JPH10335817A - Multilayered wiring board - Google Patents

Multilayered wiring board

Info

Publication number
JPH10335817A
JPH10335817A JP13712597A JP13712597A JPH10335817A JP H10335817 A JPH10335817 A JP H10335817A JP 13712597 A JP13712597 A JP 13712597A JP 13712597 A JP13712597 A JP 13712597A JP H10335817 A JPH10335817 A JP H10335817A
Authority
JP
Japan
Prior art keywords
organic resin
layer
thin
resin insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13712597A
Other languages
Japanese (ja)
Inventor
Akira Wakasaki
昭 若崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13712597A priority Critical patent/JPH10335817A/en
Publication of JPH10335817A publication Critical patent/JPH10335817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered wiring board which does not cause problems such as disconnection in a thin-film interconnecting conductor layer or in a through-hole conductor by making strong the junction between the thin-film interconnecting conductor layer and an organic resin insulating layer and between the through-hole conductor and the organic resin insulating layer, especially in the case that the thin-film interconnecting conductor layer and the through-hole conductor have an extremely narrow line width. SOLUTION: This is a multilayered wiring board constituted of an insulating substrate, and organic resin insulting layers 2 and thin-film interconnecting conductor layers 3 which are alternately stacked on the insulating substrate. The upper and lower think-film interconnecting conductor layers 3 are electrically connected via a through-hole conductor 6 formed in the organic resin insulating layer 2. The thin-film interconnecting conductor layer 3 and the through-hole conductors 6 are made of copper or aluminum, and the surfaces of these layers are coated with a nickel layer of a surface roughness of 1-5 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMo−Mn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Hitherto, a multilayer wiring board used in a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMo−Mn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミツク体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次にこれを複数枚積層するとと
もに還元雰囲気中で焼成し、高融点金属粉末と生セラミ
ツク体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-like metal paste is printed and applied on the outer surface of the raw ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method in which the metal powder and the raw ceramic body are sintered and integrated.

【0004】なお、前記配線導体が形成されるセラミッ
ク体としては通常、酸化アルミニウム質焼結体やムライ
ト質焼結体等の酸化物系セラミックス、或いは表面に酸
化物膜を被着させた窒化アルミニウム質焼結体や炭化珪
素質焼結体等の非酸化物系セラミックスが使用される。
The ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film deposited on the surface. Non-oxide ceramics such as a porous sintered body and a silicon carbide sintered body are used.

【0005】しかしながら、このMo−Mn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で、配線導体を高密度に形成することができない
という欠点を有していた。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste, so that miniaturization is difficult, and the wiring conductor is formed at a high density. Had the disadvantage of not being able to do so.

【0006】そこで上記欠点を解消するために配線導体
を従来周知の厚膜形成技術により形成するのに変えて微
細化が可能な薄膜形成技術を用いて高密度に形成した多
層配線基板が使用されるようになってきた。
In order to solve the above-mentioned drawbacks, a multilayer wiring board formed using a thin film forming technique capable of miniaturization instead of forming a wiring conductor by a conventionally known thick film forming technique is used. It has become.

【0007】かかる配線導体を薄膜形成技術により形成
した多層配線基板は、一般に酸化アルミニウム質焼結体
から成るセラミックスやガラス繊維を織り込んだ布にエ
ポキシ樹脂を含浸させて形成されるガラスエポキシ樹脂
等から成る基板の上面にスピンコート法及び熱硬化処理
によって形成されるエポキシ樹脂等の有機樹脂から成る
絶縁層と、銅を無電解めっき法や蒸着法等の薄膜形成技
術及びフォトリソグラフイー技術を採用することによっ
て形成される薄膜配線導体層とを交互に積層させた構造
を有している。
A multilayer wiring board in which such wiring conductors are formed by a thin film forming technique is generally made of glass epoxy resin or the like formed by impregnating ceramics made of aluminum oxide sintered body or cloth woven with glass fibers with epoxy resin. An insulating layer made of an organic resin such as an epoxy resin formed by spin coating and thermosetting on the upper surface of the substrate, and a thin film forming technique such as electroless plating and vapor deposition of copper and a photolithographic technique are adopted. And a thin-film wiring conductor layer formed as a result.

