JPH1013019A - Method for manufacturing multilayer wiring board - Google Patents

Method for manufacturing multilayer wiring board

Info

Publication number
JPH1013019A
JPH1013019A JP15846596A JP15846596A JPH1013019A JP H1013019 A JPH1013019 A JP H1013019A JP 15846596 A JP15846596 A JP 15846596A JP 15846596 A JP15846596 A JP 15846596A JP H1013019 A JPH1013019 A JP H1013019A
Authority
JP
Japan
Prior art keywords
organic resin
multilayer wiring
semi
resin precursor
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15846596A
Other languages
Japanese (ja)
Inventor
Hideaki Maniwa
秀明 馬庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15846596A priority Critical patent/JPH1013019A/en
Publication of JPH1013019A publication Critical patent/JPH1013019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer wiring board for achieving desired characteristics fully by increasing adhesion between organic resin insulation layers and preventing peeling from occurring between the organic resin insulation layers owing to the application of outer force. SOLUTION: In a wiring board, a multilayer wiring part 4 is formed, where an organic resin insulation layer 2 and a thin-film wiring conductor 3 are alternately stack on an insulation substrate 1. In this case, the multilayer wiring part 4 is formed by a following process. An organic resin precursor 2b in semi- cured state and a thin-film wiring conductor 3 are stacked in multilayer alternately on the insulation substrate 1, thus forming a multilayer wiring region 4a. After that, the multilayer wiring region 4a is heat-treated, thus curing each half-cured organic resin precursor completely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMoーMn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Conventionally, a multilayer wiring board used for a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMoーMn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミック体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次ぎにこれを複数枚積層すると
ともに還元雰囲気中で焼成し、高融点金属粉末と生セラ
ミック体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-like metal paste is applied by printing on the outer surface of the green ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these layers are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method of sintering and integrating a metal powder and a green ceramic body.

【0004】尚、前記配線導体が形成されるセラミック
体としては通常、酸化アルミニウム質焼結体やムライト
質焼結体等の酸化物系セラミックス、或いは表面に酸化
物膜を被着させた窒化アルミニウム質焼結体や炭化珪素
質焼結体等の非酸化物系セラミックが使用される。
Incidentally, the ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film adhered on the surface. Non-oxide ceramics such as a sintered compact or a silicon carbide sintered compact are used.

【0005】しかしながら、このMoーMn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Had the drawback that it could not be done.

【0006】そこで上記欠点を解消するために配線導体
を従来の厚膜形成技術で形成するのに変えて微細化が可
能な薄膜形成技術を用いて高密度に形成した多層配線基
板が使用されるようになってきた。
In order to solve the above-mentioned drawbacks, a multi-layer wiring board formed using a thin film forming technique capable of miniaturization instead of forming the wiring conductor by the conventional thick film forming technique is used. It has become.

【0007】かかる配線導体を薄膜形成技術により形成
した多層配線基板は、酸化アルミニウム質焼結体等から
成るセラミックやガラス繊維を織り込んだガラス布にエ
ポキシ樹脂を含浸させて形成されるガラスエポキシ等か
ら成る絶縁基板の上面にスピンコート法及び熱硬化処理
等によって形成されるエポキシ樹脂等の有機樹脂から成
る絶縁層と、銅やアルミニウム等の金属をめっき法や蒸
着法等の薄膜形成技術及びフォトリソグラフィー技術を
採用することによって形成される薄膜配線導体とを交互
に多層に積層させた構造を有している。
A multilayer wiring board in which such wiring conductors are formed by a thin-film forming technique is made of glass epoxy formed by impregnating a ceramic cloth made of aluminum oxide sintered body or the like or a glass cloth woven with glass fibers with an epoxy resin. An insulating layer made of an organic resin such as an epoxy resin formed on the upper surface of an insulating substrate formed by spin coating, thermosetting, or the like, and a metal such as copper or aluminum, a thin film forming technique such as a plating method or a vapor deposition method, and photolithography. It has a structure in which thin film wiring conductors formed by employing the technology are alternately laminated in multiple layers.

