において、スプリング43は、1つしか現れていないが、複数のスプリング44にて、第2処理用部20の各部を押圧するものとするのが好ましい。即ち、スプリング43の数を増やすことによって、より均等な押圧力を第2処理用部20に与えることができるからである。従って、第2ホルダ21については、スプリング43が数本から数十本取付けられたマルチ型とするのが好ましい。
この実施の形態において、上記エア導入部44にて他から、空気をリング収容部41内に導入することを可能としている。このような空気の導入により、リング収容部41と第2処理用部20との間を加圧室として、スプリング43と共に、空気圧を押圧力として第2処理用部20に与えることができる。従って、エア導入部44から導入する空気圧を調整することにて、運転中に第1処理用面1に対する第2処理用面2の接面圧力を調整することが可能である。尚空気圧を利用するエア導入部44の代わりに、油圧などの他の流体圧にて押圧力を発生させる機構を利用しても実施可能である。
接面圧力付与機構4は、上記の押圧力即ち接面圧力の一部を供給し調節する他、変位調整機構と、緩衝機構とを兼ねる。
詳しくは、接面圧力付与機構4は、変位調整機構として、始動時や運転中の軸方向への伸びや磨耗による軸方向変位にも、空気圧の調整によって追従し、当初の押圧力を維持できる。また、接面圧力付与機構4は、上記の通り、第2処理用部20を変位可能に保持するフローティング機構を採用することによって、微振動や回転アライメントの緩衝機構としても機能するのである。
次に、上記の構成を採る処理装置の使用の状態について、図1(A)に基づいて説明する。
まず、第1の被処理流動体が、流体圧付与機構p1からの送圧を受けて、密閉されたケースの内部空間へ、第1導入部d1より導入される。他方、回転駆動部による回転軸50の回転によって、第1処理用部10が回転する。これにより、第1処理用面1と第2処理用面2とは微小間隔を保った状態で相対的に回転する。
第1の被処理流動体は、微小間隔を保った両処理用面1,2間で、流体膜となり、第2導入部d2から導入された第2被処理流動体は、両処理用面1,2間において、当該流体膜と合流して、同様に流体膜の一部を構成する。この合流により、第1及び第2の被処理流動体が混合され、両流動体が反応して、均一な反応が促進されて、その反応生成物が形成される。これにより、析出を伴う場合にあっては比較的均一で微細な粒子の生成が可能となり、析出を伴わない場合にあっても、均一な反応が実現される。なお、析出した反応生成物は、第1処理用面1の回転により第2処理用面2との間で剪断を受けることにて、さらに微細化される場合もあると考えられる。ここで、第1処理用面1と第2処理用面2とは、1μmから1mm、特に1μmから10μmの微小間隔に調整されることにより、均一な反応を実現すると共に、数nm単位の超微粒子の生成をも可能とする。
生成物は、両処理用面1,2間から出て、ケース3の排出口33からケース外部へ排出される。排出された生成物は、周知の減圧装置にて、真空或いは減圧された雰囲気内にて霧状にされ、雰囲気内の他に当たることによって流動体として流れ落ちたものが脱気後の液状物として回収することができる。
尚、この実施の形態において、処理装置は、ケースを備えるものとしたが、このようなケースを設けずに実施することもできる。例えば、脱気するための減圧タンク即ち真空タンクを設け、そのタンク内部に、処理装置を配置して、実施することが可能である。その場合、当然上記の排出口は、処理装置には備えられない。
上記のように、第1処理用面1と第2処理用面2とは、機械的なクリアランスの設定では不可能とされたμm単位の微小間隔に調整され得るものであるが、そのメカニズムを次に説明する。
第1処理用面1と第2処理用面2とは、相対的に接近離反可能であり、且つ相対的に回転する。この例では、第1処理用面1が回転し、第2処理用面2が軸方向に摺動して第1処理用面に対して接近離反する。
よって、この例では、第2処理用面2の軸方向位置が、力即ち、前述の接面圧力と離反力のバランスによって、μm単位の精度で設定されることにより、両処理用面1,2間の微小間隔の設定がなされる。
図12(A)へ示す通り、接面圧力としては、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与した場合の当該圧力、スプリング43の押圧力を挙げることができる。
尚、図13〜15に示す実施の形態において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある。この点について、第2導入部d2が設けられていない位置の断面と考えればよい。また、図中、Uは上方を、Sは下方を、夫々示している。
他方、離反力としては、離反側の受圧面、即ち第2処理用面2及び離反用調整面23に作用する流体圧と、第1処理用部1の回転による遠心力と、エア導入部44に負圧を掛けた場合の当該負圧とを挙げることができる。
尚、装置を洗浄するに際して、上記のエア導入部44に掛ける負圧を大きくすることにより、両処理用面1,2を大きく離反させることができ、洗浄を容易に行うことができる。
そして、これらの力の均衡によって、第2処理用面2が第1処理用面1に対して所定の微小間隔を隔てた位置にて安定することにより、μm単位の精度での設定が実現する。
離反力をさらに詳しく説明する。
まず、流体圧に関しては、密閉された流路中にある第2処理用部20は、流体圧付与機構pから被処理流動体の送り込み圧力即ち流体圧を受ける。その際、流路中の第1処理用面に対向する面、即ち第2処理用面2と離反用調整面23が離反側の受圧面となり、この受圧面に流体圧が作用して、流体圧による離反力が発生する。
次に、遠心力に関しては、第1処理用部10が高速にすると、流体に遠心力が作用し、この遠心力の一部は両処理用面1,2を互いに遠ざける方向に作用する離反力となる。
更に、上記のエア導入部44から負圧を第2処理用部20へ与えた場合には、当該負圧が離反力として作用する。
以上、本願の説明においては、第1第2の処理用面1,2を互いに離反させる力を離反力として説明するものであり、上記の示した力を離反力から排除するものではない。
上述のように、密閉された被処理流動体の流路において、処理用面1,2間の被処理流動体を介し、離反力と、接面圧力付与機構4が奏する接面圧力とが均衡した状態を形成することにより、両処理用面1,2間に、均一な反応を実現すると共に、微細な反応生成物の晶出・析出を行うのに適した流体膜を形成する。このように、この装置は、処理用面1,2間に強制的に流体膜を介することにより、従来の機械的な装置では、不可能であった微小な間隔を、両処理用面1,2維持することを可能として、反応生成物として微粒子を、高精度に生成することを実現したのである。
言い換えると処理用面1,2間における流体膜の膜厚は、上述の離反力と接面圧力の調整により、所望の厚みに調整し、必要とする均一な反応の実現と、微細な生成物の生成処理を行うことができる。従って、流体膜の厚みを小さくしようとする場合、離反力に対して相対的に接面圧力が大きくなるように、接面圧力或いは離反力を調整すればよく、逆に流体膜の厚みを大きくようとすれば、接面圧力に対して相対的に離反力が大きくなるように、離反力或いは接面圧力を調整すればよい。
接面圧力を増加させる場合、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与し、又は、スプリング43を押圧力の大きなものに変更或いはその個数を増加させればよい。
離反力を増加させる場合、流体圧付与機構p1の送り込み圧力を増加させ、或いは第2処理用面2や離反用調整面23の面積を増加させ、またこれに加えて、第2処理用部20の回転を調整して遠心力を増加させ或いはエア導入部44からの圧力を低減すればよい。もしくは負圧を付与すればよい。スプリング43は、伸びる方向に押圧力を発する押し発条としたが、縮む方向に力を発する引き発条として、接面圧力付与機構4の構成の一部又は全部とすることが可能である。
離反力を減少させる場合、流体圧付与機構p1の送り込み圧力を減少させ、或いは第2処理用面2や離反用調整面23の面積を減少させ、またこれに加えて、第2処理用部20の回転を調整して遠心力を減少させ或いはエア導入部44からの圧力を増加させれば良い。もしくは負圧を低減すればよい。
さらに、接面圧力及び離反力の増加減少の要素として、上記の他に粘度などの被処理流動体の性状も加えることができ、このような被処理流動体の性状の調整も、上記の要素の調整として、行うことができる。
なお、離反力のうち、離反側の受圧面即ち、第2処理用面2及び離反用調整面23に作用する流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。
メカニカルシールにあっては、第2処理用部20がコンプレッションリングに相当するが、この第2処理用部20に対して流体圧が加えられた場合に、第2処理用部2を第1処理用部1から離反する力が作用する場合、この力がオープニングフォースとされる。
より詳しくは、上記の第1の実施の形態のように、第2処理用部20に離反側の受圧面即ち、第2処理用面2及び離反用調整面23のみが設けられている場合には、送り込み圧力の全てがオープニングフォースを構成する。なお、第2処理用部20の背面側にも受圧面が設けられている場合、具体的には、後述する図12(B)及び図17の場合には、送り込み圧力のうち、離反力として働くものと接面圧力として働くものとの差が、オープニングフォースとなる。
ここで、図12(B)を用いて、第2処理用部20の他の実施の形態について説明する。
図12(B)に示す通り、この第2処理用部20のリング収容部41より露出する部位であり且つ内周面側に、第2処理用面2と反対側即ち上方側を臨む近接用調整面24が設けられている。
即ち、この実施の形態において、接面圧力付与機構4は、リング収容部41と、エア導入部44と、上記近接用調整面24とにて構成されている。但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44と、上記近接用調整面24の少なくとも、何れか1つを備えるものであればよい。
この近接用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、近接用接面圧力付与機構4の一部として、接面圧力の供給側の役目を担う。一方第2処理用面2と前述の離反用調整面23とは、被処理流体に掛けた所定の圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、離反力の一部についての供給側の役目を担うものである。
近接用調整面24と、第2処理用面2及び離反用調整面23とは、共に前述の被処理流動体の送圧を受ける受圧面であり、その向きにより、上記接面圧力の発生と、離反力の発生という異なる作用を奏する。
処理用面の接近・離反の方向、即ち第2リング20の出没方向と直交する仮想平面上に投影した近接用調整面24の投影面積A1と、当該仮想平面に投影した第2処理用部20の第2処理用面2及び離反側受圧面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、上記のオープニングフォースの調整に重要である。
近接用調整面24の先端と離反側受圧面23の先端とは、共に環状の第2調整用部20の内周面25即ち先端線L1に規定されている。このため、近接用調整面24の基端線L2をどこに置くかの決定で、バランス比の調整が行われる。
即ち、この実施の形態において、被処理用流動体の送り出しの圧力をオープニングフォースとして利用する場合、第2処理用面2及び離反用調整面23との合計投影面積を、近接用調整面24の投影面積より大きいものとすることによって、その面積比率に応じたオープニングフォースを発生させることができる。
上記のオープニングフォースについては、上記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
摺動面実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
P=P1×(K−k)+Ps
ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
このバランスラインの調整により摺動面実面圧Pを調整することで処理用面1,2間を所望の微小隙間量にし被処理流動体による流動体膜を形成させ、生成物を微細とし、また、均一な反応処理を行うのである。
通常、両処理用面1,2間の流体膜の厚みを小さくすれば、生成物をより細かくすることができる。逆に、当該流体膜の厚みを大きくすれば、処理が粗くなり単位時間あたりの処理量が増加する。従って、上記の摺動面実面圧Pの調整により、両処理用面1,2間の隙間を調整して、所望の均一な反応を実現すると共に微細な生成物を得ることができる。以下、摺動面実面圧Pを面圧Pと呼ぶ。
この関係を纏めると、上記の生成物を粗くする場合、バランス比を小さくし、面圧Pを小さくし、上記隙間を大きくして、上記膜厚を大きくすればよい。逆に、上記の生成物をより細かくする場合、バランス比を大きくし、面圧Pを大きくし、上記隙間を小さくし、上記膜厚を小さくする。
このように、接面圧力付与機構4の一部として、近接用調整面24を形成して、そのバランスラインの位置にて、接面圧力の調整、即ち処理用面間の隙間を調整するものとしても実施できる。
上記の隙間の調整には、既述の通り、他に、前述のスプリング43の押圧力や、エア導入部44の空気圧を考慮して行う。また、流体圧即ち被処理流動体の送り圧力の調整や、更に、遠心力の調整となる、第1処理用部10即ち第1ホルダ11の回転の調整も、重要な調整の要素である。
上述の通り、この装置は、第2処理用部20と、第2処理用部20に対して回転する第1処理用部10とについて、被処理流動体の送り込み圧力と当該回転遠心力、また接面圧力で圧力バランスを取り両処理用面に所定の流体膜を形成させる構成にしている。またリングの少なくとも一方をフローティング構造とし芯振れなどのアライメントを吸収し接触による磨耗などの危険性を排除している。
この図12(B)の実施の形態においても、上記の調整用面を備える以外の構成については、図1(A)に示す実施の形態と同様である。
また、図12(B)に示す実施の形態において、図17に示すように、上記の離反側受圧面23を設けずに実施することも可能である。
図12(B)や図17に示す実施の形態のように、近接用調整面24を設ける場合、近接用調整面24の面積A1を上記の面積A2よりも大きいものとすることにより、オープニングフォースを発生させずに、逆に、被処理流動体に掛けられた所定の圧力は、全て接面圧力として働くことになる。このような設定も可能であり、この場合、他の離反力を大きくすることにより、両処理用面1,2を均衡させることができる。
上記の面積比にて、流体から受ける力の合力として、第2処理用面2を第1処理用面1から離反させる方向へ作用させる力が定まる。
上記の実施の形態において、既述の通り、スプリング43は、摺動面即ち処理用面に均一な応力を与える為に、取付け本数は、多いほどよい。但し、このスプリング43については、図13へ示すように、シングルコイル型スプリングを採用することも可能である。これは、図示の通り、中心を環状の第2処理用部20と同心とする1本のコイル型スプリングである。
第2処理用部20と第2ホルダ21との間は、気密となるようにシールし、当該シールには、周知の手段を採用することができる。
図14に示すように、第2ホルダ21には、第2処理用部20を、冷却或いは加熱して、その温度を調整することが可能な温度調整用ジャケット46が設けられている。また、図14の3は、前述のケースを示しており、このケース3にも、同様の目的の温度調整用ジャケット35が設けられている。
第2ホルダ21の温度調整用ジャケット46は、第2ホルダ21内において、リング収容部41の側面に形成された水回り用の空間であり、第2ホルダ21の外部に通じる通路47,48と連絡している。通路47,48は、何れか一方が温度調整用ジャケット46に、冷却用或いは加熱用の媒体を導入し、何れか他方が当該媒体を排出する。
また、ケース3の温度調整用ジャケット35は、ケース3の外周を被覆する被覆部34にて、ケース3の外周面と当該被覆部34との間に設けられた、加熱用水或いは冷却水を通す通路である。
この実施の形態では、第2ホルダ21とケース3とが、上記の温度調整用のジャケットを備えるものとしたが、第1ホルダ11にも、このようなジャケットを設けて実施することが可能である。
接面圧力付与機構4の一部として、上記以外に、図15に示すシリンダ機構7を設けて実施することも可能である。
このシリンダ機構7は、第2ホルダ21内に設けられたシリンダ空間部70と、シリンダ空間部70をリング収容部41と連絡する連絡部71と、シリンダ空間部70内に収容され且つ連絡部71を通じて第2処理用部20と連結されたピストン体72と、シリンダ空間部70上部に連絡する第1ノズル73と、シリンダ空間部70下部に第2ノズル74と、シリンダ空間部70上部とをピストン体72との間に介された発条などの押圧体75とを備えたものである。
ピストン体72は、シリンダ空間部70内にて上下に摺動可能であり、ピストン体72の当該摺動にて第2処理用部20が上下に摺動して、第1処理用面1と第2処理用面2との間の隙間を変更することができる。
図示はしないが、具体的には、コンプレッサなどの圧力源と第1ノズル73とを接続し、第1ノズル73からシリンダ空間部70内のピストン体72上方に空気圧即ち正圧を掛けることにて、ピストン体72を下方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を狭めることができる。また図示はしないが、コンプレッサなどの圧力源と第2ノズル74とを接続し、第2ノズル74からシリンダ空間部70内のピストン体72下方に空気圧即ち正圧を掛けることにて、ピストン体72を上方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を広げる、即ち開く方向に移動させることができる。このように、ノズル73,74にて得た空気圧で、接面圧力を調整できるのである。
リング収容部41内における第2処理用部20の上部と、リング収容部41の最上部との間に余裕があっても、ピストン体7がシリンダ空間部70の最上部70aと当接するよう設定することにより、このシリンダ空間部70の最上部70aが、両処理用面1,2間の隙間の幅の上限を規定する。即ち、ピストン体7とシリンダ空間部70の最上部70aとが、両処理用面1,2の離反を抑止する離反抑止部として、更に言い換えると、両処理用面1,2間の隙間の最大開き量を規制する機構として機能する。
また、両処理用面1,2同士が当接していなくても、ピストン体7がシリンダ空間部70の最下部70bと当接するよう設定することにより、このシリンダ空間部70の最下部70bが、両処理用面1,2間の隙間の幅の下限を規定する。即ち、ピストン体7とシリンダ空間部70の最下部70bとが、両処理用面1,2の近接を抑止する近接抑止部として、更に言い換えると、両処理用面1,2間の隙間の最小開き量を規制する機構として機能する。
このように上記隙間の最大及び最小の開き量を規制しつつ、ピストン体7とシリンダ空間部70の最上部70aとの間隔z1、換言するとピストン体7とシリンダ空間部70の最下部70bとの間隔z2を上記ノズル73,74の空気圧にて調整する。
ノズル73,74は、別個の圧力源に接続されたものとしてもよく、一つの圧力源を切り換えて或いはつなぎ換えて接続するものとしてもよい。
また圧力源は、正圧を供給するものでも負圧を供給するものでも何れでも実施可能である。真空などの負圧源と、ノズル73,74とを接続する場合、上記の動作は反対になる。
前述の他の接面圧力付与機構4に代え或いは前述の接面圧力付与機構4の一部として、このようなシリンダ機構7を設けて、被処理流動体の粘度や性状によりノズル73,74に接続する圧力源の圧力や間隔z1,z2の設定を行い流動体液膜の厚みを所望値にしせん断力をかけて均一な反応を実現し、微細な粒子を生成させることができる。特に、このようなシリンダ機構7にて、洗浄時や蒸気滅菌時など摺動部の強制開閉を行い洗浄や滅菌の確実性を上昇させることも可能とした。
図16(A)〜(C)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13...13を形成して実施してもよい。この場合、図16(A)へ示すように、凹部13...13は、第1処理用面1上をカーブして或いは渦巻き状伸びるものとして実施可能であり、図16(B)へ示すように、個々の凹部13がL字状に屈曲するものであっても実施可能であり、また、図16(C)に示すように、凹部13...13は真っ直ぐ放射状に伸びるものであっても実施可能である。
また、図16(D)へ示すように、図16(A)〜(C)の凹部13は、第1処理用面1の中心側に向かう程深いものとなるように勾配をつけて実施するのが好ましい。また、溝状の凹部13は、連続したものの他、断続するものであっても実施可能である。
この様な凹部13を形成することにより被処理流動体の吐出量の増加または発熱量の減少への対応や、キャビテーションコントロールや流体軸受けなど効果がある。
上記の図16に示す各実施の形態において、凹部13は、第1処理用面1に形成するものとしたが、第2処理用面2に形成するものとしても実施可能であり、更には、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。
処理用面に、上記の凹部13やテーパを設けない場合、若しくは、これらを処理用面の一部に偏在させた場合、処理用面1,2の面粗度が被処理流動体に与える影響は、上記凹部13を形成するものに比して、大きいものとなる。従って、このような場合、被処理流動体の粒子が小さくなればなるほど、面粗度を下げる即ちきめの細かいものとする必要がある。特に均一な反応を目的とする場合その処理用面の面粗度については、既述の鏡面即ち鏡面加工を施した面とするほうが均一な反応を実現し、微粒子を得る事を目的とする場合には、微細で単分散な反応物の晶出・析出を実現する上で有利である。
図13乃至図17に示す実施の形態においても、特に明示した以外の構成については図1(A)又は図11(C)に示す実施の形態と同様である。
また、上記の各実施の形態において、ケース内は全て密封されたものとしたが、この他、第1処理用部10及び第2処理用部20の内側のみ密封され、その外側は開放されたものとしても実施可能である。即ち、第1処理用面1及び第2処理用面2との間を通過するまでは流路は密封され、被処理流動体は送圧を全て受けるものとするが、通過後は、流路は開放され処理後の被処理流動体は送圧を受けないものとしてもよい。
流体圧付与機構p1には、加圧装置として、既述のとおり、コンプレッサを用いて実施するのが好ましいが、常に被処理流動体に所定の圧力を掛けることが可能であれば、他の手段を用いて実施することもできる。例えば、被処理流動体の自重を利用して、常に一定の圧力を被処理流動体に付与するものとしても実施可能である。
上記の各実施の形態における処理装置について総括すると、被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路に、第1処理用面1及び第2処理用面2の少なくとも2つの接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させることにより、メカニカルシールにおいてシールに利用される流体膜を、被処理流動体を用いて発生させ、メカニカルシールと逆に(流体膜をシールに利用するのではなく)、当該流体膜を第1処理用面1及び第2処理用面2の間から敢えて漏らして、反応の処理を、両面間1,2にて膜とされた被処理流動体間にて実現し、回収することを特徴とするものである。
このような画期的な方法により、両処理用面1,2間の間隔を1μから1mmとする調整、特に、1〜10μとする調整を可能とした。
上記の実施の形態において、装置内は密閉された流体の流路を構成するものであり、処理装置の(第1被処理流動体の)導入部側に設けた流体圧付与機構pにて、被処理流動体は加圧されたものであった。
この他、このような流体圧付与機構pを用いて加圧するものではなく、被処理流動体の流路は開放されたものであっても実施可能である。
図18乃至図20へ、そのような処理装置の一実施の形態を示す。尚、この実施の形態において、処理装置として、脱気機能を備えたもの、即ち、処理物として生成されたものから、液体を除去し、目的とする固体(結晶)のみを最終的に確保する機能を備えた装置を例示する。
図18(A)は処理装置の略縦断面図であり、図18(B)はその一部切欠拡大断面図である。図19は、図18に示す処理装置が備える第1処理用部材1の平面図である。図20は、上記処理装置の第1及び第2処理用部材1,2の一部切欠要部略縦断面図である。
この図18乃至図20に示す装置は、上記の通り、大気圧下で、処理の対象となる流体即ち被処理流動体或いはこのような処理の対象物を搬送する流体が投入されるものである。
尚、図18(B)及び図20において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある(第2導入部d2が設けられていない位置の断面と考えればよい)。
図18(A)に示す通り、この処理装置は、反応装置Gと、減圧ポンプQとを備えたものである。この反応装置Gは、回転する部材である第1処理用部材101と、当該処理用部材101を保持する第1ホルダ111と、ケースに対して固定された部材である第2処理用部材102と、当該第2処理用部材102が固定された第2ホルダ121と、付勢機構103と、動圧発生機構104(図19(A))と、第1ホルダ111と共に第1処理用部材101を回転させる駆動部と、ハウジング106と、第1被処理流動体を供給(投入する)する第1導入部d1と、流体を減圧ポンプQへ排出する排出部108とを備える。駆動部については図示を省略する。
上記の第1処理用部材101と第2処理用部材102は、夫々、円柱の中心をくり抜いた形状の環状体である。両処理用部材101,102は、両処理用部材101,102の夫々が呈する円柱の一底面を処理用面110,120とする部材である。
上記の処理用面110,120は、鏡面研磨された平坦部を有する。この実施の形態において、第2処理用部材102の処理用面120は、面全体に鏡面研磨が施された平坦面である。また、第1処理用部材101の処理用面110は、面全体を第2処理用部材102と同様の平坦面とするが、図19(A)へ示す通り、平坦面中に、複数の溝112...112を有する。この溝112... 112は、第1処理用部材101が呈する円柱の中心を中心側として円柱の外周方向へ、放射状に伸びる。
上記の第1及び第2の処理用部材101,102の処理用面110,120についての、鏡面研磨は、面粗度Ra0.01〜1.0μmとするのが好ましい。この鏡面研磨について、Ra0.03〜0.3μmとするのがより好ましい。
処理用部材101,102の材質については、硬質且つ鏡面研磨が可能なものを採用する。処理用部材101,102のこの硬さについて、少なくともビッカース硬さ1500以上が好ましい。また、線膨張係数が小さい素材を、若しくは、熱伝導の高い素材を、採用するのが好ましい。処理にて熱を発する部分と他の部分との間で、膨張率の差が大きいと歪みが発生して、適正なクリアランスの確保に影響するからである。
このような処理用部材101,102の素材として、特に、SIC即ちシリコンカーバイトでビッカース硬さ2000〜2500、表面にDLC即ちダイヤモンドライクカーボンでビッカース硬さ3000〜4000、コーティングが施されたSIC、WC即ちタングステンカーバイトでビッカース硬さ1800、表面にDLCコーティングが施されたWC、ZrB2 やBTC,B4 Cに代表されるボロン系セラミックでビッカース硬さ4000〜5000などを採用するのが好ましい。
図18に示されるハウジング106は、底部の図示は省略するが、有底の筒状体であり、上方が上記の第2ホルダ121に覆われている。第2ホルダ121は、下面に上記第2処理部材102が固定されており、上方に上記導入部d1が設けられている。導入部d1は、外部から流体や被処理物を投入するためのホッパ170を備える。
図示はしないが、上記の駆動部は、電動機などの動力源と、当該動力源から動力の供給を受けて回転するシャフト50とを備える。
図18(A)に示すように、シャフト50は、ハウジング106の内部に配され上下に伸びる。そして、シャフト50の上端部に上記の第1ホルダ111が、設けられている。第1ホルダ111は、第1処理用部材101を保持するものであり、上記の通りシャフト50に設けられることにより、第1処理用部材101の処理用面110を第2処理用部材102の処理用面120に対応させる。
第1ホルダ111は、円柱状体であり、上面中央に、第1処理用部材101が固定されている。第1処理用部材101は、第1ホルダ111と一体となるように、固着され、第1ホルダ111に対してその位置を変えない。
一方、第2ホルダ121の上面中央には、第2処理用部材102を受容する受容凹部124が形成されている。
上記の受容凹部124は、環状の横断面を有する。第2処理用部材102は、受容凹部124と、同心となるように円柱状の受容凹部124内に収容される。
この受容凹部124の構成は、図1(A)に示す実施の形態と同様である(第1処理用部材101は第1リング10と、第1ホルダ111は第1ホルダ11と、第2処理用部材102は第2リング20と、第2ホルダ121は第2ホルダ21と対応する)。
そして、この第2ホルダ121が、上記の付勢機構103を備える。付勢機構103は、バネなどの弾性体を用いるのが好ましい。付勢機構103は、図1(A)の接面圧付与機構4と対応し、同様の構成を採る。即ち、付勢機構103は、第2処理用部材102の処理用面120と反対側の面即ち底面を押圧し、第1処理用部材101側即ち下方に第2処理用部材102の各位置を均等に付勢する。
一方、受容凹部124の内径は、第2処理用部材102の外径よりも大きく、これにて、上記の通り同心に配設した際、第2処理用部材102の外周面102bと受容凹部124の内周面との間には、図18(B)に示すように、隙間t1が設定される。
同様に、第2処理用部材102の内周面102aと受容凹部124の中心部分22の外周面との間には、図18(B)に示すように、隙間t2が設定される。
上記隙間t1、t2の夫々は、振動や偏芯挙動を吸収するためのものであり、動作寸法以上確保され且つシールが可能となる大きさに設定する。例えば、第1処理用部材101の直径が100mmから400mmの場合、当該隙間t1、t2の夫々は、0.05〜0.3mmとするのが好ましい。
第1ホルダ111は、シャフト50へ一体に固定され、シャフト50と共に回転する。また、図示しないが、回り止めによって、第2ホルダ121に対して、第2処理用部材102は回らない。しかし、両処理用面110,120間に、処理に必要な0.1〜10ミクロンのクリアランス、即ち図20(B)に示す微小な間隔tを確保するため、受容凹部124の底面即ち天部と第2処理用部材102の天部124aを臨む面即ち上面と間に隙間t3が設けられる。この隙間t3については、上記のクリアランスと共に、シャフト150の振れや伸びを考慮して設定する。
上記のように、隙間t1〜t3の設定により、第1処理用部材101は、第2処理用部材102に対して近接・離反する方向に可変であるのみならず、その処理用面110の中心や向き即ち方向z1,z2についても可変としている。
即ち、この実施の形態において、付勢機構103と、上記隙間t1〜t3とが、フローティング機構を構成し、このフローティング機構によって、少なくとも第2処理用部材102の中心や傾きを、数ミクロンから数ミリの程度の僅かな量、可変としている。これにて、回転軸の芯振れ、軸膨張、第1処理用部材101の面振れ、振動を吸収する。
第1処理用部材101の研磨用面110が備える前記の溝112について、更に詳しく説明する。溝112の後端は、第1処理用部材101の内周面101aに達するものであり、その先端を第1処理用部材101の外側y即ち外周面側に向けて伸ばす。この溝112は、図19(A)へ示すように、その横断面積を、環状の第1処理用部材101の中心x側から、第1処理用部材101の外側y即ち外周面側に向かうにつれて、漸次減少するものとしている。
溝112の左右両側面112a,112bの間隔w1は、第1処理用部材101の中心x側から、第1処理用部材101の外側y即ち外周面側に向かうにつれて小さくなる。また、溝112の深さw2は、図19(B)へ示すように、第1処理用部材101の中心x側から、第1処理用部材101の外側y即ち外周面側に向かうにつれて、小さくなる。即ち、溝112の底112cは、第1処理用部材101の中心x側から、第1処理用部材101の外側y即ち外周面側に向かうにつれて、浅くなる。
このように、溝112は、その幅及び深さの双方を、外側y即ち外周面側に向かうにつれて、漸次減少するものとして、その横断面積を外側yに向けて漸次減少させている。そして、溝112の先端即ちy側は、行き止まりとなっている。即ち、溝112の先端即ちy側は、第1処理用部材101の外周面101bに達するものではなく、溝112の先端と外周面101bとの間には、外側平坦面113が介在する。この外側平坦面113は、処理用面110の一部である。
この図19へ示す実施の形態において、このような溝112の左右両側面112a,112bと底112cとが流路制限部を構成している。この流路制限部と、第1処理用部材101の溝112周囲の平坦部と、第2処理用部材102の平坦部とが、動圧発生機構104を構成している。
但し、溝112の幅及び深さの何れか一方についてのみ、上記の構成を採るものとして、断面積を減少させるものとしてよい。
上記の動圧発生機構104は、第1処理用部材101の回転時、両処理用部材101,102間を通り抜けようとする流体によって、両処理用部材101,102の間に所望の微小間隔を確保することを可能とする、両処理用部材101,102を離反させる方向に働く力を発生させる。このような動圧の発生により、両処理用面110,120間に、0.1〜10μmの微小間隔を発生させることができる。このような微小間隔は、処理の対象によって、調整し選択すればよいのであるが、1〜6μmとするのが好ましく、より好ましくは、1〜2μmである。この装置においては、上記のような微小間隔による従来にない均一な反応の実現と微細粒子の生成が可能である。
溝112...112の夫々は、真っ直ぐ、中心x側から外側yに伸びるものであっても実施可能である。但し、この実施の形態において、図19(A)に示すように、第1処理用部材101の回転方向rについて、溝112の中心x側が、溝112の外側yよりも、先行するように即ち前方に位置するように、湾曲して溝112を伸びるものとしている。
このように溝112...112が湾曲して伸びることにより、動圧発生機構104による離反力の発生をより効果的に行うことができる。
次に、この装置の動作について説明する。
ホッパ17から投入され、第1導入部d1を通ってくる第1被処理流動体Rは、環状の第2処理用部材102の中空部を通り、第1処理用部材101の回転よる遠心力を受けた流体は、両処理用部材101,102間に入り、回転する第1処理用部材101の処理用面110と、第2処理用部材102の処理用面120との間にて、均一な反応と微細粒子の生成処理が行われ、その後、両処理用部材101,102の外側に出て、排出部108から減圧ポンプQ側へ排出される。以下必要に応じて第1被処理流動体Rを単に流体Rと呼ぶ。
上記において、環状の第2処理用部材102の中空部に入った流体Rは、図20(A)へ示すように、先ず、回転する第1処理用部材101の溝112に入る。一方、鏡面研磨された、平坦部である両処理用面110,120は、空気や窒素などの気体を通しても気密性が保たれている。従って、回転による遠心力を受けても、そのままでは、付勢機構103によって、押し合わされた両処理用面110,120の間に、溝112から流体は入り込むことはできない。しかし、流路制限部として形成された溝112の上記両側面112a,112bや底112cに、流体Rは徐々に突き当たり、両処理用面110,120を離反させる方向に働く動圧を発生させる。図20(B)へ示すように、これによって、流体Rが溝112から平坦面に滲み出し、両処理用面110,120の間に微小間隔t即ちクリアランスを確保することができる。そして、このような鏡面研磨された平坦面の間で、均一な反応と微細な粒子の生成処理が行われる。また上述の溝112の湾曲が、より確実に流体へ遠心力を作用させ、上記動圧の発生をより効果的にしている。
このように、この処理装置は、動圧と付勢機構103による付勢力との均衡にて、両鏡面即ち処理用面110,120間に、微細で均一な間隔即ちクリアランスを確保することを可能とした。そして、上記の構成により、当該微小間隔は、1μm以下の超微細なものとすることができる。
また、上記フローティング機構の採用により、処理用面110,120間のアライメントの自動調整が可能となり、回転や発生した熱による各部の物理的な変形に対して、処理用面110,120間の各位置における、クリアランスのばらつきを、抑制し、当該各位置における上記の小間隔の維持を可能とした。
尚、上記の実施の形態において、フローティング機構は、第2ホルダ121にのみ設けられた機構であった。この他、第2ホルダ121に代え、或いは第2ホルダ121と共に、フローティング機構を、第1ホルダ111にも設けるものとして実施することも可能である。
図21乃至図23に、上記の溝112について、他の実施の形態を示す。
図21(A)(B)に示すように、溝112は、流路制限部の一部として、先端に平らな壁面112dを備えるものとして実施することができる。また、この図14に示す実施の形態では、底112cにおいて、第1壁面112dと、内周面101aとの間に段差112eが設けられており、この段差112eも流路制限部の一部を構成する。
図22(A)(B)に示すように、溝112は、複数に分岐する枝部112f...112fを備えるものとし、各枝部112fがその幅を狭めることにより流路制限部を備えるものとしても実施可能である。
図14及び図15の実施の形態においても、特に示した以外の構成については、図1(A)、図11(C)、図18乃至図20に示す実施の形態と同様である。
また、上記の各実施の形態において、溝112の幅及び深さの少なくとも何れか一方について、第1処理用部材101の内側から外側に向けてその寸法を漸次小さくすることにて、流路制限部を構成するものとした。この他、図23(A)や図23(B)へ示す通り、溝112の幅や深さを変化させずに、溝112に終端面112fを設けることによって、このような溝112の終端面112fを流路制限部とすることができる。図19、図21及び図22に示す実施の形態において示した通り、動圧発生は、溝112の幅及び深さを既述の通り変化させることによって溝112の底や両側面を傾斜面とすることで、この傾斜面が流体に対する受圧部になり動圧を発生させた。一方図23(A)(B)に示す実施の形態では、溝112の終端面が流体に対する受圧部になり動圧を発生させる。
また、この図23(A)(B)に示す場合、溝112の幅及び深さの少なくとも何れか一方の寸法を漸次小さくすることも併せて実施することができる。
尚、溝112の構成について、上記の図19、図21乃至図23に示すものに限定するものではなく、他の形状の流路制限部を備えたものとして実施することが可能である。
例えば、図19、図21乃至図23示すものでは、溝112は、第1処理用部材101の外側に突き抜けるものではなかった。即ち、第1処理用部材101の外周面と、溝112との間には、外側平坦面113が存在した。しかし、このような実施の形態に限定するものではなく、上述の動圧を発生されることが可能であれば、溝112は、第1処理用部材101の外周面側に達するものであっても実施可能である。
例えば、図23(B)に示す第1処理用部材101の場合、点線で示すように、溝112の他の部位よりも断面積が小さな部分を、外側平坦面113に形成して実施することができる。
また、溝112を、上記の通り内側から外側へ向けて漸次断面積を小さくするように形成し、溝112の第1処理用部材101の外周に達した部分(終端)を、最も断面積が小さいものとすればよい(図示せず)。但し、動圧を効果的に発生させる上で、図19、図21乃至図23に示すように、溝112は、第1処理用部材101の外周面側に突き抜けないほうが好ましい。
ここで、上記図18乃至図23に示す各実施の形態について、総括する。
この処理装置は、平坦処理用面を有する回転部材と同じく平坦処理用面を有する固定部材とをそれらの平坦処理用面で同心的に相対向させ、回転部材の回転下に固定部材の開口部より被反応原料を供給しながら両部材の対向平面処理用面間より反応処理する処理装置において機械的にクリアランスを調整するのではなく、回転部材に増圧機構を設けてその圧力発生によりクリアランスを保持しかつ機械的クリアランス調整では、不可能であった1〜6μmの微小クリアランスを可能とし生成粒子の微細化及び反応の均一化の能力が著しく向上出来たものである。