【0008】またこの多層配線基板においては、積層さ
れた各有機樹脂絶縁層間に配設されている薄膜配線導体
層が有機樹脂絶縁層に形成したスルーホールの内壁に被
着されているスルーホール導体を介して電気的に接続さ
れており、各有機樹脂絶縁層へのスルーホールの形成は
まず各有機樹脂絶縁層上にレジスト材を塗布するととも
にこれに露光、現像を施すことによって所定位置に所定
形状の窓部を形成し、次に前記レジスト材の窓部にエッ
チング液を配し、レジスト材の窓部に位置する有機樹脂
絶縁層を除去して有機樹脂絶縁層に穴(スルーホール)
を形成し、最後に前記レジスト材を有機樹脂絶縁層上よ
り剥離させ除去することによって行われている。
In this multilayer wiring board, a thin-film wiring conductor layer provided between the laminated organic resin insulating layers is provided with a through-hole conductor formed on the inner wall of the through-hole formed in the organic resin insulating layer. The through holes in each organic resin insulating layer are formed by first applying a resist material on each organic resin insulating layer and exposing and developing the resist material to a predetermined position. A window having a shape is formed, and then an etchant is disposed on the window of the resist material, and the organic resin insulating layer located on the window of the resist material is removed to form a hole (through hole) in the organic resin insulating layer.
And finally removing and removing the resist material from the organic resin insulating layer.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この多
層配線基板は薄膜配線導体層及びスルーホール導体がい
ずれも電気抵抗の小さな銅やアルミニウムで形成されて
おり、該銅やアルミニウムは有機樹脂との接合性が悪
い。そのため絶縁基板上に有機樹脂絶縁層と薄膜配線導
体層とを交互に多層に積層した後、外力が印加されると
該外力によって有機樹脂絶縁層と薄膜配線導体層及びス
ルーホール導体との間に剥離が発生し、薄膜配線導体層
やスルーホール導体に断線が生じて多層配線基板として
機能が喪失してしまうという欠点を有する。
However, in this multilayer wiring board, both the thin-film wiring conductor layer and the through-hole conductor are formed of copper or aluminum having a small electric resistance, and the copper or aluminum is bonded to an organic resin. Poor. Therefore, after the organic resin insulating layer and the thin film wiring conductor layer are alternately laminated on the insulating substrate in a multilayer, when an external force is applied, the external force causes the organic resin insulating layer and the thin film wiring conductor layer and the through-hole conductor to be interposed. There is a drawback in that peeling occurs, the thin film wiring conductor layer and the through-hole conductor are disconnected, and the function as a multilayer wiring substrate is lost.

【0010】本発明は上記欠点に鑑み案出されたもの
で、その目的は薄膜配線導体層及びスルーホール導体と
有機樹脂絶縁層との接合強度を強固とし、特に線幅が極
めて狭い薄膜配線導体層及びスルーホール導体と有機樹
脂絶縁層との接合強度を強固として薄膜配線導体層やス
ルーホール導体に断線等を招来することのない多層配線
基板を提供することにある。
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to strengthen the bonding strength between a thin-film wiring conductor layer and a through-hole conductor and an organic resin insulating layer, and particularly to a thin-film wiring conductor having an extremely narrow line width. It is an object of the present invention to provide a multilayer wiring board in which the bonding strength between the layer and the through-hole conductor and the organic resin insulating layer is strengthened and the thin-film wiring conductor layer and the through-hole conductor do not cause disconnection or the like.

【0011】[0011]

【課題を解決するための手段】本発明は、絶縁基板と、
該絶縁基板上に形成され、有機樹脂絶縁層と薄膜配線導
体層とを交互に積層するとともに上下に位置する薄膜配
線導体層を有機樹脂絶縁層に設けたスルーホール導体を
介して電気的に接続してなる多層配線基板であって、前
記薄膜配線導体層及びスルーホール導体は銅もしくはア
ルミニウムから成り、その表面に表面粗さが1μm乃至
5μmのニッケル層を被着させたことを特徴とするもの
である。
The present invention comprises an insulating substrate,
The organic resin insulating layer and the thin-film wiring conductor layer formed on the insulating substrate are alternately laminated, and the upper and lower thin-film wiring conductor layers are electrically connected via through-hole conductors provided in the organic resin insulating layer. Wherein the thin-film wiring conductor layer and the through-hole conductor are made of copper or aluminum, and a surface thereof is coated with a nickel layer having a surface roughness of 1 μm to 5 μm. It is.