【0008】またこの多層配線基板においては、積層さ
れた各有機樹脂絶縁層間に配設されている薄膜配線導体
が必要に応じて有機樹脂絶縁層に形成したスルーホール
の内壁に被着されているスルーホール導体を介して電気
的に接続されており、各有機樹脂絶縁層へのスルーホー
ルの形成は各有機樹脂絶縁層上にレジスト材を塗布する
とともにこれを露光、現像を施すことによって所定位置
に所定形状の窓部を形成し、次に前記レジスト材の窓部
にエッチング液を配し、レジスト材の窓部に位置する有
機樹脂絶縁層を除去して、有機樹脂絶縁層に穴(スルー
ホール)を形成し、最後に前記レジスト材を有機樹脂絶
縁層上より剥離させ除去することによって行われてい
る。
In this multilayer wiring board, a thin-film wiring conductor provided between the stacked organic resin insulating layers is adhered to the inner wall of a through hole formed in the organic resin insulating layer as required. It is electrically connected via through-hole conductors, and through-holes are formed in each organic resin insulating layer by applying a resist material on each organic resin insulating layer and exposing and developing the resist material. Then, a window having a predetermined shape is formed, and then an etching solution is disposed on the window of the resist material. The organic resin insulating layer located on the window of the resist material is removed. Holes), and finally, the resist material is peeled off from the organic resin insulating layer and removed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この従
来の多層配線基板においては、有機樹脂絶縁層と薄膜配
線導体とを交互に積層して多層配線基板となす際、各有
機樹脂絶縁層はその各々が熱処理によって完全に熱硬化
されており、各有機樹脂絶縁層は重合反応に関与する基
が殆どない。そのため有機樹脂絶縁層を上下に多層に形
成する場合、下部に位置する有機樹脂絶縁層は既に熱硬
化し、重合反応に関与する基が殆どないことから上部に
位置する有機樹脂絶縁層は下部に位置する有機樹脂絶縁
層に対する接合強度が弱いものとなり、その結果、有機
樹脂絶縁層に外力が印加されると該外力によって各有機
樹脂絶縁層間に剥離が発生し、多層配線基板としての機
能を喪失するという欠点を誘発する。
However, in this conventional multilayer wiring board, when an organic resin insulating layer and a thin film wiring conductor are alternately laminated to form a multilayer wiring board, each organic resin insulating layer is individually Is completely thermoset by heat treatment, and each organic resin insulating layer has few groups involved in the polymerization reaction. Therefore, when the organic resin insulating layer is formed in multiple layers vertically, the organic resin insulating layer located at the bottom is already thermoset, and there is almost no group involved in the polymerization reaction, so the organic resin insulating layer located at the top is located at the bottom. The bonding strength to the located organic resin insulating layer becomes weak, and as a result, when an external force is applied to the organic resin insulating layer, the external force causes peeling between the organic resin insulating layers, losing the function as a multilayer wiring board. Induce the disadvantage of doing.

【0010】[0010]

【課題を解決するための手段】本発明は上記欠点に鑑み
案出されたもので、その目的は有機樹脂絶縁層と薄膜配
線導体とを交互に多層に積層して成る多層配線基板であ
って、前記各有機樹脂絶縁層間の接合強度を強くし、外
力印加によっても有機樹脂絶縁層間に剥離が発生するの
を有効に防止することによって所望する特性が充分に発
揮される多層配線基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a multilayer wiring board in which an organic resin insulating layer and a thin film wiring conductor are alternately laminated in multiple layers. The present invention provides a multilayer wiring board in which desired characteristics are sufficiently exhibited by increasing the bonding strength between the respective organic resin insulating layers and effectively preventing peeling between the organic resin insulating layers even when an external force is applied. It is in.

【0011】本発明は、絶縁基板上に有機樹脂絶縁層と
薄膜配線導体とを交互に積層した多層配線部を形成して
成る多層配線基板であって、前記多層配線部が下記
(1)乃至(4)の工程により形成されることを特徴と
するものである。
The present invention is a multilayer wiring board formed by alternately laminating an organic resin insulating layer and a thin film wiring conductor on an insulating substrate, wherein the multilayer wiring section has the following (1) to (5). It is characterized by being formed by the step (4).