即ち、この処理装置は、回転部材と固定部材がその外周部に平坦処理用面を有しその平坦処理用面において、面上の密封機能を有することで、流体静力学的な即ちハイドロスタティックな力、一流体動力学的即ちハイドロダイナミックな力、或いは、エアロスタティック−エアロダイナミックな力を発生させる高速回転式の処理装置を提供しようとするものである。上記の力は、上記密封面間に僅かな間隙を発生させ、また非接触で機械的に安全で高度な微細化及び反応の均一化の機能を有した反応処理装置を提供することができる。この僅かな隙間が形成されうる要因は、一つは、回転部材の回転速度によるものであり、もう一つは、被処理物(流体)の投入側と排出側の圧力差によるものである。投入側に圧力付与機構が付設されている場合は、投入側に圧力付与機構が付設されていない場合即ち大気圧下で被処理物(流体)を投入される場合、圧力差が無いわけであるから回転部材の回転速度だけで密封面間の分離を生じさせる必要がある。これは、ハイドロダイナミックもしくはエアロダイナミック力として知られている。
図18(A)に示す装置において、減圧ポンプQを上記反応装置Gの排出部に接続したものを示したが、既述の通りハウジング106を設けず、また減圧ポンプQを設けずに、図24(A)に示すように処理装置を減圧用のタンクTとして、当該タンクTの中に、反応装置Gを配設することにて実施することが可能である。
この場合、タンクT内を真空或いは真空に近い状態に減圧することにて、反応装置Gにて生成された被処理物をタンクT内に霧状に噴射せしめ、タンクTの内壁にぶつかって流れ落ちる被処理物を回収すること、或いはこのような流れ落ちる被処理物に対して気体(蒸気)として分離されタンクT内上部に充満するものを回収することにて、処理後の目的物を得ることができる。
また、減圧ポンプQを用いる場合も、図24(B)へ示すように、処理装置Gに、減圧ポンプQを介して、気密なタンクTを接続することにより、当該タンクT内にて、処理後の被処理物を霧状にして、目的物の分離・抽出を行うことができる。
更に、図24(C)へ示すように、減圧ポンプQを直接処理装置Gに接続し、当該タンクTに、減圧ポンプQと、減圧ポンプQとは別の流体Rの排出部とを接続して、目的物の分離を行うことができる。この場合、気化部については、減圧ポンプQに吸いよせられ、液体R(液状部)は排出部より、気化部とは別に排出される。
上述してきた各実施の形態では、第1及び第2の2つの被処理流動体を、夫々第2ホルダ21,121及び第2リング20,102から、導入して、混合し反応させるものを示した。
次に、装置への被処理流動体の導入に関する他の実施の形態について、順に説明する。
図1(B)へ示す通り、図1(A)へ示す処理装置に、第3導入部d3を設けて第3の被処理流動体を、両処理用面1,2間へ導入して、第2被処理流動体と同様第1被処理流動体へ混合し反応させるものとしても実施できる。
第3導入部d3は、第1の被処理流動体と、混合させる第3の流動体を処理用面1,2へ供給する。この実施の形態において、第3導入部d3は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第3流体供給部p3が接続されている。
第3流体供給部p3には、コンプレッサ、その他のポンプを採用することができる。
第3導入部d3の第2処理用面2における開口部は、第2導入部d2の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第3導入部d3の開口部は、第2導入部d2の開口部よりも、下流側に位置する。第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられている。
この図1(B)へ示す装置も、第3導入部d3以外の構成については、図1(A)へ示す実施の形態と同様である。尚、この図1(B)、更に、以下に説明する、図1(C)、図1(D)、図2〜図11において、図面の煩雑を避けるため、ケース3を省略する。尚、図9(B)(C)、図10、図11(A)(B)において、ケース3の一部は、描いてある。
更に、図1(C)へ示すように、図1(B)へ示す処理装置に、第4導入部d4を設けて第4の被処理流動体を、両処理用面1,2間へ導入して、第2及び第3の被処理流動体と同様第1被処理流動体へ混合し反応させるものとしても実施できる。
第4導入部d4は、第1の被処理流動体と、混合させる第4の流動体を処理用面1,2へ供給する。この実施の形態において、第4導入部d4は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第4流体供給部p4が接続されている。
第4流体供給部p4には、コンプレッサ、その他のポンプを採用することができる。
第4導入部d4の第2処理用面2における開口部は、第3導入部d3の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第4導入部d4の開口部は、第3導入部d3の開口部よりも、下流側に位置する。
この図1(C)へ示す装置について、第4導入部d4以外の構成については、図1(B)へ示す実施の形態と同様である。
また、図示はしないが、更に、第5導入部や、第6導入部など、5つ以上の導入部を設けて、夫々5種以上の被処理流動体を、混合し反応させるものとしても実施できる。
また、図1(D)へ示す通り、図1(A)の装置では、第2ホルダ21に設けられていた第1導入部d1を、第2ホルダ21に設ける代わりに、第2導入部d2同様、第2処理用面2に設けて実施することができる。この場合、第2処理用面2において、第1導入部d1の開口部は、第2導入部d2よりも、回転の中心側即ち上流側に位置する。
上記の図1(D)へ示す装置では、第2導入部d2の開口部と、第3導入部d3の開口部は、共に第2リング20の第2処理用面2に配置されるものであった。しかし、導入部の開口部は、このような処理用面に対する配置に限定するもではない。特に、図2(A)へ示す通り、第2導入部d2の開口部を、第2リング20の内周面の、第2処理用面2に隣接する位置に設けて実施することもできる。この図2(A)へ示す装置において、第3導入部d3の開口部は、図1(B)へ示す装置と同様第2処理用面2に配置されているが、第2導入部d2の開口部を、このように第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することによって、第2の被処理流動体を処理用面に直ちに導入できる。
このように第1導入部d1の開口部を第2ホルダ21に設け、第2導入部d2の開口部を第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することで(この場合、上記第3導入部d3を設けることは必須ではない)、特に複数の被処理流体を反応させる場合において、第1導入部d1から導入される被処理流体と第2導入部d2から導入される被処理流体とを反応させない状態で両処理用面1,2間へ導入し、両処理用面1,2間において両者を初めて反応させることができる。よって、上記構成は、特に反応性の高い被処理流体を用いる場合に適している。
なお、上記の「隣接」とは、第2導入部d2の開口部を、図2(A)に示すように第2リング20の内側側面に接するようにして設けた場合に限られるものではない。第2リング20から第2導入部d2の開口部までの距離が、複数の被処理流体が両処理用面1,2間へ導入される前に混合・反応が完全になされない程度とされていれば良く、例えば、第2ホルダ21の第2リング20に近い位置に設けたものであっても良い。また、第2導入部d2の開口部を第1リング10あるいは第1ホルダ11の側に設けても良い。
更に、上記の図1(B)へ示す装置において、第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、図2(A)へ示す通り、そのような間隔を設けずに、両処理用面1,2間に第2及び第3の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような図2(A)へ示す装置を選択すればよい。
また、上記の図1(D)へ示す装置についても、第1導入部d1の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、そのような間隔を設けずに、両処理用面1,2間に第1及び第2の被処理流動体を導入すると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような開口部の配置を選択すればよい。
上記の図1(B)及び図1(C)に示す実施の形態では、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部の下流側、言い換えると、第2リング20の径の内外方向について第2導入部d2の開口部の外側に配置するものとした。この他、図2(C)及び図3(A)へ示す通り、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部と、第2リング20の周方向r0について異なる位置に配置するものとしても実施できる。図3において、m1は第1導入部d1の開口部即ち第1開口部を、m2は第2導入部d2の開口部即ち第2開口部を、m3は第3導入部d3の開口部(第3開口部)を、r1はリングの径の内外方向を、夫々、示している。
また、第1導入部d1を、第2リング20に設ける場合も、図2(D)へ示す通り、第2処理用面2において、第1導入部d1の開口部を、第2導入部d2の開口部と、第2リング20の周方向について異なる位置に配置するものとしても実施できる。
上記の図2(B)へ示す装置では、第2リング20の処理用面2において、周方向r0の異なる位置に2つの導入部の開口部が配置されたものを示したが、図3(B)へ示す通り、リングの周方向r0の異なる位置に3つの導入部の開口部を配置し、或いは図3(C)へ示す通り、リングの周方向r0の異なる位置に4つの導入部の開口部を配置して実施することもできる。尚、図3(B)(C)において、m4は、第4導入部の開口部を示し、図3(C)においてm5は第5導入部の開口部を示している。また、図示はしないが、導入部の開口部を、リングの周方向r0の異なる位置に5つ以上設けて実施することもできる。
上記の図2(B)(D)、及び、図3(A)〜(C)に示す装置において、第2導入部乃至第5導入部は、夫々異なる被処理流動体即ち、第2、第3、第4、第5の被処理流動体を、導入することができる。一方、第2〜第5の開口部m2〜m5から、全て同種の即ち、第2被処理流動体を処理用面間に導入するものとしても実施できる。図示はしないが、この場合、第2導入部乃至第5導入部は、リング内部にて連絡しており、一つの流体供給部、即ち第2流体供給部p2に接続されているものとして実施できる。
また、リングの周方向r0の異なる位置に導入部の開口部を複数設けたものと、リングの径方向即ち径の内外方向r1の異なる位置に導入部の開口部を複数設けたものを、複合して実施することもできる。
例えば、図3(D)へ示す通り、第2処理用面2に8つの導入部の開口部m2〜m9が設けられており、そのうち4つm2〜m5は、リングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられたものであり、他の4つm5〜m8はリングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられている。そして、当該他の開口部m5〜m8は、径方向rについて、上記4つの開口部m2〜m5の径方向の外側に配置さていれる。また、この外側の開口部は、夫々、内側の開口部と、リングの周方向r0について、同じ位置に設けてもよいが、リングの回転を考慮して、図3(D)へ示すように、リングの周方向r0の異なる位置に設けて実施することもできる。また、その場合も、開口部について、図3(D)に示す配置や数にするものではい。
例えば、図3(E)へ示す通り、径方向外側の開口部が多角形の頂点位置、即ちこの場合四角形の頂点位置に配置され、当該多角形の辺上に、径方向内側の開口部が位置するように配置することもできる。勿論この他の配置を採ることもできる。
また、第1開口部m1以外の開口部は、何れも第2被処理流動体を処理用面間に導入するものとした場合、各第2被処理流動部を導入する当該開口部を、処理用面の周方向r0について、点在させるのではなく、図3(F)へ示す通り、周方向r0について、連続する開口部として実施することもできる。
尚、処理の対象によっては、図4(A)へ示す通り、図1(A)に示す装置において、第2リング20に設けていた第2導入部d2を、第1導入部d1と同様、第2ホルダ21の中央部分22へ設け実施することもできる。この場合、第2リング20の中心に位置する第1導入部d1の開口部に対し、その外側に、間隔を開けて、第2導入部d2の開口部が位置する。また、図4(B)へ示す通り、図4(A)へ示す装置について、第2リング20に第3導入部d3を設けて実施することもできる。図4(C)へ示す通り、図3(A)へ示す装置において、第1導入部d1の開口部と第2導入部d2の開口部との間に間隔を設けず、第2リング20の内側の空間へ第2及び第3の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。更にまた、処理の対象によっては、図4(D)へ示す通り、図3(A)へ示す装置において、第2導入部d2同様、第3導入部d3も第2ホルダ21に設けて実施することができる。図示はしないが、4つ以上の導入部を第2ホルダ21に設けて実施することもできる。
また、処理の対象によっては、図5(A)へ示す通り、図4(D)へ示す装置において、第2リング20に第4導入部d4を設けて第4の被処理流動体を両処理用面1,2間へ導入するものとしても実施できる。
図5(B)へ示す通り、図1(A)へ示す装置において、第2導入部d2を、第1リング10へ設け、第1処理用面1に第2導入部d2の開口部を備えるものとしても実施できる。
図5(C)へ示す通り、図5(B)へ示す装置において、第1リング10に第3導入部d3を設けて、第1処理用面1において、第3導入部d3の開口部を、第2導入部d2の開口部と、第1リング10の周方向について異なる位置に配置するものとしても実施できる。
図5(D)へ示す通り、図5(B)へ示す装置において、第2ホルダ21へ第1導入部d1を設ける代わりに、第2リング20へ第1導入部d1を設け、第2処理用面2に、第1導入部d1の開口部を配置するものとしても実施できる。この場合、第1及び第2の導入部d1,d2の両開口部は、リングの径の内外方向について、同じ位置に配置されている。
また、図6(A)へ示す通り、図1(A)へ示す装置において、第3導入部d3を、第1リング10へ設け、第1処理用面1へ第3導入部d3の開口部を配置するものとしても実施できる。この場合、第2及び第3の導入部d2,d3の両開口部は、リングの径の内外方向について、同じ位置に配置されている。但し、上記の両開口部を、リングの径の内外方向について、異なる位置に配置するものとしてもよい。
図5(C)へ示す装置において、第1リング10の径の内外方向について同じ位置に設けると共に、第1リング10の周方向即ち回転方向について異なる位置に設けたが、当該装置において、図6(B)へ示す通り、第2及び第3導入部d2,d3の両開口部を、第1リング10の径の内外方向について異なる位置に設けて実施することができる。この場合図6(B)へ示す通り、第2及び第3導入部d2,d3の両開口部の間には、第1リング10の径の内外方向に間隔を開けておくものとしても実施でき、または図示はしないが、当該間隔を開けずに直ちに、第2被処理流動体と第3被処理流動体とが合流するものとしても実施できる。
また、図6(C)へ示す通り、第2ホルダ21へ第1導入部d1を設ける代わりに、第2導入部d2と共に、第1リング10へ第1導入部d1を設けて実施することもできる。この場合、第1処理用面1において、第1導入部d1の開口部を、第2導入部d2の開口部の、上流側(第1リング11の径の内外方向について内側)に設ける。第1導入部d1の開口部と第2導入部d2の開口部との間には、第1リング11の径の内外方向について、間隔を開けておく。但し図示はしないが、このような間隔を開けずに実施することもできる。
また、図6(D)へ示す通り、図6(C)へ示す装置の第1処理用面1にあって、第1リング10周方向の異なる位置に、第1導入部d1と第2導入部d2夫々の開口部を配置するものとして実施することができる。
また、図示はしないが、図6(C)(D)へ示す実施の形態において、第1リング10へ3つ以上の導入部を設けて、第2処理用面2において、周方向の異なる位置に、或いは、リングの径の内外方向の異なる位置に、各開口部を配置するものとして実施することもできる。例えば、第2処理用面2において採った、図3(B)〜図3(F)に示す開口部の配置を第1処理用面1においても採用することができる。
図7(A)へ示す通り、図1(A)へ示す装置において、第2導入部d2を第2リング20へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸の中心に第2導入部d2の開口部を配置するのが好ましい。
図7(B)へ示す通り、図7(A)へ示す実施の形態において、第3導入部d3を、第2リング20へ設けて、第3導入部d3の開口部を第2処理用面2へ配置することができる。
また、図7(C)へ示す通り、第1導入部d1を第2ホルダ21へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸に第1導入部d1の開口部を配置するのが好ましい。また、この場合、図示の通り、第2導入部d2を第1リング10へ設けて、第1処理用面1へ、その開口部を配置することができる。また、図示はしないが、この場合、第2導入部d2を第2リング20へ設けて、第2処理用面2へ、その開口部を配置することができる。
更に、図7(D)へ示す通り、図7(C)へ示す第2導入部d2を、第1導入部d1と共に、第1ホルダ11へ設けて実施することもできる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第2導入部d2の開口部を配置する。また、この場合、図7(C)において、第2リング20へ設けた第2導入部d2を、第3導入部d3とすればよい。
上記の図1〜図7に示す各実施の形態において、第1ホルダ11及び第1リング10が、第2ホルダ21及び第2リング20に対して回転するものとした。この他、図8(A)へ示す通り、図1(A)へ示す装置において、第2ホルダ2に、回転駆動部から回転力を受けて回転する回転軸51を設けて、第1ホルダ11の逆方向に、第2ホルダ21を回転させるものとしても実施できる。回転駆動部は、第1ホルダ11の回転軸50を回転させるものと別に設けるものとしてもよく、或いはギアなどの動力伝達手段により、第1ホルダ11の回転軸50を回転させる駆動部から、動力を受けるものとしても実施できる。この場合、第2ホルダ2は、前述のケースと別体に形成されて、第1ホルダ11と同様、当該ケース内に回転可能に収容されたものとする。
また、図8(B)へ示す通り、図8(A)に示す装置において、第2リング20に第2導入部d2を設ける代わりに、図7(B)の装置と同様に第1ホルダ11に第2導入部d2を設けて実施することができる。
また、図示はしないが、図8(B)へ示す装置において、第2導入部d2を、第1ホルダ11に代え第2ホルダ21へ設けて実施することもできる。この場合、第2導入部d2は、図7(A)の装置と同様である。図8(C)へ示す通り、図8(B)へ示す装置において、第2リング20に第3導入部d3を設けて、当該導入部d3の開口部を、第2処理用面2に配置して実施することもできる。
更に、図8(D)へ示す通り、第1ホルダ11を回転させずに、第2ホルダ21のみを回転させるものとしても実施できる。図示はしないが、図1(B)〜図7に示す装置においても、第1ホルダ11と共に第2ホルダ21を、或いは第2ホルダ21のみ単独で回転させるものとしても実施できる。
図9(A)へ示すように、第2処理用部20は、リングとし、第1処理用部10を、リングでなく、他の実施の形態の第1ホルダ11と同様の、直接回転軸50を備えて回転する部材とすることができる。この場合、第1処理用部10の上面を、第1処理用面1とし、当該処理用面は、環状でなく、即ち中空部分を備えない、一様に平らな面とする。また、この図9(A)に示す装置において、図1(A)の装置と同様、第2導入部d2を、第2リング20に設け、その開口部を第2処理用面2に配置している。
図9(B)へ示す通り、図9(A)へ示す装置において、第2ホルダ21を、ケース3と独立したものとし、ケース3と当該第2ホルダ21との間に、第2リング20が設けられた1処理用部10へ接近・離反させる弾性体などの接面圧付与機構4を設けて実施することもできる。この場合、図9(C)へ示すように、第2処理用部20をリングとするのではなく、上記の第2ホルダ21に相当する部材とし、当該部材の下面を第2処理用面2として形成することができる。更に、図10(A)へ示す通り、図9(C)へ示す装置において、第1処理用部10もリングとするのではなく、図9(A)(B)へ示す装置と同様他の実施の形態において第1ホルダ11に相当する部位を第1処理用部10とし、その上面を第1処理用面1として実施することができる。
上記の各実施の形態において、少なくとも第1の被処理流動体は、第1処理用部10と第2処理用部20即ち、第1リング10と第2リング20の中心部から供給され、他の被処理流動体による処理、即ち混合及び反応後、その径の内外方向について外側へ排出されるものとした。
この他、図10(B)へ示す通り、第1リング10及び第2リング20の外側から、内側に向けて、第1の被処理流動体を供給するものとしても実施できる。この場合、図示の通り、第1ホルダ11及び第2ホルダ21の外側をケース3にて密閉し、第1導入部d1を当該ケース3に直接設けて、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に、当該導入部の開口部を配置する。そして、図1(A)の装置において第1導入部d1が設けられていた位置、即ち第1ホルダ11におけるリング1の中心となる位置に、排出部36を設ける。また、ホルダの回転の中心軸を挟んで、ケースの当該開口部の反対側に、第2導入部d2の開口部を配置する。但し、第2導入部dの開口部は、第1導入部d1の開口部と同様、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に配置するものであればよく、上記のように、第1導入部d1の開口部の反対側に形成するのに限定するものではない。
処理後の生成物の排出部36を設けておく。この場合、両リング10,20の径の外側が、上流となり、両リング10,20の内側が下流側となる。
図10(C)に示す通り、図10(B)へ示す装置において、ケース3の側部に設けた第2導入部d2を、当該位置に代え、第1リング11に設けて、その開口部を第1処理用面1に配置するものとしても実施できる。この場合において、図10(D)に示す通り、第1処理用部10をリングとして形成するのでなく、図9(B)、図9(C)や図10(A)に示す装置と同様、他の実施の形態において、第1ホルダ11に相当する部位を、第1処理用部10とし、その上面を第1処理用面1とし、更に、当該第1処理用部10内に第2導入部d2を設けて、その開口部を第1処理用面1に配置するものとして実施できる。
図11(A)へ示す通り、図10(D)へ示す装置において、第2処理用部20もリングとして形成するのではなく、他の実施の形態において第2ホルダ21に相当する部材を、第2処理用部2とし、その下面を第2処理用面2として実施することができる。そして、第2処理用部20を、ケース3と独立した部材とし、ケース3と第2処理用部20との間に、図9(C)(D)、図10(A)に示す装置と同じ接面圧付与機構4を設けて実施することができる。
また、図11(B)へ示す通り、図11(A)に示す装置の第2導入部d2を第3導入部d3とし、別途第2導入部d2を設けるものとしも実施できる。この場合、第2処理用面2において第2導入部d2の開口部を第3導入部d3の開口部よりも上流側に配置する。
前述の図4に示す各装置、図5(A)図7(A)(B)(D)、図8(B)(C)に示す装置は、処理用面1,2間に達する前に、第1の被処理流動体に対して、他の被処理流動体が合流するものであり、晶出や析出の反応の速いものには適さない。しかし、反応速度の遅いものについては、このような装置を採用することもできる。
本願発明に係る方法の発明の実施に適した処理装置について、以下に纏めておく。
前述の通り、この処理装置は、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、少なくとも2種の被処理流動体の混合・反応の処理を行うものである。第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体の少なくとも一方に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させる。そして、この装置にあって、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に上記の圧力を受けた被処理流動体が通されることにより、各被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体間において、所望の反応が生じる。
また、この処理装置において、第1処理用面1及び第2処理用面2の少なくとも一方の、微振動やアライメントを調整する緩衝機構を備えたものを採用するのが好ましい。
また、この処理装置において、第1処理用面1及び第2処理用面2 の一方又は双方の、磨耗などによる軸方向の変位を調整して、両処理用面1,2間の流体膜の膜厚を維持することを可能とする変位調整機構を備えたものを採用するのが好ましい。
更に、この処理装置にあっては、上記の流体圧付与機構として、被処理流動体に対して一定の送り込み圧を掛けるコンプレッサなどの加圧装置を採用するとができる。
尚、上記の加圧装置は、送り込み圧の増減の調整を行えるものを採用する。この加圧装置は、設定した圧力を一定に保つことができる必要があるが、処理用面間の間隔を調整するパラメータとして、調整を行える必要があるからである。
また、この処理装置には、上記の第1処理用面1と第2処理用面2との間の最大間隔を規定し、それ以上の両処理用面1,2の離反を抑止する離反抑止部を備えるものを採用することができる。
更にまた、この処理装置には、上記の第1処理用面1と第2処理用面2との間の最小間隔を規定し、それ以上の両処理用面1,2の近接を抑止する近接抑止部を備えたものを採用することができる。
更に、この処理装置には、第1処理用面1と第2処理用面2の双方が、互いに逆の方向に回転するものを採用することができる。
また、この処理装置には、上記第1処理用面1と第2処理用面2の一方或いは双方の温度を調整する、温度調整用のジャケットを備えたものを採用することができる。
また更に、この処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方の少なくとも一部は、鏡面加工されたものを採用するのが好ましい。
この処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方は、凹部を備えたものを採用することができる。
更に、この処理装置には、一方の被処理流動体に反応させる他方の被処理流動体の供給手段として、一方の被処理流動体の通路とは独立した別途の導入路を備え、上記第1処理用面と第2処理用面の少なくとも何れ一方に、上記の別途の導入路に通じる開口部を備え、当該別途の導入路から送られてきた他方の被処理流動体を、上記一方の被処理流動体に導入することができるものを採用するのが好ましい。
また、本願発明を実施する処理装置として、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に接続された第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面と、両処理用面1,2間に接面圧力を付与する接面圧力付与機構と、第1処理用面1と第2処理用面2とを相対的に回転させる回転駆動機構と、を備えることにより、両処理用面1,2 間にて、少なくとも2種の被処理流動体の反応処理を行うものであって、接面圧力が付与されつつ相対的に回転する第1処理用面1と第2処理用面2との間に、流体圧付与機構から圧力を付与された少なくとも一種の被処理流動体が通され、更に、他の一種の被処理流動体が通されることにより、流体圧付与機構から圧力を付与された上記一種の被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過する際に、当該他の一種の被処理流動体が混合され、被処理流動体間にて、所望の反応を生じさせるものを採用することができる。
この接面圧付与機構が、前述の装置における、微振動やアライメントを調整する緩衝機構や、変位調整機構を構成するものとして実施することができる。
更に、本願発明を実施する処理装置として、反応させる2種の被処理流動体のうち少なくとも一方の被処理流動体を当該装置に導入する第1導入部と、第1導入部に接続されて当該一方の被処理流動体に圧力を付与する流体圧付与機構pと、反応させる2種の被処理流動体のうち少なくとも他の一方を当該装置に導入する第2導入部と、当該一方の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第2処理用面2が露出するように第2処理用部20を受容するホルダ21と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構と、第1処理用面1に対して第2処理用面2を圧接又は近接した状態に第2処理用部20を押圧する接面圧付与機構4 とを備え、両処理用面1,2間にて、被処理流動体間の反応処理を行い、上記ホルダ21が、上記第1導入部の開口部を備えると共に、処理用面1,2間の隙間に影響を与えるようには可動でないものであり、第1処理用部10と第2導入部20の少なくとも一方が、上記第2導入部の開口部を備え、第2処理用部20が、環状体であり、第2処理用面2がホルダ21に対して摺動して第1処理用面1に接近離反するものであり、第2処理用部20が受圧面を備え、受圧面は、流体圧付与機構pが被処理流動体に付与する圧力を受けて第1処理用面1 から第2処理用面2を離反させる方向に移動させる力を発生させ、上記受圧面の少なくとも一部は、第2処理用面2にて構成され、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された一方の被処理流動体が通されると共に、他の一方の被処理流動体が、両処理用面1,2間に供給されることにより、両被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過し、通過中の被処理流動体が混合させることで、被処理流動体間における、所望の反応を促進させるものであり、接面圧力付与機構4の接面圧力と、流体圧付与機構pが付与する流体圧力の両処理用面1,2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる微小間隔を両処理用面1,2間に保つものを採用することができる。
この処理装置において、第2導入部も、第1導入部に接続されたのと同様の、別途の流体圧付与機構に接続されて、加圧されるものとしても実施できる。また、第2導入部から導入される被処理流動体は、別途の流体圧付与機構にて加圧されるのではなく、第1導入部にて導入される被処理流動体の流圧にて第2導入部内に生じる負圧により、両処理用面1,2間に吸引されて供給されるものとしても実施できる。更に、当該他方の被処理流動体は、第2導入部内を、自重にて移動即ち上方より下方に流れて、処理用面1,2間に供給されるものとしても実施できる。
上記のように、一方の被処理流動体の装置内への供給口となる第1導入部の開口部を第2ホルダに設けるものに限定するものではなく、第1導入部の当該開口部を第1ホルダに設けるものとしてもよい。また、第1導入部の当該開口部を、両処理用面の少なくとも一方に形成して実施することもできる。但し、反応によって、先に処理用面1,2間に導入しておく必要のある被処理流動体を、第1導入部から供給する必要がある場合において、他方の被処理流動体の装置内への供給口となる第2導入部の開口部は、何れかの処理用面において、上記第1導入部の開口部よりも、下流側に配置する必要がある。
更に、本願発明の実施に用いる処理装置として、次のものを採用することができる。
この処理装置は、反応させる2種以上の被処理流動体を別々に導入する複数の導入部と、当該2種以上の被処理流動体の少なくとも一つに圧力を付与する流体圧付与機構pと、この被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面1,2と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、被処理流動体間の反応処理を行うものであって、第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、更に、第2処理用部20は、第2処理用面2と反対側を向く近接用調整面24を備えるものであり、近接用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、上記近接用調整面24の接近離反方向の投影面積と、上記受圧面の接近離反方向の投影面積との面積比により、被処理流動体から受ける全圧力の合力として、第1処理用面1に対する第2処理用面2の離反方向へ移動する力が決まるものであり、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された被処理流動体が通され、当該被処理流動体に反応させる他の被処理流動体が両処理用面間において混合され、混合された被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、処理用面間の通過中に所望の反応生成物を得るものである。
また、本願発明に係る処理方法について纏めると、この処理方法は、第1の被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路へ、第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させ且つこれらの処理用面1,2間に被処理流動体を導入するものであり、当該被処理流動体と反応する第2の被処理流動体を上記と別途の流路により、上記処理用面1,2間に導入し、両被処理流動体を反応させるものであり、少なくとも第1の被処理流動体に付与した上記の所定の圧力を両処理用面1,2 を離反させる離反力とし、当該離反力と上記接面圧力とを、処理用面1,2間の被処理流動体を介して均衡させることにより、両処理用面1,2間を所定の微小間隔に維持し、被処理流動体を所定の厚みの流体膜として両処理用面1,2間を通過させて、この通過中に両被処理流動体の反応を均一に行い、析出を伴う反応の場合にあっては所望の反応生成物を晶出または析出させるものである。
以下、本願発明のその他の実施形態について説明する。図25は近接・離反可能な少なくとも一方が他方に対して相対的に回転する処理用面の間で反応物を反応させる反応装置の略断面図である。図26の(A)は図25に示す装置の第1処理用面の略平面図であり、(B)は図25に示す装置の処理用面の要部拡大図である。図27の(A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。
図25においてUは上方を、Sは下方をそれぞれ示している。
図26(A)、図27(B)においてRは回転方向を示している。
図27(B)においてCは遠心力方向(半径方向)を示している。
この装置は、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については反応物を少なくとも1種類含むものであり、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間で上記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において上記の反応物を反応させる装置である。
図25に示す通り、この装置は、第1ホルダ11と第1ホルダ11の上方に配置された第2ホルダ21と共に流体圧付与機構Pと接面圧付与機構とを備える。接面圧力付与機構は、スプリング43と、エア導入部44とにて構成されている。
第1ホルダ11には第1処理用部10と回転軸50が設けられている。第1処理用部10はメインティングリングと呼ばれる環状体であり鏡面加工された第1処理用面1を備える。回転軸50は第1ホルダ11の中心にボルトなどの固定具81にて固定されたものであり、その後端が電動機などの回転駆動装置82(回転駆動機構)と接続され、回転駆動装置82の駆動力を第1ホルダ1に伝えて当該第1ホルダ11を回転させる。第1処理用部10は上記第1ホルダ11と一体となって回転する。
第1ホルダ11の上部には、第1処理用部10を受容する事が可能な受容部が設けられており、当該受容部内にはめ込む事にて、第1ホルダ11への第1処理用部10の上記取り付けが行われている。さらに第1処理用部10は回り止めピン83にて第1ホルダ11に対して回転しないように固定されている。ただし、回り止めピン83に代え、焼き嵌めなどの方法にて回転しないように固定するものとしても良い。
上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21を臨む。第1処理用面の材質は、セラミックや焼結金属、対磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、鍍金などを施工したものを採用する。
第2ホルダ21には、第2処理用部20と、処理用部内側より流体が導入する第1導入部d1と、接面圧力付与機構としてスプリング43と、エア導入部44とが設けられている。
第2処理用部20は、コンプレッションリングと呼ばれる環状体であり、鏡面加工された第2処理用面2と、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23(以下離反用調整面23と呼ぶ。)とを備える。図示の通り、この離反用調整面23は、傾斜面である。第2処理用面2に施す鏡面加工は、第1処理用面1と同様の方法を採用する。また、第2処理用部20の素材についても、第1処理用部10と同様のものを採用する。離反用調整面23は、環状の第2処理用部20の内周面25と隣接する。
第2ホルダ21の底部(下部)には、リング収容部41が形成され、そのリング収容部41内に、Oリングと共に第2処理用部20が受容されている。また、回り止め84にて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。この状態において、第2処理用面2は、第1処理用部10の第1処理用面1と対面する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2処理用部20はこのリング収容部41内にて収容部41の軸方向について、さらに、当該軸方向と交差する方向について変位する事ができるように収容されている。またリング収容部41に対して第2処理用部20の中心線(軸方向)を上記リング収容部41の軸方向と平行ではなくなるように変位可能に当該第2処理用部20は収容されている。
少なくとも第2ホルダ21のリング収容部41には処理用部付勢部としスプリング43が設けられている。スプリング43は第2処理用部20を第1処理用部10に向けて付勢する。さらに他の付勢方法として、空気導入部44などの空気圧またはその他の流体圧を供給する加圧手段を用いて第2ホルダ21が保持する第2処理用部20を第1処理用部10へ近づける方向に付勢する方法でもよい。
スプリング43及び空気導入部44などの接面圧付与機構は第2処理用部20の周方向の各位置(処理用面の各位置)を均等に、第1処理用部10へ向けて付勢する。
この第2ホルダ21の中央に上記の第1導入部d1が設けられ、第1導入部d1から処理用部外周側へ圧送されてくる流体は、まず当該第2ホルダ21が保持する第2処理用部20と第1処理用部10と当該第1処理用部10を保持する第1ホルダ11とに囲まれた空間内に導かれる。そして第1処理用部10から第2処理用部20を付勢部の付勢に抗して離反させる方向に、第2処理用部20に設けられた受圧面23に流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
なお、他の箇所においては説明を簡略にするため、受圧面23についてのみ説明をしているが、正確に言えば、図29(A)(B)に示すように、上記の受圧面23と共に、後述する溝状の凹部13の第2処理用部20に対する軸方向投影面のうちで、上記受圧面23が設けられていない部分23Xも受圧面として、流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
上記受圧面23を設けずに実施する事もできる。その場合、図26(A)に示されたように、接面圧力付与機構が機能するように形成された溝状の凹部13を備えた第1処理用面1が回転する事によって得られる処理用面間への被処理流体の導入効果(マイクロポンプ効果)を用いても良い。ここでのマイクロポンプ効果とは第1処理用面1が回転する事で凹部内の流体が凹部の外周方向先端へと速度を持って進み、次に凹部13の先端に送り込まれた流体がさらに凹部13の内周方向からの圧力を受け、最終的に処理用面を離反させる方向への圧力となり、同時に流体が処理用面間に導入される効果である。さらに回転していない場合であっても第1処理用面1に設けられた凹部13内の流体が受けた圧力は最終的に離反側に作用する受圧面として第2処理用面2に作用する。
処理用面に設けられた凹部13については、反応物及び生成物を含む流体の物性に対応してその深さ、処理用面に対して水平方向への総面積、本数、及び形状を実施できる。