【0012】本発明の多層配線基板によれば、銅やアル
ミニウムからなる薄膜配線導体層及びスルーホール導体
の上面に表面粗さが1μm乃至5μmの有機樹脂と接合
性が良く、有機樹脂絶縁層と広面積で接触するニッケル
層を被着させたことから薄膜配線導体層及びスルーホー
ル導体はその各々の線幅が極めて狭いものになったとし
ても薄膜配線導体層及びスルーホール導体と有機樹脂絶
縁層とはニッケル層を介して極めて強固に接合し、これ
によって外力が印加されても薄膜配線導体層及びスルー
ホール導体と有機樹脂絶縁層との間に剥離が発生するこ
とはなく、薄膜配線導体層及びスルーホール導体に断線
等が生じるのを有効に防止することが可能となる。
According to the multilayer wiring board of the present invention, the upper surface of the thin-film wiring conductor layer made of copper or aluminum and the through-hole conductor has good bonding properties with the organic resin having a surface roughness of 1 μm to 5 μm, and the organic resin insulating layer The thin-film wiring conductor layer and the through-hole conductor have a very narrow line width due to the nickel layer that is in contact with a large area. Is extremely tightly bonded via a nickel layer, so that even when an external force is applied, no separation occurs between the thin-film wiring conductor layer and the through-hole conductor and the organic resin insulating layer. In addition, it is possible to effectively prevent occurrence of disconnection or the like in the through-hole conductor.

【0013】[0013]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1及び図2は、本発明の多層配線基
板の一実施例を示し、1は絶縁基板、2は有機樹脂絶縁
層、3は薄膜配線導体層である。
Next, the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show an embodiment of the multilayer wiring board of the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer, and 3 is a thin-film wiring conductor layer.

【0014】前記絶縁基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体層3とから成る多層配線部4が配設
されており、該多層配線部4を支持する支持部材として
作用する。
On the upper surface of the insulating substrate 1, a multilayer wiring portion 4 comprising an organic resin insulating layer 2 and a thin-film wiring conductor layer 3 is disposed, and functions as a support member for supporting the multilayer wiring portion 4.

【0015】前記絶縁基板1は酸化アルミニウム質焼結
体やムライト質焼結体等の酸化物系セラミックス、或い
は表面に酸化物膜を有する窒化アルミニウム質焼結体、
炭化珪素質焼結体等の非酸化物系セラミックス、更には
ガラス繊維を織り込んだ布にエポキシ樹脂を含浸させた
ガラスエポキシ樹脂等の電気絶縁材料で形成されてお
り、例えば、酸化アルミニウム質焼結体で形成されてい
る場合には、アルミナ、シリカ、カルシア、マグネシア
等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥
漿状となすとともにこれを従来周知のドクターブレード
法やカレンダーロール法を採用することによってセラミ
ックグリーンシート(セラミツク生シート)を形成し、
しかる後、前記セラミックグリーンシートに適当な打ち
抜き加工を施し、所定形状となすとともに高温(約16
00℃)で焼成することによって、或いはアルミナ等の
原料粉末に適当な有機溶剤、溶媒を添加混合して原料粉
末を調整するとともに該原料粉末をプレス成形機によっ
て所定形状に成形し、最後に前記成形体を約1600℃
の温度で焼成することによって製作され、またガラスエ
ポキシ樹脂から成る場合は、例えばガラス繊維を織り込
んだ布にエポキシ樹脂の前駆体を含浸させるとともに該
エポキシ樹脂前駆体を所定の温度で熱硬化させることに
よって製作される。
The insulating substrate 1 is made of an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride sintered body having an oxide film on its surface.
It is made of an electrically insulating material such as a non-oxide ceramic such as a silicon carbide sintered body, and a glass epoxy resin in which a cloth woven with glass fibers is impregnated with an epoxy resin. When formed in a body, an appropriate organic solvent and a suitable solvent are added to raw material powders such as alumina, silica, calcia, and magnesia to form a slurry, which is then mixed with a conventionally known doctor blade method or calender roll method. To form a ceramic green sheet (ceramic raw sheet),
Thereafter, the ceramic green sheet is subjected to an appropriate punching process so as to have a predetermined shape and a high temperature (about 16 ° C.).
(00 ° C.) or by mixing a raw material powder such as alumina with an appropriate organic solvent and a solvent to adjust the raw material powder and form the raw material powder into a predetermined shape by a press molding machine. About 1600 ° C
If it is made by firing at a temperature of, and made of glass epoxy resin, for example, impregnating the epoxy resin precursor into a cloth woven of glass fibers and heat curing the epoxy resin precursor at a predetermined temperature Produced by