【0012】絶縁基板上に、(1)有機樹脂前駆体を塗
布するとともに熱処理し、有機樹脂前駆体を半硬化させ
る工程と、(2)前記半硬化の有機樹脂前駆体上面に所
定パターンの薄膜配線導体を形成する工程と、(3)前
記(1)及び(2)の工程を繰り返し、半硬化の有機樹
脂前駆体と、所定パターンの薄膜配線導体とを交互に多
層に積層し、多層配線領域を形成する工程と、(4)前
記多層配線領域を熱処理し、各半硬化の有機樹脂前駆体
を完全に硬化させ、有機樹脂絶縁層となす工程。
(1) a step of applying an organic resin precursor and heat-treating the same to partially cure the organic resin precursor on the insulating substrate; and (2) a thin film having a predetermined pattern on the upper surface of the semi-cured organic resin precursor. The step of forming a wiring conductor and (3) the steps (1) and (2) are repeated, and a semi-cured organic resin precursor and a thin-film wiring conductor having a predetermined pattern are alternately laminated in multiple layers to form a multilayer wiring. Forming a region, and (4) heat-treating the multilayer wiring region to completely cure each semi-cured organic resin precursor to form an organic resin insulating layer.

【0013】また本発明は、絶縁基板上に有機樹脂絶縁
層と薄膜配線導体とを交互に積層した多層配線部を形成
して成る多層配線基板であって、前記多層配線部が下記
(1)乃至(4)の工程により形成されることを特徴と
するものである。
Further, the present invention is a multilayer wiring board formed by alternately laminating an organic resin insulating layer and a thin film wiring conductor on an insulating substrate, wherein the multilayer wiring section has the following (1). Or (4).

【0014】絶縁基板上に、(1)感光性有機樹脂前駆
体を塗布するとともに光照射し、感光性有機樹脂前駆体
を半硬化させる工程と、(2)前記半硬化の感光性有機
樹脂前駆体上面に所定パターンの薄膜配線導体を形成す
る工程と、(3)前記(1)及び(2)の工程を繰り返
し、半硬化の感光性有機樹脂前駆体と、所定パターンの
薄膜配線導体とを交互に多層に積層し、多層配線領域を
形成する工程と、(4)前記多層配線領域を熱処理し、
各半硬化の感光性有機樹脂前駆体を完全に硬化させ、有
機樹脂絶縁層となす工程。
(1) a step of applying a photosensitive organic resin precursor and irradiating light on the insulating substrate to semi-cure the photosensitive organic resin precursor; and (2) a step of semi-curing the photosensitive organic resin precursor. (3) repeating the steps (1) and (2) of forming a thin-film wiring conductor having a predetermined pattern on the body upper surface, and forming a semi-cured photosensitive organic resin precursor and a thin-film wiring conductor having a predetermined pattern. Alternately stacking multiple layers to form a multilayer wiring region; and (4) heat-treating the multilayer wiring region;
A step of completely curing each semi-cured photosensitive organic resin precursor to form an organic resin insulating layer.

【0015】本発明の多層配線基板の製造方法によれ
ば、半硬化状態の有機樹脂前駆体を上下に多層に積層し
た後、全ての有機樹脂前駆体を一度に完全硬化されるた
め下部に位置する半硬化状態の有機樹脂前駆体は重合反
応に関与する基が充分に存在している。そのため上下に
位置する各有機樹脂前駆体に熱を加えて一度に完全硬化
させる際、上下に位置する各有機樹脂前駆体はその上下
間において互いに重合反応を起こし、その結果、各有機
樹脂絶縁層はその各々が強固に接合し、外力が印加され
ても剥離を発生することはなくなる。
According to the method for manufacturing a multilayer wiring board of the present invention, after the organic resin precursor in a semi-cured state is laminated in a multilayer structure, all the organic resin precursors are completely cured at once, so that they are located at the lower part. The organic resin precursor in the semi-cured state has sufficient groups involved in the polymerization reaction. Therefore, when applying heat to the upper and lower organic resin precursors to completely cure them at once, the upper and lower organic resin precursors cause a polymerization reaction between the upper and lower organic resin precursors, and as a result, each of the organic resin insulating layers Are strongly bonded to each other, and no peeling occurs even when an external force is applied.