なお、上記受圧面23と上記凹部13とを一装置内に共に設けても実施できる。
この凹部13の深さについては1μm〜50μm、さらに好ましくは3μmから20μmとし、さらの前記処理用面に設けられた凹部であって、処理用面に対して水平方向への総面積が処理用面全体に対して5%〜50%、好ましくは15%〜25%とし、さらに前記処理用面に設けられた凹部であって、その本数が3〜50本、好ましくは8〜24本とし、形状が処理用面上をカーブ、もしくは渦巻状で伸びるもの、またはL字状に屈曲するものと、さらに深さに勾配を持たせる事で高粘度域から低粘度域まで、またマイクロポンプ効果を用いて導入する流体が固体を含む場合にも安定的に処理用面間に流体を導入できる。また、処理用面に設けられた凹部は導入側つまり処理用面内側で各凹部同士がつながっていても良いし、分断されていても良い。
上記のように受圧面23は傾斜面とされている。この傾斜面(受圧面23)は、被処理流体の流れ方向を基準とした上流側端部での、凹部13が設けられた処理用部の処理用面に対する軸方向における距離が、下流側端部での同距離に比べて大きくなるように形成される。そしてこの傾斜面は、被処理流体の流れ方向を基準とした下流側端部が上記凹部13の軸方向投影面上に設置されたものとすることが好ましい。
具体的には図28(A)に示すように、上記傾斜面(受圧面23)の下流側端部60が上記凹部13の軸方向投影面上となるように設置する。上記傾斜面の第2処理用面2に対する角度θ1は0.1°から85°の範囲である事が好ましく、10°から55°の範囲がより好ましく、15°から45°の範囲がさらに好ましい。この角度θ1は、被処理物の処理前の性状によって適宜変更できる。また、上記傾斜面の下流側端部60は、第1処理用面1に設けられた凹部13の上流側端部13−bから下流側に0.01mm離れた位置より、下流側端部13−cから上流側に0.5mm離れた位置までの領域内に設けられる。より好ましくは、上流側端部13−bから下流側に0.05mm離れた位置より、下流側端部13−cから上流側に1.0mm離れた位置までの領域内に設けられる。上記傾斜面の角度と同様、この下流側端部60の位置についても、被処理物の性状に応じて適宜変更できる。また、図28(B)に示すように、傾斜面(受圧面23)をアール面としても実施できる。これにより、被処理物の導入をさらに均一に行うことができる。
凹部13は上記のように連続したものの他、断続するものであっても実施可能である。断続する場合にあっては、断続する凹部13の、第1処理用面1の最も内周側における上流側端部が上記13−bとなり、同じく第1処理用面1の最も外周側における上流側端部が上記13−cとなる。
また、上記では凹部13を第1処理用面1に形成するものとし、受圧面23を第2処理用面2に形成するものとしたが、逆に、凹部13を、第2処理用面2に形成するものとし、受圧面23を第1処理用面1に形成するものとしても実施可能である。
更には、凹部13を第1処理用面1と第2処理用面2の両方に形成し、凹部13と受圧面23を各処理用面1,2の周方向に交互に設けることによって、第1処理用面1に形成した凹部13と第2処理用面2に形成した受圧面23とが対向し、同時に、第1処理用面1に形成した受圧面23と第2処理用面2に形成した凹部13とが対向するものとすることも可能である。
処理用面に、凹部13とは異なる溝を施す事もできる。具体的な例としては図16(F)や図16(G)のように凹部13よりも径方向外側(図16(F))もしくは径方向内側(図16(G))に、放射状に伸びる新規な凹部14を施す事ができる。これは、処理用面間の滞留時間を延ばしたい場合や、高粘稠物の流体を処理する場合に有利である。
尚、凹部13とは異なる溝については、形状、面積、本数、深さに関しては特に限定されない。目的に応じて当該溝を施す事ができる。
上記の第2処理用部20には上記処理用面に導入された流体の流路とは独立し、処理用面間に通じる開口部d20を備える第2導入部d2が形成されている。
具体的には、第2導入部d2は、図27(A)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜している。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、図27(B)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。
この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、角度(θ2)についても、0度を超えて90度未満に設定されており、図27(B)の網かけ部分に向けて開口部d20から吐出される。さらに反応速度が速い反応の場合には、当該角度(θ2)は小さいものであってもよく、反応速度が遅い場合には、当該角度(θ2)も大きく設定することが好ましい。また、この角度は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
開口部d20の口径は、好ましくは0.2μm〜3000μm、より好ましくは10μm〜1000μmとする。また、開口部d20の口径は比較的大きくとも、第2導入部d2の径が0.2μm〜3000μm、より好ましくは10μm〜1000μmとされており、実質的には、開口部d20の径が流体の流れに影響を及ばさない場合には、第2導入部d2の径が当該範囲内に設定されればよい。また、直進性を求める場合と、拡散性を求める場合とで、開口部d20の形状などを変化することも好ましく、これらは流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
さらに、前記別流路における開口部d20は、第1処理用面1に設けられた凹部からマイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側に設置すればよい。つまり図26(B)において、第1処理用面1に設けられた凹部の最も処理用面径方向外側から径方向外側への距離nを0.5 mm以上とするのが好ましい。さらに開口部を同じ流体に対して複数個設ける場合には同心円上に設置するのが好ましい。また、開口部を異なる流体に対して複数個設ける場合には半径の異なる同心円上に設置するのが好ましい。(1) A+B→C (2) C+D→Eのような反応が順番どおり実行され、A+B+C→F のような本来同時反応すべきでは無い反応や反応物が効率よく接触せず、反応が実行されないというような問題を回避するのに効果的である。
また上記処理用部を流体中に浸し、上記処理用面間にて反応させて得られた流体を直接処理用部の外部にある液体、もしくは空気以外の気体に投入して実施できる。
さらに処理用面間もしくは処理用面から吐出された直後の被処理物に超音波エネルギーを付加する事もできる。
次に、上記第1処理用面1と第2処理用面2との間、つまり処理用面間に温度差を生じさせるために、第1処理用部10及び第2処理用部20の少なくとも一つに温調機構(温度調整機構)J1,J2を設けた場合について説明する。
この温調機構は特に限定されないが、冷却が目的の場合には処理用部10,20に冷却部を設ける。具体的には、温調用媒体としての氷水や各種の冷媒を通す配管、あるいはペルチェ素子などの、電気的もしくは化学的に冷却作用をなすことのできる冷却素子を処理用部10,20に取り付ける。
加熱が目的の場合には処理用部10,20に加熱部を設ける。具体的には、温調用媒体としてのスチームや各種の温媒を通す配管、あるいは電気ヒーターなどの、電気的もしくは化学的に発熱作用をなすことのできる発熱素子を処理用部10,20に取り付ける。
また、リング収容部に処理用部と直接接する事の出来る新たな温調用媒体用の収容部を設けても良い。それらにより、処理用部の熱伝導を用いて処理用面を温調する事ができる。また、処理用部10,20の中に冷却素子や発熱素子を埋め込んで通電させたり、冷温媒通過用通路を埋め込んでその通路に温調用媒体(冷温媒)を通す事で、内側より処理用面を温調する事もできる。なお、図25に示した温調機構J1,J2は、その一例であって、各処理用部10,20の内部に設けられた温調用媒体を通す配管(ジャケット)である。
上記温調機構J1,J2を利用して、一方の処理用面が他方の処理用面よりも温度が高いものとし、処理用面間に温度差を発生させる。例えば、第1処理用部10を上記いずれかの方法で60℃に加温し、第2処理用部20を上記いずれかの方法で15℃とする。この際、処理用面間に導入された流体の温度は第1処理用面1から第2処理用面2に向かって60℃から15℃に変化する。つまり、この処理用面間における流体に温度勾配が発生する。そして、処理用面間の流体はその温度勾配によって対流し始め、処理用面に対して垂直方向の流れが発生する事になる。なお、上記「垂直方向の流れ」とは、流れの方向成分に、少なくとも上記処理用面に対して垂直方向の成分が含まれるものを指す。
第1処理用面1もしくは第2処理用面2が回転している場合にも、その処理用面に対して垂直方向の流れは継続されるので、処理用面が回転する事による処理用面間のスパイラル状で層流の流れに、垂直方向の流れを付加する事ができる。この処理用面間の温度差は1℃〜400℃、好ましくは5℃〜100℃で実施できる。
尚、本装置における回転軸50は、鉛直に配置されたものに限定するものではない。例えば斜めに配置されていてもよい。処理中、両処理用面1,2間に形成される流体の薄膜により、実質的に重力の影響を排除できるからである。図25(A)に示す通り、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びる。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するものではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22において、上記軸心以外の位置に設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。そのどの配置角度の場合であっても、処理用面間の温度勾配によって処理用面に対して垂直な流れを発生させる事を可能としている。
上記処理用面間における流体の温度勾配において、その温度勾配が小さければ流体に熱伝導が行われるだけであるが、温度勾配がある臨界値を越えると、流体中にベナール対流という現象が発生する。その現象は、処理用面間の距離をL、重力の加速度をg、流体の体積熱膨張率をβ、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔTとするとき、
Ra=L3・g・β・ΔT/(α・ν)
で定義される無次元数であるレイリー数Raによって支配される。ベナール対流が生じ始める臨界レイリー数は処理用面と被処理物流体との境界面の性質によって異なるが約1700とされている。それより大きな値ではベナール対流が発生する。さらに、そのレイリー数Raが1010付近より大きな値の条件となると流体は乱流状態となる。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、レイリー数Raが1700以上になるようにして本装置を調節する事で、処理用面間に処理用面に対して垂直方向の流れを発生する事ができ、上記反応操作を実施できる。
しかし上記ベナール対流は、1〜10μm程度の処理用面間の距離においては発生しにくい。厳密には10μm以下の間隔中の流体に上記レイリー数を適用し、ベナール対流発生条件を検討すると、水の場合でその温度差に数千℃以上を必要とする事になり、現実的には難しい。ベナール対流は流体の温度勾配における密度差による対流、つまり重力に関係する対流である。10μm以下の処理用面の間は微小重力場である可能性が高く、そのような場所では浮力対流は抑制される。つまり、この装置で現実的にベナール対流が発生するのは、処理用面間の距離が10μmを超える場合である。
処理用面間の距離が1〜10μm程度では、密度差による対流ではなく、温度勾配による流体の表面張力差によって対流が発生している。そのような対流がマランゴニ対流であり、処理用面間の距離をL、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔT、流体の密度をρ、表面張力の温度係数(表面張力の温度勾配)をσとするとき、
Ma=σ・ΔT・L/(ρ・ν・α)
で定義される無次元数であるマランゴニ数によって支配される。マランゴニ対流が発生し始める臨界マランゴニ数は80付近であり、その値よりも大きな値となる条件ではマランゴニ対流が発生する。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、マランゴニ数Ma が80以上になるようにして本装置を調節する事で、10μm以下の微小流路であっても処理用面間に処理用面に対して垂直方向の流れを発生させる事ができ、上記反応操作を実施できる。
レイリー数の計算には以下の式を用いた。
L:処理用面間の距離[m], β:体積熱膨張率[1/K], g:重力加速度[m/s2]
ν:動粘性率[m2/s], α:温度伝導率[(m2/s)], ΔT:処理用面間の温度差[K]
ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K], k:熱伝導率[W/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
ベナール対流の発生し始めるときのレイリー数を臨界レイリー数RaCとした場合、そのときの温度差ΔTC1は以下のように求められる。
マランゴニ数の計算には以下の式を用いた。
L:処理用面間の距離[m], ν:動粘性率[m2/s], α:温度伝導率[(m2/s)]
ΔT:処理用面間の温度差[K], ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K]
k:熱伝導率[W/m・K], σ:表面張力温度係数[N/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
マランゴニ対流の発生し始めるマランゴニ数を臨界マランゴニ数MaCとした場合、そのときの温度差ΔTC2は以下のように求められる。
近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の材質は、特に制限されないが、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したもの等で作成することが出来る。本発明での、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間の距離は、0.1μm〜100μmであり、特に1〜10μmが好ましい。
さらに、処理用面間を加熱(加温)したり、処理用面間に紫外線(UV)を照射したりしてもかまわない。特に、第1処理用面1と第2処理用面2とで温度差を設けた場合は、薄膜流体中で対流を発生させることができるため、これにより反応を促進させることができるという利点がある。
また、各流体を混合させる前に液温低下によって結晶の析出が発生しないようにするため、化合物の溶解釜から混合装置内の液噴出口までの送液管の温度制御を行い、化合物溶解液を常に過飽和とならない温度以上に保つようにすることが望ましい。
また、上記中和反応を減圧・真空状態を確保できる容器内で行い、処理後流体が吐出される2次側を減圧、真空状態とする事で、反応中に発生するガス並びに処理用部より吐出されたガスの脱気、もしくは脱溶剤を行える。それにより、中和反応処理とほぼ同時に脱溶剤処理を行う場合にも、処理用面間で中和反応されて析出された生体摂取物微粒子を含む流体が、処理用面より、噴霧状態で吐出するため、その流体の表面積が増大し、脱溶剤効率が非常に高い利点がある。
以下、上記の装置を用いて行う、生体摂取物微粒子の製造方法の具体的な態様について説明する。まず、溶解度の変化によって生体摂取物微粒子を析出させる方法について述べる。
上記に説明した装置の処理用面の間に形成される薄膜中で、微粒子化する対象物質である生体摂取物微粒子原料を少なくとも1種類溶解している第1溶媒を含む溶液と、前記生体摂取物微粒子原料に対して第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を混合させ、生体摂取物微粒子を析出させる。
上記の生体摂取物には薬物が含まれる。この発明は、多種多様な薬物で実施できる。薬物は、実質的に純粋な状態で存在する有機物質が好ましい。薬物は、少なくとも一種の溶媒に低い溶解性で分散可能であり、少なくとも一種の溶媒に可溶である必要がある。低い溶解性とは、薬物が処理温度(例えば、室温)で溶媒(例えば、水)に約10mg/mL未満、好ましくは約1mg/mL未満の溶解性を有することを意味する。また、ここで可溶とは10mg/mL以上に溶解することを意味する。なお、必要に応じて溶媒を加温または冷却することも可能である。また、分散剤(界面活性剤)や水溶性高分子、安定剤、保存剤、pH調製剤、等張化剤等を必要に応じて、第1溶媒もしくは第2溶媒、あるいはその両方にあらかじめ添加しておくと良い。
適当な薬物は、例えば、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質(ペニシリン類を含む)、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、抗肥満薬、食欲抑制薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬(催眠薬および神経弛緩薬)、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤および代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬(去痰薬および粘液破壊薬)、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬(抗パーキンソン氏病薬)、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニンおよびビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン(ステロイド類を含む)、抗アレルギー薬、興奮薬および食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、を含む各種既知薬物類から選ぶことができる。好ましい薬物としては、水に低溶解度で経口投与および注射剤を意図するものが挙げられる。これらのクラスの薬物類の記載および各クラスに含まれるリストは、「Martindale, The Extra Pharmacopoeia , 第29版、The Pharaceutical Press,London,1989 」に見い出すことができる。これらの薬物は市販されており、または当該技術分野で既知の方法で製造できる。
この発明を実施する上で有用な薬物の具体例としては、17−α−プレグノ−2,4−ジエン−20−イノ−〔2,3−d〕−イソキサゾール−17−オール(ダナゾール)、タクロリムス水和物、プロゲステロン、トラニラスト、ベンズブロマロン、メフェナム酸、〔6−メトキシ−4−(1−メチルエチル)−3−オキソ−1,2−ベンズイソチアゾール−2(3H)−イル〕メチル2,6−ジクロロベンゾエート1,1−ジオキシド(WIN 63,394)、3−アミノ−1,2,4−ベンゾトリアジン−1,4−ジオキシド(WIN 59,075)、ピポサルファム、ピポサルファン、カプトテシン、アセトミノフェン、アセチルサリチル酸、アミオダロン、コレスチフミン、コレスチポール、クロモリンナトリウム、アルブテロール、スクラルフェート、スルファサラジン、ミノキシジル、テンパゼパム、アルプラゾラム、プロポキシフェン、オーラノフィン、エリスロマイシン、サイクロスポリン、アシクロビア、ガンシクロビア、エトポサイド、メファラン、メトトリキセート、ミノキサントロン、ダウノルビシン、ドキソルビシン、メガステロール、タモキシフェン、メドロキシプロゲステロン、ナイスタチン、テルブタリン、アンホテリシンB、アスピリン、イブプロフェン、ナプロキセン、インドメタシン、ジクロフェナック、ケトプロフェン、フルビプロフェン、ジフルミサール、エチル−3,5−ジアセトアミド−2,4,6−トリヨードベンゾエート(WIN 8883)、エチル(3,5−ビス(アセチルアミノ)−2,4,6−トリヨードベンゾイルオキシ)アセテート(WIN 12,901)およびエチル−2−(3,5−ビス(アセチルアミノ)−2,4,6−トリヨードベンゾイルオキシ)アセテート(WIN 16,318)が代表的なものとして挙げられる。
この発明の好ましい形態では、薬物がダナゾール(Danazol)またはタクロリムス水和物のような免疫抑制剤、トラニラストのような抗アレルギー薬、プロゲステロンのようなステロイド、抗ウイルス薬、抗悪性腫瘍薬または抗炎症薬である。
特に好ましい安定化剤・分散剤(界面活性剤)としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸カルシウム、Tween20およびTween80(これらは、ICI Specialty Chemicals から入手できる、ポリオキシエチレンソルビタン脂肪酸エステル類である)、ポリビニルピロリドン、チロキサポール、プルロニック(Pluronic)F68およびF108(これらは、BASFから入手できるエチレンオキシドとプロピレンオキシドのブロックコポリマーである)、テトロニック(Tetronic)908(T908)(これは、BASFから入手できる、エチレンジアミンへのエチレンオキシドおよびプロピレンオキシドの連続付加物由来の4官能性ブロックコポリマーである)、デキストラン、レシチン、エーロゾル(Aerosol)OT(これは、American Cyanamid から入手できる、スルホコハク酸ナトリウムのジオクチルエステルである)、デュポノール(Duponol)P(これは、DuPontから入手できる、ラウリル硫酸ナトリウムである)、トリトン(Triton)X−200(これは、Rohm and Haas から入手できる、アルキルアリールポリエーテルスルホネートである)、カーボワックス(Carbowax)3350および934(これらは、Union Carbide から入手できる、ポリエチレングリコール類である)、クロデスタ(Crodesta)F−110(これは、Croda Inc.から入手できる、シュークロースステアレートおよびシュークロースジステアレートの混合物である)、クロデスタ5L−40(これはCroda Inc.から入手できる)、ならびにSA90HCO〔これは、C1837CH2−(CON(CH3)CH2(CHOH)4CH2OH)2である〕、また、塩化ベンゼトニウム、塩化ベンザルコニウム等の4級アミン系界面活性剤やポリオキシエチレン高級アルコールエーテル類、グリセリン脂肪酸エステル類、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、脂肪酸ポリエチレングリコール、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル等の非イオン性界面活性剤類が挙げられる。目的の生体摂取物微粒子及び析出反応に応じて使い分ければよい。
水溶性高分子としては、メチルセルロース、エチルセルロース、プロピルメチルセルロース、プロピルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン等を挙げることできる。
本発明における該薬物の含有量は、特に制限はない。高濃度の懸濁液を作り、使用濃度に合わせて希釈して製剤とする事も可能である。
安定剤としては、エデト酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、ジブチルヒドロキシトルエン、トコフェロールなどを挙げることができる。
保存剤としては、パラオキシ安息香酸エステル、クロロブタノール、フェニルエチルアルコール、塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン、アルキルポリアミノエチルグリシン類、ソルビン酸などが挙げることができる。
pH調整剤としては、塩酸、硫酸、酢酸、乳酸、クエン酸、酒石酸、リンゴ酸、リン酸、ホウ酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、モノエタノールアミン、ジエタノールアミン、ジエチルアミン、アンモニア及びこれらの塩類などを挙げることができる。
等張化剤としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、マンニトール等を挙げることができる。
本発明における上記生体摂取物微粒子原料を少なくとも1種類含む流体に用いる溶媒としては、超純水やイオン交換水などの水と、目的に応じてメチルアルコール、エチルアルコール、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドのような水混和性有機溶剤、オクタン、シクロヘキサン、ベンゼン、キシレン、ジエチルエーテル、酢酸エチルのような水不混和性有機溶剤を、目的に応じ適宜選んで実施できる。
なお、本発明の生体摂取物微粒子は、生体に摂取する事を目的とするものであれば特に限定されないが、例えば医薬品における薬物のように生体内に吸収し、生体内での効果を発現させる事を目的とするものや、造影剤としての硫酸バリウムのような、体内を通過させるものやドラッグデリバリーシステムにおける薬物成分の運搬用物質、または化粧料のように、生体皮膚に塗布するもの、及び食品と上記物質の中間体などが挙げられる。
微粒子の析出反応は、図1(A)に示す装置の、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間で強制的に均一混合しながら起こる。
まず、一つの流路である第1導入部d1より、上記の第1溶媒を含む溶液を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面間に第1流体膜を作る。
次いで別流路である第2導入部d2より、第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を、上記処理用面1,2間に作られた第1流体膜に直接導入する。
上記のように、流体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を固定された処理用面1,2間にて、第1溶媒を含む溶液と第2溶媒とが混合され、微粒子の析出反応を行う事が出来る。
なお、処理用面1,2間にて上記反応を行う事が出来れば良いので、上記とは逆に、第1導入部d1より第2溶媒を導入し、第2導入部d2より第1溶媒を含む溶液を導入するものであっても良い(下記の例においても同じ)。つまり、各溶媒における第1、第2という表現は、複数存在する溶媒の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の溶媒も存在し得る。
前述のように、第1導入部d1、第2導入部d2以外に第3導入部d3を処理装置に設けることもできるが、この場合にあっては、例えば各導入部から、第1溶媒を含む溶液、第2溶媒、安定化剤・分散剤を含む溶液をそれぞれ別々に処理装置に導入することが可能である。そうすると、各溶液の濃度や圧力を個々に管理することができ、析出反応をより精密に制御することができる。第4以上の導入部を設けた場合も同様であって、このように処理装置へ導入する流体を細分化できる。
次に、中和反応またはpH変化により生体摂取物微粒子を析出させる方法について述べる。以下の方法は、生体摂取物微粒子原料を流体中において中和反応またはpH変化により析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において中和反応またはpH変化により生体摂取物微粒子を析出させることを特徴とする。
以下、本発明の具体例として、造影剤として生体内に摂取する、硫酸バリウム生体摂取物微粒子を例としてより詳細に説明する。しかし、本発明はこの例にとらわれるものではない。
この反応は、図1(A)に示す装置の、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間で強制的に均一混合しながら起こる。
まず、一つの流路である第1導入部d1より、第1流体として塩化バリウムや水酸化バリウムまた、酢酸バリウム等の水溶性バリウム塩の溶液を少なくとも1種類含む第一の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面間に第1流体膜を作る。
次いで別流路である第2導入部d2より、第2流体として、硫酸や硫酸アンモニウムなどの水溶性硫酸化合物溶液を少なくとも1種類含む第二の流体を、上記処理用面1,2間に作られた第1流体膜に直接導入する。
上記のように、流体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を制御された処理用面1,2間にて、薄膜流体中で第1流体と第2流体とが合流する。その薄膜流体中で第1流体と第2流体とが混合され、上記2種の物質を反応させる。より具体的には、中和反応またはpH変化により、硫酸バリウム生体摂取物微粒子が生成する反応を行うことが出来る。
次に、硫酸バリウム以外の生体摂取物微粒子を得る方法の場合を説明する。
ここで、上記で例示した硫酸バリウムの析出に関係する最も単純な化学反応式(イオン反応式)は以下のようになる。
(イオン反応式)
Ba2+ + SO4 2- → BaSO4
本発明における中和反応とは一般的に言われる最も基本的な酸塩基反応としての中和反応、つまり酸と塩基における、双方の性質を打ち消しあうとともに水と塩が生成する中和反応と、上記イオン反応式における陽イオン性物質としてのBa2+と陰イオン性の物質としてのSO4 2-が反応しBaSO4のような物質を生成する反応を含む。また、この場合の酸と塩基の定義はアレニウスの定義であっても、ブレンステッド・ローリーの定義であっても、ルイスの定義であっても良い。
ここで、用いる陽イオン性物質もしくは陰イオン性物質を変更する事で、目的の物質を変更して得られる。陽イオン性物質もしくは陰イオン性物質は特に限定されず、Na+やCl-のような単原子イオンであっても良いし、NH4+やCH3COO-のような多原子イオンであっても良い。さらに錯イオンであっても良い。また、特に医薬用薬物などに多く見られるような、有機物における構造の一部が溶液中でイオン化したものでも実施できる。
なお、第1流体と第2流体の両方に同一のイオンが含まれたものであっても良い。
また、上記の中和反応が行われる際に、溶媒のpHの変化を伴うものでも良い。
本発明で得られる生体摂取物微粒子の粒子径や単分散度、又は結晶型の制御は、処理用面1,2の回転数や処理用面1,2間の距離、及び、薄膜流体の流速や温度又は原料濃度等を変えることにより調節することができる。
本発明で得られる生体摂取物微粒子は、所望の粒度分布/粒子径分布を成しており、結晶化度が、得られた該粒子の合計質量を基準として50%以上であり、かつ、該粒子を含む液は、その調製後長時間にわたり凝集沈殿または粒子凝集を示さない安定な分散体である。また、対向して配設された処理用面の間隔は自由に調整可能であるため、粒子径コントロールが可能であり、処理用面の少なくとも一方が他方に対して回転することにより、結晶形を自由にコントロール可能である。
また、この発明で得られた分散体は安定であり、この分散体は液体分散媒質と前記生体摂取物微粒子からなる。そして、本発明の生体摂取物微粒子又は該粒子を含有する分散体に、薬学的に許容されるキャリヤを混合して医薬組成物を得ることができる。
なお、下記実施例のようにこの分散体を懸濁点眼薬液として用いる場合にあっては、薬物の物性にもより、溶解しないことが前提となるが、pH3〜9であることが好ましく、より好ましくはpH3.0〜6.5である。これ以外の範囲では、目に対する刺激が大きくなるため、好ましくない。
上記得られた生体摂取物微粒子の、粒度分布/粒子径分布の90%粒径は500nm(つまり、500nmより大きな粒子径を示す粒子が粒子全体に占める割合の10%未満である)以下であることが好ましい。粒度分布/粒子径分布の90%粒径を500nm以下とすることにより、粗大粒子が核となり、凝集する現象を防止し、表面積が増大し、見掛けの溶解度が高まるため、懸濁点眼液における有効成分の角膜透過性が向上する。
濾過滅菌の観点から見ると、懸濁点眼液剤の粒度分布/粒子径分布の90%粒径を好ましくは220nm以下とすることで、濾過滅菌が可能となり、従来技術に比して安価に無菌化することが出来る。
濾過滅菌フィルターは、市販されている無菌保証されたフィルターであれば種々の材質のフィルターを使用することが出来る。材質として例えば、酢酸セルロース、ポリカーボネート、ポリフッ化ビニリデン(PVDF)等があげられる。
フィルターの細孔の大きさは、好ましくは0.45μm以下であり、更に好ましくは0.22μm以下のものが使用される。上記範囲より大きな粒度分布/粒子径分布の場合には、濾過用フィルターが目詰まりを起こしたり、収率が低下するため好ましくない。
本発明における懸濁点眼液は、界面活性剤及び/或いは水溶性高分子を加え、該薬物粒子のゼータ電位の絶対値を20mV〜150mVの範囲とすることにより、分散安定性を良好にできる。ゼータ電位の調整に用いる界面活性剤・水溶性高分子の量は、pHによっても異なるが懸濁点眼液中で0.05%〜3%の範囲であることが好ましい。
このようにして、平均一次粒子径が0.5〜10000nmで、好ましくは1〜500nm、より好ましくは30〜200nmの生体摂取物微粒子が分散された水系分散液(懸濁液)を作製することができる。さらに、生体摂取物微粒子原料を含む溶液に上記の分散剤を添加した場合には、表面に分散剤が配位された生体摂取物微粒子が分散された水系分散液(懸濁液)を作製することができ、得られた生体摂取物微粒子の再分散性が非常に良くなる。また、製造工程におけるコンタミネーションが少なく、結晶を析出させる場合にはその結晶化度を高くコントロールできるため、医薬品や化粧品のような生体摂取を目的とする生体摂取物微粒子を得る場合には特に都合の良い製造方法である。
なお、本明細書で使用する「粒子サイズ」とは、当該技術分野で周知の通常の粒子径測定法、例えば、動的光散乱法・レーザー回折方式などによって測定されるような平均粒子径をいう。
処置用薬物の有効用量レベルは、投与する特定の組成物および方法に対する所望の治療応答を得るための有効量である。従って、選ばれた用量レベルは、特定の薬物、所望の治療効果、投与経路、所望の処置持続時間および他の因子に依存する。記載したように、この発明の医薬組成物は下記実施例で具体的に説明するような驚くべき高い生体内吸収率を示すものであり、大変有益である。
この発明の医薬組成物は、経口および静注をはじめとする非経口投与法において特に有用であるものと考えられる。従来は静注できなかった難水溶性薬物も、本発明によって安全に投与できることが期待される。さらに、生体利用効率が乏しいため経口投与できなかった薬物も本発明により有効に投与可能である。
以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
尚、以下の実施例において、「中央から」というのは、前述した、図1(A)に示す処理装置の「第1導入部d1から」という意味であり、第1流体は、前述の第1被処理流動体を指し、第2流体は、上述した、図1(A)に示す処理装置の「第2導入部d2から導入される、前述の第2被処理流動体を指す。
(実施例1)ダナゾール粒子の製造
図1(A)に示すように、対向して配設された近接・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面1,2の間にできる薄膜流体中で、均一に拡散・攪拌・混合する反応装置を用いて、薬物を溶解している水溶液とその薬物に対して溶解度の低い溶液と高分子分散剤又は安定化剤の混合液を、薄膜流体中で晶析反応を行う。
中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、ダナゾール分散溶液が処理用面より30g/minで吐出された。
回収したダナゾール分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は65nmであり、その粒度分布/粒子径分布のCV値は17%であった。また、回収したダナゾール分散溶液にエタノールを加え溶解し、パーティクルカウンター〔リオン(株)製の商品名 パーティクルカウンターKS65〕にて異物混入を確認したところ、1mL中に10μm以上のものが13個、25μm以上の粒子は1個であった(0.05%ダナゾール溶液)。
次に、回収したダナゾール分散溶液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度80%を得た。
上記、本発明微粒子(平均粒子径65nm)をナノサスペンジョンとしてイヌに投与した場合の生物学的利用率(BA)が92.9%であった。これは、市販品(平均粒子径:10μm)を懸濁液として投与した場合の生物学的利用率(BA)が5.1%であったことからして、大幅に生体内吸収率が上昇したといえる。
微細化に要したエネルギー量は、本願出願人が製造した粉砕機SS5-100にて粉砕を行ったものと比較すると、32000分の1となった。
次に条件を変え、中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.10MPa/0.02MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、ダナゾール分散溶液が処理用面より70g/minで吐出された。
回収したダナゾール分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は135nmであり、その粒度分布/粒子径分布のCV値は19%であった。
次に、回収したダナゾール分散溶液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度75%を得た。
更に条件を変え、中央から第1流体として水を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをTween80混和エタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、ダナゾール分散溶液が処理用面より30g/minで吐出された。
回収したダナゾール分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は78nmであり、その粒度分布/粒子径分布のCV値は18%であった。
次に、回収したダナゾール分散溶液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度82%を得た。
(実施例2)タクロリムス水和物粒子の製造
中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数2000rpm、送液温度30℃で送液し、タクロリムス水和物をエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、タクロリムス水和物分散溶液が処理用面より30g/minで吐出された。
回収したタクロリムス水和物分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は116nmであり、その粒度分布/粒子径分布のCV値は16%であった。
次に、回収したタクロリムス水和物分散溶液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、タクロリムス水和物原末と一致し、結晶化度90%を得た。
次に条件を変え、中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度30℃で送液し、タクロリムス水和物をエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、タクロリムス水和物分散溶液が処理用面より20g/minで吐出された。
回収したタクロリムス水和物分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は98nmであり、その粒度分布/粒子径分布のCV値は13%であった。
次に、回収したタクロリムス水和物分散溶液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、タクロリムス水和物原末と一致し、結晶化度95%を得た。
(実施例3)トラニラスト粒子の製造
中央から第1流体として水を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度27℃で送液し、Tween80を添加したpH13の水酸化カリウム溶液にトラニラストを溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、トラニラスト分散溶液が処理用面より30g/minで吐出された。
回収したトラニラスト水和物分散溶液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、平均粒子径(体積)は120nmであり、その粒度分布/粒子径分布のCV値は15%であった。