【0016】また前記絶縁基板1はその上面に有機樹脂
絶縁層2と薄膜配線導体層3とが交互に多層に積層され
て形成される多層配線部4が被着されており、該多層配
線部4を構成する有機樹脂絶縁層2は上下に位置する薄
膜配線導体層3の電気的絶縁をはかる作用をなし、また
薄膜配線導体層3は電気信号を伝達するための伝達路と
して作用する。
On the upper surface of the insulating substrate 1, a multilayer wiring portion 4 formed by alternately stacking an organic resin insulating layer 2 and a thin film wiring conductor layer 3 is attached. The organic resin insulating layer 2 constituting 4 functions to electrically insulate the thin film wiring conductor layers 3 positioned above and below, and the thin film wiring conductor layer 3 functions as a transmission path for transmitting an electric signal.

【0017】前記多層配線部4の有機樹脂絶縁層2は、
エポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリフ
ェニレンエーテル樹脂、ふっ素樹脂等の有機樹脂から成
り、例えば、エポキシ樹脂からなる場合、ビスフェノー
ルA型エポキシ樹脂、ノボラック型エポキシ樹脂、グリ
シジルエステル型エポキシ樹脂等にアミン系硬化剤、イ
ミダゾール系硬化剤、酸無水物系硬化剤等の硬化剤を添
加混合してペースト状のエポキシ樹脂前駆体を得るとと
もに該エポキシ樹脂前駆体を絶縁基板1の上部にスピン
コート法により被着させ、しかる後、これを80℃〜2
00℃の熱で0.5〜3時間熱処理し、熱硬化させるこ
とによって形成される。
The organic resin insulating layer 2 of the multilayer wiring section 4
It is made of an organic resin such as an epoxy resin, a bismaleimide triazine resin, a polyphenylene ether resin, and a fluorine resin. And a curing agent such as an imidazole-based curing agent or an acid anhydride-based curing agent are added and mixed to obtain a paste-like epoxy resin precursor, and the epoxy resin precursor is applied on the insulating substrate 1 by spin coating. After that, this is heated to 80 ° C. to 2
It is formed by heat-treating with heat of 00 ° C. for 0.5 to 3 hours and heat-curing.

【0018】更に前記多層配線部4の有機樹脂絶縁層2
はその各々の所定位置に最小径が有機樹脂絶縁層2の厚
みに対して約1.5倍程度のスルーホール5が形成され
ており、該スルーホール5は後述する有機樹脂絶縁層2
を介して上下に位置する薄膜配線導体層3の各々を電気
的に接続するスルーホール導体6を形成するための形成
孔として作用する。
Further, the organic resin insulating layer 2 of the multilayer wiring section 4
Has a through hole 5 having a minimum diameter of about 1.5 times the thickness of the organic resin insulating layer 2 at each predetermined position.
And acts as a forming hole for forming a through-hole conductor 6 that electrically connects each of the thin film wiring conductor layers 3 located above and below via the through hole.

【0019】前記有機樹脂絶縁層2に設けるスルーホー
ル5は有機樹脂絶縁層2に従来周知のフォトリソグラフ
イー技術を採用することによって所定の径に形成され
る。
The through hole 5 provided in the organic resin insulating layer 2 is formed in the organic resin insulating layer 2 to a predetermined diameter by employing a conventionally well-known photolithography technique.

【0020】また前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体層3が、更に各有機樹脂絶縁
層2に設けたスルーホール5の内壁にはスルーホール導
体6が各々配設されており、スルーホール導体6によっ
て間に有機樹脂絶縁層2を挟んで上下に位置する各薄膜
配線導体層3の各々が電気的に接続されるようになって
いる。
A thin-film wiring conductor layer 3 having a predetermined pattern is provided on the upper surface of each organic resin insulating layer 2, and a through-hole conductor 6 is provided on the inner wall of a through hole 5 provided in each organic resin insulating layer 2. The respective through-hole conductors 6 electrically connect the respective thin-film wiring conductor layers 3 positioned above and below the organic resin insulating layer 2 therebetween.