【0016】また本発明の製造方法によれば、配線導体
を薄膜形成技術により形成したことから配線の微細化が
可能となり、配線を極めて高密度に形成することが可能
となる。
Further, according to the manufacturing method of the present invention, since the wiring conductor is formed by the thin film forming technique, the wiring can be miniaturized, and the wiring can be formed at an extremely high density.

【0017】[0017]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1は、本発明の製造方法によって製
作された多層配線基板の一実施例を示し、1は絶縁基
板、2は有機樹脂絶縁層、3は薄膜配線導体である。
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a multilayer wiring board manufactured by the manufacturing method of the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer, and 3 is a thin film wiring conductor.

【0018】前記絶縁基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体3とから成る多層配線部4が配設さ
れており、該多層配線部4を支持する支持部材として作
用する。
On the upper surface of the insulating substrate 1, a multilayer wiring portion 4 comprising an organic resin insulating layer 2 and a thin-film wiring conductor 3 is provided, and functions as a support member for supporting the multilayer wiring portion 4.

【0019】前記絶縁基板1はガラス繊維を織り込んだ
布にエポキシ樹脂を含浸させたガラスエポキシ樹脂や、
酸化アルミニウム質焼結体、ムライト質焼結体等の酸化
物系セラミックス、或いは表面に酸化物膜を有する窒化
アルミニウム質焼結体、炭化珪素質焼結体等の非酸化物
系セラミックス等の電気絶縁材料で形成されており、例
えば、酸化アルミニウム質焼結体で形成されている場合
には、アルミナ、シリカ、カルシア、マグネシア等の原
料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状と
なすとともにこれを従来周知のドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)を形成し、しかる
後、前記セラミックグリーンシートに適当な打ち抜き加
工を施し、所定形状となすとともに高温(約1600
℃)で焼成することによって、或いはアルミナ等の原料
粉末に適当な有機溶剤、溶媒を添加混合して原料粉末を
調整するとともに該原料粉末をプレス成形機によって所
定形状に成形し、最後に前記成形体を約1600℃の温
度で焼成することによって製作され、またガラスエポキ
シ樹脂から成る場合には、ガラス繊維を織り込んだ布に
エポキシ樹脂の前駆体を含浸させるとともに該エポキシ
樹脂前駆体を所定の温度で熱硬化させることによって製
作される。
The insulating substrate 1 is made of a glass epoxy resin obtained by impregnating a cloth woven with glass fibers with an epoxy resin,
Electricity of oxide ceramics such as aluminum oxide sintered body and mullite sintered body, or non-oxide ceramics such as aluminum nitride sintered body and silicon carbide sintered body having an oxide film on the surface It is formed of an insulating material.For example, when formed of an aluminum oxide sintered body, a suitable organic solvent and a solvent are added to a raw material powder of alumina, silica, calcia, magnesia, etc. A ceramic green sheet (ceramic green sheet) is formed by adopting a well-known doctor blade method or a calender roll method, and then the ceramic green sheet is appropriately punched to obtain a predetermined shape. Eggplant and high temperature (about 1600
C) or by mixing a raw material powder such as alumina with an appropriate organic solvent and solvent to adjust the raw material powder and form the raw material powder into a predetermined shape by a press molding machine. If the body is made by firing the body at a temperature of about 1600 ° C., and if the body is made of glass epoxy resin, a cloth woven with glass fibers is impregnated with the epoxy resin precursor and the epoxy resin precursor is heated to a predetermined temperature. It is manufactured by heat curing.