次に、回収したトラニラスト分散溶液をセルロース透析チューブにて純水で透析を行い塩を取り除いた後、乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、トラニラスト原末と一致し、結晶化度86%を得た。
上記、本発明微粒子(平均粒子径120nm)をO/Wクリーム製剤とし、テストスキン(LSE−high)を用いて8時間に亘る皮膚透過性試験を行ったところ、原末(平均粒子径45μm)と比較して5倍の透過性を示した。
(実施例4〜7)硫酸バリウムの析出
図1(A)に示すように、対向して配設された近接・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面1,2の間にできる薄膜流体中で、均一に拡散・攪拌・混合する反応装置を用いて、塩化バリウム水溶液と硫酸ナトリウム水溶液を、薄膜流体中で中和反応させて、硫酸バリウムの析出を行う。
(実施例4)
中央から第1流体として25%硫酸ナトリウム水溶液を、供給圧力/背圧力=0.02MPa/0.01MPa、回転数500rpm、送液温度25℃で送液し、17%塩化バリウム水溶液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、硫酸バリウム分散溶液が処理用面より20mL/minで吐出された。
次に、この分散体より透析チューブを用いて不純物を除去し、透過型電子顕微鏡(TEM) を用いて、この分散液中の硫酸バリウム微粒子を観察した。そこから無作為に100個の粒子を選んで平均一次粒子径を測定したところ、50nmであった。
さらに、その硫酸バリウム分散体を真空凍結乾燥して得られた粉末状の硫酸バリウム微粒子を再びイオン交換水に投じて、高速撹拌型分散機(商品名:クレアミックス、エム・テクニック社製)にて攪拌したところ、再び硫酸バリウム微粒子分散物を得、平均一次粒子径は真空凍結乾燥前と同じ、平均一次粒子径50nmであり、得られた硫酸バリウム微粒子粉体の再分散性が良いことを確認した。
実施例5から7については、実施例1と同様の硫酸ナトリウム水溶液と塩化バリウム水溶液をもちいて、回転数、供給圧力、背圧力を変化させて硫酸バリウム粒子分散体及び硫酸バリウム粉体を得た。
(比較例1)
前記硫酸ナトリウム水溶液をクレアミックス(エム・テクニック社製)を用いて攪拌しながら、前記塩化バリウム水溶液を加えて硫酸バリウム微粒子分散体を形成した。この時クレアミックスの回転数は20000rpmで30 分間撹拌を行った。平均一次粒子径900nm の硫酸バリウム微粒子分散液を得た。また、実施例と同様に再分散性を確認したが、再分散後は粒子径1700nmとなり、真空凍結乾燥前よりも強く凝集していた。上記の結果を表1に示す。
(実施例8〜10)フルオロメトロン懸濁点眼液の製造
中央から第1流体として0.05%Tween80溶液を回転数100〜1000rpm、送液温度25℃で送液し、フルオロメトロンをピリジンに溶解した液を第2流体として処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、フルオロメトロン懸濁液が処理用面より吐出された。回収したフルオロメトロン懸濁液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定した。回収したフルオロメトロン懸濁液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、フルオロメトロン原末と一致した。
一方、比較例2および3は、フルオロメトロン原末を、ホモジナイザー(エムテクニック社製クレアミックス2.2S)を用い、20000rpmにて30min予備粉砕分散した。比較例1はその後更に、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用い、微細化処理し粉砕分散した。比較例4についてはどちらの処理も行わず、原末のpH調製のみとした。そして、上記処理を行った原末を溶かした懸濁液を作成した。上記の処理条件および粒度分布/粒子径分布測定結果を表2に示す。
<濾過滅菌適性の確認>
上記の実施例8〜10、及び比較例2〜4の六例の各試験液について、0.22μmの細孔を有するPVDFフィルターを用いて、濾過滅菌処理を行った。濾過滅菌前後のフルオロメトロン濃度をHPLCにて測定し、濾過滅菌処理のときの収率を求めた。結果を表2に示す。
また、0.45μmの細孔を有するPVDFフィルターを用いた場合の収率を表4に示す。
次に、第1流体である0.05%Tween80溶液と第2流体であるフルオロメトロン溶解した液(溶媒はアセトン)を0.22μmのフィルターにて無菌濾過後、回転数100rpmで、第一流体と第二流体の混合比を4:1、吐出流量を150mL/minとしたとき、平均粒子径2.2μmの粒子を得た。比較例として、原末を乾熱滅菌後、ホモジナイザー(エムテクニック社製クレアミックス2.2S:18000rpm、30min)および、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用いて微細化処理したものは、平均粒子径2.1μmであった。そして、本発明に係る方法の実施に要したエネルギー投下量は、上記比較例に比べ、約30000分の1程度であった。
(実施例11〜13)ピレノキシン懸濁点眼液の製造
中央から第1流体として0.05mol/Lの硝酸水溶液を回転数100〜1000rpm、送液温度25℃で送液し、ピレノキシンを0.1mol/Lの水酸化ナトリウムに溶解した液を第2流体として処理用面間に導入した。第1流体と第2流体は薄膜内で混合され、ピレノキシン懸濁液が処理用面より吐出された。回収したピレノキシン懸濁液を透析チューブにて純水で透析を行い副生成物を除去し、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定した。回収したピレノキシン懸濁液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ピレノキシン原末と一致した。
一方、比較例5および6は、ピレノキシン原末を、ホモジナイザー(エムテクニック社製クレアミックス2.2S)を用い、18000rpmにて30min予備粉砕分散した。比較例1はその後更に、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用い、微細化処理し粉砕分散した。比較例7についてはどちらの処理も行わず、原末のpH調製のみとした。そして、上記処理を行った原末を溶かした懸濁液を作成した。
上記の処理条件および粒度分布/粒子径分布測定結果を表5に示す。
微細化に要したエネルギー量は、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)と比較すると、3.2×107分の1〜3.2×104分の1となり、エネルギー効率に優れている。
そして、実施例11〜13については、pHを3.0〜5.5に調製した場合、中心粒子径が8nm〜98nm、90%粒径が89nm〜186nmであった。
<光安定性試験>
上記の実施例11〜13、及び比較例5〜7の各試験液を10mLずつガラス透明バイアルに入れ、光照射試験機にて2000Lux・hrの光源より光を照射した。各バイアルの試験液を経時的にサンプリングし、ピレノキシン濃度をHPLCにて測定し、ピレノキシンの残存割合(%)を評価した。結果を表6に示す。なお、表中の数値は実験回数(N)3回の平均値である。
<皮膚透過性試験>
横型2チャンバー拡散セル(有効面積有効面積0.3cm2,セル容積5mL,温度32℃)に、日本家兎より摘出した角膜を角膜上皮がドナー側となるよう固定した。
リザーバー液は、pH7.5のリン酸等張緩衝液とした。ドナー側に実施例1、実施例2、及び比較例1〜比較例3の各試験液をそれぞれ用いた。ドナー側に各試験溶液を加えた時刻をゼロ時間目とし、経時的にリザーバー液をサンプリングした。サンプリング液中のピレノキシン濃度をHPLCにて測定し、角膜を移行してきたピレノキシンを評価した。
結果を表7に示した。なお、表中の数値は実験回数(N)3回の平均値である。
<濾過滅菌適性の確認>
上記の実施例11〜13、及び比較例5〜7の六例の各試験液について、0.22μmの細孔を有するPVDFフィルターを用いて、濾過滅菌処理を行った。濾過滅菌前後のピレノキシン濃度をHPLCにて測定し、濾過滅菌処理のときの収率を求めた。結果を表8に示す。
本願の請求項1に係る発明は、生体摂取物微粒子原料を流体中において析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において生体摂取物微粒子を析出させるものであって、被処理流動体に圧力を付与する流体圧付与機構と、第1処理用部、及び、この第1処理用部に対して相対的に接近・離反可能な第2処理用部の、少なくとも2つの処理用部と、上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられており、上記の各処理用面は、上記圧力の被処理流動体が流される、密封された流路の一部を構成するものであり、上記第1処理用部と第2処理用部のうち、少なくとも第2処理用部は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記の第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、接近離反可能、且つ相対的に回転する第1処理用面と第2処理用面との間に上記圧力の被処理流動体が通されることにより、上記被処理流動体が流体膜を形成しながら両処理用面間を通過することを特徴とする、生体摂取物微粒子の製造方法を提供する。
本発明は、均一な粒子を作製することができ、且つ、エネルギー効率よく容易に製造可能で大量生産可能な、再分散性が良い生体摂取物微粒子の製造方法に関するものである。そして本発明は、前記製造方法によって製造された生体摂取物微粒子及びこれを含有する分散体、医薬組成物に関するものである。
特開平4−295420号公報 特開2006−104193号公報 特開平7−277729号公報 特開2005−270745号公報 特開2003−159696号公報 特開2003−210957号公報 特開平6−227967号公報 特開2007−77061号公報 「ナノテクノロジーハンドブック-I編 創る」(株式会社オーム社/東京都千代田区神田錦町3−1)平成15年第1版第1刷
ナノテクノロジーが新たな産業革命を引き起こす科学的技術として大きな注目を浴びている。従来の物質を微粒子化することで、その物質に新たな機能を発現させることが出来るため、産業界全般に渡って物質のナノ粒子化が重要テーマとなっており、ナノテクノロジーを前進させる上で、微粒子化技術への関心が非常に高まっている。(非特許文献1)
特に食品及び食品添加物、化粧品、医薬品における薬物などの生体摂取を目的とする物質(生体摂取物)についても微粒子化技術に関心が高まっており、特に医薬品における薬物の微粒子化は、溶解性の向上つまり生体内吸収率の大幅な改善がなされる事が知られており、期待が大きくなっている。
一方、新薬候補品物質の創出には長い開発時間と共に、候補物質の枯渇が問題となっており、その原因の一つに、候補化合物が難水溶性であるため化合物の構造変更が必要になる場合等もあり、開発が遅延、頓挫する場合が増加していることがある。また開発候補となった化合物の溶解度が低いため、製剤化のみならず、毒性試験や動態評価も進められないという問題点がある。しかし、水に対する溶解度が低い化合物でも、膜透過性が高く経口投与後十分な吸収性を示す化合物もあり、溶解性のみで候補化合物をドロップさせた場合、有望な候補化合物までもドロップアウトしてしまう可能性がある。よって、溶解性改善ひいては生体内吸収率を改善するための製剤化技術の開発が望まれている。
難水溶性薬物であっても、微粒子化することで表面積が増大し、溶解速度が大きくなり生体内への吸収が上がる例が数多く報告されている。例えば、子宮内膜症治療薬のダナゾールは、市販品(平均粒子径:10μm)を懸濁液としてイヌに投与した場合の生物学的利用率(BA)が5.1%であったのに対して、平均粒子径が169nmのナノサスペンジョンとして投与した場合には、BAが82.3%と劇的に増大した(Int J.Pharm 125,1995, 91-97)。抗炎症剤のナプロキセンをラットに投与した場合、20〜30μmの原末を270nmにすることによって4倍も吸収が向上した(Int J.Pharm 125,1995, 309-313)。従って、難水溶性薬物のナノ粒子化が実現されれば、薬物の吸収性を格段に向上させることが可能になる。
この様な背景から、薬物を微粒子化(ナノ粒子化)する製造技術が望まれており、さらにこれらの技術を工業的に活用するためには、安定的に、かつ大量生産可能な製造方法を確立する事が医薬品へのナノテクノロジーの活用における最重要課題である。
一般的に、微粒子の製造方法としてはバルクの原材料を機械的に破砕、微粒子化して微粒子を得るBreak-down法(粉砕法)と原子・分子を集合させることで適当な大きさの微粒子に成長させるBottom-up法(成長法)がある。
粉砕法としては、ボールミル、アトライターミル、バイブレーダーミル、サンドミル、ローラー、ミルカウレスタイプミキサーなどのミルを用いた機械的粉砕法やレーザーアブレーションのように固体粒子にフェムト秒レーザーを照射する方法がある。しかし機械的粉砕法の場合では、基本的に粉砕による微粒化の限界がある事、また媒体ミルとの接触にる粉砕力を利用するため、ビーズそのものの破断粒子の混入が避けられない事等の問題により、製品に不純物が混入する、また純度が保障できない課題がある。さらに、多大なエネルギーを必要とするため、エネルギーコストの面からも問題を抱えているのが現状である。レーザーアブレーション法については、強力な光による粉砕力を利用したプロセスの為、分子レベルでの光分解の可能性を否定できない。さらに現状での実質的な生産量が0.1mg/h程度であり産業的に実用レベルとは言えない。
さらに、粉砕法で作製された微粒子は物理的な粉砕の結果、その破断面には活性部位を生じやすく、粉砕した微粒子が再び再凝集し、粉砕前よりも粗大な凝集体を形成しやすい。その為に製品としての使用価値が下がる場合や、分散系全体に粘度増加などの異常を起こす場合があり、粉砕法そのものが持つ問題が多い。
また、特許文献1に、薬物微粒子を得る方法、具体的には機械的粉砕手段としてボールミル、アトリッターミル、バイブレーダーミル、サンドミル、ローラー、ミルカウレスタイプミキサーなどのミルにより、250nm未満の粒子を得る方法が記載されているが、メディアの摩耗等による異物混入についても、許容できない汚染を伴なわないという程度の記述にとどまっており、高度な品質が常に要求されている医薬品にとっては、異物混入のリスク等の非常に大きな問題となり得る可能性がある。
次に微粒子の作製方法として用いられている成長法(Bottom-up法)は、化学反応、晶析、昇華等、種々の反応手段を利用し、且つ反応と共に高分子分散法や熱分解法、超臨界法や超音波法などを併用することで、原子・分子を集合させて微粒子を作製する方法である。
反応手段としては例えば特許文献3のようにバッチ式の反応容器を用いた反応法を利用する場合や、特許文献4のような高真空中でのプラズマを用いた気相法を利用する場合がある。さらに、特許文献5や特許文献6のような微小反応器、微小流路式反応器であるマイクロミキサーやマイクロリアクターを用いる場合がある。
バッチ式では一般的にバッチ内の温度管理が難しく、均一な反応を行う事が難しい。さらに完全な均一状態での濃度管理を行うことが出来ないため、反応条件の管理が困難である。さらに反応時間を長く必要とするため、全ての反応条件を管理して均一に反応させる事は困難である。
気相法では、ナノ粒子の時間あたりの生成量が少なく、原料を蒸発させるために電子ビーム、プラズマ、レーザー、誘導加熱などの高エネルギー装置が必要であり、また歩留まりも低いため生産コスト上大量生産にあまり適しているとは言えない。しかもこれらの気相法により得られるナノ粒子は純粋物質の微粒子であるので凝集、融合しやすく、また粒子の大きさがばらつくという問題がある。
マイクロ化学プロセスとして知られている、マイクロリアクターやマイクロミキサーを、前記の微な生体摂取物微粒子の製造工程として用いる試みがあるが、これらの方法で微粒子を生成した場合に、反応によって生ずる泡や副生成物が流路に詰まることによってマイクロ流路の閉鎖が起こる可能性が高いことや、基本的には分子の拡散だけで反応を進行させるため、全ての反応に対して適応可能ではなかった。また、マイクロ化学プロセスでは、平行して反応器を並べるナンバリングアップというスケールアップ法を用いるが、一つの反応器の製造能力が小さく、大きなスケールアップが現実的でないことや、また各々の反応器の性能を揃えることが難しく、均一な生成物を得られない等の問題があった。さらに、粘度の高い反応液や、粘度上昇を伴うような反応では微な流路を流通させるためには非常に高い圧力が必要であり、使用できるポンプが限られることや、高圧にさらされるため装置からの漏れが解決出来ないという問題点があった。
特に医薬品の場合には、高度な品質が常に要求されている。医薬品においては結晶形や結晶粒径などの物理化学的品質や、不純物、さらに不溶性微粒子の混入等の品質への要求も高いため、これらの品質への要求に適った高い製造技術が要求されている。しかし、化学工業や食品・医薬品で生産される物質は、微結晶が集合したものや結晶中に母液や不純物を含んでいるものが少なくない。また、メディアを用いる粉砕機を使用して微粒子化した場合に、メディア由来の異物混入が避けられない。さらに今後は環境問題・省資源・省エネルギーに対する配慮が必要である等、解決しなければならない課題は数多い。さらに、生体摂取微粒子を製造する工程では、製造工程中の異物混入や菌の発生も問題となりうることから、製造時間の短縮化をはかる事で、より安全で安価な生体摂取物微粒子を提供出来る製造方法を提案する必要がある。
難水溶性の薬物は、有機溶剤以外に酸性またはアルカリ性溶液に溶解するものがあるが、その多くの薬物において溶解した水溶液中での化合物の安定性が低いことが知られている。たとえば、ピレノキシンは、pHが6よりも大きい水溶液中に溶解すると、加水分解されてしまう。このため、市販されているピレノキシン点眼薬の多くは、使用時にピレノキシンを添付の溶剤に溶かし、用時調製して用いなければならなかった。
また、難水溶性の薬物を懸濁させた水性懸濁液剤が知られている。しかし、市販されている水性懸濁点眼剤の薬物粒子の粒子径は、数μmから数十μmであり、これらの水性懸濁点眼剤では、濾過滅菌を行うことが困難であるため、製剤の無菌性を保証するためには、最終高圧蒸気滅菌や主剤原料を乾熱滅菌等で無菌化した後、その後の製造工程を全て無菌操作で行う必要がある。しかしながら、最終高圧蒸気滅菌を行なった場合、大小の粒子が混在した状態においては、小さな粒子は、溶解して消滅し、大きな粒子は、より成長する現象(オストワルド熟成)が起こることが知られており、苛烈な温度変化を伴う滅菌操作では、さらに粒子の粗大化が進行する。また、滅菌中に微粒子の表面改質剤/解粒剤が析出し、これに伴い粒子が粗大化するため、分散性を保つことが難しい(特開平6−227967号公報/特許文献7)。また主剤原料の乾熱滅菌を行なった場合、主剤原料の熱変性、溶着や強力な凝集を発生する為、より長時間の機械的粉砕や分散処理が必要になり、その結果、長時間の無菌操作を必要とする。このような滅菌操作を含む製造方法の場合、無菌的な設備や操作を必要とするためのコストは高く、作業性など製造面及び無菌維持の困難など品質保証面の問題があった。
ピレノキシン水性懸濁液剤として、機械的粉砕によりピレノキシンを超微粒子化し、濾過滅菌可能で安価な点眼薬を提供する方法が示されている(特開2007−77061号公報/特許文献8)。しかしながら、従来の機械的な製造方法は、微粒子化に要する時間が長く、生産性の問題や処理エネルギーが大きいためコスト負担の増大、工程が複雑化する等の問題があった。また、微粒子化に使用する機械には、メディアを使用したものが多く、メディアによる異物混入や均一な粒子が得にくい、凝集し易いといった問題も指摘されている。また、粗大粒子が核となり、凝集を促進することも指摘されている。
また、ピレノキシンを微粒子化することで角膜浸透性を向上させることができ、水性懸濁液剤とすることで光に対する安定性が改善されることは周知であり、他の点眼薬についても同様の効果が期待できる。
医薬組成物を調製するための方法、特に難水溶性薬物の場合、溶解度の改善方法として、pH調整法、有機溶媒法、ミセル法、複合体法、マイクロエマルション法、微粒子化法などがある。微粒子化法以外は、個々の薬物の物性に依存するため、全ての薬物に適用出来るとは限らない方法である。また、機械的な手段で粉砕する微粒子化法は、薬物に幅広く適用可能であるが凝集しやすい、均一な粒子が得にくい、粉砕工程からの不純物が混入するなどの問題が指摘されている。
薬物を微粒子化する方法としては乾式粉砕法、湿式粉砕法、晶析法等が挙げられる。一般的に医薬品は熱に弱く、乾式粉砕法では、粉砕時の発熱により非晶質化が起こる、粉塵を生ずると言った問題点がある。また、湿式粉砕法においても、処理時間が長時間におよぶこと、達成粒子径の制御が困難であること、またメディアを使用するため、メディアの磨耗に起因する異物の混入が避けられず、混入した異物の分離が困難で、高純度を要する製品には使えないという問題を抱えている。
上記に記載されているような湿式粉砕は処理時間が長時間にわたる場合が多く、細菌の発生が起こりうる可能性がある。また、処理エネルギーが大きく、工程の複雑化などによりコスト負担が大きいという問題もある。
薬物微粒子の製造方法には、化合物を溶媒に溶解し、新たな溶媒と混合して結晶を析出させる方法、或いはpH調整によって化合物を溶媒に溶解し、酸或いはアルカリを加えてpHを変化させることによって結晶を析出させる方法等がある。このような反応方法において、2液の混合には、通常、混合部に可動部分を持つ動的な混合装置、例えばインペラーを有する撹拌混合装置によって行われていた。この様な混合装置を使用した場合、極めて結晶成長速度の速い化合物を扱うときに問題となる。このような化合物では、溶解液と新たな溶媒との混合に時間がかかると、溶液濃度が不均一な状態で結晶の析出が始まり、粒度分布/粒子径分布のブロードな粒子が、また、結晶成長の進行によっては粗大粒子が混じる事となり、目的とするシャープな粒度分布/粒子径分布の結晶が得られないという問題があった。また、表面に微差突起を100個/cm以上の密度で有する基盤と接触させて微粒子を析出させる方法(特開2006−104193号公報/特許文献2)もあるが、製造量の問題など課題は多い。
容易に粒子径を制御でき、凝集沈殿または凝集を起しにくく、さらに界面活性剤や安定化剤等の主薬以外の添加剤が極めて少なく、再分散性の良い安定なナノサイズの分散性薬物粒子を提供することが望まれている。さらに、機械的摩耗等によるコンタミネーションがなく、安全性、安定性が高く、生体利用効率の高い医薬組成物を提供することが強く要求されている。
本発明は、晶析によって結晶を析出させる粒子の製造方法において、特に生体摂取物の微粒子製造方法を提供すること、および、生体摂取物を微粒子化することにより生体内吸収率を改善することにある。また、菌の発生が問題ともなりうることから、処理時間の短縮化をはかり、より安全で安価な生体摂取物を提供することを目的とする。
また本発明は、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で中和反応により生体摂取物微粒子を析出させる生体摂取物微粒子の製造方法であり、その薄膜流体中での温度の均一性が高く、反応容器の攪拌における均一性が高いことから、目的に応じて単分散の生体摂取物微粒子が作製出来、さらに自己排出性により生成物の詰まりも無く、大きな圧力を必要とせず、また生産性も高い、生体摂取物微粒子の製造方法を提供することを目的とする。
また本発明は、安定的な懸濁液の作製により、安全で安価な無菌の懸濁点眼薬を提供することを目的とする。
本願の発明者は、安定で分散性の良い生体摂取物微粒子および、結晶化度が高い生体摂取物微粒子の製造方法を発見した。これらの粒子は、著しく高い生体利用効率を示す医薬組成物に製剤することができる。上記の課題は、化合物の溶解液(第1溶媒)と新たな溶媒(第2溶媒)とを対向して配設された接近・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体中で生体摂取物微粒子を析出させる方法、および対向して設置された処理用面の間にできる薄膜流体中で拡散・攪拌・混合する装置により解決された。なお、上記の生体とは、人体はもとより他の生物を含む。
具体的には、下記の発明により上記の課題を解決する。
本願の請求項1に係る発明は、被処理流動体に圧力を付与する流体圧付与機構と、第1処理用部、及び、この第1処理用部に対して相対的に接近・離反可能な第2処理用部の、少なくとも2つの処理用部と、上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられており、上記の各処理用面は、上記圧力の被処理流動体が流される、密封された流路の一部を構成するものであり、上記第1処理用部と第2処理用部のうち、少なくとも第2処理用部は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記の第2処理用面により構成され、この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、接近・離反可能、且つ相対的に回転する第1処理用面と第2処理用面との間に上記圧力の被処理流動体が通されることにより、上記被処理流動体が層流である薄膜流体を形成し、上記の薄膜流体中、層流条件下で生体摂取物微粒子が析出されることを特徴とする、生体摂取物微粒子の製造方法を提供する。
本願の請求項2に係る発明は、少なくとも2種類の被処理流動体を用いるものであり、そのうちで少なくとも1種類の被処理流動体は、上記生体摂取物微粒子原料を少なくとも1種類、第1溶媒に溶解させたものであり、上記以外の被処理流動体のうちで少なくとも1種類は、上記第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒であり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の被処理流動体を合流させるものであることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項3に係る発明は、少なくとも2種類の被処理流動体を用いるものであり、そのうちで少なくとも1種類の被処理流動体は、酸性物質もしくは陽イオン性物質を少なくとも1種類含むものであり、上記以外の被処理流動体のうちで少なくとも1種類は、塩基性物質もしくは陰イオン性物質を少なくとも1種類含むものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の各被処理流動体を合流させるものであり、当該薄膜流体中において中和反応させることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項4に係る発明は、上記の流体圧付与機構から圧力を付与された一種の被処理流動体が上記第1処理用面と第2処理用面との間に通され、上記の一種の被処理流動体とは異なる他の一種の被処理流動体が通される独立した別途の導入路を備え、この導入路に通じる少なくとも一つの開口部が上記第1処理用面と第2処理用面の少なくとも何れか一方に設けられ、
この導入路から上記の他の一種の被処理流動体を、上記両処理用面間に導入し、前記一種の被処理流動体と他の一種の被処理流動体とを、上記薄膜流体中で混合するを特徴とする、請求項1〜3のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項5に係る発明は、上記処理用面間を加熱(加温)、もしくは上記処理用面間に紫外線(UV)を照射、もしくは上記処理用面間に超音波エネルギーを与えることを特徴とする、請求項1〜4のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項6に係る発明は、上記生体摂取物微粒子の析出を減圧・真空状態を確保できる容器内で行い、処理後流体が吐出される2次側を減圧、真空状態とする事で、反応中に発生するガス並びに処理用部より吐出されたガスの脱気、もしくは脱溶剤を行えることを特徴とする、請求項1〜5のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項7に係る発明は、上記被処理流動体の少なくとも一方に分散剤、水溶性高分子、安定剤、保存剤、pH調整剤、等張化剤から選ばれた少なくとも一種を含むことを特徴とする、請求項1〜6のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項8に係る発明は、上記処理前、あるいは処理後の各流体を無菌濾過することを特徴とする、請求項1〜7のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本願の請求項9に係る発明は、上記対象物質が、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、食欲抑制薬、抗肥満薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤、代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニン、ビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン、抗アレルギー薬、興奮薬、食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、からなる群より選ばれる薬物であることを特徴とする、請求項1〜8のいずれかに記載の生体摂取物微粒子の製造方法を提供する。
本発明は、許容できない汚染を伴わない多種多様の生体摂取物微粒子が調製できる可能性をひらくものである。また、安定的に単結晶を得ることができるため、生産効率がよく、量産が可能である。また、従来の乾式粉砕法のような許容できない粉塵レベルをもたらすことや湿式粉砕することによるメディアの磨耗もなく、対向して配設された処理面の間隔を調整することで、粒子径を自由にコントロール可能な技術が提供される。また、菌の発生の問題ともなりうる処理時間の短縮化をはかり、より安価な生体摂取物を提供することが可能となる。
また本発明は、予期できない程高い生体利用効率を示す医薬組成物や、低い水溶性の薬物を含有し、静注に適する医薬組成物を提供できる可能性をひらくものである。
本発明にて得られた生体摂取物微粒子は従来の方法によるものよりも再分散性に優れ、凝集することなく、単分散の生体摂取物微粒子を得ることが可能となる。また本発明は、必要な生産量に応じて一般的なスケールアップ概念を用いて機体の大型化が可能である。さらに、従来の方法に比べ、エネルギー効率を向上できる。
また、本発明に係る製造方法では無菌濾過も可能である。また、分散体が懸濁点眼液である場合においては角膜浸透性が良い。そして、生体摂取物微粒子原料を乾熱滅菌して機械的粉砕や分散を行なった場合に比べて同一最終粒子径への到達時間を大きく短縮できる。
(A)は本願発明の実施に用いる装置の概念を示す略縦断面図であり、(B)は上記装置の他の実施の形態の概念を示す略縦断面図であり、(C)は上記装置のまた他の実施の形態の概念を示す略縦断面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)は図2(C)に示す装置の要部略底面図であり、(B)は上記装置の他の実施の形態の要部略底面図であり、(C)はまた他の実施の形態の要部略底面図であり、(D)は上記装置の更に他の実施の形態の概念を示す略底面図であり、(E)は上記装置のまた更に他の実施の形態の概念を示す略底面図であり、(F)は上記装置の更にまた他の実施の形態の概念を示す略底面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(C)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)〜(D)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図である。 (A)及び(B)は、夫々、図1に示す装置の更に他の実施の形態の概念を示す略縦断面図であり、(C)は図1(A)に示す装置の要部略底面図である。 (A)は図1(A)に示す装置の受圧面について、他の実施の形態を示す要部略縦断面図であり、(B)は当該装置の更に他の実施の形態の要部略縦断面図である。 図12(A)に示す装置の接面圧付与機構について、他の実施の形態の要部略縦断面である。 図12(A)に示す装置に、温度調整用ジャケットを設けた、他の実施の形態の要部略縦断面図である。 図12(A)に示す装置の接面圧付与機構について、更に他の実施の形態の要部略縦断面図である。 (A)は図12(A)に示す装置の更に他の実施の形態の要部略横断面であり、(B)(C)(E)〜(G)は当該装置のまた他の実施の形態の要部略横断面図であり、(D)は当該装置のまた他の実施の形態の一部切欠要部略縦断面図である。 図12(A)に示す装置の更に他の実施の形態の要部略縦断面図である。 (A)は本願発明の実施に用いる装置の更に他の実施の形態の概念を示す略縦断面図であり、(B)は当該装置の一部切欠要部説明図である。 (A)は図12に示す上記装置の第1処理用部の平面図であり、(B)はその要部縦断面図である。 (A)は図12に示す装置の第1及び第2処理用部の要部縦断面図であり、(B)は微小間隔が開けられた上記第1及び第2処理用部の要部縦断面図である。 (A)は上記第1処理用部の他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は上記第1処理用部の、更に他の実施の形態の平面図であり、(B)はその要部略縦断面図である。 (A)は第1処理用部のまた他の実施の形態の平面図であり、(B)は第1処理用部の更にまた他の実施の形態の平面図である。 (A)(B)(C)は、夫々、処理後の被処理物の分離方法について、上記以外の実施の形態を示す説明図である。 本願発明の装置の概要を説明するための縦断面の概略図である。 (A)は図25に示す装置の第1処理用面の略平面図であり、(B)は図25に示す装置の第1処理用面の要部拡大図である。 (A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。 (A)及び(B)は、夫々、処理用部に設けられた傾斜面を説明するための要部拡大断面図である。 処理用部に設けられた受圧面を説明するための図であり、(A)は第2処理用部の底面図、(B)は要部拡大断面図である。
以下、本発明について詳細を説明する。本発明の技術的範囲は、下記実施形態及び実施例によって限定されるものではなく、その要旨を変更することなく、様々に改変して実施することができる。
本発明は、反応物である生体摂取物微粒子原料を薄膜流体中において析出させて生体摂取物微粒子を製造するに際して、上記の流体を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする。
本発明で用いる、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる、薄膜流体中で均一に攪拌・混合する方法としては、例えば本願出願人による、特開2004−49957号公報に記載されたものと同原理である装置を使用できる。
以下、この方法の実施に適した流体処理装置について説明する。
図1(A)へ示す通り、この装置は、対向する第1及び第2の、2つの処理用部10,20を備え、少なくとも一方の処理用部が回転する。両処理用部10,20の対向する面が、夫々処理用面1,2として、両処理用面間にて、被処理流動体の処理を行う。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
両処理用面1,2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。
より詳しくは、この装置は、少なくとも2つの被処理流動体の流路を構成すると共に、各流路を、合流させる。
即ち、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1,2間において、両流動体を混合し、反応させる。図1(A)へ示す実施の形態において、上記の各流路は、密閉されたものであり、液密(被処理流動体が液体の場合)・気密(被処理流動体が気体の場合)とされている。
具体的に説明すると、図1(A)に示す通り、この装置は、上記の第1処理用部10と、上記の第2処理用部20と、第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構4と、回転駆動部と、第1導入部d1と、第2導入部d2と、流体圧付与機構p1と、第2流体供給部p2と、ケース3とを備える。
尚、回転駆動部は図示を省略する。
第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1,2は、接近・離反できる。
この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反する。但し、これとは、逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10,20が互いに接近・離反するものであってもよい。
第2処理用部20は、第1処理用部10の上方に配置されており、第2処理用部20の、下方を臨む面即ち下面が、上記の第2処理用面2であり、第1処理用部10の、上方を臨む面即ち上面が、上記の第1処理用面1である。
図1(A)へ示す通り、この実施の形態において、第1処理用部10及び第2処理用部20は、夫々環状体、即ちリングである。以下、必要に応じて第1処理用部10を第1リング10と呼び、第2処理用部20を第2リング20と呼ぶ。
この実施の形態において、両リング10,20は、金属製の一端が鏡面研磨された部材であり、当該鏡面を第1処理用面1及び第2処理用面2とする。即ち、第1リング10の上端面が第1処理用面1として、鏡面研磨されており、第2リング20の下端面が第2処理用面2として、鏡面研磨されている。
少なくとも一方のホルダは、回転駆動部にて、他方のホルダに対して相対的に回転することができる。図1(A)の50は、回転駆動部の回転軸を示している。回転駆動部には電動機を採用することができる。回転駆動部にて、一方のリングの処理用面に対して、他方のリングの処理用面を相対的に回転させることができる。
この実施の形態において、第1ホルダ11は、回転軸50にて、回転駆動部から駆動力を受けて、第2ホルダ21に対して回転するものであり、これにて、第1ホルダ11と一体となっている第1リング10が第2リング20に対して回転する。第1リング10の内側において、回転軸50は、平面視、円形の第1リング10の中心と同心となるように、第1ホルダ11に設けられている。
第1リング10の回転は、第1リング10の軸心を中心とする。図示はしないが、軸心は、第1リング10の中心線を指し、仮想線である。
上記の通り、この実施の形態において、第1ホルダ11は、第1リング10の第1処理用面1を上方に向けて、第1リング10を保持し、第2ホルダ21は、第2リング20の第2処理用面2を下方に向けて、第2リング20を保持している。
具体的には、第1及び第2ホルダ11,21は、夫々は、凹状のリング収容部を備える。この実施の形態において、第1ホルダ11のリング収容部に、第1リング10が嵌合し、第1ホルダ11のリング収容部から出没しないように、第1リング10はリング収容部に固定されている。
即ち、上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21側を臨む。
第1リング10の材質は、金属の他、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用する。特に、回転するため、軽量な素材にて第1処理用部10を形成するのが望ましい。第2リング20の材質についても、第1リング10と同様のものを採用して実施すればよい。
一方、第2ホルダ21が備えるリング収容部41は、第2リング20の処理用2を出没可能に収容する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2リング20は、このリング収容部41内にて、環状のリング収容部41の軸方向について、更に、当該軸方向と交差する方向について、変位することができる。言い換えれば、このクリアランスにより、当該第2リング20は、リング収容部41に対して、第2リング20の中心線を、上記リング収容部41の軸方向と平行の関係を崩すようにも変位できる。
以下、第2ホルダ21の、第2リング20に囲まれた部位を、中央部分22と呼ぶ。
上記について、換言すると、当該第2リング20は、このリング収容部41内にて、リング収容部41のスラスト方向即ち上記出没する方向について、更に、リング収容部41の中心に対して偏心する方向について、変位することが可能に収容されている。また、リング収容部41に対して、第2リング20の周方向の各位置にて、リング収容部41からの出没の幅が夫々異なるようにも変位可能に即ち芯振れ可能に、当該第2リング20は収容されている。