【0021】前記各有機樹脂絶縁層2の上面及びスルー
ホール5の内壁に配設される薄膜配線導体層3及びスル
ーホール導体6は電気抵抗が小さく電気信号を減衰させ
ることなく良好に伝達させることが可能な銅やアルミニ
ウムから成り、無電解めっき法や蒸着法、スパッタリン
グ法等の薄膜形成技術及びフォトリソグラフイー技術を
採用することによって形成され、例えば、銅の無電解め
っき法で形成される場合には、有機樹脂絶縁層2の上面
及びスルーホール5の内表面に、硫酸銅0.06モル/
リットル、ホルマリン0.3モル/リットル、水酸化ナ
トリウム0.35モル/リットル、エチレンジアミン四
酢酸0.35モル/リットルからなる無電解銅めっき浴
を用いて厚さ1μm乃至40μmの銅層を被着させ、し
かる後、前記銅層をフォトリソグラフイ一技術により所
定パターンに加工することによって各有機樹脂絶縁層2
間、及びスルーホール5内壁に配設される。この場合、
薄膜配線導体層3及びスルーホール導体6は薄膜形成技
術により形成されることから配線の微細化が可能であ
り、これによって薄膜配線導体層3を極めて高密度に形
成することが可能となる。
The thin-film wiring conductor layer 3 and the through-hole conductor 6 disposed on the upper surface of each of the organic resin insulating layers 2 and the inner wall of the through-hole 5 have low electric resistance and can transmit electric signals well without attenuating. Is formed by adopting a thin film forming technology such as electroless plating, vapor deposition, sputtering, and photolithography, and photolithography, for example, when formed by electroless plating of copper. The upper surface of the organic resin insulating layer 2 and the inner surface of the through hole 5 are provided with 0.06 mol / mol of copper sulfate.
A copper layer having a thickness of 1 μm to 40 μm is deposited using an electroless copper plating bath composed of 1 liter, 0.3 mol / l of formalin, 0.35 mol / l of sodium hydroxide, and 0.35 mol / l of ethylenediaminetetraacetic acid. Thereafter, the copper layer is processed into a predetermined pattern by a photolithography technique so that each organic resin insulating layer 2 is formed.
It is arranged on the inner wall of the space and through hole 5. in this case,
Since the thin-film wiring conductor layer 3 and the through-hole conductor 6 are formed by a thin-film forming technique, it is possible to miniaturize the wiring, whereby the thin-film wiring conductor layer 3 can be formed at an extremely high density.

【0022】また前記薄膜配線導体層3及びスルーホー
ル導体6はその表面に図2に示す如く、表面の粗さが最
大粗さ(RMAX )で1μm≦RMAX ≦5μmのニッケル
層7が被着されており、該ニッケル層7は有機樹脂と接
合性が良いニッケルで形成されているとともに表面が所
定の粗さに粗れて有機樹脂絶縁層2との接触面積が広い
ものとなっているため薄膜配線導体層3及びスルーホー
ル導体6の線幅が極めて細いものになったとしても薄膜
配線導体層3及びスルーホール導体6と有機樹脂絶縁層
2とは極めて強固に接合し、これによって外力が印加さ
れても薄膜配線導体層3及びスルーホール導体6と有機
樹脂絶縁層2との間に剥離が発生することはなく、薄膜
配線導体層3及びスルーホール導体6に断線等が生じる
のを有効に防止することができる。
As shown in FIG. 2, the thin-film wiring conductor layer 3 and the through-hole conductor 6 are covered with a nickel layer 7 having a maximum surface roughness (R MAX ) of 1 μm ≦ R MAX ≦ 5 μm. The nickel layer 7 is formed of nickel having a good bonding property with the organic resin, and the surface is roughened to a predetermined roughness so that the contact area with the organic resin insulating layer 2 is large. Therefore, even if the line widths of the thin film wiring conductor layer 3 and the through-hole conductor 6 are extremely thin, the thin film wiring conductor layer 3 and the through-hole conductor 6 and the organic resin insulating layer 2 are extremely strongly joined to each other. Does not occur between the thin-film wiring conductor layer 3 and the through-hole conductor 6 and the organic resin insulating layer 2, and it is possible to prevent the thin-film wiring conductor layer 3 and the through-hole conductor 6 from breaking. Effectively prevent Door can be.

【0023】前記ニッケル層7は、例えば、電解めっき
法によって形成され、硫酸ニッケル240〜450グラ
ム/リットル、塩化ニッケル38〜60グラム/リット
ル、ホウ酸30〜50グラム/リットルから成る電解ニ
ッケルめっき液を用いることよって薄膜配線導体層3及
びスルーホール導体6上に被着形成される。
The nickel layer 7 is formed by, for example, an electrolytic plating method, and is an electrolytic nickel plating solution comprising 240 to 450 g / L of nickel sulfate, 38 to 60 g / L of nickel chloride, and 30 to 50 g / L of boric acid. Is formed on the thin-film wiring conductor layer 3 and the through-hole conductor 6.