【0020】前記絶縁基板1はまたその上面に有機樹脂
絶縁層2と薄膜配線導体3とが交互に多層に配設された
多層配線部4が被着されており、該多層配線部4を構成
する有機樹脂絶縁層2は上下に位置する薄膜配線導体3
の電気的絶縁を図る作用を為すとともに薄膜配線導体3
は電気信号を伝達するための伝達路として作用する。
On the upper surface of the insulating substrate 1, a multilayer wiring portion 4 in which organic resin insulating layers 2 and thin film wiring conductors 3 are alternately arranged in multiple layers is attached. The organic resin insulating layer 2 is formed of thin film wiring conductors 3 positioned above and below.
Acts to electrically insulate the thin film wiring conductor 3
Acts as a transmission path for transmitting electric signals.

【0021】尚、前記多層配線部4の有機樹脂絶縁層2
は、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドト
リアジン樹脂、ポリフェニレンエーテル樹脂、ふっ素樹
脂等の樹脂から成り、また薄膜配線導体3は銅等の金属
材料により形成されている。
The organic resin insulating layer 2 of the multilayer wiring section 4
Is made of a resin such as an epoxy resin, a polyimide resin, a bismaleimide triazine resin, a polyphenylene ether resin, or a fluororesin, and the thin film wiring conductor 3 is formed of a metal material such as copper.

【0022】また前記多層配線部4の有機樹脂絶縁層2
は必要に応じてスルーホール5が形成されており、該ス
ルーホール5の内壁には上下に有機樹脂絶縁層2を間に
挟んで上下に位置する薄膜配線導体3を電気的に接続す
るスルーホール導体6が形成されている。
The organic resin insulating layer 2 of the multilayer wiring section 4
Is formed with a through hole 5 as necessary, and a through hole for electrically connecting the thin film wiring conductors 3 located vertically above and below the organic resin insulating layer 2 on the inner wall of the through hole 5. The conductor 6 is formed.

【0023】前記有機樹脂絶縁層2に形成されるスルー
ホール5はその径が有機樹脂絶縁層2の厚みに対して約
1.5倍程度であり、該スルーホール5は有機樹脂絶縁
層2を介して上下に位置する薄膜配線導体3の各々を電
気的に接続するスルーホール導体6を形成するための形
成孔として作用する。
The diameter of the through hole 5 formed in the organic resin insulating layer 2 is about 1.5 times as large as the thickness of the organic resin insulating layer 2. It functions as a forming hole for forming a through-hole conductor 6 that electrically connects each of the thin film wiring conductors 3 located above and below via the intermediary of the conductor.

【0024】更に有機樹脂絶縁層2に形成されたスルー
ホール5の内壁に被着されるスルーホール導体6は有機
樹脂絶縁層2を挟んで上下に位置する各薄膜配線導体3
の各々を電気的に接続する作用を為す。
Further, the through-hole conductors 6 attached to the inner walls of the through-holes 5 formed in the organic resin insulating layer 2 have respective thin-film wiring conductors 3 located vertically above and below the organic resin insulating layer 2.
Are electrically connected.

【0025】尚、前記有機樹脂絶縁層2と薄膜配線導体
3とを交互に多層に積層して形成される多層配線4は各
有機樹脂絶縁層2の上面を中心線平均粗さ(Ra)で
0.05μm≦Ra≦5μmの粗面としておくと有機樹
脂絶縁層2と薄膜配線導体3との接合及び上下に位置す
る有機樹脂絶縁層2同士の接合を強固となすことができ
る。従って、前記多層配線4の各有機樹脂絶縁層2はそ
の上面をエッチング加工法等によって粗し、中心線平均
粗さ(Ra)で0.05μm≦Ra≦5μmの粗面とし
ておくことが好ましい。
The multilayer wirings 4 formed by alternately laminating the organic resin insulating layers 2 and the thin film wiring conductors 3 in multiple layers have a center line average roughness (Ra) on the upper surface of each organic resin insulating layer 2. When the rough surface is set to 0.05 μm ≦ Ra ≦ 5 μm, the bonding between the organic resin insulating layer 2 and the thin film wiring conductor 3 and the bonding between the organic resin insulating layers 2 located above and below can be made strong. Therefore, it is preferable that the upper surface of each organic resin insulating layer 2 of the multilayer wiring 4 is roughened by an etching method or the like so that the center line average roughness (Ra) is a rough surface of 0.05 μm ≦ Ra ≦ 5 μm.