上記の3つの変位の自由度、即ち、リング収容部41に対する第2リング20の、軸方向、偏心方向、振れ方向についての自由度を備えつつも、第2リング20は、第1リング10の回転に追従しないように第2ホルダ21に保持される。図示しないが、この点については、リング収容部41と第2リング20との夫々に、リング収容部41に対してその周方向に対する回転を規制する適当な当たりを設けて実施すればよい。但し、当該当たりは、上記3つの変位の自由度を損なうものであってはならない。
上記の接面圧付与機構4は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構4は、第2ホルダ21に設けられ、第2リング20を第1リング10に向けて付勢する。
接面圧付与機構4は、第2リング20の周方向の各位置即ち第2処理用面2の各位置を均等に、第1リング10へ向けて付勢する。接面圧付与機構4の具体的な構成については、後に詳述する。
図1(A)へ示す通り、上記のケース3は、両リング10,20外周面の外側に配置されたものであり、処理用面1,2間にて生成され、両リング10,20の外側に排出される生成物を収容する。ケース3は、図1(A)へ示すように、第1ホルダ11と第2ホルダ21を、収容する液密な容器である。但し、第2ホルダ21は、当該ケースの一部としてケース3と一体に形成されたものとして実施することができる。
上記の通り、ケース3の一部とされる場合は勿論、ケース3と別体に形成さる場合も、第2ホルダ21は、両リング10,20間の間隔、即ち、両処理用面1,2間の間隔に影響を与えるようには可動となっていない。言い換えると、第2ホルダ21は、両処理用面1,2間の間隔に影響を与えない。
ケース3には、ケース3の外側に生成物を排出するための排出口32が設けられている。
第1導入部d1は、両処理用面1,2間に、第1の被処理流動を供給する。
上記の流体圧付与機構p1は、直接或いは間接的に、この第1導入部d1に接続されて、第1被処理流動体に、流圧を付与する。流体圧付与機構p1には、コンプレッサその他のポンプを採用することができる。
この実施の形態において、第1導入部d1は、第2ホルダ21の上記中央部分22の内部に設けられた流体の通路であり、その一端が、第2ホルダ21の、第2リング20が平面視において呈する円の中心位置にて、開口する。また、第1導入部d1の他の一端は、第2ホルダ21の外部即ちケース3の外部において、上記流体圧付与機構p1と接続されている。
第2導入部d2は、第1の被処理流動体と、反応させる第2の流動体を処理用面1,2へ供給する。この実施の形態において、第2導入部は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第2流体供給部p2が接続されている。
第2流体供給部p2には、コンプレッサ、その他のポンプを採用することができる。
流体圧付与機構p1により、加圧されている、第1の被処理流動体は、第1導入部d1から、両リング10,20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両リング10,20の外側に通り抜けようとする。
このとき、第1被処理流動体の送圧を受けた、第2リング20は、接面圧付与機構4の付勢に抗して、第1リング10から遠ざかり、両処理用面間に微小な間隔を開ける。両処理用面1,2の接近・離反による、両面1,2間の間隔について、後に詳述する。
両処理用面1,2間にいて、第2導入部d2から第2の被処理流動体が供給され、第1の被処理流動体と合流し、処理用面の回転により、反応が促進される。そして、両流動体の反応による反応生成物が両処理用面1,2から、両リング10,20の外側に排出される。リング10,20の外側に排出された反応生成物は、最終的に、ケースの排出口32からケースの外部に排出される。
上記の被処理流動体の混合及び反応は、第2処理用部20に対する第1処理用部10の駆動部5による回転にて、第1処理用面1と第2処理用面2とによって行われる。
第1及び第2の処理用面1,2間において、第2導入部d2の開口部m2の下流側が、上記の第1の被処理流動体と第2の被処理流動体とを反応させる反応室となる。具体的には、両処理用面1,2間において、第2リング20の底面を示す図11(C)にて、斜線で示す、第2リング20の径の内外方向r1について、第2導入部の開口部m2即ち第2開口部m2の外側の領域Hが、上記の処理室即ち反応室として機能する。従って、この反応室は、両処理用面1,2間において、第1導入部d1と第2導入部d2の両開口部m1,m2の下流側に位置する。
第1開口部m1からリングの内側の空間を経て両処理用面1,2間へ導入された第1の被処理流動体に対して、第2開口部m2から、両処理用面1,2間に導入された第2の被処理流動体が、上記反応室となる領域Hにて、混合され、両被処理流動体は反応する。流体圧付与機構p1により送圧を受けて、流体は、両処理用面1,2間の微小な隙間にて、リングの外側に移動しようとするが、第1リング10は回転しているので、上記反応の領域Hにおいて、混合された流動体は、リングの径の内外方向について内側から外側へ直線的に移動するのではなく、処理用面を平面視した状態において、リングの回転軸を中心として、渦巻き状にリングの内側から外側へ移動する。このように、混合されて反応を行う領域Hにて、渦巻状に内側から外側へ移動することによって、両処理用面1,2間の微小間隔にて、十分な反応に要する区間を確保することができ、均一な反応を促進することができる。
また、反応にて生ずる生成物は、上記の微小な第1及び第2の処理用1,2間にて、均質な反応生成物となり、特に晶析や析出の場合微粒子となる。
少なくとも、上記の流体圧付与機構p1が負荷する送圧と、上記の接面圧付与機構4の付勢力と、リングの回転による遠心力のバランスの上に、両処理用面1,2間の間隔を好ましい微小な間隔にバランスさせることができ、更に、流体圧付与機構p1が負荷する送圧とリングの回転による遠心力を受けた被処理流動体が、上記の処理用面1,2間の微小な隙間を、渦巻き状に移動して、反応が促進される。
上記の反応は、流体圧付与機構p1が負荷する送圧やリングの回転により、強制的に行われる。即ち、反応は、接近・離反可能に互いに対向して配設され且つ少なくとも一方が他方に対して回転する処理用面1,2で、強制的に均一混合しながら起こる。
従って、特に、反応による生成物の晶出又は析出は、流体圧付与機構p1が負荷する送圧の調整や、リングの回転速度即ちリングの回転数の調整という、比較的コントロールし易い方法により、制御できる。
このように、この処理装置は、送圧や遠心力の調整にて、生成物の大きさ影響を与える処理用面1,2間の間隔の制御行え、更に、生成物の均一な生成に影響を与える上記反応の領域Hにて移動する距離の制御が行える点、優れたものである。
また、上記の反応処理は、生成物が、析出するものに限らず、液体の場合も含む。
尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。処理中、両処理用面1,2間の微細な間隔にて反応がなされるものであり、実質的に重力の影響を排除できるからである。
図1(A)にあっては、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びたものを示している。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するもではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22の他の位置設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。
図12(A)へ、上記装置のより好ましい実施の形態を示す。図示の通り、第2処理用部20は、上記の第2処理用面2と共に、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23とを備える。以下この受圧面23を離反用調整面23とも呼ぶ。図示の通り、この離反用調整面23は、傾斜面である。
前述の通り、第2ホルダ21の底部即ち下部には、リング収容部41が形成され、そのリング収容部41内に、第2処理用部20が受容されている。また、図示はしないが、回り止めにて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。
この実施の形態において、処理用面1,2間の、第1処理用部10及び第2処理用部20の内側が、被処理物の流入部であり、第1処理用部10及び第2処理用部20の外側が、被処理物の流出部である。
前記の接面圧力付与機構4は、第1処理用面1に対して第2処理用面2を、圧接又は近接した状態に押圧するものであり、この接面圧力と流体圧力などの両処理用面1、2間を離反させる力との均衡によって、所定膜厚の薄膜流体を形成する。言い換えれば、上記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
具体的には、この実施の形態において、接面圧力付与機構4は、上記のリング収容部41と、リング収容部41の奥に即ちリング収容部41の最深部に設けられた発条受容部42と、スプリング43と、エア導入部44とにて構成されている。
但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44の少なくとも、何れか1つを備えるものであればよい。
リング収容部41は、リング収容部41内の第2処理用部20の位置を深く或いは浅く、即ち上下に、変位することが可能なように、第2処理用部20を遊嵌している。
上記のスプリング43の一端は、発条受容部42の奥に当接し、スプリング43の他端は、リング収容部41内の第2処理用部20の前部即ち上部と当接する。図1において、スプリング43は、1つしか現れていないが、複数のスプリング43にて、第2処理用部20の各部を押圧するものとするのが好ましい。即ち、スプリング43の数を増やすことによって、より均等な押圧力を第2処理用部20に与えることができるからである。従って、第2ホルダ21については、スプリング43が数本から数十本取付けられたマルチ型とするのが好ましい。
この実施の形態において、上記エア導入部44にて他から、空気をリング収容部41内に導入することを可能としている。このような空気の導入により、リング収容部41と第2処理用部20との間を加圧室として、スプリング43と共に、空気圧を押圧力として第2処理用部20に与えることができる。従って、エア導入部44から導入する空気圧を調整することにて、運転中に第1処理用面1に対する第2処理用面2の接面圧力を調整することが可能である。尚空気圧を利用するエア導入部44の代わりに、油圧などの他の流体圧にて押圧力を発生させる機構を利用しても実施可能である。
接面圧力付与機構4は、上記の押圧力即ち接面圧力の一部を供給し調節する他、変位調整機構と、緩衝機構とを兼ねる。
詳しくは、接面圧力付与機構4は、変位調整機構として、始動時や運転中の軸方向への伸びや磨耗による軸方向変位にも、空気圧の調整によって追従し、当初の押圧力を維持できる。また、接面圧力付与機構4は、上記の通り、第2処理用部20を変位可能に保持するフローティング機構を採用することによって、微振動や回転アライメントの緩衝機構としても機能するのである。
次に、上記の構成を採る処理装置の使用の状態について、図1(A)に基づいて説明する。
まず、第1の被処理流動体が、流体圧付与機構p1からの送圧を受けて、密閉されたケースの内部空間へ、第1導入部d1より導入される。他方、回転駆動部による回転軸50の回転によって、第1処理用部10が回転する。これにより、第1処理用面1と第2処理用面2とは微小間隔を保った状態で相対的に回転する。
第1の被処理流動体は、微小間隔を保った両処理用面1,2間で、薄膜流体となり、第2導入部d2から導入された第2被処理流動体は、両処理用面1,2間において、当該薄膜流体と合流して、同様に薄膜流体の一部を構成する。この合流により、第1及び第2の被処理流動体が混合され、両流動体が反応して、均一な反応が促進されて、その反応生成物が形成される。これにより、析出を伴う場合にあっては比較的均一で微細な粒子の生成が可能となり、析出を伴わない場合にあっても、均一な反応が実現される。なお、析出した反応生成物は、第1処理用面1の回転により第2処理用面2との間で剪断を受けることにて、さらに微細化される場合もあると考えられる。ここで、第1処理用面1と第2処理用面2とは、1μmから1mm、特に1μmから10μmの微小間隔に調整されることにより、均一な反応を実現すると共に、数nm単位の超微粒子の生成をも可能とする。
生成物は、両処理用面1,2間から出て、ケース3の排出口32からケース外部へ排出される。排出された生成物は、周知の減圧装置にて、真空或いは減圧された雰囲気内にて霧状にされ、雰囲気内の他に当たることによって流動体として流れ落ちたものが脱気後の液状物として回収することができる。
尚、この実施の形態において、処理装置は、ケースを備えるものとしたが、このようなケースを設けずに実施することもできる。例えば、脱気するための減圧タンク即ち真空タンクを設け、そのタンク内部に、処理装置を配置して、実施することが可能である。その場合、当然上記の排出口は、処理装置には備えられない。
上記のように、第1処理用面1と第2処理用面2とは、機械的なクリアランスの設定では不可能とされたμm単位の微小間隔に調整され得るものであるが、そのメカニズムを次に説明する。
第1処理用面1と第2処理用面2とは、相対的に接近離反可能であり、且つ相対的に回転する。この例では、第1処理用面1が回転し、第2処理用面2が軸方向に摺動して第1処理用面に対して接近離反する。
よって、この例では、第2処理用面2の軸方向位置が、力即ち、前述の接面圧力と離反力のバランスによって、μm単位の精度で設定されることにより、両処理用面1,2間の微小間隔の設定がなされる。
図12(A)へ示す通り、接面圧力としては、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与した場合の当該圧力、スプリング43の押圧力を挙げることができる。
尚、図12〜15、17に示す実施の形態において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある。この点について、第2導入部d2が設けられていない位置の断面と考えればよい。また、図中、Uは上方を、Sは下方を、夫々示している。
他方、離反力としては、離反側の受圧面、即ち第2処理用面2及び離反用調整面23に作用する流体圧と、第1処理用部10の回転による遠心力と、エア導入部44に負圧を掛けた場合の当該負圧とを挙げることができる。
尚、装置を洗浄するに際して、上記のエア導入部44に掛ける負圧を大きくすることにより、両処理用面1,2を大きく離反させることができ、洗浄を容易に行うことができる。
そして、これらの力の均衡によって、第2処理用面2が第1処理用面1に対して所定の微小間隔を隔てた位置にて安定することにより、μm単位の精度での設定が実現する。
離反力をさらに詳しく説明する。
まず、流体圧に関しては、密閉された流路中にある第2処理用部20は、流体圧付与機構pから被処理流動体の送り込み圧力即ち流体圧を受ける。その際、流路中の第1処理用面に対向する面、即ち第2処理用面2と離反用調整面23が離反側の受圧面となり、この受圧面に流体圧が作用して、流体圧による離反力が発生する。
次に、遠心力に関しては、第1処理用部10が高速に回転すると、流体に遠心力が作用し、この遠心力の一部は両処理用面1,2を互いに遠ざける方向に作用する離反力となる。
更に、上記のエア導入部44から負圧を第2処理用部20へ与えた場合には、当該負圧が離反力として作用する。
以上、本願の説明においては、第1第2の処理用面1,2を互いに離反させる力を離反力として説明するものであり、上記示した力を離反力から排除するものではない。
上述のように、密閉された被処理流動体の流路において、処理用面1,2間の被処理流動体を介し、離反力と、接面圧力付与機構4が奏する接面圧力とが均衡した状態を形成することにより、両処理用面1,2間に、均一な反応を実現すると共に、微細な反応生成物の晶出・析出を行うのに適した薄膜流体を形成する。このように、この装置は、処理用面1,2間に強制的に薄膜流体を介することにより、従来の機械的な装置では、不可能であった微小な間隔を、両処理用面1,2維持することを可能として、反応生成物として微粒子を、高精度に生成することを実現したのである。
言い換えると処理用面1,2間における薄膜流体の膜厚は、上述の離反力と接面圧力の調整により、所望の厚みに調整し、必要とする均一な反応の実現と、微細な生成物の生成処理を行うことができる。従って、薄膜流体の厚みを小さくしようとする場合、離反力に対して相対的に接面圧力が大きくなるように、接面圧力或いは離反力を調整すればよく、逆に薄膜流体の厚みを大きくようとすれば、接面圧力に対して相対的に離反力が大きくなるように、離反力或いは接面圧力を調整すればよい。
接面圧力を増加させる場合、接面圧力付与機構4において、エア導入部44から空気圧即ち正圧を付与し、又は、スプリング43を押圧力の大きなものに変更或いはその個数を増加させればよい。
離反力を増加させる場合、流体圧付与機構p1の送り込み圧力を増加させ、或いは第2処理用面2や離反用調整面23の面積を増加させ、またこれに加えて、第1処理用部10の回転を調整して遠心力を増加させ或いはエア導入部44からの圧力を低減すればよい。もしくは負圧を付与すればよい。スプリング43は、伸びる方向に押圧力を発する押し発条としたが、縮む方向に力を発する引き発条として、接面圧力付与機構4の構成の一部又は全部とすることが可能である。
離反力を減少させる場合、流体圧付与機構p1の送り込み圧力を減少させ、或いは第2処理用面2や離反用調整面23の面積を減少させ、またこれに加えて、第1処理用部10の回転を調整して遠心力を減少させ或いはエア導入部44からの圧力を増加させれば良い。もしくは負圧を低減すればよい。
さらに、接面圧力及び離反力の増加減少の要素として、上記の他に粘度などの被処理流動体の性状も加えることができ、このような被処理流動体の性状の調整も、上記の要素の調整として、行うことができる。
なお、離反力のうち、離反側の受圧面即ち、第2処理用面2及び離反用調整面23に作用する流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。
メカニカルシールにあっては、第2処理用部20がコンプレッションリングに相当するが、この第2処理用部20に対して流体圧が加えられた場合に、第2処理用部20を第1処理用部10から離反する力が作用する場合、この力がオープニングフォースとされる。
より詳しくは、上記の第1の実施の形態のように、第2処理用部20に離反側の受圧面即ち、第2処理用面2及び離反用調整面23のみが設けられている場合には、送り込み圧力の全てがオープニングフォースを構成する。なお、第2処理用部20の背面側にも受圧面が設けられている場合、具体的には、後述する図12(B)及び図17の場合には、送り込み圧力のうち、離反力として働くものと接面圧力として働くものとの差が、オープニングフォースとなる。
ここで、図12(B)を用いて、第2処理用部20の他の実施の形態について説明する。
図12(B)に示す通り、この第2処理用部20のリング収容部41より露出する部位であり且つ内周面側に、第2処理用面2と反対側即ち上方側を臨む接近用調整面24が設けられている。
即ち、この実施の形態において、接面圧力付与機構4は、リング収容部41と、エア導入部44と、上記接近用調整面24とにて構成されている。但し、接面圧力付与機構4は、上記リング収容部41と、上記発条受容部42と、スプリング43と、エア導入部44と、上記接近用調整面24の少なくとも、何れか1つを備えるものであればよい。
この接近用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、接近用接面圧力付与機構4の一部として、接面圧力の供給側の役目を担う。一方第2処理用面2と前述の離反用調整面23とは、被処理流体に掛けた所定の圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、離反力の一部についての供給側の役目を担うものである。
接近用調整面24と、第2処理用面2及び離反用調整面23とは、共に前述の被処理流動体の送圧を受ける受圧面であり、その向きにより、上記接面圧力の発生と、離反力の発生という異なる作用を奏する。
処理用面の接近・離反の方向、即ち第2リング20の出没方向と直交する仮想平面上に投影した接近用調整面24の投影面積A1と、当該仮想平面に投影した第2処理用部20の第2処理用面2及び離反用調整面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、上記のオープニングフォースの調整に重要である。
接近用調整面24の先端と離反用調整面23の先端とは、共に環状の第2調整用部20の内周面25即ち先端線L1に規定されている。このため、接近用調整面24の基端線L2をどこに置くかの決定で、バランス比の調整が行われる。
即ち、この実施の形態において、被処理用流動体の送り出しの圧力をオープニングフォースとして利用する場合、第2処理用面2及び離反用調整面23との合計投影面積を、接近用調整面24の投影面積より大きいものとすることによって、その面積比率に応じたオープニングフォースを発生させることができる。
上記のオープニングフォースについては、上記バランスライン、即ち接近用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
摺動面実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
P=P1×(K−k)+Ps
ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
このバランスラインの調整により摺動面実面圧Pを調整することで処理用面1,2間を所望の微小隙間量にし被処理流動体によるを形成させ、生成物を微細とし、また、均一な反応処理を行うのである。
通常、両処理用面1,2間の薄膜流体の厚みを小さくすれば、生成物をより細かくすることができる。逆に、当該薄膜流体の厚みを大きくすれば、処理が粗くなり単位時間あたりの処理量が増加する。従って、上記の摺動面実面圧Pの調整により、両処理用面1,2間の隙間を調整して、所望の均一な反応を実現すると共に微細な生成物を得ることができる。以下、摺動面実面圧Pを面圧Pと呼ぶ。
この関係を纏めると、上記の生成物を粗くする場合、バランス比を小さくし、面圧Pを小さくし、上記隙間を大きくして、上記膜厚を大きくすればよい。逆に、上記の生成物をより細かくする場合、バランス比を大きくし、面圧Pを大きくし、上記隙間を小さくし、上記膜厚を小さくする。
このように、接面圧力付与機構4の一部として、接近用調整面24を形成して、そのバランスラインの位置にて、接面圧力の調整、即ち処理用面間の隙間を調整するものとしても実施できる。
上記の隙間の調整には、既述の通り、他に、前述のスプリング43の押圧力や、エア導入部44の空気圧を考慮して行う。また、流体圧即ち被処理流動体の送り圧力の調整や、更に、遠心力の調整となる、第1処理用部10即ち第1ホルダ11の回転の調整も、重要な調整の要素である。
上述の通り、この装置は、第2処理用部20と、第2処理用部20に対して回転する第1処理用部10とについて、被処理流動体の送り込み圧力と当該回転遠心力、また接面圧力で圧力バランスを取り両処理用面に所定の薄膜流体を形成させる構成にしている。またリングの少なくとも一方をフローティング構造とし芯振れなどのアライメントを吸収し接触による磨耗などの危険性を排除している。
この図12(B)の実施の形態においても、上記の調整用面を備える以外の構成については、図1(A)に示す実施の形態と同様である。
また、図12(B)に示す実施の形態において、図17に示すように、上記の離反用調整面23を設けずに実施することも可能である。
図12(B)や図17に示す実施の形態のように、接近用調整面24を設ける場合、接近用調整面24の面積A1を上記の面積A2よりも大きいものとすることにより、オープニングフォースを発生させずに、逆に、被処理流動体に掛けられた所定の圧力は、全て接面圧力として働くことになる。このような設定も可能であり、この場合、他の離反力を大きくすることにより、両処理用面1,2を均衡させることができる。
上記の面積比にて、流体から受ける力の合力として、第2処理用面2を第1処理用面1から離反させる方向へ作用させる力が定まる。
上記の実施の形態において、既述の通り、スプリング43は、摺動面即ち処理用面に均一な応力を与える為に、取付け本数は、多いほどよい。但し、このスプリング43については、図13へ示すように、シングルコイル型スプリングを採用することも可能である。これは、図示の通り、中心を環状の第2処理用部20と同心とする1本のコイル型スプリングである。
第2処理用部20と第2ホルダ21との間は、気密となるようにシールし、当該シールには、周知の手段を採用することができる。
図14に示すように、第2ホルダ21には、第2処理用部20を、冷却或いは加熱して、その温度を調整することが可能な温度調整用ジャケット46が設けられている。また、図14の3は、前述のケースを示しており、このケース3にも、同様の目的の温度調整用ジャケット35が設けられている。
第2ホルダ21の温度調整用ジャケット46は、第2ホルダ21内において、リング収容部41の側面に形成された水回り用の空間であり、第2ホルダ21の外部に通じる通路47,48と連絡している。通路47,48は、何れか一方が温度調整用ジャケット46に、冷却用或いは加熱用の媒体を導入し、何れか他方が当該媒体を排出する。
また、ケース3の温度調整用ジャケット35は、ケース3の外周を被覆する被覆部34にて、ケース3の外周面と当該被覆部34との間に設けられた、加熱用水或いは冷却水を通す通路である。
この実施の形態では、第2ホルダ21とケース3とが、上記の温度調整用のジャケットを備えるものとしたが、第1ホルダ11にも、このようなジャケットを設けて実施することが可能である。
接面圧力付与機構4の一部として、上記以外に、図15に示すシリンダ機構7を設けて実施することも可能である。
このシリンダ機構7は、第2ホルダ21内に設けられたシリンダ空間部70と、シリンダ空間部70をリング収容部41と連絡する連絡部71と、シリンダ空間部70内に収容され且つ連絡部71を通じて第2処理用部20と連結されたピストン体72と、シリンダ空間部70上部に連絡する第1ノズル73と、シリンダ空間部70下部に連絡する第2ノズル74と、シリンダ空間部70上部とピストン体72との間に介された発条などの押圧体75とを備えたものである。
ピストン体72は、シリンダ空間部70内にて上下に摺動可能であり、ピストン体72の当該摺動にて第2処理用部20が上下に摺動して、第1処理用面1と第2処理用面2との間の隙間を変更することができる。
図示はしないが、具体的には、コンプレッサなどの圧力源と第1ノズル73とを接続し、第1ノズル73からシリンダ空間部70内のピストン体72上方に空気圧即ち正圧を掛けることにて、ピストン体72を下方に摺動させ、第1及び第2処理用面1,2間の隙間を狭めることができる。また図示はしないが、コンプレッサなどの圧力源と第2ノズル74とを接続し、第2ノズル74からシリンダ空間部70内のピストン体72下方に空気圧即ち正圧を掛けることにて、ピストン体72を上方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を広げる、即ち開く方向に移動させることができる。このように、ノズル73,74にて得た空気圧で、接面圧力を調整できるのである。
リング収容部41内における第2処理用部20の上部と、リング収容部41の最上部との間に余裕があっても、ピストン体72がシリンダ空間部70の最上部70aと当接するよう設定することにより、このシリンダ空間部70の最上部70aが、両処理用面1,2間の隙間の幅の上限を規定する。即ち、ピストン体72とシリンダ空間部70の最上部70aとが、両処理用面1,2の離反を抑止する離反抑止部として、更に言い換えると、両処理用面1,2間の隙間の最大開き量を規制する機構として機能する。
また、両処理用面1,2同士が当接していなくても、ピストン体72がシリンダ空間部70の最下部70bと当接するよう設定することにより、このシリンダ空間部70の最下部70bが、両処理用面1,2間の隙間の幅の下限を規定する。即ち、ピストン体72とシリンダ空間部70の最下部70bとが、両処理用面1,2の近接を抑止する近接抑止部として、更に言い換えると、両処理用面1,2間の隙間の最小開き量を規制する機構として機能する。
このように上記隙間の最大及び最小の開き量を規制しつつ、ピストン体72とシリンダ空間部70の最上部70aとの間隔z1、換言するとピストン体72とシリンダ空間部70の最下部70bとの間隔z2を上記ノズル73,74の空気圧にて調整する。
ノズル73,74は、別個の圧力源に接続されたものとしてもよく、一つの圧力源を切り換えて或いはつなぎ換えて接続するものとしてもよい。
また圧力源は、正圧を供給するものでも負圧を供給するものでも何れでも実施可能である。真空などの負圧源と、ノズル73,74とを接続する場合、上記の動作は反対になる。
前述の他の接面圧力付与機構4に代え或いは前述の接面圧力付与機構4の一部として、このようなシリンダ機構7を設けて、被処理流動体の粘度や性状によりノズル73,74に接続する圧力源の圧力や間隔z1,z2の設定を行い薄膜流体の厚みを所望値にしせん断力をかけて均一な反応を実現し、微細な粒子を生成させることができる。特に、このようなシリンダ機構7にて、洗浄時や蒸気滅菌時など摺動部の強制開閉を行い洗浄や滅菌の確実性を上昇させることも可能とした。
図16(A)〜(C)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13...13を形成して実施してもよい。この場合、図16(A)へ示すように、凹部13...13は、第1処理用面1上をカーブして或いは渦巻き状伸びるものとして実施可能であり、図16(B)へ示すように、個々の凹部13がL字状に屈曲するものであっても実施可能であり、また、図16(C)に示すように、凹部13...13は真っ直ぐ放射状に伸びるものであっても実施可能である。
また、図16(D)へ示すように、図16(A)〜(C)の凹部13は、第1処理用面1の中心側に向かう程深いものとなるように勾配をつけて実施するのが好ましい。また、溝状の凹部13は、連続したものの他、断続するものであっても実施可能である。
この様な凹部13を形成することにより被処理流動体の吐出量の増加または発熱量の減少への対応や、キャビテーションコントロールや流体軸受けなど効果がある。
上記の図16に示す各実施の形態において、凹部13は、第1処理用面1に形成するものとしたが、第2処理用面2に形成するものとしても実施可能であり、更には、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。
処理用面に、上記の凹部13やテーパを設けない場合、若しくは、これらを処理用面の一部に偏在させた場合、処理用面1,2の面粗度が被処理流動体に与える影響は、上記凹部13を形成するものに比して、大きいものとなる。従って、このような場合、被処理流動体の粒子が小さくなればなるほど、面粗度を下げる即ちきめの細かいものとする必要がある。特に均一な反応を目的とする場合その処理用面の面粗度については、既述の鏡面即ち鏡面加工を施した面とするほうが均一な反応を実現し、微粒子を得る事を目的とする場合には、微細で単分散な反応生成物の晶出・析出を実現する上で有利である。
図13乃至図17に示す実施の形態においても、特に明示した以外の構成については図1(A)又は図11(C)に示す実施の形態と同様である。
また、上記の各実施の形態において、ケース内は全て密封されたものとしたが、この他、第1処理用部10及び第2処理用部20の内側のみ密封され、その外側は開放されたものとしても実施可能である。即ち、第1処理用面1及び第2処理用面2との間を通過するまでは流路は密封され、被処理流動体は送圧を全て受けるものとするが、通過後は、流路は開放され処理後の被処理流動体は送圧を受けないものとしてもよい。
流体圧付与機構p1には、加圧装置として、既述のとおり、コンプレッサを用いて実施するのが好ましいが、常に被処理流動体に所定の圧力を掛けることが可能であれば、他の手段を用いて実施することもできる。例えば、被処理流動体の自重を利用して、常に一定の圧力を被処理流動体に付与するものとしても実施可能である。
上記の各実施の形態における処理装置について総括すると、被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路に、第1処理用面1及び第2処理用面2の少なくとも2つの接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させることにより、メカニカルシールにおいてシールに利用される薄膜流体を、被処理流動体を用いて発生させ、メカニカルシールと逆に(薄膜流体をシールに利用するのではなく)、当該薄膜流体を第1処理用面1及び第2処理用面2の間から敢えて漏らして、反応の処理を、両面間1,2にて膜とされた被処理流動体間にて実現し、回収することを特徴とするものである。
このような画期的な方法により、両処理用面1,2間の間隔を1μから1mmとする調整、特に、1〜10μとする調整を可能とした。
上記の実施の形態において、装置内は密閉された流体の流路を構成するものであり、処理装置の(第1被処理流動体の)導入部側に設けた流体圧付与機構pにて、被処理流動体は加圧されたものであった。
この他、このような流体圧付与機構pを用いて加圧するものではなく、被処理流動体の流路は開放されたものであっても実施可能である。
図18乃至図20へ、そのような処理装置の一実施の形態を示す。尚、この実施の形態において、処理装置として、生成されたものから、液体を除去し、目的とする固体(結晶)のみを最終的に確保する機能を備えた装置を例示する。
図18(A)は処理装置の略縦断面図であり、図18(B)はその一部切欠拡大断面図である。図19は、図18に示す処理装置が備える第1処理用部101の平面図である。図20は、上記処理装置の第1及び第2処理用部101,102の一部切欠要部略縦断面図である。
この図18乃至図20に示す装置は、上記の通り、大気圧下で、処理の対象となる流体即ち被処理流動体或いはこのような処理の対象物を搬送する流体が投入されるものである。
尚、図18(B)及び図20において、図面の煩雑を避けるため、第2導入部d2は、省略して描いてある(第2導入部d2が設けられていない位置の断面と考えればよい)。
図18(A)に示す通り、この処理装置は、反応装置Gと、減圧ポンプQとを備えたものである。この反応装置Gは、回転する部材である第1処理用部101と、当該処理用部101を保持する第1ホルダ111と、ケースに対して固定された部材である第2処理用部102と、当該第2処理用部102が固定された第2ホルダ121と、付勢機構103と、動圧発生機構104(図19(A))と、第1ホルダ111と共に第1処理用部101を回転させる駆動部と、ハウジング106と、第1被処理流動体を供給(投入する)する第1導入部d1と、流体を減圧ポンプQへ排出する排出部108とを備える。駆動部については図示を省略する。
上記の第1処理用部101と第2処理用部102は、夫々、円柱の中心をくり抜いた形状の環状体である。両処理用部101,102は、両処理用部101,102の夫々が呈する円柱の一底面を処理用面110,120とする部材である。
上記の処理用面110,120は、鏡面研磨された平坦部を有する。この実施の形態において、第2処理用部102の処理用面120は、面全体に鏡面研磨が施された平坦面である。また、第1処理用部101の処理用面110は、面全体を第2処理用部102と同様の平坦面とするが、図19(A)へ示す通り、平坦面中に、複数の溝112...112を有する。この溝112... 112は、第1処理用部101が呈する円柱の中心を中心側として円柱の外周方向へ、放射状に伸びる。
上記の第1及び第2の処理用部101,102の処理用面110,120についての、鏡面研磨は、面粗度Ra0.01〜1.0μmとするのが好ましい。この鏡面研磨について、Ra0.03〜0.3μmとするのがより好ましい。
処理用部101,102の材質については、硬質且つ鏡面研磨が可能なものを採用する。処理用部101,102のこの硬さについて、少なくともビッカース硬さ1500以上が好ましい。また、線膨張係数が小さい素材を、若しくは、熱伝導の高い素材を、採用するのが好ましい。処理にて熱を発する部分と他の部分との間で、膨張率の差が大きいと歪みが発生して、適正なクリアランスの確保に影響するからである。
このような処理用部101,102の素材として、特に、SIC即ちシリコンカーバイトでビッカース硬さ2000〜2500、表面にDLC即ちダイヤモンドライクカーボンでビッカース硬さ3000〜4000、コーティングが施されたSIC、WC即ちタングステンカーバイトでビッカース硬さ1800、表面にDLCコーティングが施されたWC、ZrB2 やBTC,B4Cに代表されるボロン系セラミックでビッカース硬さ4000〜5000などを採用するのが好ましい。
図18に示されるハウジング106は、底部の図示は省略するが、有底の筒状体であり、上方が上記の第2ホルダ121に覆われている。第2ホルダ121は、下面に上記第2処理用部102が固定されており、上方に上記導入部d1が設けられている。導入部d1は、外部から流体や被処理物を投入するためのホッパ170を備える。
図示はしないが、上記の駆動部は、電動機などの動力源と、当該動力源から動力の供給を受けて回転するシャフト50とを備える。
図18(A)に示すように、シャフト50は、ハウジング106の内部に配され上下に伸びる。そして、シャフト50の上端部に上記の第1ホルダ111が、設けられている。第1ホルダ111は、第1処理用部101を保持するものであり、上記の通りシャフト50に設けられることにより、第1処理用部101の処理用面110を第2処理用部102の処理用面120に対応させる。
第1ホルダ111は、円柱状体であり、上面中央に、第1処理用部101が固定されている。第1処理用部101は、第1ホルダ111と一体となるように、固着され、第1ホルダ111に対してその位置を変えない。
一方、第2ホルダ121の上面中央には、第2処理用部102を受容する受容凹部124が形成されている。
上記の受容凹部124は、環状の横断面を有する。第2処理用部102は、受容凹部124と、同心となるように円柱状の受容凹部124内に収容される。
この受容凹部124の構成は、図1(A)に示す実施の形態と同様である(第1処理用部101は第1リング10と、第1ホルダ111は第1ホルダ11と、第2処理用部102は第2リング20と、第2ホルダ121は第2ホルダ21と対応する)。
そして、この第2ホルダ121が、上記の付勢機構103を備える。付勢機構103は、バネなどの弾性体を用いるのが好ましい。付勢機構103は、図1(A)の接面圧付与機構4と対応し、同様の構成を採る。即ち、付勢機構103は、第2処理用部102の処理用面120と反対側の面即ち底面を押圧し、第1処理用部101側即ち下方に第2処理用部102の各位置を均等に付勢する。
一方、受容凹部124の内径は、第2処理用部102の外径よりも大きく、これにて、上記の通り同心に配設した際、第2処理用部102の外周面102bと受容凹部124の内周面との間には、図18(B)に示すように、隙間t1が設定される。
同様に、第2処理用部102の内周面102aと受容凹部124の中心部分22の外周面との間には、図18(B)に示すように、隙間t2が設定される。
上記隙間t1、t2の夫々は、振動や偏芯挙動を吸収するためのものであり、動作寸法以上確保され且つシールが可能となる大きさに設定する。例えば、第1処理用部101の直径が100mmから400mmの場合、当該隙間t1、t2の夫々は、0.05〜0.3mmとするのが好ましい。
第1ホルダ111は、シャフト50へ一体に固定され、シャフト50と共に回転する。また、図示しないが、回り止めによって、第2ホルダ121に対して、第2処理用部102は回らない。しかし、両処理用面110,120間に、処理に必要な0.1〜10ミクロンのクリアランス、即ち図20(B)に示す微小な間隔tを確保するため、受容凹部124の底面即ち天部と第2処理用部102の天部124aを臨む面即ち上面と間に隙間t3が設けられる。この隙間t3については、上記のクリアランスと共に、シャフト50の振れや伸びを考慮して設定する。
上記のように、隙間t1〜t3の設定により、第2処理用部102は、第1処理用部101に対して接近・離反する方向z1に可変であるのみならず、その処理用面10の中心や、傾き、即ち方向z2についても可変としている。
即ち、この実施の形態において、付勢機構103と、上記隙間t1〜t3とが、フローティング機構を構成し、このフローティング機構によって、少なくとも第2処理用部102の中心や傾きを、数ミクロンから数ミリの程度の僅かな量、可変としている。これにて、回転軸の芯振れ、軸膨張、第1処理用部101の面振れ、振動を吸収する。