【0024】なお、前記ニッケル層7はその表面の粗さ
が最大粗さ(RMAX )で1μm未満であると薄膜配線導
体層3及びスルーホール導体6の線幅が極めて細い時に
薄膜配線導体層3及びスルーホール導体6と有機樹脂絶
縁層2との接触面積が狭く、両者の接合強度がニッケル
と有機樹脂との接合性のみに依存した小さな値となって
しまい、また5μmを超えるとニッケル層7と有機樹脂
絶縁層2との接合強度は強くなるものの有機樹脂絶縁層
2にスルーホール5を形成した際、スルーホール5より
露出するニッケル層7の表面凹凸に有機樹脂絶縁層2の
一部が残り、ニッケル層7とスルーホール導体6との接
続の信頼性が大きく低下してしまう。従って、前記ニッ
ケル層7はその表面の粗さが最大粗さ(RMAX )で1μ
m≦RMA X ≦5μmの範囲に特定される。
If the surface roughness of the nickel layer 7 is less than 1 μm at the maximum roughness (R MAX ), the thin film wiring conductor layer 3 and the through-hole conductor 6 are extremely thin when the line width is extremely small. 3 and the contact area between the through-hole conductor 6 and the organic resin insulating layer 2 are small, and the bonding strength between the two becomes a small value depending only on the bonding property between nickel and the organic resin. When the through hole 5 is formed in the organic resin insulating layer 2, the surface unevenness of the nickel layer 7 exposed from the through hole 5 causes a part of the organic resin insulating layer 2 to increase in bonding strength between the organic resin insulating layer 2 and the organic resin insulating layer 2. However, the reliability of the connection between the nickel layer 7 and the through-hole conductor 6 is greatly reduced. Therefore, the surface roughness of the nickel layer 7 is 1 μm at the maximum roughness (R MAX ).
It is specified in the range of m ≦ R MA X ≦ 5μm.

【0025】また前記ニッケル層7の表面を最大粗さ
(RMAX )で1μm≦RMAX ≦5μmとするには上述の
電解ニッケルめっき液中に混合されるスルホン酸、ベン
ゼン、アルキルカルボン酸エステル等からなる光沢剤の
量を1グラム/リットル以下としておくことによって、
或いは被着させたニッケル層7の表面を硝酸系のエッチ
ング液によるエッチング処理を施すことによって行われ
る。
In order to set the surface of the nickel layer 7 to have a maximum roughness (R MAX ) of 1 μm ≦ R MAX ≦ 5 μm, sulfonic acid, benzene, alkyl carboxylic acid ester and the like mixed in the above-mentioned electrolytic nickel plating solution are used. By keeping the amount of brightener consisting of 1 g / liter or less,
Alternatively, it is performed by subjecting the surface of the deposited nickel layer 7 to an etching treatment with a nitric acid-based etchant.

【0026】更に、前記有機樹脂絶縁層2と薄膜配線導
体層3とを交互に多層に積層して形成される多層配線部
4は各有機樹脂絶縁層2の上面を中心線平均粗さ(R
a)で0.05μm≦Ra≦5μmの粗面としておくと
有機樹脂絶縁層2の上面と薄膜配線導体層3の下面との
接合及び上下に位置する有機樹脂絶縁層2同士の接合を
強固となすことができる。従って、前記多層配線部4の
各有機樹脂絶縁層2はその上面をエッチング加工技術等
を採用することによって粗し、中心線平均粗さ(Ra)
で0.05μm≦Ra≦5μmの粗面としておくことが
好ましい。
Further, the multilayer wiring portion 4 formed by alternately laminating the organic resin insulating layers 2 and the thin film wiring conductor layers 3 in a multilayer manner has a center line average roughness (R
If a rough surface of 0.05 μm ≦ Ra ≦ 5 μm is set in a), the bonding between the upper surface of the organic resin insulating layer 2 and the lower surface of the thin film wiring conductor layer 3 and the bonding between the organic resin insulating layers 2 located above and below are firm. I can do it. Therefore, the upper surface of each organic resin insulating layer 2 of the multilayer wiring portion 4 is roughened by employing an etching technique or the like, and the center line average roughness (Ra) is obtained.
It is preferable to make a rough surface of 0.05 μm ≦ Ra ≦ 5 μm.