【0026】また前記有機樹脂絶縁層2はその各々の厚
みが100μmを越えると有機樹脂絶縁層2にスルーホ
ール5を形成する際、スルーホール5を所望する鮮明な
形状に形成するのが困難となり、また5μmm未満とな
ると有機樹脂絶縁層2の上面に上下に位置する有機樹脂
絶縁層2の接合強度を上げるための粗面加工を施した場
合に有機樹脂絶縁層2に不要な穴が形成され上下に位置
する薄膜配線導体3に不要な電気的短絡を招来してしま
う危険性がある。従って、前記有機樹脂絶縁層2はその
各々の厚みを5μm乃至100μmの範囲としておくこ
とが好ましい。
If the thickness of each of the organic resin insulating layers 2 exceeds 100 μm, it becomes difficult to form the through holes 5 into a desired sharp shape when forming the through holes 5 in the organic resin insulating layer 2. If the thickness is less than 5 μm, unnecessary holes are formed in the organic resin insulating layer 2 when roughening is performed on the upper surface of the organic resin insulating layer 2 to increase the bonding strength of the organic resin insulating layer 2 located above and below. There is a risk that an unnecessary electrical short circuit may be caused to the thin film wiring conductors 3 located above and below. Therefore, it is preferable that the thickness of each of the organic resin insulating layers 2 is in the range of 5 μm to 100 μm.

【0027】更に前記多層配線4の各薄膜配線導体3は
その厚みが1μm未満となると各薄膜配線導体3の電気
抵抗が大きなものとなって各薄膜配線導体3に所定の電
気信号を伝達させることが困難なものとなり、また40
μmを越えると薄膜配線導体3を有機樹脂絶縁層2に被
着させる際に薄膜配線導体3の内部に大きな応力が内在
し、該大きな内在応力によって薄膜配線導体3が有機樹
脂絶縁層2から剥離し易いものとなる。従って、前記多
層配線4の各薄膜配線導体3の厚みは1μm乃至40μ
mの範囲としておくことが好ましい。
Further, when the thickness of each thin film wiring conductor 3 of the multilayer wiring 4 is less than 1 μm, the electric resistance of each thin film wiring conductor 3 becomes large, and a predetermined electric signal is transmitted to each thin film wiring conductor 3. Is difficult, and 40
If the thickness exceeds μm, a large stress is present inside the thin film wiring conductor 3 when the thin film wiring conductor 3 is applied to the organic resin insulating layer 2, and the thin film wiring conductor 3 is separated from the organic resin insulating layer 2 by the large intrinsic stress. It is easy to do. Therefore, the thickness of each thin film wiring conductor 3 of the multilayer wiring 4 is 1 μm to 40 μm.
It is preferable to set the range of m.

【0028】次に上述の多層配線基板の製造方法につい
て図2乃至図5に基づき詳細に説明する。まず図2に示
す如く、上面に配線導体2aを有する絶縁基板1を準備
する。前記絶縁基板1はガラス繊維を織り込んだ布にエ
ポキシ樹脂を含浸させたガラスエポキシ樹脂や、酸化ア
ルミニウム質焼結体、ムライト質焼結体等の酸化物系セ
ラミックス、或いは表面に酸化物膜を有する窒化アルミ
ニウム質焼結体、炭化珪素質焼結体等の非酸化物系セラ
ミックス等の電気絶縁材料で形成されており、配線導体
2aは絶縁基板1に被着させた銅板をエッチング加工法
により所定パターンに加工することによって、或いは金
属ペーストを絶縁基板1上にスクリーン印刷法により所
定パターンに印刷塗布するとともにこれを所定の温度で
焼き付けることによって形成されている。
Next, a method of manufacturing the above-described multilayer wiring board will be described in detail with reference to FIGS. First, as shown in FIG. 2, an insulating substrate 1 having a wiring conductor 2a on the upper surface is prepared. The insulating substrate 1 has a glass epoxy resin obtained by impregnating a cloth woven of glass fibers with an epoxy resin, an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an oxide film on the surface. The wiring conductor 2a is made of an electrically insulating material such as a non-oxide ceramic such as an aluminum nitride sintered body and a silicon carbide sintered body. The wiring conductor 2a is formed by etching a copper plate adhered to the insulating substrate 1 by etching. It is formed by processing into a pattern, or by printing and applying a metal paste on the insulating substrate 1 in a predetermined pattern by a screen printing method and baking it at a predetermined temperature.