第1処理用部101の処理用面110が備える前記の溝112について、更に詳しく説明する。溝112の後端は、第1処理用部101の内周面101aに達するものであり、その先端を第1処理用部101の外側y即ち外周面側に向けて伸ばす。この溝112は、図19(A)へ示すように、その横断面積を、環状の第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、漸次減少するものとしている。
溝112の左右両側面112a,112bの間隔w1は、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて小さくなる。また、溝112の深さw2は、図19(B)へ示すように、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、小さくなる。即ち、溝112の底112cは、第1処理用部101の中心x側から、第1処理用部101の外側y即ち外周面側に向かうにつれて、浅くなる。
このように、溝112は、その幅及び深さの双方を、外側y即ち外周面側に向かうにつれて、漸次減少するものとして、その横断面積を外側yに向けて漸次減少させている。そして、溝112の先端即ちy側は、行き止まりとなっている。即ち、溝112の先端即ちy側は、第1処理用部101の外周面101bに達するものではなく、溝112の先端と外周面101bとの間には、外側平坦面113が介在する。この外側平坦面113は、処理用面110の一部である。
この図19へ示す実施の形態において、このような溝112の左右両側面112a,112bと底112cとが流路制限部を構成している。この流路制限部と、第1処理用部101の溝112周囲の平坦部と、第2処理用部102の平坦部とが、動圧発生機構104を構成している。
但し、溝112の幅及び深さの何れか一方についてのみ、上記の構成を採るものとして、断面積を減少させるものとしてよい。
上記の動圧発生機構104は、第1処理用部101の回転時、両処理用部101,102間を通り抜けようとする流体によって、両処理用部101,102の間に所望の微小間隔を確保することを可能とする、両処理用部101,102を離反させる方向に働く力を発生させる。このような動圧の発生により、両処理用面110,120間に、0.1〜10μmの微小間隔を発生させることができる。このような微小間隔は、処理の対象によって、調整し選択すればよいのであるが、1〜6μmとするのが好ましく、より好ましくは、1〜2μmである。この装置においては、上記のような微小間隔による従来にない均一な反応の実現と微細粒子の生成が可能である。
溝112...112の夫々は、真っ直ぐ、中心x側から外側yに伸びるものであっても実施可能である。但し、この実施の形態において、図19(A)に示すように、第1処理用部101の回転方向rについて、溝112の中心x側が、溝112の外側yよりも、先行するように即ち前方に位置するように、湾曲して溝112を伸びるものとしている。
このように溝112...112が湾曲して伸びることにより、動圧発生機構104による離反力の発生をより効果的に行うことができる。
次に、この装置の動作について説明する。
ホッパ170から投入され、第1導入部d1を通ってくる第1被処理流動体Rは、環状の第2処理用部102の中空部を通る。第1処理用部101の回転よる遠心力を受けた第1被処理流動体Rは、両処理用部101,102間に入り、回転する第1処理用部101の処理用面110と、第2処理用部102の処理用面120との間にて、均一な反応と微細粒子の生成処理が行われ、その後、両処理用部101,102の外側に出て、排出部108から減圧ポンプQ側へ排出される。以下必要に応じて第1被処理流動体Rを単に流体Rと呼ぶ。
上記において、環状の第2処理用部102の中空部に入った流体Rは、図20(A)へ示すように、先ず、回転する第1処理用部101の溝112に入る。一方、鏡面研磨された、平坦部である両処理用面110,120は、空気や窒素などの気体を通しても気密性が保たれている。従って、回転による遠心力を受けても、そのままでは、付勢機構103によって、押し合わされた両処理用面110,120の間に、溝112から流体は入り込むことはできない。しかし、流路制限部として形成された溝112の上記両側面112a,112bや底112cに、流体Rは徐々に突き当たり、両処理用面110,120を離反させる方向に働く動圧を発生させる。図20(B)へ示すように、これによって、流体Rが溝112から平坦面に滲み出し、両処理用面110,120の間に微小間隔t即ちクリアランスを確保することができる。そして、このような鏡面研磨された平坦面の間で、均一な反応と微細な粒子の生成処理が行われる。また上述の溝112の湾曲が、より確実に流体へ遠心力を作用させ、上記動圧の発生をより効果的にしている。
このように、この処理装置は、動圧と付勢機構103による付勢力との均衡にて、両鏡面即ち処理用面110,120間に、微細で均一な間隔即ちクリアランスを確保することを可能とした。そして、上記の構成により、当該微小間隔は、1μm以下の超微細なものとすることができる。
また、上記フローティング機構の採用により、処理用面110,120間のアライメントの自動調整が可能となり、回転や発生した熱による各部の物理的な変形に対して、処理用面110,120間の各位置における、クリアランスのばらつきを、抑制し、当該各位置における上記の小間隔の維持を可能とした。
尚、上記の実施の形態において、フローティング機構は、第2ホルダ121にのみ設けられた機構であった。この他、第2ホルダ121に代え、或いは第2ホルダ121と共に、フローティング機構を、第1ホルダ111にも設けるものとして実施することも可能である。
図21乃至図23に、上記の溝112について、他の実施の形態を示す。
図21(A)(B)に示すように、溝112は、流路制限部の一部として、先端に平らな壁面112dを備えるものとして実施することができる。また、この実施の形態では、底112cにおいて、第1壁面112dと、内周面101aとの間に段差112eが設けられており、この段差112eも流路制限部の一部を構成する。
図22(A)(B)に示すように、溝112は、複数に分岐する枝部112f...112fを備えるものとし、各枝部112fがその幅を狭めることにより流路制限部を備えるものとしても実施可能である。
これらの実施の形態においても、特に示した以外の構成については、図1(A)、図11(C)、図18乃至図20に示す実施の形態と同様である。
また、上記の各実施の形態において、溝112の幅及び深さの少なくとも何れか一方について、第1処理用部101の内側から外側に向けてその寸法を漸次小さくすることにて、流路制限部を構成するものとした。この他、図23(A)や図23(B)へ示す通り、溝112の幅や深さを変化させずに、溝112に終端面112fを設けることによって、このような溝112の終端面112fを流路制限部とすることができる。図19、図21及び図22に示す実施の形態において示した通り、動圧発生は、溝112の幅及び深さを既述の通り変化させることによって溝112の底や両側面を傾斜面とすることで、この傾斜面が流体に対する受圧部になり動圧を発生させた。一方図23(A)(B)に示す実施の形態では、溝112の終端面が流体に対する受圧部になり動圧を発生させる。
また、この図23(A)(B)に示す場合、溝112の幅及び深さの少なくとも何れか一方の寸法を漸次小さくすることも併せて実施することができる。
尚、溝112の構成について、上記の図19、図21乃至図23に示すものに限定するものではなく、他の形状の流路制限部を備えたものとして実施することが可能である。
例えば、図19、図21乃至図23示すものでは、溝112は、第1処理用部101の外側に突き抜けるものではなかった。即ち、第1処理用部101の外周面と、溝112との間には、外側平坦面113が存在した。しかし、このような実施の形態に限定するものではなく、上述の動圧を発生されることが可能であれば、溝112は、第1処理用部101の外周面側に達するものであっても実施可能である。
例えば、図23(B)に示す第1処理用部101の場合、点線で示すように、溝112の他の部位よりも断面積が小さな部分を、外側平坦面113に形成して実施することができる。
また、溝112を、上記の通り内側から外側へ向けて漸次断面積を小さくするように形成し、溝112の第1処理用部101の外周に達した部分(終端)を、最も断面積が小さいものとすればよい(図示せず)。但し、動圧を効果的に発生させる上で、図19、図21乃至図23に示すように、溝112は、第1処理用部101の外周面側に突き抜けないほうが好ましい。
ここで、上記図18乃至図23に示す各実施の形態について、総括する。
この処理装置は、平坦処理用面を有する回転部材と同じく平坦処理用面を有する固定部材とをそれらの平坦処理用面で同心的に相対向させ、回転部材の回転下に固定部材の開口部より被反応原料を供給しながら両部材の対向平面処理用面間にて反応処理する処理装置において機械的にクリアランスを調整するのではなく、回転部材に増圧機構を設けてその圧力発生によりクリアランスを保持しかつ機械的クリアランス調整では、不可能であった1〜6μmの微小クリアランスを可能とし生成粒子の微細化及び反応の均一化の能力が著しく向上出来たものである。
即ち、この処理装置は、回転部材と固定部材がその外周部に平坦処理用面を有しその平坦処理用面において、面上の密封機能を有することで、流体静力学的な即ちハイドロスタティックな力、流体動力学的即ちハイドロダイナミックな力、或いは、エアロスタティック−エアロダイナミックな力を発生させる高速回転式の処理装置を提供しようとするものである。上記の力は、上記密封面間に僅かな間隙を発生させ、また非接触で機械的に安全で高度な微細化及び反応の均一化の機能を有した反応処理装置を提供することができる。この僅かな隙間が形成されうる要因は、一つは、回転部材の回転速度によるものであり、もう一つは、被処理物(流体)の投入側と排出側の圧力差によるものである。投入側に圧力付与機構が付設されていない場合即ち大気圧下で被処理物(流体)を投入される場合、圧力差が無いわけであるから回転部材の回転速度だけで密封面間の分離を生じさせる必要がある。これは、ハイドロダイナミックもしくはエアロダイナミック力として知られている。
図18(A)に示す装置において、減圧ポンプQを上記反応装置Gの排出部に接続したものを示したが、既述の通りハウジング106を設けず、また減圧ポンプQを設けずに、図24(A)に示すように処理装置を減圧用のタンクTとして、当該タンクTの中に、反応装置Gを配設することにて実施することが可能である。
この場合、タンクT内を真空或いは真空に近い状態に減圧することにて、反応装置Gにて生成された被処理物をタンクT内に霧状に噴射せしめ、タンクTの内壁にぶつかって流れ落ちる被処理物を回収すること、或いはこのような流れ落ちる被処理物に対して気体(蒸気)として分離されタンクT内上部に充満するものを回収することにて、処理後の目的物を得ることができる。
また、減圧ポンプQを用いる場合も、図24(B)へ示すように、処理装置Gに、減圧ポンプQを介して、気密なタンクTを接続することにより、当該タンクT内にて、処理後の被処理物を霧状にして、目的物の分離・抽出を行うことができる。
更に、図24(C)へ示すように、減圧ポンプQを直接タンクTに接続し、当該タンクTに、減圧ポンプQと、減圧ポンプQとは別の流体Rの排出部とを接続して、目的物の分離を行うことができる。この場合、気化部については、減圧ポンプQに吸いよせられ、液体R(液状部)は排出部より、気化部とは別に排出される。
上述してきた各実施の形態では、第1及び第2の2つの被処理流動体を、夫々第2ホルダ21,121及び第2リング20,102から、導入して、混合し反応させるものを示した。
次に、装置への被処理流動体の導入に関する他の実施の形態について、順に説明する。
図1(B)へ示す通り、図1(A)へ示す処理装置に、第3導入部d3を設けて第3の被処理流動体を、両処理用面1,2間へ導入して、第2被処理流動体と同様第1被処理流動体へ混合し反応させるものとしても実施できる。
第3導入部d3は、第1の被処理流動体と、混合させる第3の流動体を処理用面1,2へ供給する。この実施の形態において、第3導入部d3は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第3流体供給部p3が接続されている。
第3流体供給部p3には、コンプレッサ、その他のポンプを採用することができる。
第3導入部d3の第2処理用面2における開口部は、第2導入部d2の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第3導入部d3の開口部は、第2導入部d2の開口部よりも、下流側に位置する。第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられている。
この図1(B)へ示す装置も、第3導入部d3以外の構成については、図1(A)へ示す実施の形態と同様である。尚、この図1(B)、更に、以下に説明する、図1(C)、図1(D)、図2〜図11において、図面の煩雑を避けるため、ケース3を省略する。尚、図9(B)(C)、図10、図11(A)(B)において、ケース3の一部は、描いてある。
更に、図1(C)へ示すように、図1(B)へ示す処理装置に、第4導入部d4を設けて第4の被処理流動体を、両処理用面1,2間へ導入して、第2及び第3の被処理流動体と同様第1被処理流動体へ混合し反応させるものとしても実施できる。
第4導入部d4は、第1の被処理流動体と、混合させる第4の流動体を処理用面1,2へ供給する。この実施の形態において、第4導入部d4は、第2リング20の内部に設けられた流体の通路であり、その一端が、第2処理用面2にて開口し、他の一端に、第4流体供給部p4が接続されている。
第4流体供給部p4には、コンプレッサ、その他のポンプを採用することができる。
第4導入部d4の第2処理用面2における開口部は、第3導入部d3の開口部よりも、第1処理用面1の回転の中心の外側に位置する。即ち、第2処理用面2において、第4導入部d4の開口部は、第3導入部d3の開口部よりも、下流側に位置する。
この図1(C)へ示す装置について、第4導入部d4以外の構成については、図1(B)へ示す実施の形態と同様である。
また、図示はしないが、更に、第5導入部や、第6導入部など、5つ以上の導入部を設けて、夫々5種以上の被処理流動体を、混合し反応させるものとしても実施できる。
また、図1(D)へ示す通り、図1(A)の装置では、第2ホルダ21に設けられていた第1導入部d1を、第2ホルダ21に設ける代わりに、第2導入部d2同様、第2処理用面2に設けて実施することができる。この場合、第2処理用面2において、第1導入部d1の開口部は、第2導入部d2よりも、回転の中心側即ち上流側に位置する。
上記の図1(D)へ示す装置では、第2導入部d2の開口部と、第3導入部d3の開口部は、共に第2リング20の第2処理用面2に配置されるものであった。しかし、導入部の開口部は、このような処理用面に対する配置に限定するもではない。特に、図2(A)へ示す通り、第2導入部d2の開口部を、第2リング20の内周面の、第2処理用面2に隣接する位置に設けて実施することもできる。この図2(A)へ示す装置において、第3導入部d3の開口部は、図1(B)へ示す装置と同様第2処理用面2に配置されているが、第2導入部d2の開口部を、このように第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することによって、第2の被処理流動体を処理用面に直ちに導入できる。
このように第1導入部d1の開口部を第2ホルダ21に設け、第2導入部d2の開口部を第2処理用面2の内側であって、第2処理用面2へ隣接する位置に配置することで(この場合、上記第3導入部d3を設けることは必須ではない)、特に複数の被処理流体を反応させる場合において、第1導入部d1から導入される被処理流体と第2導入部d2から導入される被処理流体とを反応させない状態で両処理用面1,2間へ導入し、両処理用面1,2間において両者を初めて反応させることができる。よって、上記構成は、特に反応性の高い被処理流体を用いる場合に適している。
なお、上記の「隣接」とは、第2導入部d2の開口部を、図2(A)に示すように第2リング20の内側側面に接するようにして設けた場合に限られるものではない。第2リング20から第2導入部d2の開口部までの距離が、複数の被処理流体が両処理用面1,2間へ導入される前に混合・反応が完全になされない程度とされていれば良く、例えば、第2ホルダ21の第2リング20に近い位置に設けたものであっても良い。また、第2導入部d2の開口部を第1リング10あるいは第1ホルダ11の側に設けても良い。
更に、上記の図1(B)へ示す装置において、第3導入部d3の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、図2()へ示す通り、そのような間隔を設けずに、両処理用面1,2間に第2及び第3の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような図2()へ示す装置を選択すればよい。
また、上記の図1(D)へ示す装置についても、第1導入部d1の開口部と第2導入部d2の開口との間には、第2リング20の径の内外方向について、間隔が開けられていたが、そのような間隔を設けずに、両処理用面1,2間に第1及び第2の被処理流動体を導入すると直ちに両流動体が合流するものとしても実施できる。処理の対象によって、このような開口部の配置を選択すればよい。
上記の図1(B)及び図1(C)に示す実施の形態では、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部の下流側、言い換えると、第2リング20の径の内外方向について第2導入部d2の開口部の外側に配置するものとした。この他、図2(C)及び図3(A)へ示す通り、第2処理用面2において、第3導入部d3の開口部を、第2導入部d2の開口部と、第2リング20の周方向r0について異なる位置に配置するものとしても実施できる。図3において、m1は第1導入部d1の開口部即ち第1開口部を、m2は第2導入部d2の開口部即ち第2開口部を、m3は第3導入部d3の開口部即ち第3開口部を、r1はリングの径の内外方向を、夫々、示している。
また、第1導入部d1を、第2リング20に設ける場合も、図2(D)へ示す通り、第2処理用面2において、第1導入部d1の開口部を、第2導入部d2の開口部と、第2リング20の周方向について異なる位置に配置するものとしても実施できる。
上記の図2()へ示す装置では、第2リング20の処理用面2において、周方向r0の異なる位置に2つの導入部の開口部が配置されたものを示したが、図3(B)へ示す通り、リングの周方向r0の異なる位置に3つの導入部の開口部を配置し、或いは図3(C)へ示す通り、リングの周方向r0の異なる位置に4つの導入部の開口部を配置して実施することもできる。尚、図3(B)(C)において、m4は、第4導入部の開口部を示し、図3(C)においてm5は第5導入部の開口部を示している。また、図示はしないが、導入部の開口部を、リングの周方向r0の異なる位置に5つ以上設けて実施することもできる。
上記の図2(B)(D)、及び、図3(A)〜(C)に示す装置において、第2導入部乃至第5導入部は、夫々異なる被処理流動体即ち、第2、第3、第4、第5の被処理流動体を、導入することができる。一方、第2〜第5の開口部m2〜m5から、全て同種の即ち、第2被処理流動体を処理用面間に導入するものとしても実施できる。図示はしないが、この場合、第2導入部乃至第5導入部は、リング内部にて連絡しており、一つの流体供給部、即ち第2流体供給部p2に接続されているものとして実施できる。
また、リングの周方向r0の異なる位置に導入部の開口部を複数設けたものと、リングの径方向即ち径の内外方向r1の異なる位置に導入部の開口部を複数設けたものを、複合して実施することもできる。
例えば、図3(D)へ示す通り、第2処理用面2に8つの導入部の開口部m2〜m9が設けられており、そのうち4つm2〜m5は、リングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられたものであり、他の4つm6〜m9はリングの周方向r0の異なる位置であり且つ径方向r1について同じ位置に設けられている。そして、当該他の開口部m6〜m9は、径方向rについて、上記4つの開口部m2〜m5の径方向の外側に配置されている。また、この外側の開口部は、夫々、内側の開口部と、リングの周方向r0について、同じ位置に設けてもよいが、リングの回転を考慮して、図3(D)へ示すように、リングの周方向r0の異なる位置に設けて実施することもできる。また、その場合も、開口部について、図3(D)に示す配置や数に限定するものではない
例えば、図3(E)へ示す通り、径方向外側の開口部が多角形の頂点位置、即ちこの場合四角形の頂点位置に配置され、当該多角形の辺上に、径方向内側の開口部が位置するように配置することもできる。勿論この他の配置を採ることもできる。
また、第1開口部m1以外の開口部は、何れも第2被処理流動体を処理用面間に導入するものとした場合、各第2被処理流動を導入する当該開口部を、処理用面の周方向r0について、点在させるのではなく、図3(F)へ示す通り、周方向r0について、連続する開口部として実施することもできる。
尚、処理の対象によっては、図4(A)へ示す通り、図1(A)に示す装置において、第2リング20に設けていた第2導入部d2を、第1導入部d1と同様、第2ホルダ21の中央部分22へ設け実施することもできる。この場合、第2リング20の中心に位置する第1導入部d1の開口部に対し、その外側に、間隔を開けて、第2導入部d2の開口部が位置する。また、図4(B)へ示す通り、図4(A)へ示す装置について、第2リング20に第3導入部d3を設けて実施することもできる。図4(C)へ示す通り、図(A)へ示す装置において、第1導入部d1の開口部と第2導入部d2の開口部との間に間隔を設けず、第2リング20の内側の空間へ第及び第の被処理流動体を導入されると直ちに両流動体が合流するものとしても実施できる。更にまた、処理の対象によっては、図4(D)へ示す通り、図(A)へ示す装置において、第2導入部d2同様、第3導入部d3も第2ホルダ21に設けて実施することができる。図示はしないが、4つ以上の導入部を第2ホルダ21に設けて実施することもできる。
また、処理の対象によっては、図5(A)へ示す通り、図4(D)へ示す装置において、第2リング20に第4導入部d4を設けて第4の被処理流動体を両処理用面1,2間へ導入するものとしても実施できる。
図5(B)へ示す通り、図1(A)へ示す装置において、第2導入部d2を、第1リング10へ設け、第1処理用面1に第2導入部d2の開口部を備えるものとしても実施できる。
図5(C)へ示す通り、図5(B)へ示す装置において、第1リング10に第3導入部d3を設けて、第1処理用面1において、第3導入部d3の開口部を、第2導入部d2の開口部と、第1リング10の周方向について異なる位置に配置するものとしても実施できる。
図5(D)へ示す通り、図5(B)へ示す装置において、第2ホルダ21へ第1導入部d1を設ける代わりに、第2リング20へ第1導入部d1を設け、第2処理用面2に、第1導入部d1の開口部を配置するものとしても実施できる。この場合、第1及び第2の導入部d1,d2の両開口部は、リングの径の内外方向について、同じ位置に配置されている。
また、図6(A)へ示す通り、図1(A)へ示す装置において、第3導入部d3を、第1リング10へ設け、第1処理用面1へ第3導入部d3の開口部を配置するものとしても実施できる。この場合、第2及び第3の導入部d2,d3の両開口部は、リングの径の内外方向について、同じ位置に配置されている。但し、上記の両開口部を、リングの径の内外方向について、異なる位置に配置するものとしてもよい。
図5(C)へ示す装置において、第2及び第3の導入部d2,d3の両開口部を第1リング10の径の内外方向について同じ位置に設けると共に、第1リング10の周方向即ち回転方向について異なる位置に設けたが、当該装置において、図6(B)へ示す通り、第2及び第3導入部d2,d3の両開口部を、第1リング10の径の内外方向について異なる位置に設けて実施することができる。この場合図6(B)へ示す通り、第2及び第3導入部d2,d3の両開口部の間には、第1リング10の径の内外方向に間隔を開けておくものとしても実施でき、または図示はしないが、当該間隔を開けずに直ちに、第2被処理流動体と第3被処理流動体とが合流するものとしても実施できる。
また、図6(C)へ示す通り、第2ホルダ21へ第1導入部d1を設ける代わりに、第2導入部d2と共に、第1リング10へ第1導入部d1を設けて実施することもできる。この場合、第1処理用面1において、第1導入部d1の開口部を、第2導入部d2の開口部の、上流側(第1リング10の径の内外方向について内側)に設ける。第1導入部d1の開口部と第2導入部d2の開口部との間には、第1リング10の径の内外方向について、間隔を開けておく。但し図示はしないが、このような間隔を開けずに実施することもできる。
また、図6(D)へ示す通り、図6(C)へ示す装置の第1処理用面1にあって、第1リング10周方向の異なる位置に、第1導入部d1と第2導入部d2夫々の開口部を配置するものとして実施することができる。
また、図示はしないが、図6(C)(D)へ示す実施の形態において、第1リング10へ3つ以上の導入部を設けて、第2処理用面2において、周方向の異なる位置に、或いは、リングの径の内外方向の異なる位置に、各開口部を配置するものとして実施することもできる。例えば、第2処理用面2において採った、図3(B)〜図3(F)に示す開口部の配置を第1処理用面1においても採用することができる。
図7(A)へ示す通り、図1(A)へ示す装置において、第2導入部d2を第2リング20へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸の中心に第2導入部d2の開口部を配置するのが好ましい。
図7(B)へ示す通り、図7(A)へ示す実施の形態において、第3導入部d3を、第2リング20へ設けて、第3導入部d3の開口部を第2処理用面2へ配置することができる。
また、図7(C)へ示す通り、第1導入部d1を第2ホルダ21へ設ける代わりに、第1ホルダ11へ設けて実施することができる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第1リング10の回転の中心軸に第1導入部d1の開口部を配置するのが好ましい。また、この場合、図示の通り、第2導入部d2を第1リング10へ設けて、第1処理用面1へ、その開口部を配置することができる。また、図示はしないが、この場合、第2導入部d2を第2リング20へ設けて、第2処理用面2へ、その開口部を配置することができる。
更に、図7(D)へ示す通り、図7(C)へ示す第2導入部d2を、第1導入部d1と共に、第1ホルダ11へ設けて実施することもできる。この場合、第1ホルダ11上面の第1リング10に囲まれた部位において、第2導入部d2の開口部を配置する。また、この場合、図7(C)において、第2リング20へ設けた第2導入部d2を、第3導入部d3とすればよい。
上記の図1〜図7に示す各実施の形態において、第1ホルダ11及び第1リング10が、第2ホルダ21及び第2リング20に対して回転するものとした。この他、図8(A)へ示す通り、図1(A)へ示す装置において、第2ホルダ21に、回転駆動部から回転力を受けて回転する回転軸51を設けて、第1ホルダ11の逆方向に、第2ホルダ21を回転させるものとしても実施できる。回転駆動部は、第1ホルダ11の回転軸50を回転させるものと別に設けるものとしてもよく、或いはギアなどの動力伝達手段により、第1ホルダ11の回転軸50を回転させる駆動部から、動力を受けるものとしても実施できる。この場合、第2ホルダ21は、前述のケースと別体に形成されて、第1ホルダ11と同様、当該ケース内に回転可能に収容されたものとする。
また、図8(B)へ示す通り、図8(A)に示す装置において、第2リング20に第2導入部d2を設ける代わりに、図7(B)の装置と同様に第1ホルダ11に第2導入部d2を設けて実施することができる。
また、図示はしないが、図8(B)へ示す装置において、第2導入部d2を、第1ホルダ11に代え第2ホルダ21へ設けて実施することもできる。この場合、第2導入部d2は、図(A)の装置と同様である。図8(C)へ示す通り、図8(B)へ示す装置において、第2リング20に第3導入部d3を設けて、当該導入部d3の開口部を、第2処理用面2に配置して実施することもできる。
更に、図8(D)へ示す通り、第1ホルダ11を回転させずに、第2ホルダ21のみを回転させるものとしても実施できる。図示はしないが、図1(B)〜図7に示す装置においても、第1ホルダ11と共に第2ホルダ21を、或いは第2ホルダ21のみ単独で回転させるものとしても実施できる。
図9(A)へ示すように、第2処理用部20は、リングとし、第1処理用部10を、リングでなく、他の実施の形態の第1ホルダ11と同様の、直接回転軸50を備えて回転する部材とすることができる。この場合、第1処理用部10の上面を、第1処理用面1とし、当該処理用面は、環状でなく、即ち中空部分を備えない、一様に平らな面とする。また、この図9(A)に示す装置において、図1(A)の装置と同様、第2導入部d2を、第2リング20に設け、その開口部を第2処理用面2に配置している。
図9(B)へ示す通り、図9(A)へ示す装置において、第2ホルダ21を、ケース3と独立したものとし、ケース3と当該第2ホルダ21との間に、第2リング20が設けられた1処理用部10へ接近・離反させる弾性体などの接面圧付与機構4を設けて実施することもできる。この場合、図9(C)へ示すように、第2処理用部20をリングとするのではなく、上記の第2ホルダ21に相当する部材とし、当該部材の下面を第2処理用面2として形成することができる。更に、図10(A)へ示す通り、図9(C)へ示す装置において、第1処理用部10もリングとするのではなく、図9(A)(B)へ示す装置と同様他の実施の形態において第1ホルダ11に相当する部位を第1処理用部10とし、その上面を第1処理用面1として実施することができる。
上記の各実施の形態において、少なくとも第1の被処理流動体は、第1処理用部10と第2処理用部20即ち、第1リング10と第2リング20の中心部から供給され、他の被処理流動体による処理、即ち混合及び反応後、その径の内外方向について外側へ排出されるものとした。
この他、図10(B)へ示す通り、第1リング10及び第2リング20の外側から、内側に向けて、第1の被処理流動体を供給するものとしても実施できる。この場合、図示の通り、第1ホルダ11及び第2ホルダ21の外側をケース3にて密閉し、第1導入部d1を当該ケース3に直接設けて、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に、当該導入部の開口部を配置する。そして、図1(A)の装置において第1導入部d1が設けられていた位置、即ち第1ホルダ11におけるリング1の中心となる位置に、排出部36を設ける。また、ホルダの回転の中心軸を挟んで、ケースの当該開口部の反対側に、第2導入部d2の開口部を配置する。但し、第2導入部dの開口部は、第1導入部d1の開口部と同様、ケースの内側であって、両リング10,20の突合せ位置と対応する部位に配置するものであればよく、上記のように、第1導入部d1の開口部の反対側に形成するのに限定するものではない。
処理後の生成物の排出部36を設けておく。この場合、両リング10,20の径の外側が、上流となり、両リング10,20の内側が下流側となる。
図10(C)に示す通り、図10(B)へ示す装置において、ケース3の側部に設けた第2導入部d2を、当該位置に代え、第1リング10に設けて、その開口部を第1処理用面1に配置するものとしても実施できる。この場合において、図10(D)に示す通り、第1処理用部10をリングとして形成するのでなく、図9()、図9()や図10(A)に示す装置と同様、他の実施の形態において、第1ホルダ11に相当する部位を、第1処理用部10とし、その上面を第1処理用面1とし、更に、当該第1処理用部10内に第2導入部d2を設けて、その開口部を第1処理用面1に配置するものとして実施できる。
図11(A)へ示す通り、図10(D)へ示す装置において、第2処理用部20もリングとして形成するのではなく、他の実施の形態において第2ホルダ21に相当する部材を、第2処理用部2とし、その下面を第2処理用面2として実施することができる。そして、第2処理用部20を、ケース3と独立した部材とし、ケース3と第2処理用部20との間に、図9(B)(C)、図10(A)に示す装置と同じ接面圧付与機構4を設けて実施することができる。
また、図11(B)へ示す通り、図11(A)に示す装置の第2導入部d2を第3導入部d3とし、別途第2導入部d2を設けるものとしも実施できる。この場合、第2処理用面2において第2導入部d2の開口部を第3導入部d3の開口部よりも流側に配置する。
前述の図4に示す各装置、図5(A)図7(A)(B)(D)、図8(B)(C)に示す装置は、処理用面1,2間に達する前に、第1の被処理流動体に対して、他の被処理流動体が合流するものであり、晶出や析出の反応の速いものには適さない。しかし、反応速度の遅いものについては、このような装置を採用することもできる。
本願発明に係る方法の発明の実施に適した処理装置について、以下に纏めておく。
前述の通り、この処理装置は、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、少なくとも2種の被処理流動体の混合・反応の処理を行うものである。第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体の少なくとも一方に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させる。そして、この装置にあって、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に上記の圧力を受けた被処理流動体が通されることにより、各被処理流動体が所定膜厚の薄膜流体を形成しながら両処理用面1,2間を通過することで、当該被処理流動体間において、所望の反応が生じる。
また、この処理装置において、第1処理用面1及び第2処理用面2の少なくとも一方の、微振動やアライメントを調整する緩衝機構を備えたものを採用するのが好ましい。
また、この処理装置において、第1処理用面1及び第2処理用面2 の一方又は双方の、磨耗などによる軸方向の変位を調整して、両処理用面1,2間の薄膜流体の膜厚を維持することを可能とする変位調整機構を備えたものを採用するのが好ましい。
更に、この処理装置にあっては、上記の流体圧付与機構として、被処理流動体に対して一定の送り込み圧を掛けるコンプレッサなどの加圧装置を採用するとができる。
尚、上記の加圧装置は、送り込み圧の増減の調整を行えるものを採用する。この加圧装置は、設定した圧力を一定に保つことができる必要があるが、処理用面間の間隔を調整するパラメータとして、調整を行える必要があるからである。
また、この処理装置には、上記の第1処理用面1と第2処理用面2との間の最大間隔を規定し、それ以上の両処理用面1,2の離反を抑止する離反抑止部を備えるものを採用することができる。
更にまた、この処理装置には、上記の第1処理用面1と第2処理用面2との間の最小間隔を規定し、それ以上の両処理用面1,2の近接を抑止する近接抑止部を備えたものを採用することができる。
更に、この処理装置には、第1処理用面1と第2処理用面2の双方が、互いに逆の方向に回転するものを採用することができる。
また、この処理装置には、上記第1処理用面1と第2処理用面2の一方或いは双方の温度を調整する、温度調整用のジャケットを備えたものを採用することができる。
また更に、この処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方の少なくとも一部は、鏡面加工されたものを採用するのが好ましい。
この処理装置には、上記第1処理用面1及び第2処理用面2の一方或いは双方は、凹部を備えたものを採用することができる。
更に、この処理装置には、一方の被処理流動体に反応させる他方の被処理流動体の供給手段として、一方の被処理流動体の通路とは独立した別途の導入路を備え、上記第1処理用面と第2処理用面の少なくとも何れ一方に、上記の別途の導入路に通じる開口部を備え、当該別途の導入路から送られてきた他方の被処理流動体を、上記一方の被処理流動体に導入することができるものを採用するのが好ましい。
また、本願発明を実施する処理装置として、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に接続された第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面と、両処理用面1,2間に接面圧力を付与する接面圧力付与機構と、第1処理用面1と第2処理用面2とを相対的に回転させる回転駆動機構と、を備えることにより、両処理用面1,2 間にて、少なくとも2種の被処理流動体の反応処理を行うものであって、接面圧力が付与されつつ相対的に回転する第1処理用面1と第2処理用面2との間に、流体圧付与機構から圧力を付与された少なくとも一種の被処理流動体が通され、更に、他の一種の被処理流動体が通されることにより、流体圧付与機構から圧力を付与された上記一種の被処理流動体が所定膜厚の薄膜流体を形成しながら両処理用面1,2間を通過する際に、当該他の一種の被処理流動体が混合され、被処理流動体間にて、所望の反応を生じさせるものを採用することができる。
この接面圧付与機構が、前述の装置における、微振動やアライメントを調整する緩衝機構や、変位調整機構を構成するものとして実施することができる。
更に、本願発明を実施する処理装置として、反応させる2種の被処理流動体のうち少なくとも一方の被処理流動体を当該装置に導入する第1導入部と、第1導入部に接続されて当該一方の被処理流動体に圧力を付与する流体圧付与機構pと、反応させる2種の被処理流動体のうち少なくとも他の一方を当該装置に導入する第2導入部と、当該一方の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第2処理用面2が露出するように第2処理用部20を受容するホルダ21と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構と、第1処理用面1に対して第2処理用面2を圧接又は近接した状態に第2処理用部20を押圧する接面圧付与機構4 とを備え、両処理用面1,2間にて、被処理流動体間の反応処理を行い、上記ホルダ21が、上記第1導入部の開口部を備えると共に、処理用面1,2間の隙間に影響を与えるようには可動でないものであり、第1処理用部10と第2導入部20の少なくとも一方が、上記第2導入部の開口部を備え、第2処理用部20が、環状体であり、第2処理用面2がホルダ21に対して摺動して第1処理用面1に接近離反するものであり、第2処理用部20が受圧面を備え、受圧面は、流体圧付与機構pが被処理流動体に付与する圧力を受けて第1処理用面1 から第2処理用面2を離反させる方向に移動させる力を発生させ、上記受圧面の少なくとも一部は、第2処理用面2にて構成され、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された一方の被処理流動体が通されると共に、他の一方の被処理流動体が、両処理用面1,2間に供給されることにより、両被処理流動体が所定膜厚の薄膜流体を形成しながら両処理用面1,2間を通過し、通過中の被処理流動体が混合させることで、被処理流動体間における、所望の反応を促進させるものであり、接面圧力付与機構4の接面圧力と、流体圧付与機構pが付与する流体圧力の両処理用面1,2間を離反させる力との均衡によって、上記の所定膜厚の薄膜流体を発生させる微小間隔を両処理用面1,2間に保つものを採用することができる。
この処理装置において、第2導入部も、第1導入部に接続されたのと同様の、別途の流体圧付与機構に接続されて、加圧されるものとしても実施できる。また、第2導入部から導入される被処理流動体は、別途の流体圧付与機構にて加圧されるのではなく、第1導入部にて導入される被処理流動体の流圧にて第2導入部内に生じる負圧により、両処理用面1,2間に吸引されて供給されるものとしても実施できる。更に、当該他方の被処理流動体は、第2導入部内を、自重にて移動即ち上方より下方に流れて、処理用面1,2間に供給されるものとしても実施できる。
上記のように、一方の被処理流動体の装置内への供給口となる第1導入部の開口部を第2ホルダに設けるものに限定するものではなく、第1導入部の当該開口部を第1ホルダに設けるものとしてもよい。また、第1導入部の当該開口部を、両処理用面の少なくとも一方に形成して実施することもできる。但し、反応によって、先に処理用面1,2間に導入しておく必要のある被処理流動体を、第1導入部から供給する必要がある場合において、他方の被処理流動体の装置内への供給口となる第2導入部の開口部は、何れかの処理用面において、上記第1導入部の開口部よりも、下流側に配置する必要がある。
更に、本願発明の実施に用いる処理装置として、次のものを採用することができる。