【0027】前記有機樹脂絶縁層2はまたその各々の厚
みが100μmを超えると有機樹脂絶縁層2にフォトリ
ソグラフイー技術を採用することによってスルーホール
5を形成する際、エッチング加工時間が長くなってスル
ーホール5を所望する鮮明な形状に形成するのが困難と
なり、また5μm未満となると有機樹脂絶縁層2の上面
に上下に位置する有機樹脂絶縁層2の接合強度を上げる
ための粗面加工を施す際、有機樹脂絶縁層2に不要な穴
が形成され上下に位置する薄膜配線導体層3に不要な電
気的短絡を招来してしまう危険性がある。従って、前記
有機樹脂絶縁層2はその各々の厚みを5μm〜100μ
mの範囲としておくことが好ましい。
If the thickness of each of the organic resin insulating layers 2 exceeds 100 μm, the etching processing time becomes longer when the through holes 5 are formed by employing photolithography technology in the organic resin insulating layers 2. It is difficult to form the through hole 5 into a desired clear shape. If the thickness is less than 5 μm, rough surface processing for increasing the bonding strength of the organic resin insulating layer 2 located above and below the organic resin insulating layer 2 is performed. At the time of application, there is a risk that an unnecessary hole is formed in the organic resin insulating layer 2 and an unnecessary electric short circuit is caused in the thin film wiring conductor layer 3 located above and below. Accordingly, the organic resin insulating layer 2 has a thickness of 5 μm to 100 μm.
It is preferable to set the range of m.

【0028】また更に前記多層配線部4の各薄膜配線導
体層3はその厚みが1μm未満であると各薄膜配線導体
層3の電気抵抗が大きなものとなって各薄膜配線導体層
3に所定の電気信号を伝達させることが困難なものとな
り、また40μmを超えると薄膜配線導体層3を有機樹
脂絶縁層2に被着させる際に薄膜配線導体層3の内部に
大きな応力が内在し、該大きな内在応力によって薄膜配
線導体層3が有機樹脂絶縁層2から剥離し易いものとな
る。従って、前記多層配線部4の各薄膜配線導体層3の
厚みは1μm〜40μmの範囲としておくことが好まし
い。
Further, when the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 is less than 1 μm, the electric resistance of each thin-film wiring conductor layer 3 becomes large, so that each thin-film wiring conductor layer 3 has a predetermined thickness. It becomes difficult to transmit an electric signal. If the thickness exceeds 40 μm, a large stress is present inside the thin film wiring conductor layer 3 when the thin film wiring conductor layer 3 is applied to the organic resin insulating layer 2. The thin-film wiring conductor layer 3 is easily peeled off from the organic resin insulating layer 2 by the intrinsic stress. Therefore, it is preferable that the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 be in the range of 1 μm to 40 μm.

【0029】かくして本発明の多層配線基板によれば、
最上層の有機樹脂絶縁層2表面に半導体素子等の能動部
品や容量素子、抵抗器等の受動部品を搭載し、その電極
を薄膜配線導体層3に接続させることによって半導体装
置や混成集積回路装置となり、薄膜配線導体層3の一部
を外部電気回路に接続させれば前記半導体素子や容量素
子等は外部電気回路に電気的に接続されることとなる。
Thus, according to the multilayer wiring board of the present invention,
A semiconductor device or a hybrid integrated circuit device is mounted by mounting an active component such as a semiconductor device or a passive component such as a capacitor or a resistor on the surface of the uppermost organic resin insulating layer 2 and connecting its electrodes to the thin film wiring conductor layer 3. When a part of the thin-film wiring conductor layer 3 is connected to an external electric circuit, the semiconductor element, the capacitor and the like are electrically connected to the external electric circuit.

【0030】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例におい
ては絶縁基板1の上面のみに複数の有機樹脂絶縁層2と
複数の薄膜配線導体層3とを交互に積層して形成される
多層配線部4を被着させたが、該多層配線部4を絶縁基
板1の下面側のみに設けても、上下の両面に設けてもよ
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. A multilayer wiring portion 4 formed by alternately laminating a plurality of organic resin insulating layers 2 and a plurality of thin film wiring conductor layers 3 is applied only on the upper surface of the insulating substrate 1. It may be provided only on the lower surface side or on both upper and lower surfaces.