【0029】次に図3に示すように、絶縁基板1の上面
にスルーホール5を有する半硬化の有機樹脂前駆体2b
を被着形成する。
Next, as shown in FIG. 3, a semi-cured organic resin precursor 2b having a through hole 5 on the upper surface of the insulating substrate 1
Is formed.

【0030】前記半硬化した有機樹脂前駆体2bはエポ
キシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン
樹脂、ポリフェニレンエーテル樹脂、ふっ素樹脂等の感
光性、或いは熱硬化性の樹脂から成り、例えば熱硬化性
のエポキシ樹脂から成る場合には、ビスフェノールA型
エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジル
エステル型エポキシ樹脂等にアミン系硬化剤、イミダゾ
ール系硬化剤、酸無水物系硬化剤等の硬化剤を添加混合
してペースト状のエポキシ樹脂前駆体を得るとともに該
エポキシ樹脂前駆体を絶縁基板1上にスピンコート法等
により塗布させ、しかる後、これを80℃〜200℃の
熱で0.5〜2時間熱処理し、半硬化させることによっ
て形成され、また感光性のエポキシ樹脂からなる場合に
は、フェノールノボラック樹脂、メチロールメラミン、
ジアリルジアゾニウム塩にプロピレングリコールモノメ
チルエーテルアセテートを添加混合してペースト状の感
光性エポキシ樹脂前駆体を得るとともにこれを絶縁基板
1上にスピンコート法やドクターブレード法等により所
定厚みに被着させ、しかる後、これに高圧水銀ランプ等
を用いた露光機で感光性エポキシ樹脂前駆体に1〜3J
/cm3 のエネルギーを照射し、感光性エポキシ樹脂前
駆体を半硬化させることによって形成される。
The semi-cured organic resin precursor 2b is made of a photosensitive or thermosetting resin such as an epoxy resin, a polyimide resin, a bismaleimide triazine resin, a polyphenylene ether resin, and a fluororesin. In the case of a resin, a bisphenol A type epoxy resin, a novolak type epoxy resin, a glycidyl ester type epoxy resin and the like are mixed with a curing agent such as an amine curing agent, an imidazole curing agent, an acid anhydride curing agent and the like. A paste-like epoxy resin precursor is obtained, and the epoxy resin precursor is applied on the insulating substrate 1 by a spin coating method or the like, and then heat-treated with heat at 80 to 200 ° C. for 0.5 to 2 hours. Formed by semi-curing, and when made of photosensitive epoxy resin, phenol Rack resin, melamine,
Propylene glycol monomethyl ether acetate is added to the diallyldiazonium salt and mixed to obtain a paste-like photosensitive epoxy resin precursor, and the paste is applied to the insulating substrate 1 to a predetermined thickness by a spin coating method, a doctor blade method, or the like. Then, the photosensitive epoxy resin precursor was added to the photosensitive epoxy resin precursor for 1 to 3 J
/ Cm 3 and is semi-cured to form the photosensitive epoxy resin precursor.