この処理装置は、反応させる2種以上の被処理流動体を別々に導入する複数の導入部と、当該2種以上の被処理流動体の少なくとも一つに圧力を付与する流体圧付与機構pと、この被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面1,2と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備え、両処理用面1,2間にて、被処理流動体間の反応処理を行うものであって、第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、更に、第2処理用部20は、第2処理用面2と反対側を向く接近用調整面24を備えるものであり、接近用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、上記接近用調整面24の接近離反方向の投影面積と、上記受圧面の接近離反方向の投影面積との面積比により、被処理流動体から受ける全圧力の合力として、第1処理用面1に対する第2処理用面2の離反方向へ移動する力が決まるものであり、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された被処理流動体が通され、当該被処理流動体に反応させる他の被処理流動体が両処理用面間において混合され、混合された被処理流動体が所定膜厚の薄膜流体を形成しながら両処理用面1,2間を通過することで、処理用面間の通過中に所望の反応生成物を得るものである。
また、本願発明に係る処理方法について纏めると、この処理方法は、第1の被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路へ、第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させ且つこれらの処理用面1,2間に被処理流動体を導入するものであり、当該被処理流動体と反応する第2の被処理流動体を上記と別途の流路により、上記処理用面1,2間に導入し、両被処理流動体を反応させるものであり、少なくとも第1の被処理流動体に付与した上記の所定の圧力を両処理用面1,2を離反させる離反力とし、当該離反力と上記接面圧力とを、処理用面1,2間の被処理流動体を介して均衡させることにより、両処理用面1,2間を所定の微小間隔に維持し、被処理流動体を所定の厚みの薄膜流体として両処理用面1,2間を通過させて、この通過中に両被処理流動体の反応を均一に行い、析出を伴う反応の場合にあっては所望の反応生成物を晶出または析出させるものである。
以下、本願発明のその他の実施形態について説明する。図25は接近・離反可能な少なくとも一方が他方に対して相対的に回転する処理用面の間で反応物を反応させる反応装置の略断面図である。図26の(A)は図25に示す装置の第1処理用面の略平面図であり、(B)は図25に示す装置の処理用面の要部拡大図である。図27の(A)は第2導入路の断面図であり、(B)は第2導入路を説明するための処理用面の要部拡大図である。
図25においてUは上方を、Sは下方をそれぞれ示している。
図26(A)、図27(B)においてRは回転方向を示している。
図27(B)においてCは遠心力方向(半径方向)を示している。
この装置は、上記で説明した被処理流動体として、少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については反応物を少なくとも1種類含むものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間で上記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において上記の反応物を反応させる装置である。
図25に示す通り、この装置は、第1ホルダ11と第1ホルダ11の上方に配置された第2ホルダ21と共に流体圧付与機構Pと接面圧付与機構とを備える。接面圧力付与機構は、スプリング43と、エア導入部44とにて構成されている。
第1ホルダ11には第1処理用部10と回転軸50が設けられている。第1処理用部10はメインティングリングと呼ばれる環状体であり鏡面加工された第1処理用面1を備える。回転軸50は第1ホルダ11の中心にボルトなどの固定具81にて固定されたものであり、その後端が電動機などの回転駆動装置82(回転駆動機構)と接続され、回転駆動装置82の駆動力を第1ホルダ1に伝えて当該第1ホルダ11を回転させる。第1処理用部10は上記第1ホルダ11と一体となって回転する。
第1ホルダ11の上部には、第1処理用部10を受容する事が可能な受容部が設けられており、当該受容部内にはめ込む事にて、第1ホルダ11への第1処理用部10の上記取り付けが行われている。さらに第1処理用部10は回り止めピン83にて第1ホルダ11に対して回転しないように固定されている。ただし、回り止めピン83に代え、焼き嵌めなどの方法にて回転しないように固定するものとしても良い。
上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21を臨む。第1処理用面の材質は、セラミックや焼結金属、対磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、鍍金などを施工したものを採用する。
第2ホルダ21には、第2処理用部20と、処理用部内側より流体が導入する第1導入部d1と、接面圧力付与機構としてスプリング43と、エア導入部44とが設けられている。
第2処理用部20は、コンプレッションリングと呼ばれる環状体であり、鏡面加工された第2処理用面2と、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23(以下離反用調整面23と呼ぶ。)とを備える。図示の通り、この離反用調整面23は、傾斜面である。第2処理用面2に施す鏡面加工は、第1処理用面1と同様の方法を採用する。また、第2処理用部20の素材についても、第1処理用部10と同様のものを採用する。離反用調整面23は、環状の第2処理用部20の内周面25と隣接する。
第2ホルダ21の底部(下部)には、リング収容部41が形成され、そのリング収容部41内に、Oリングと共に第2処理用部20が受容されている。また、回り止め84にて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。この状態において、第2処理用面2は、第1処理用部10の第1処理用面1と対面する。
この第2ホルダ21が備えるリング収容部41は、第2リング20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、環状に形成された、溝である。
リング収容部41は、第2リング20の寸法より大きく形成され、第2リング20との間に十分なクリアランスを持って、第2リング20を収容する。
このクリアランスにより、当該第2処理用部20はこのリング収容部41内にて収容部41の軸方向について、さらに、当該軸方向と交差する方向について変位する事ができるように収容されている。またリング収容部41に対して第2処理用部20の中心線(軸方向)を上記リング収容部41の軸方向と平行ではなくなるように変位可能に当該第2処理用部20は収容されている。
少なくとも第2ホルダ21のリング収容部41には処理用部付勢部としスプリング43が設けられている。スプリング43は第2処理用部20を第1処理用部10に向けて付勢する。さらに他の付勢方法として、空気導入部44などの空気圧またはその他の流体圧を供給する加圧手段を用いて第2ホルダ21が保持する第2処理用部20を第1処理用部10へ近づける方向に付勢する方法でもよい。
スプリング43及び空気導入部44などの接面圧付与機構は第2処理用部20の周方向の各位置(処理用面の各位置)を均等に、第1処理用部10へ向けて付勢する。
この第2ホルダ21の中央に上記の第1導入部d1が設けられ、第1導入部d1から処理用部外周側へ圧送されてくる流体は、まず当該第2ホルダ21が保持する第2処理用部20と第1処理用部10と当該第1処理用部10を保持する第1ホルダ11とに囲まれた空間内に導かれる。そして第1処理用部10から第2処理用部20を付勢部の付勢に抗して離反させる方向に、第2処理用部20に設けられた受圧面23に流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
なお、他の箇所においては説明を簡略にするため、受圧面23についてのみ説明をしているが、正確に言えば、図29(A)(B)に示すように、上記の受圧面23と共に、後述する溝状の凹部13の第2処理用部20に対する軸方向投影面のうちで、上記受圧面23が設けられていない部分23Xも受圧面として、流体圧付与機構Pによる上記流体の送圧(供給圧)を受ける。
上記受圧面23を設けずに実施する事もできる。その場合、図26(A)に示されたように、接面圧力付与機構が機能するように形成された溝状の凹部13を備えた第1処理用面1が回転する事によって得られる処理用面間への被処理流体の導入効果(マイクロポンプ効果)を用いても良い。ここでのマイクロポンプ効果とは第1処理用面1が回転する事で凹部内の流体が凹部の外周方向先端へと速度を持って進み、次に凹部13の先端に送り込まれた流体がさらに凹部13の内周方向からの圧力を受け、最終的に処理用面を離反させる方向への圧力となり、同時に流体が処理用面間に導入される効果である。さらに回転していない場合であっても第1処理用面1に設けられた凹部13内の流体が受けた圧力は最終的に離反側に作用する受圧面として第2処理用面2に作用する。
処理用面に設けられた凹部13については、反応物及び反応生成物を含む流体の物性に対応してその深さ、処理用面に対して水平方向への総面積、本数、及び形状を実施できる。
なお、上記受圧面23と上記凹部13とを一装置内に共に設けても実施できる。
この凹部13は、深さについては1μm〜50μm、さらに好ましくは3μm20μmとし、前記前記処理用面に設けられた凹部であって、処理用面に対して水平方向への総面積が処理用面全体に対して5%〜50%、好ましくは15%〜25%とし、さらに、その本数が3〜50本、好ましくは8〜24本とし、形状が処理用面上をカーブ、もしくは渦巻状で伸びるもの、またはL字状に屈曲するものとする。さらに、深さに勾配を持たせる事で高粘度域から低粘度域まで、またマイクロポンプ効果を用いて導入する流体が固体を含む場合にも安定的に処理用面間に流体を導入できる。また、処理用面に設けられた凹部13は導入側つまり処理用面内側で各凹部同士がつながっていても良いし、分断されていても良い。
上記のように受圧面23は傾斜面とされている。この傾斜面(受圧面23)は、被処理流体の流れ方向を基準とした上流側端部での、凹部13が設けられた処理用部の処理用面に対する軸方向における距離が、下流側端部での同距離に比べて大きくなるように形成される。そしてこの傾斜面は、被処理流体の流れ方向を基準とした下流側端部が上記凹部13の軸方向投影面上に設置されたものとすることが好ましい。
具体的には図28(A)に示すように、上記傾斜面(受圧面23)の下流側端部60が上記凹部13の軸方向投影面上となるように設置する。上記傾斜面の第2処理用面2に対する角度θ1は0.1°から85°の範囲である事が好ましく、10°から55°の範囲がより好ましく、15°から45°の範囲がさらに好ましい。この角度θ1は、被処理物の処理前の性状によって適宜変更できる。また、上記傾斜面の下流側端部60は、第1処理用面1に設けられた凹部13の上流側端部13−bから下流側に0.01mm離れた位置より、下流側端部13−cから上流側に0.5mm離れた位置までの領域内に設けられる。より好ましくは、上流側端部13−bから下流側に0.05mm離れた位置より、下流側端部13−cから上流側に1.0mm離れた位置までの領域内に設けられる。上記傾斜面の角度と同様、この下流側端部60の位置についても、被処理物の性状に応じて適宜変更できる。また、図28(B)に示すように、傾斜面(受圧面23)をアール面としても実施できる。これにより、被処理物の導入をさらに均一に行うことができる。
凹部13は上記のように連続したものの他、断続するものであっても実施可能である。断続する場合にあっては、断続する凹部13の、第1処理用面1の最も内周側における上流側端部が上記13−bとなり、同じく第1処理用面1の最も外周側における上流側端部が上記13−cとなる。
また、上記では凹部13を第1処理用面1に形成するものとし、受圧面23を第2処理用面2に形成するものとしたが、逆に、凹部13を、第2処理用面2に形成するものとし、受圧面23を第1処理用面1に形成するものとしても実施可能である。
更には、凹部13を第1処理用面1と第2処理用面2の両方に形成し、凹部13と受圧面23を各処理用面1,2の周方向に交互に設けることによって、第1処理用面1に形成した凹部13と第2処理用面2に形成した受圧面23とが対向し、同時に、第1処理用面1に形成した受圧面23と第2処理用面2に形成した凹部13とが対向するものとすることも可能である。
処理用面に、凹部13とは異なる溝を施す事もできる。具体的な例としては図16(F)や図16(G)のように凹部13よりも径方向外側(図16(F))もしくは径方向内側(図16(G))に、放射状に伸びる新規な凹部14を施す事ができる。これは、処理用面間の滞留時間を延ばしたい場合や、高粘稠物の流体を処理する場合に有利である。
尚、凹部13とは異なる溝については、形状、面積、本数、深さに関しては特に限定されない。目的に応じて当該溝を施す事ができる。
上記の第2処理用部20には上記処理用面に導入された流体の流路とは独立し、処理用面間に通じる開口部d20を備える第2導入部d2が形成されている。
具体的には、第2導入部d2は、図27(A)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜している。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、図27(B)に示すように、上記の第2処理用面2の開口部d20からの導入方向が、上記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。
この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、角度(θ2)についても、0度を超えて90度未満に設定されており、図27(B)の網かけ部分に向けて開口部d20から吐出される。さらに反応速度が速い反応の場合には、当該角度(θ2)は小さいものであってもよく、反応速度が遅い場合には、当該角度(θ2)も大きく設定することが好ましい。また、この角度は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
開口部d20の口径は、好ましくは0.2μm〜3000μm、より好ましくは10μm〜1000μmとする。また、開口部d20の口径は比較的大きくとも、第2導入部d2の径が0.2μm〜3000μm、より好ましくは10μm〜1000μmとされており、実質的には、開口部d20の径が流体の流れに影響を及ばさない場合には、第2導入部d2の径が当該範囲内に設定されればよい。また、直進性を求める場合と、拡散性を求める場合とで、開口部d20の形状などを変化することも好ましく、これらは流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。
さらに、前記別流路における開口部d20は、第1処理用面1に設けられた凹部からマイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側に設置すればよい。つまり図26(B)において、第1処理用面1に設けられた凹部の最も処理用面径方向外側から径方向外側への距離nを0.5 mm以上とするのが好ましい。さらに開口部を同じ流体に対して複数個設ける場合には同心円上に設置するのが好ましい。また、開口部を異なる流体に対して複数個設ける場合には半径の異なる同心円上に設置するのが好ましい。(1) A+B→C (2) C+D→Eのような反応が順番どおり実行され、A+B+C→F のような本来同時反応すべきでは無い反応や反応物が効率よく接触せず、反応が実行されないというような問題を回避するのに効果的である。
また上記処理用部を流体中に浸し、上記処理用面間にて反応させて得られた流体を直接処理用部の外部にある液体、もしくは空気以外の気体に投入して実施できる。
さらに処理用面間もしくは処理用面から吐出された直後の被処理物に超音波エネルギーを付加する事もできる。
次に、上記第1処理用面1と第2処理用面2との間、つまり処理用面間に温度差を生じさせるために、第1処理用部10及び第2処理用部20の少なくとも一つに温調機構(温度調整機構)J1,J2を設けた場合について説明する。
この温調機構は特に限定されないが、冷却が目的の場合には処理用部10,20に冷却部を設ける。具体的には、温調用媒体としての氷水や各種の冷媒を通す配管、あるいはペルチェ素子などの、電気的もしくは化学的に冷却作用をなすことのできる冷却素子を処理用部10,20に取り付ける。
加熱が目的の場合には処理用部10,20に加熱部を設ける。具体的には、温調用媒体としてのスチームや各種の温媒を通す配管、あるいは電気ヒーターなどの、電気的もしくは化学的に発熱作用をなすことのできる発熱素子を処理用部10,20に取り付ける。
また、リング収容部に処理用部と直接接する事の出来る新たな温調用媒体用の収容部を設けても良い。それらにより、処理用部の熱伝導を用いて処理用面を温調する事ができる。また、処理用部10,20の中に冷却素子や発熱素子を埋め込んで通電させたり、冷温媒通過用通路を埋め込んでその通路に温調用媒体(冷温媒)を通す事で、内側より処理用面を温調する事もできる。なお、図25に示した温調機構J1,J2は、その一例であって、各処理用部10,20の内部に設けられた温調用媒体を通す配管(ジャケット)である。
上記温調機構J1,J2を利用して、一方の処理用面が他方の処理用面よりも温度が高いものとし、処理用面間に温度差を発生させる。例えば、第1処理用部10を上記いずれかの方法で60℃に加温し、第2処理用部20を上記いずれかの方法で15℃とする。この際、処理用面間に導入された流体の温度は第1処理用面1から第2処理用面2に向かって60℃から15℃に変化する。つまり、この処理用面間における流体に温度勾配が発生する。そして、処理用面間の流体はその温度勾配によって対流し始め、処理用面に対して垂直方向の流れが発生する事になる。なお、上記「垂直方向の流れ」とは、流れの方向成分に、少なくとも上記処理用面に対して垂直方向の成分が含まれるものを指す。
第1処理用面1もしくは第2処理用面2が回転している場合にも、その処理用面に対して垂直方向の流れは継続されるので、処理用面が回転する事による処理用面間のスパイラル状で層流の流れに、垂直方向の流れを付加する事ができる。この処理用面間の温度差は1℃〜400℃、好ましくは5℃〜100℃で実施できる。
尚、本装置における回転軸50は、鉛直に配置されたものに限定するものではない。例えば斜めに配置されていてもよい。処理中、両処理用面1,2間に形成される流体の薄膜により、実質的に重力の影響を排除できるからである。図25に示す通り、第1導入部d1は、第2ホルダ21において、第2リング20の軸心と一致し、上下に鉛直に伸びる。但し、第1導入部d1は、第2リング20の軸心と一致しているものに限定するものではなく、両リング10,20に囲まれた空間に、第1被処理流動体を供給できるものであれば、第2ホルダ21の中央部分22において、上記軸心以外の位置に設けられていてもよく、更に、鉛直でなく、斜めに伸びるものであってもよい。そのどの配置角度の場合であっても、処理用面間の温度勾配によって処理用面に対して垂直な流れを発生させる事を可能としている。
上記処理用面間における流体の温度勾配において、その温度勾配が小さければ流体に熱伝導が行われるだけであるが、温度勾配がある臨界値を越えると、流体中にベナール対流という現象が発生する。その現象は、処理用面間の距離をL、重力の加速度をg、流体の体積熱膨張率をβ、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔTとするとき、
Ra=L3・g・β・ΔT/(α・ν)
で定義される無次元数であるレイリー数Raによって支配される。ベナール対流が生じ始める臨界レイリー数は処理用面と被処理物流体との境界面の性質によって異なるが約1700とされている。それより大きな値ではベナール対流が発生する。さらに、そのレイリー数Raが1010付近より大きな値の条件となると流体は乱流状態となる。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、レイリー数Raが1700以上になるようにして本装置を調節する事で、処理用面間に処理用面に対して垂直方向の流れを発生する事ができ、上記反応操作を実施できる。
しかし上記ベナール対流は、1〜10μm程度の処理用面間の距離においては発生しにくい。厳密には10μm以下の間隔中の流体に上記レイリー数を適用し、ベナール対流発生条件を検討すると、水の場合でその温度差に数千℃以上を必要とする事になり、現実的には難しい。ベナール対流は流体の温度勾配における密度差による対流、つまり重力に関係する対流である。10μm以下の処理用面の間は微小重力場である可能性が高く、そのような場所では浮力対流は抑制される。つまり、この装置で現実的にベナール対流が発生するのは、処理用面間の距離が10μmを超える場合である。
処理用面間の距離が1〜10μm程度では、密度差による対流ではなく、温度勾配による流体の表面張力差によって対流が発生している。そのような対流がマランゴニ対流であり、処理用面間の距離をL、流体の動粘性率をν、流体の温度伝導率をα、処理用面間の温度差をΔT、流体の密度をρ、表面張力の温度係数(表面張力の温度勾配)をσとするとき、
Ma=σ・ΔT・L/(ρ・ν・α)
で定義される無次元数であるマランゴニ数によって支配される。マランゴニ対流が発生し始める臨界マランゴニ数は80付近であり、その値よりも大きな値となる条件ではマランゴニ対流が発生する。つまり、その処理用面間の温度差ΔTもしくは処理用面の距離Lを、マランゴニ数Ma が80以上になるようにして本装置を調節する事で、10μm以下の微小流路であっても処理用面間に処理用面に対して垂直方向の流れを発生させる事ができ、上記反応操作を実施できる。
レイリー数の計算には以下の式を用いた。
L:処理用面間の距離[m], β:体積熱膨張率[1/K], g:重力加速度[m/s2]
ν:動粘性率[m2/s], α:温度伝導率[(m2/s)], ΔT:処理用面間の温度差[K]
ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K], k:熱伝導率[W/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
ベナール対流の発生し始めるときのレイリー数を臨界レイリー数RaCとした場合、そのときの温度差ΔTC1は以下のように求められる。
マランゴニ数の計算には以下の式を用いた。
L:処理用面間の距離[m], ν:動粘性率[m2/s], α:温度伝導率[(m2/s)]
ΔT:処理用面間の温度差[K], ρ:密度[kg/m3], Cp:定圧比熱[J/kg・K]
k:熱伝導率[W/m・K], σ:表面張力温度係数[N/m・K]
T1:処理用面における高温側の温度[K], T0:処理用面における低温側の温度[K]
マランゴニ対流の発生し始めるマランゴニ数を臨界マランゴニ数MaCとした場合、そのときの温度差ΔTC2は以下のように求められる。
接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の材質は、特に制限されないが、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したもの等で作成することが出来る。本発明での、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間の距離は、0.1μm〜100μmであり、特に1〜10μmが好ましい。
さらに、処理用面間を加熱(加温)したり、処理用面間に紫外線(UV)を照射したりしてもかまわない。特に、第1処理用面1と第2処理用面2とで温度差を設けた場合は、薄膜流体中で対流を発生させることができるため、これにより反応を促進させることができるという利点がある。
また、各流体を混合させる前に液温低下によって結晶の析出が発生しないようにするため、化合物の溶解釜から混合装置内の液噴出口までの送液管の温度制御を行い、化合物溶解液を常に過飽和とならない温度以上に保つようにすることが望ましい。
また、上記処理を減圧・真空状態を確保できる容器内で行い、処理後流体が吐出される2次側を減圧、真空状態とする事で、反応中に発生するガス並びに処理用部より吐出されたガスの脱気、もしくは脱溶剤を行える。それにより、上記処理とほぼ同時に脱溶剤処理を行う場合にも、処理用面間で析出された生体摂取物微粒子を含む流体が、処理用面より、噴霧状態で吐出するため、その流体の表面積が増大し、脱溶剤効率が非常に高い利点がある。
以下、上記の装置を用いて行う、生体摂取物微粒子の製造方法の具体的な態様について説明する。まず、溶解度の変化によって生体摂取物微粒子を析出させる方法について述べる。
上記に説明した装置の処理用面の間に形成される薄膜流体中で、微粒子化する対象物質である生体摂取物微粒子原料を少なくとも1種類溶解している第1溶媒を含む溶液と、前記生体摂取物微粒子原料に対して第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を混合させ、生体摂取物微粒子を析出させる。
上記の生体摂取物には薬物が含まれる。この発明は、多種多様な薬物で実施できる。薬物は、実質的に純粋な状態で存在する有機物質が好ましい。薬物は、少なくとも一種の溶媒に低い溶解性で分散可能であり、少なくとも一種の溶媒に可溶である必要がある。低い溶解性とは、薬物が処理温度(例えば、室温)で溶媒(例えば、水)に約10mg/mL未満、好ましくは約1mg/mL未満の溶解性を有することを意味する。また、ここで可溶とは10mg/mL以上に溶解することを意味する。なお、必要に応じて溶媒を加温または冷却することも可能である。また、分散剤(界面活性剤)や水溶性高分子、安定剤、保存剤、pH調剤、等張化剤等を必要に応じて、第1溶媒もしくは第2溶媒、あるいはその両方にあらかじめ添加しておくと良い。
適当な薬物は、例えば、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質(ペニシリン類を含む)、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、抗肥満薬、食欲抑制薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬(催眠薬および神経弛緩薬)、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤および代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬(去痰薬および粘液破壊薬)、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬(抗パーキンソン氏病薬)、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニンおよびビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン(ステロイド類を含む)、抗アレルギー薬、興奮薬および食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、を含む各種既知薬物類から選ぶことができる。好ましい薬物としては、水に低溶解度で経口投与および注射剤を意図するものが挙げられる。これらのクラスの薬物類の記載および各クラスに含まれるリストは、「Martindale, The Extra Pharmacopoeia , 第29版、The Pharaceutical Press,London,1989 」に見い出すことができる。これらの薬物は市販されており、または当該技術分野で既知の方法で製造できる。
この発明を実施する上で有用な薬物の具体例としては、17−α−プレグノ−2,4−ジエン−20−イノ−〔2,3−d〕−イソキサゾール−17−オール(ダナゾール)、タクロリムス水和物、プロゲステロン、トラニラスト、ベンズブロマロン、メフェナム酸、〔6−メトキシ−4−(1−メチルエチル)−3−オキソ−1,2−ベンズイソチアゾール−2(3H)−イル〕メチル2,6−ジクロロベンゾエート1,1−ジオキシド(WIN 63,394)、3−アミノ−1,2,4−ベンゾトリアジン−1,4−ジオキシド(WIN 59,075)、ピポサルファム、ピポサルファン、カンプトテシン、アセトミノフェン、アセチルサリチル酸、アミオダロン、コレスチフミン、コレスチポール、クロモリンナトリウム、アルブテロール、スクラルフェート、スルファサラジン、ミノキシジル、テンパゼパム、アルプラゾラム、プロポキシフェン、オーラノフィン、エリスロマイシン、サイクロスポリン、アシクロビア、ガンシクロビア、エトポサイド、メファラン、メトトリキセート、ミノキサントロン、ダウノルビシン、ドキソルビシン、メゲステロール、タモキシフェン、メドロキシプロゲステロン、ナイスタチン、テルブタリン、アンホテリシンB、アスピリン、イブプロフェン、ナプロキセン、インドメタシン、ジクロフェナック、ケトプロフェン、フルビプロフェン、ジフルニサル、エチル−3,5−ジアセトアミド−2,4,6−トリヨードベンゾエート(WIN 8883)、エチル(3,5−ビス(アセチルアミノ)−2,4,6−トリヨードベンゾイルオキシ)アセテート(WIN 12,901)およびエチル−2−(3,5−ビス(アセチルアミノ)−2,4,6−トリヨードベンゾイルオキシ)アセテート(WIN 16,318)が代表的なものとして挙げられる。
この発明の好ましい形態では、薬物がダナゾール(Danazol)またはタクロリムス水和物のような免疫抑制剤、トラニラストのような抗アレルギー薬、プロゲステロンのようなステロイド、抗ウイルス薬、抗悪性腫瘍薬または抗炎症薬である。
特に好ましい安定化剤・分散剤(界面活性剤)としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸ナトリウム、ステアリン酸カルシウム、Tween20およびTween80(これらは、ICI Specialty Chemicals から入手できる、ポリオキシエチレンソルビタン脂肪酸エステル類である)、ポリビニルピロリドン、チロキサポール、プルロニック(Pluronic)F68およびF108(これらは、BASFから入手できるエチレンオキシドとプロピレンオキシドのブロックコポリマーである)、テトロニック(Tetronic)908(T908)(これは、BASFから入手できる、エチレンジアミンへのエチレンオキシドおよびプロピレンオキシドの連続付加物由来の4官能性ブロックコポリマーである)、デキストラン、レシチン、エーロゾル(Aerosol)OT(これは、American Cyanamid から入手できる、スルホコハク酸ナトリウムのジオクチルエステルである)、デュポノール(Duponol)P(これは、DuPontから入手できる、ラウリル硫酸ナトリウムである)、トリトン(Triton)X−200(これは、Rohm and Haas から入手できる、アルキルアリールポリエーテルスルホネートである)、カーボワックス(Carbowax)3350および934(これらは、Union Carbide から入手できる、ポリエチレングリコール類である)、クロデスタ(Crodesta)F−110(これは、Croda Inc.から入手できる、シュークロースステアレートおよびシュークロースジステアレートの混合物である)、クロデスタ5L−40(これはCroda Inc.から入手できる)、ならびにSA90HCO〔これは、C1837CH2−(CON(CH3)CH2(CHOH)4CH2OH)2である〕、また、塩化ベンゼトニウム、塩化ベンザルコニウム等の4級アミン系界面活性剤やポリオキシエチレン高級アルコールエーテル類、グリセリン脂肪酸エステル類、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、脂肪酸ポリエチレングリコール、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル等の非イオン性界面活性剤類が挙げられる。目的の生体摂取物微粒子及び析出反応に応じて使い分ければよい。
水溶性高分子としては、メチルセルロース、エチルセルロース、プロピルメチルセルロース、プロピルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン等を挙げることできる。
本発明における該薬物の含有量は、特に制限はない。高濃度の懸濁液を作り、使用濃度に合わせて希釈して製剤とする事も可能である。
安定剤としては、エデト酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、ジブチルヒドロキシトルエン、トコフェロールなどを挙げることができる。
保存剤としては、パラオキシ安息香酸エステル、クロロブタノール、フェニルエチルアルコール、塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン、アルキルポリアミノエチルグリシン類、ソルビン酸などが挙げることができる。
pH調整剤としては、塩酸、硫酸、酢酸、乳酸、クエン酸、酒石酸、リンゴ酸、リン酸、ホウ酸、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、モノエタノールアミン、ジエタノールアミン、ジエチルアミン、アンモニア及びこれらの塩類などを挙げることができる。
等張化剤としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、マンニトール等を挙げることができる。
本発明における上記生体摂取物微粒子原料を少なくとも1種類含む流体に用いる溶媒としては、超純水やイオン交換水などの水と、目的に応じてメチルアルコール、エチルアルコール、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドのような水混和性有機溶剤、オクタン、シクロヘキサン、ベンゼン、キシレン、ジエチルエーテル、酢酸エチルのような水不混和性有機溶剤を、目的に応じ適宜選んで実施できる。
なお、本発明の生体摂取物微粒子は、生体に摂取する事を目的とするものであれば特に限定されないが、例えば医薬品における薬物のように生体内に吸収し、生体内での効果を発現させる事を目的とするものや、造影剤としての硫酸バリウムのような、体内を通過させるものやドラッグデリバリーシステムにおける薬物成分の運搬用物質、または化粧料のように、生体皮膚に塗布するもの、及び食品と上記物質の中間体などが挙げられる。
微粒子の析出反応は、図1(A)に示す装置の、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間で強制的に均一混合しながら起こる。
まず、一つの流路である第1導入部d1より、上記の第1溶媒を含む溶液を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面間に第1流体から構成された薄膜流体を作る。
次いで別流路である第2導入部d2より、第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒を、上記第1流体から構成された薄膜流体に直接導入する。
上記のように、流体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を固定された処理用面1,2間にて、第1溶媒を含む溶液と第2溶媒とが混合され、微粒子の析出反応を行う事が出来る。
なお、処理用面1,2間にて上記反応を行う事が出来れば良いので、上記とは逆に、第1導入部d1より第2溶媒を導入し、第2導入部d2より第1溶媒を含む溶液を導入するものであっても良い(下記の例においても同じ)。つまり、各溶媒における第1、第2という表現は、複数存在する溶媒の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の溶媒も存在し得る。
前述のように、第1導入部d1、第2導入部d2以外に第3導入部d3を処理装置に設けることもできるが、この場合にあっては、例えば各導入部から、第1溶媒を含む溶液、第2溶媒、安定化剤・分散剤を含む溶液をそれぞれ別々に処理装置に導入することが可能である。そうすると、各溶液の濃度や圧力を個々に管理することができ、析出反応をより精密に制御することができる。第4以上の導入部を設けた場合も同様であって、このように処理装置へ導入する流体を細分化できる。
次に、中和反応またはpH変化により生体摂取物微粒子を析出させる方法について述べる。以下の方法は、生体摂取物微粒子原料を流体中において中和反応またはpH変化により析出させて生体摂取物微粒子を製造するに際して、上記の流体を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において中和反応またはpH変化により生体摂取物微粒子を析出させることを特徴とする。
以下、本発明の具体例として、造影剤として生体内に摂取する、硫酸バリウム生体摂取物微粒子を例としてより詳細に説明する。しかし、本発明はこの例にとらわれるものではない。
この反応は、図1(A)に示す装置の、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間で強制的に均一混合しながら起こる。
まず、一つの流路である第1導入部d1より、第1流体として塩化バリウムや水酸化バリウムまた、酢酸バリウム等の水溶性バリウム塩の溶液を少なくとも1種類含む流体を、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1,2間に導入して、この処理用面間に第1流体から構成された薄膜流体を形成する
次いで別流路である第2導入部d2より、第2流体として、硫酸や硫酸アンモニウムなどの水溶性硫酸化合物溶液を少なくとも1種類含む流体を、上記第1流体から構成された薄膜流体に直接導入する。
上記のように、流体の供給圧と回転する処理用面の間にかかる圧力との圧力バランスによって距離を制御された処理用面1,2間にて、薄膜流体中で第1流体と第2流体とが合流する。その薄膜流体中で第1流体と第2流体とが混合され、上記2種の物質を反応させる。より具体的には、中和反応またはpH変化により、硫酸バリウム生体摂取物微粒子が生成する反応を行うことが出来る。
次に、硫酸バリウム以外の生体摂取物微粒子を得る方法の場合を説明する。
ここで、上記で例示した硫酸バリウムの析出に関係する最も単純な化学反応式(イオン反応式)は以下のようになる。
(イオン反応式)
Ba2+ + SO4 2- → BaSO4
本発明における中和反応とは一般的に言われる最も基本的な酸塩基反応としての中和反応、つまり酸と塩基における、双方の性質を打ち消しあうとともに水と塩が生成する中和反応と、上記イオン反応式における陽イオン性物質としてのBa2+と陰イオン性の物質としてのSO4 2-が反応しBaSO4のような物質を生成する反応を含む。また、この場合の酸と塩基の定義はアレニウスの定義であっても、ブレンステッド・ローリーの定義であっても、ルイスの定義であっても良い。
ここで、用いる陽イオン性物質もしくは陰イオン性物質を変更する事で、目的の物質を変更して得られる。陽イオン性物質もしくは陰イオン性物質は特に限定されず、Na+やCl-のような単原子イオンであっても良いし、NH4 +やCH3COO-のような多原子イオンであっても良い。さらに錯イオンであっても良い。また、特に医薬用薬物などに多く見られるような、有機物における構造の一部が溶液中でイオン化したものでも実施できる。
なお、第1流体と第2流体の両方に同一のイオンが含まれたものであっても良い。
また、上記の中和反応が行われる際に、溶媒のpHの変化を伴うものでも良い。
本発明で得られる生体摂取物微粒子の粒子径や単分散度、又は結晶型の制御は、処理用面1,2の回転数や処理用面1,2間の距離、及び、薄膜流体の流速や温度又は原料濃度等を変えることにより調節することができる。
本発明で得られる生体摂取物微粒子は、所望の粒度分布/粒子径分布を成しており、結晶化度が、得られた該粒子の合計質量を基準として50%以上であり、かつ、該粒子を含む液は、その調製後長時間にわたり凝集沈殿または粒子凝集を示さない安定な分散体である。また、対向して配設された処理用面の間隔は自由に調整可能であるため、粒子径コントロールが可能であり、処理用面の少なくとも一方が他方に対して回転することにより、結晶形を自由にコントロール可能である。
また、この発明で得られた分散体は安定であり、この分散体は液体分散媒質と前記生体摂取物微粒子からなる。そして、本発明の生体摂取物微粒子又は該粒子を含有する分散体に、薬学的に許容されるキャリヤを混合して医薬組成物を得ることができる。
なお、下記実施例のようにこの分散体を懸濁点眼薬液として用いる場合にあっては、薬物の物性にもより、溶解しないことが前提となるが、pH3〜9であることが好ましく、より好ましくはpH3.0〜6.5である。これ以外の範囲では、目に対する刺激が大きくなるため、好ましくない。