【0031】[0031]

【発明の効果】本発明の多層配線基板によれば、銅やア
ルミニウムからなる薄膜配線導体層及びスルーホール導
体の上面に表面粗さが1μm乃至5μmの有機樹脂と接
合性が良く、有機樹脂絶縁層と広面積で接触するニッケ
ル層を被着させたことから薄膜配線導体層及びスルーホ
ール導体はその各々の線幅が極めて狭いものになったと
しても薄膜配線導体層及びスルーホール導体と有機樹脂
絶縁層とはニッケル層を介して極めて強固に接合し、こ
れによって外力が印加されても薄膜配線導体層及びスル
ーホール導体と有機樹脂絶縁層との間に剥離が発生する
ことはなく、薄膜配線導体層及びスルーホール導体に断
線等が生じるのを有効に防止することが可能となる。
According to the multilayer wiring board of the present invention, the upper surface of the thin-film wiring conductor layer made of copper or aluminum and the through-hole conductor has a good bonding property with an organic resin having a surface roughness of 1 to 5 μm, and the organic resin insulation. The thin-film wiring conductor layer and the through-hole conductor have a very narrow line width because the nickel layer that is in contact with the layer over a large area is applied. The insulating layer is extremely firmly bonded to the insulating layer via the nickel layer, so that even when an external force is applied, no separation occurs between the thin-film wiring conductor layer and the through-hole conductor and the organic resin insulating layer. It is possible to effectively prevent disconnection or the like from occurring in the conductor layer and the through-hole conductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【図2】図1に示す多層配線基板の要部拡大断面図であ
る。
FIG. 2 is an enlarged sectional view of a main part of the multilayer wiring board shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体層 4・・・多層配線部 6・・・スルーホール導体 7・・・ニッケル層 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor layer 4 ... Multilayer wiring part 6 ... Through-hole conductor 7 ... Nickel layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/12 Q ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/12 Q

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板と、該絶縁基板上に形成され、有
機樹脂絶縁層と薄膜配線導体層とを交互に積層するとと
もに上下に位置する薄膜配線導体層を有機樹脂絶縁層に
設けたスルーホール導体を介して電気的に接続してなる
多層配線基板であって、前記薄膜配線導体層及びスルー
ホール導体は銅もしくはアルミニウムから成り、その表
面に表面粗さが1μm乃至5μmのニッケル層を被着さ
せたことを特徴とする多層配線基板。
1. A through-hole formed by alternately laminating an insulating substrate and an organic resin insulating layer and a thin-film wiring conductor layer formed on the insulating substrate, and providing upper and lower thin-film wiring conductor layers in the organic resin insulating layer. A multilayer wiring board electrically connected via a hole conductor, wherein the thin film wiring conductor layer and the through-hole conductor are made of copper or aluminum, and the surface thereof is covered with a nickel layer having a surface roughness of 1 μm to 5 μm. A multilayer wiring board characterized by being attached.
JP13712597A 1997-05-27 1997-05-27 Multilayered wiring board Pending JPH10335817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13712597A JPH10335817A (en) 1997-05-27 1997-05-27 Multilayered wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13712597A JPH10335817A (en) 1997-05-27 1997-05-27 Multilayered wiring board

Publications (1)

Publication Number Publication Date
JPH10335817A true JPH10335817A (en) 1998-12-18

Family

ID=15191413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13712597A Pending JPH10335817A (en) 1997-05-27 1997-05-27 Multilayered wiring board

Country Status (1)

Country Link
JP (1) JPH10335817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514779B2 (en) 1998-09-17 2009-04-07 Ibiden Co., Ltd. Multilayer build-up wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514779B2 (en) 1998-09-17 2009-04-07 Ibiden Co., Ltd. Multilayer build-up wiring board
US7847318B2 (en) 1998-09-17 2010-12-07 Ibiden Co., Ltd. Multilayer build-up wiring board including a chip mount region

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH10335817A (en) Multilayered wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH10326966A (en) Multilayered wiring board
JPH10215042A (en) Multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH1041632A (en) Multilayer wiring board
JPH1013036A (en) Multilayer wiring board
JPH10163634A (en) Multilayer wiring board
JP2000106484A (en) Multilayer wiring board
JP3688844B2 (en) Multilayer wiring board
JPH10150266A (en) Multilayer interconnection board
JPH11150370A (en) Multilayer wiring board
JP2000013026A (en) Multi-layer printed board
JPH11186434A (en) Multi-layer wiring substrate
JPH11233909A (en) Wiring board
JPH10322030A (en) Multilayered wiring board
JPH10322032A (en) Manufacture of multilayered wiring board
JPH10150267A (en) Multilayer interconnection board
JPH10322019A (en) Multilayered wiring board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH11233679A (en) Multilayer wiring board
JPH1013031A (en) Multilayered wiring board