上記得られた生体摂取物微粒子の、粒度分布/粒子径分布の90%粒径は500nm(つまり、500nmより大きな粒子径を示す粒子が粒子全体に占める割合の10%未満である)以下であることが好ましい。粒度分布/粒子径分布の90%粒径を500nm以下とすることにより、粗大粒子が核となり、凝集する現象を防止し、表面積が増大し、見掛けの溶解度が高まるため、懸濁点眼液における有効成分の角膜透過性が向上する。
濾過滅菌の観点から見ると、懸濁点眼液剤の粒度分布/粒子径分布の90%粒径を好ましくは220nm以下とすることで、濾過滅菌が可能となり、従来技術に比して安価に無菌化することが出来る。
濾過滅菌フィルターは、市販されている無菌保証されたフィルターであれば種々の材質のフィルターを使用することが出来る。材質として例えば、酢酸セルロース、ポリカーボネート、ポリフッ化ビニリデン(PVDF)等があげられる。
フィルターの細孔の大きさは、好ましくは0.45μm以下であり、更に好ましくは0.22μm以下のものが使用される。上記範囲より大きな粒度分布/粒子径分布の場合には、濾過用フィルターが目詰まりを起こしたり、収率が低下するため好ましくない。
本発明における懸濁点眼液は、界面活性剤及び/或いは水溶性高分子を加え、該薬物粒子のゼータ電位の絶対値を20mV〜150mVの範囲とすることにより、分散安定性を良好にできる。ゼータ電位の調整に用いる界面活性剤・水溶性高分子の量は、pHによっても異なるが懸濁点眼液中で0.05%〜3%の範囲であることが好ましい。
このようにして、平均一次粒子径が0.5〜10000nmで、好ましくは1〜500nm、より好ましくは30〜200nmの生体摂取物微粒子が分散された水系分散液(懸濁液)を作製することができる。さらに、生体摂取物微粒子原料を含む溶液に上記の分散剤を添加した場合には、表面に分散剤が配位された生体摂取物微粒子が分散された水系分散液(懸濁液)を作製することができ、得られた生体摂取物微粒子の再分散性が非常に良くなる。また、製造工程におけるコンタミネーションが少なく、結晶を析出させる場合にはその結晶化度を高くコントロールできるため、医薬品や化粧品のような生体摂取を目的とする生体摂取物微粒子を得る場合には特に都合の良い製造方法である。
なお、本明細書で使用する「粒子」とは、当該技術分野で周知の通常の粒子径測定法、例えば、動的光散乱法・レーザー回折方式などによって測定され平均粒子径をいう。
処置用薬物の有効用量レベルは、投与する特定の組成物および方法に対する所望の治療応答を得るための有効量である。従って、選ばれた用量レベルは、特定の薬物、所望の治療効果、投与経路、所望の処置持続時間および他の因子に依存する。記載したように、この発明の医薬組成物は下記実施例で具体的に説明するような驚くべき高い生体内吸収率を示すものであり、大変有益である。
この発明の医薬組成物は、経口および静注をはじめとする非経口投与法において特に有用であるものと考えられる。従来は静注できなかった難水溶性薬物も、本発明によって安全に投与できることが期待される。さらに、生体利用効率が乏しいため経口投与できなかった薬物も本発明により有効に投与可能である。
以下本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
尚、以下の実施例において、「中央から」というのは、前述した、図1(A)に示す処理装置の「第1導入部d1から」という意味であり、第1流体は、前述の第1被処理流動体を指し、第2流体は、上述した、図1(A)に示す処理装置の第2導入部d2から導入される、前述の第2被処理流動体を指す。
(実施例1)ダナゾール粒子の製造
図1(A)に示すように、対向して配設された接近・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面1,2の間にできる薄膜流体中で、均一に拡散・攪拌・混合する反応装置を用いて、薬物を溶解している水溶液とその薬物に対して溶解度の低い溶液と高分子分散剤又は安定化剤の混合液を、薄膜流体中で混合して晶析反応を行う。
中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、ダナゾール分散溶液が処理用面より30g/minで吐出された。
回収したダナゾール分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は65nmであり、その粒度分布/粒子径分布のCV値は17%であった。また、回収したダナゾール分散液にエタノールを加え溶解し、パーティクルカウンター〔リオン(株)製の商品名 パーティクルカウンターKS65〕にて異物混入を確認したところ、1mL中に10μm以上のものが13個、25μm以上の粒子は1個であった(0.05%ダナゾール溶液)。
次に、回収したダナゾール分散液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度80%を得た。
上記、本発明微粒子(体積平均粒子径65nm)をナノ懸濁液としてイヌに投与した場合の生物学的利用率(BA)が92.9%であった。これは、市販品(体積平均粒子径:10μm)を懸濁液として投与した場合の生物学的利用率(BA)が5.1%であったことからして、大幅に生体内吸収率が上昇したといえる。
微粒子化に要したエネルギー量は、本願出願人が製造した粉砕機SS5-100にて粉砕を行ったものと比較すると、32000分の1となった。
次に条件を変え、中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.10MPa/0.02MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、ダナゾール分散液が処理用面より70g/minで吐出された。
回収したダナゾール分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は135nmであり、その粒度分布/粒子径分布のCV値は19%であった。
次に、回収したダナゾール分散液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度75%を得た。
更に条件を変え、中央から第1流体として水を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度35℃で送液し、粉末ダナゾールをTween80混和エタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、ダナゾール分散液が処理用面より30g/minで吐出された。
回収したダナゾール分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は78nmであり、その粒度分布/粒子径分布のCV値は18%であった。
次に、回収したダナゾール分散液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ダナゾール原末と一致し、結晶化度82%を得た。
(実施例2)タクロリムス水和物粒子の製造
中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数2000rpm、送液温度30℃で送液し、タクロリムス水和物をエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、タクロリムス水和物分散液が処理用面より30g/minで吐出された。
回収したタクロリムス水和物分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は116nmであり、その粒度分布/粒子径分布のCV値は16%であった。
次に、回収したタクロリムス水和物分散液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、タクロリムス水和物原末と一致し、結晶化度90%を得た。
次に条件を変え、中央から第1流体として0.1%Tween80水溶液を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度30℃で送液し、タクロリムス水和物をエタノールで溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、タクロリムス水和物分散液が処理用面より20g/minで吐出された。
回収したタクロリムス水和物分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は98nmであり、その粒度分布/粒子径分布のCV値は13%であった。
次に、回収したタクロリムス水和物分散液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、タクロリムス水和物原末と一致し、結晶化度95%を得た。
(実施例3)トラニラスト粒子の製造
中央から第1流体として水を供給圧力/背圧力=0.02MPa/0.01MPa、回転数1000rpm、送液温度27℃で送液し、Tween80を添加したpH13の水酸化カリウム溶液にトラニラストを溶解した液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、トラニラスト分散液が処理用面より30g/minで吐出された。
回収したトラニラスト分散液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定したところ、体積平均粒子径は120nmであり、その粒度分布/粒子径分布のCV値は15%であった。
次に、回収したトラニラスト分散液をセルロース透析チューブにて純水で透析を行い塩を取り除いた後、乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、トラニラスト原末と一致し、結晶化度86%を得た。
上記、本発明微粒子(体積平均粒子径120nm)をO/Wクリーム製剤とし、テストスキン(LSE−high)を用いて8時間に亘る皮膚透過性試験を行ったところ、原末(体積平均粒子径45μm)と比較して5倍の透過性を示した。
(実施例4〜7)硫酸バリウム粒子の析出
図1(A)に示すように、対向して配設された接近・離反可能な処理用面をもつ、少なくとも一方が他方に対して回転する処理用面1,2の間にできる薄膜流体中で、均一に拡散・攪拌・混合する反応装置を用いて、塩化バリウム水溶液と硫酸ナトリウム水溶液を、薄膜流体中で中和反応させて、硫酸バリウムの析出を行う。
(実施例4)
中央から第1流体として25%硫酸ナトリウム水溶液を、供給圧力/背圧力=0.02MPa/0.01MPa、回転数500rpm、送液温度25℃で送液し、17%塩化バリウム水溶液を第2流体として10mL/minで処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、硫酸バリウム分散液が処理用面より20mL/minで吐出された。
次に、この分散より透析チューブを用いて不純物を除去し、透過型電子顕微鏡(TEM) を用いて、この分散液中の硫酸バリウム粒子を観察した。そこから無作為に100個の粒子を選んで平均一次粒子径を測定したところ、50nmであった。
さらに、その硫酸バリウム分散を真空凍結乾燥して得られた粉末状の硫酸バリウム微粒子を再びイオン交換水に投じて、高速撹拌型分散機(商品名:クレアミックス、エム・テクニック社製)にて攪拌したところ、再び硫酸バリウム分散液を得、粒子径は真空凍結乾燥前と同じ50nmであり、得られた硫酸バリウム粒子の再分散性が良いことを確認した。
実施例5から7については、実施例1と同様の硫酸ナトリウム水溶液と塩化バリウム水溶液をもちいて、回転数、供給圧力、背圧力を変化させて硫酸バリウム分散及び硫酸バリウム粉体を得た。
(比較例1)
前記硫酸ナトリウム水溶液をクレアミックス(エム・テクニック社製)を用いて攪拌しながら、前記塩化バリウム水溶液を加えて硫酸バリウム微粒子分散を形成した。この時クレアミックスの回転数は20000rpmで30 分間撹拌を行った。平均一次粒子径900nm の硫酸バリウム分散液を得た。また、実施例と同様に再分散性を確認したが、再分散後は粒子径1700nmとなり、真空凍結乾燥前よりも強く凝集していた。上記の結果を表1に示す。
(実施例8〜10)フルオロメトロン懸濁点眼液の製造
中央から第1流体として0.05%Tween80溶液を回転数100〜1000rpm、送液温度25℃で送液し、フルオロメトロンをピリジンに溶解した液を第2流体として処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、フルオロメトロン懸濁液が処理用面より吐出された。回収したフルオロメトロン懸濁液を、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定した。回収したフルオロメトロン懸濁液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、フルオロメトロン原末と一致した。
一方、比較例2および3は、フルオロメトロン原末を、ホモジナイザー(エムテクニック社製クレアミックス2.2S)を用い、20000rpmにて30min予備粉砕分散した。比較例はその後更に、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用い、微粒子化処理し粉砕分散した。比較例4についてはどちらの処理も行わず、原末のpH調整のみとした。そして、上記処理を行った原末を分散した懸濁液を作製した。上記の処理条件および粒度分布/粒子径分布測定結果を表2に示す。
<濾過滅菌適性の確認>
上記の実施例8〜10、及び比較例2〜4の六例の各試験液について、0.22μmの細孔を有するPVDFフィルターを用いて、濾過滅菌処理を行った。濾過滅菌前後のフルオロメトロン濃度をHPLCにて測定し、濾過滅菌処理のときの収率を求めた。結果を表に示す。
また、0.45μmの細孔を有するPVDFフィルターを用いた場合の収率を表4に示す。
(実施例11〜13)ピレノキシン懸濁点眼液の製造
中央から第1流体として0.05mol/Lの硝酸水溶液を回転数100〜1000rpm、送液温度25℃で送液し、ピレノキシンを0.1mol/Lの水酸化ナトリウムに溶解した液を第2流体として処理用面間に導入した。第1流体と第2流体は薄膜流体中で混合され、ピレノキシン懸濁液が処理用面より吐出された。回収したピレノキシン懸濁液を透析チューブにて純水で透析を行い副生成物を除去し、動的光散乱法を測定原理とする粒度分布測定装置〔日機装(株)製の商品名マイクロトラック UPA150〕を用いて測定した。回収したピレノキシン懸濁液を乾燥し、X線回折・示差走査熱量計DSCおよびフーリエ変換赤外分光光度計FT-IRにて物質の同定をおこなったところ、ピレノキシン原末と一致した。
一方、比較例5および6は、ピレノキシン原末を、ホモジナイザー(エムテクニック社製クレアミックス2.2S)を用い、18000rpmにて30min予備粉砕分散した。比較例はその後更に、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用い、微粒子化処理し粉砕分散した。比較例7についてはどちらの処理も行わず、原末のpH調整のみとした。そして、上記処理を行った原末を分散した懸濁液を作製した。
上記の処理条件および粒度分布/粒子径分布測定結果を表5に示す。
微粒子化に要したエネルギー量は、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)と比較すると、3.2×10分の1〜3.2×10分の1となり、エネルギー効率に優れている。
そして、実施例11〜13については、pHを3.0〜5.5に調整した場合、平均粒子径が8nm〜98nm、90%粒径が89nm〜186nmであった。
<光安定性試験>
上記の実施例11〜13、及び比較例5〜7の各試験液を10mLずつガラス透明バイアルに入れ、光照射試験機にて2000Lux・hrの光源より光を照射した。各バイアルの試験液を経時的にサンプリングし、ピレノキシン濃度をHPLCにて測定し、ピレノキシンの残存割合(%)を評価した。結果を表6に示す。なお、表中の数値は実験回数(N)3回の平均値である。
<皮膚透過性試験>
横型2チャンバー拡散セル(有効面積0.3cm,セル容積5mL,温度32℃)に、日本家兎より摘出した角膜を角膜上皮がドナー側となるよう固定した。
リザーバー液は、pH7.5のリン酸等張緩衝液とした。ドナー側に実施例11〜13、及び比較例5〜7の各試験液をそれぞれ用いた。ドナー側に各試験溶液を加えた時刻をゼロ時間目とし、経時的にリザーバー液をサンプリングした。サンプリング液中のピレノキシン濃度をHPLCにて測定し、角膜を移行してきたピレノキシンを評価した。
結果を表7に示した。なお、表中の数値は実験回数(N)3回の平均値である。
<濾過滅菌適性の確認>
上記の実施例11〜13、及び比較例5〜7の六例の各試験液について、0.22μmの細孔を有するPVDFフィルターを用いて、濾過滅菌処理を行った。濾過滅菌前後のピレノキシン濃度をHPLCにて測定し、濾過滅菌処理のときの収率を求めた。結果を表8に示す。
(実施例14)エネルギー投下量(フルオロメトロン懸濁点眼液)
次に、実施例14として、第1流体である0.05%Tween80溶液と第2流体であるフルオロメトロンを溶解した液(溶媒はアセトン)を0.22μmのフィルターにて無菌濾過後、回転数100rpmで、第1流体と第2流体の混合比を4:1、吐出流量を150mL/minとしたとき、平均粒子径2.2μmの粒子を得た。比較例(比較例8)として、原末を乾熱滅菌後、ホモジナイザー(エムテクニック社製クレアミックス2.2S:18000rpm、30min)および、超薄膜式高速回転粉砕機(エムテクニック社製SS5-100)を用いて微粒子化処理したものは、平均粒子径2.1μmであった。そして、本発明に係る方法(実施例14)の実施に要したエネルギー投下量は、上記比較例(比較例8)に比べ、約30000分の1程度であった。
本願の請求項9に係る発明は、上記生体摂取物微粒子原料が、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、食欲抑制薬、抗肥満薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤、代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニン、ビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン、抗アレルギー薬、興奮薬、食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、からなる群より選ばれる薬物であることを特徴とする、請求項に記載の生体摂取物微粒子の製造方法を提供する。

Claims (15)

  1. 生体摂取物微粒子原料を流体中において析出させて生体摂取物微粒子を製造するに際して、上記の流体を、近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面の間にできる薄膜流体とするものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする、生体摂取物微粒子の製造方法。
  2. 少なくとも2種類の流体を用いるものであり、
    そのうちで少なくとも1種類の流体は、上記生体摂取物微粒子原料を少なくとも1種類、第1溶媒に溶解させた流体であり、
    上記以外の流体のうちで少なくとも1種類の流体は、上記第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒であり、
    近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の各流体を合流させるものであり、当該薄膜流体中において生体摂取物微粒子を析出させることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法。
  3. 少なくとも2種類の流体を用いるものであり、
    そのうちで少なくとも1種類の流体は、酸性物質もしくは陽イオン性物質を少なくとも1種類含む流体であり、
    上記以外の流体のうちで少なくとも1種類の流体は、塩基性物質もしくは陰イオン性物質を少なくとも1種類含む流体であり、
    近接・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間の薄膜流体中で上記の各流体を合流させるものであり、当該薄膜流体中において中和反応させて生体摂取物微粒子を析出させることを特徴とする、請求項1に記載の生体摂取物微粒子の製造方法。
  4. 上記析出反応は、
    被処理流動体に所定の圧力を付与する流体圧付与機構と、
    第1処理用部、及び、この第1処理用部に対して相対的に接近・離反可能な第2処理用部の、少なくとも2つの処理用部と、
    上記の第1処理用部と第2処理用部とを相対的に回転させる回転駆動機構とを備え、
    上記の各処理用部において互いに対向する位置に、第1処理用面及び第2処理用面の少なくとも2つの処理用面が設けられており、
    上記の各処理用面は、上記所定圧力の被処理流動体が流される、密封された流路の一部を構成するものであり、
    上記の両処理用面間にて、少なくともいずれかに反応物を含む、2種以上の被処理流動体を均一に混合し積極的に反応させるものであり、
    上記第1処理用部と第2処理用部のうち、少なくとも第2処理用部は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が上記の第2処理用面により構成され、
    この受圧面は、上記の流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面から第2処理用面を離反させる方向に移動させる力を発生させ、
    接近・離反可能、且つ相対的に回転する第1処理用面と第2処理用面との間に上記所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面間を通過し、
    さらに上記所定圧力の被処理流動体が流される流路とは独立した別途の導入路を備えており、上記第1処理用面と第2処理用面の少なくとも何れかに、上記の導入路に通じる開口部を少なくとも一つ備え、
    上記導入路から送られてきた少なくとも一つの被処理流動体を、上記両処理用面間に導入して、少なくとも上記の各被処理流動体のいずれかに含まれる上記の反応物と、前記被処理流動体とは異なる被処理流動体とが、上記流体膜内での均一攪拌による混合により所望の反応状態を可能なものとすることを特徴とする、請求項1〜3のいずれかに記載の生体摂取物微粒子の製造方法。
  5. 上記生体摂取物微粒子の製造方法において、処理用面間を加熱(加温)、もしくは処理用面間に紫外線(UV)を照射、もしくは処理用面間に超音波エネルギーを与えることを特徴とする請求項1〜4のいずれかに記載の生体摂取物微粒子の製造方法。
  6. 上記中和反応を減圧・真空状態を確保できる容器内で行い、処理後流体が吐出される2次側を減圧、真空状態とする事で、反応中に発生するガス並びに処理用部より吐出されたガスの脱気、もしくは脱溶剤を行えることを特徴とする、請求項1〜5のいずれかに記載の生体摂取物微粒子の製造方法。
  7. 上記流体の少なくとも一方に分散剤、水溶性高分子、安定剤、保存剤、pH調製剤、等張化剤から選ばれた少なくとも一種を含むことを特徴とする、請求項1〜6のいずれかに記載の生体摂取物微粒子の製造方法。
  8. 上記処理前、あるいは処理後の各流体を無菌濾過することを特徴とする、請求項1〜7のいずれかに記載の生体摂取物微粒子の製造方法。
  9. 上記対象物質が、鎮痛薬、抗炎症薬、駆虫薬、抗不整脈薬、抗生物質、抗凝固薬、抗降圧薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン薬、抗悪性腫瘍薬、食欲抑制薬、抗肥満薬、降圧薬、抗ムスカリン薬、抗ミコバクテリア薬、抗新生物薬、免疫抑制薬、抗甲状腺薬、抗菌薬、抗ウイルス薬、不安解消薬、アストリンゼント、アドレナリン性β受容体遮断薬、血液製剤、代用血漿、心筋変性力薬、コントラスト媒質、コルチコステロイド、咳抑制薬、診断薬、診断像形成薬、利尿薬、ドーパミン作用薬、止血薬、免疫薬、リピッド調節薬、筋肉弛緩薬、副交感神経刺激興奮薬、副甲状腺カルシトニン、ビホスホネート類、プロスタグランジン、放射性医薬、性ホルモン、抗アレルギー薬、興奮薬、食欲減退物質、交感神経興奮薬、甲状腺薬、血管拡張剤およびキサンチン類、白内障治療剤、副腎皮質ホルモン剤、からなる群より選ばれる薬物である、請求項1〜8のいずれかに記載の生体摂取物微粒子の製造方法。
  10. 上記請求項1〜9のいずれかに記載の製造方法で得られた生体摂取物微粒子。
  11. 結晶化度が、得られた生体摂取物微粒子の合計質量を基準として50%以上であり、かつ、該粒子を含む液は、その調製後2日以上目視で凝集沈殿または粒子凝集を示さないことを特徴とする、請求項9に記載の生体摂取物微粒子。
  12. 平均一次粒子径が0.5〜10000nmであることを特徴とする、請求項9に記載の生体摂取物微粒子。
  13. 粒度分布/粒子径分布の90%粒径が500nm以下である、請求項9に記載の生体摂取物微粒子。
  14. 請求項9〜13のいずれかに記載の生体摂取物微粒子を含有する分散体。
  15. 請求項14に記載の分散体と、薬学的に許容されるキャリヤとを含んで成る医薬組成物。
JP2009503347A 2007-07-06 2008-07-04 生体摂取物微粒子の製造方法 Active JP4419157B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2007179102 2007-07-06
JP2007179098 2007-07-06
JP2007179098 2007-07-06
JP2007179102 2007-07-06
JP2007179104 2007-07-06
JP2007179104 2007-07-06
JP2007180349 2007-07-09
JP2007180349 2007-07-09
JP2007203850 2007-08-06
JP2007203850 2007-08-06
JP2007214821 2007-08-21
JP2007214821 2007-08-21
PCT/JP2008/062234 WO2009008391A1 (ja) 2007-07-06 2008-07-04 生体摂取物微粒子の製造方法、生体摂取物微粒子及びこれを含有する分散体、医薬組成物

Publications (2)

Publication Number Publication Date
JP4419157B2 JP4419157B2 (ja) 2010-02-24
JPWO2009008391A1 true JPWO2009008391A1 (ja) 2010-09-09

Family

ID=40228562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503347A Active JP4419157B2 (ja) 2007-07-06 2008-07-04 生体摂取物微粒子の製造方法

Country Status (5)

Country Link
US (1) US8623415B2 (ja)
EP (1) EP2177210B1 (ja)
JP (1) JP4419157B2 (ja)
CN (1) CN101784258B (ja)
WO (1) WO2009008391A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402734B1 (ko) * 2007-07-06 2014-06-02 엠. 테크닉 가부시키가이샤 강제 초박막 회전식 처리법을 사용한 나노입자의 제조방법
EP2418015B1 (en) * 2008-11-25 2016-01-06 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
JP4840835B2 (ja) * 2010-02-03 2011-12-21 エム・テクニック株式会社 ナノ微粒子の製造方法
CN102574095B (zh) * 2010-02-26 2015-01-28 M技术株式会社 流体处理装置及处理方法
KR101912138B1 (ko) * 2011-05-28 2018-10-26 엠. 테크닉 가부시키가이샤 강제 박막식 유체 처리 장치를 사용한 처리물의 부착 방지 방법
US9492763B2 (en) * 2011-07-13 2016-11-15 M. Technique Co., Ltd. Method for producing microparticles having controlled crystallite diameter
CN104284715A (zh) * 2012-05-01 2015-01-14 M技术株式会社 微粒的制造方法
KR101988238B1 (ko) * 2012-09-12 2019-06-12 엠. 테크닉 가부시키가이샤 니켈 미립자의 제조 방법
EP3170927B1 (en) 2014-07-14 2020-09-30 M Technique Co., Ltd. Method for preparing single crystal zinc oxide nanoparticles
US11633359B2 (en) 2014-12-15 2023-04-25 M. Technique Co., Ltd. Method for producing organic material microparticles, and method for modifying organic material microparticles
US9438319B2 (en) 2014-12-16 2016-09-06 Blackberry Limited Method and apparatus for antenna selection
WO2017221314A1 (ja) * 2016-06-20 2017-12-28 エム・テクニック株式会社 有機物微粒子の製造方法
WO2018038267A1 (ja) * 2016-08-26 2018-03-01 株式会社 先端医療開発 ポリラクチドグリコライド共重合体ナノ粒子及びポリラクチドグリコライド共重合体ナノ粒子の製造方法
CN108469465B (zh) * 2018-03-19 2020-11-03 西北大学 一种用于激光剥蚀的载样装置
JP2019200291A (ja) * 2018-05-16 2019-11-21 京セラドキュメントソリューションズ株式会社 画像処理装置
CN109091390A (zh) * 2018-08-28 2018-12-28 陈科 便于泄放药液的电式煎药壶
JP6884496B1 (ja) * 2021-03-08 2021-06-09 ユーシービージャパン株式会社 レベチラセタムを有効成分とする注射用製剤
CN113102032A (zh) * 2021-04-14 2021-07-13 皇甫现超 一种应用于颗粒物药材研磨设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538227A (ja) * 1999-03-10 2002-11-12 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー 微結晶生成物を生成するための結晶化方法
JP2004049957A (ja) * 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004174297A (ja) * 2002-11-25 2004-06-24 M Technique Co Ltd 微細化装置付脱気機及び微細化による脱気方法
JP2006028108A (ja) * 2004-07-20 2006-02-02 Nippon Tenganyaku Kenkyusho:Kk トラニラストまたは薬理学的に許容される塩を含有する懸濁性医薬組成物
JP2006089386A (ja) * 2004-09-21 2006-04-06 Nippon Tenganyaku Kenkyusho:Kk ステロイドまたはステロイド誘導体を含有する懸濁性医薬組成物
JP2007077061A (ja) * 2005-09-14 2007-03-29 Nippon Tenganyaku Kenkyusho:Kk ピレノキシンまたは薬理学的に許容される塩を含有する懸濁性医薬組成物
JP2007230957A (ja) * 2006-03-03 2007-09-13 Nippon Tenganyaku Kenkyusho:Kk トラニラストまたはその薬理学的に許容される塩を含有する懸濁性医薬組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919724B2 (ja) 1980-08-27 1984-05-08 住友化学工業株式会社 回転円盤脱揮押出方法およびその装置
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5298262A (en) 1992-12-04 1994-03-29 Sterling Winthrop Inc. Use of ionic cloud point modifiers to prevent particle aggregation during sterilization
JPH07277729A (ja) 1994-04-14 1995-10-24 Kao Corp 硫酸バリウムの製造方法
US20040028582A1 (en) 1999-03-10 2004-02-12 Smithkline Beecham Corporation Crystallization process for producing fine crystal products
CN1373083A (zh) * 2001-03-07 2002-10-09 鞍山钢铁学院 一种尺寸可控的纳米粉体制备方法
SG126676A1 (en) 2001-05-09 2007-01-30 Nanomaterials Tech Pte Ltd Process for the controlled production of organic particles
GB2377661B (en) * 2001-07-20 2005-04-20 Univ Newcastle Methods of manufacturing particles
KR20050037477A (ko) 2001-10-17 2005-04-22 이 아이 듀폰 디 네모아 앤드 캄파니 로터-스테이터 장치와 입자 생성을 위한 방법
JP2003159696A (ja) 2001-11-27 2003-06-03 Starlite Co Ltd 化学マイクロデバイス
JP3727594B2 (ja) 2002-01-18 2005-12-14 富士写真フイルム株式会社 マイクロミキサー
JP3864131B2 (ja) 2002-11-05 2006-12-27 エム・テクニック株式会社 磨砕機
ATE337085T1 (de) * 2002-07-16 2006-09-15 M Tech Co Ltd Verfahren und verarbeitungsgerät for flüssigkeiten
US20060147535A1 (en) 2003-04-16 2006-07-06 Poongunran Muthukumaran Methods for and compositions of anticancer medicaments
US7125527B2 (en) * 2003-09-05 2006-10-24 Kinetichem, Inc. Methods of operating surface reactors and reactors employing such methods
JP4310447B2 (ja) 2004-03-23 2009-08-12 八井 浄 超微粒子の製造方法およびその製造装置
JP2006104193A (ja) 2004-09-07 2006-04-20 Mitsubishi Chemicals Corp 微粒子化された物質の製造方法および微粒子化された物質
JP4252993B2 (ja) 2005-05-12 2009-04-08 株式会社荏原製作所 混合器及び反応装置
JP2006341232A (ja) 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538227A (ja) * 1999-03-10 2002-11-12 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー 微結晶生成物を生成するための結晶化方法
JP2004049957A (ja) * 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004174297A (ja) * 2002-11-25 2004-06-24 M Technique Co Ltd 微細化装置付脱気機及び微細化による脱気方法
JP2006028108A (ja) * 2004-07-20 2006-02-02 Nippon Tenganyaku Kenkyusho:Kk トラニラストまたは薬理学的に許容される塩を含有する懸濁性医薬組成物
JP2006089386A (ja) * 2004-09-21 2006-04-06 Nippon Tenganyaku Kenkyusho:Kk ステロイドまたはステロイド誘導体を含有する懸濁性医薬組成物
JP2007077061A (ja) * 2005-09-14 2007-03-29 Nippon Tenganyaku Kenkyusho:Kk ピレノキシンまたは薬理学的に許容される塩を含有する懸濁性医薬組成物
JP2007230957A (ja) * 2006-03-03 2007-09-13 Nippon Tenganyaku Kenkyusho:Kk トラニラストまたはその薬理学的に許容される塩を含有する懸濁性医薬組成物

Also Published As

Publication number Publication date
EP2177210A1 (en) 2010-04-21
JP4419157B2 (ja) 2010-02-24
WO2009008391A1 (ja) 2009-01-15
EP2177210B1 (en) 2018-08-22
US8623415B2 (en) 2014-01-07
CN101784258A (zh) 2010-07-21
EP2177210A4 (en) 2013-01-23
US20100322997A1 (en) 2010-12-23
CN101784258B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4419157B2 (ja) 生体摂取物微粒子の製造方法
US8852644B2 (en) Method and device for producing microparticles or nanoparticles
JP4335968B2 (ja) 金属微粒子の製造方法及びその金属微粒子を含む金属コロイド溶液
EP2179966B1 (en) Process for production of ceramic nanoparticle
EP2191890B1 (en) Process for producing fine particles
MX2008010707A (es) Procesos y aparatos para la produccion de composiciones de microparticulas organicas cristalinas mediante micromolienda y cristalizacion sobre microsemilla y su uso.
JP5376476B2 (ja) 微粒子の製造方法
JP5424427B2 (ja) 生体摂取物の製造方法
JP2009144250A5 (ja)
NO303668B1 (no) Overflatemodifiserte legemiddel-nanopartikler, fremgangsmÕte for deres fremstilling samt dispersjon inneholdende slike partikler
JP2009131831A5 (ja)
JP2010201344A (ja) 微粒子の製造方法
CN114502145A (zh) 制备纳米微粒活性成分的方法
JP2010201343A (ja) 微粒子の製造方法
US20220133632A1 (en) Plga microparticles, a sustained release formulation thereof and a production method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4419157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250