【0031】また前記半硬化状態の有機樹脂前駆体2b
に形成されているスルーホール5は半硬化状態の有機樹
脂前駆体2bが熱硬化性エポキシ樹脂から成る場合に
は、半硬化の有機樹脂前駆体2bにYAGレーザー、エ
キシマレーザー等を照射し穴をあけることによって、ま
た感光性エポキシ樹脂から成る場合には、絶縁基板1上
にペースト状の感光性エポキシ樹脂前駆体を所定厚みに
塗布し、しかる後、これを高圧水銀ランプ等を用いた露
光機で露光し、半硬化状態とする際に、予め絶縁基板1
上に塗布された感光性エポキシ樹脂前駆体の表面に所定
形状のマスクを配置させておき、該マスクで感光性エポ
キシ樹脂前駆体への露光を遮り、半硬化状態とするのを
阻止するとともに現像により除去することによって形成
される。
The semi-cured organic resin precursor 2b
In the case where the semi-cured organic resin precursor 2b is made of a thermosetting epoxy resin, the through-hole 5 is formed by irradiating the semi-cured organic resin precursor 2b with a YAG laser, an excimer laser, or the like. In the case where a photosensitive epoxy resin is used, a paste-like photosensitive epoxy resin precursor is applied on the insulating substrate 1 to a predetermined thickness, and then the exposed precursor is applied to an exposure machine using a high-pressure mercury lamp or the like. Exposure to a semi-cured state, the insulating substrate 1
A mask having a predetermined shape is arranged on the surface of the photosensitive epoxy resin precursor applied thereon, and the mask blocks exposure to the photosensitive epoxy resin precursor, thereby preventing a semi-cured state and developing. And is formed by removal.

【0032】そして次に図4に示す如く、前記半硬化し
た有機樹脂前駆体2bの上面に所定パターンの薄膜配線
導体3を形成する。
Then, as shown in FIG. 4, a thin film wiring conductor 3 having a predetermined pattern is formed on the upper surface of the semi-cured organic resin precursor 2b.

【0033】前記薄膜配線導体3は銅、ニッケル、金、
アルミニウム等の金属材料から成り、無電解めっき法や
蒸着法、スパッタリング法等の薄膜形成技術及びフォト
リソグラフィ技術を採用することによって形成され、例
えば、銅の無電解めっき法を採用することによって形成
する場合には、半硬化の有機樹脂前駆体2b上面に硫酸
銅0.06モル/リットル、ホルマリン0.3モル/リ
ットル、水酸化ナトリウム0.35モル/リットル、エ
チレンジアミン四酢酸0.35モル/リットルから成る
無電解めっき浴を用いて厚さ1μm乃至40μmの銅層
を被着させ、しかる後、前記銅層をフォトリソグラフィ
技術により所定パターンに加工することによって半硬化
状態の有機樹脂前駆体2b上面に形成される。この場
合、薄膜配線導体3は薄膜形成技術により形成されるこ
とから配線の微細化が可能であり、これによって薄膜配
線導体3を極めて高密度に形成することが可能となる。
The thin film wiring conductor 3 is made of copper, nickel, gold,
It is made of a metal material such as aluminum, and is formed by employing a thin film forming technique such as an electroless plating method, a vapor deposition method, and a sputtering method, and a photolithography technique. For example, it is formed by employing an electroless plating method of copper. In this case, 0.06 mol / l of copper sulfate, 0.3 mol / l of formalin, 0.35 mol / l of sodium hydroxide, 0.35 mol / l of ethylenediaminetetraacetic acid are formed on the upper surface of the semi-cured organic resin precursor 2b. A copper layer having a thickness of 1 μm to 40 μm is deposited by using an electroless plating bath made of, and then the copper layer is processed into a predetermined pattern by a photolithography technique, whereby the upper surface of the organic resin precursor 2b in a semi-cured state is formed. Formed. In this case, since the thin-film wiring conductor 3 is formed by a thin-film forming technique, the wiring can be miniaturized, whereby the thin-film wiring conductor 3 can be formed at an extremely high density.

【0034】そして次に前記半硬化状態の有機樹脂前駆
体2bの形成及び薄膜配線導体3の形成を繰り返して行
い、図5に示す如く、絶縁基板1上に半硬化状態の有機
樹脂前駆体2bの層と薄膜配線導体3の層を交互に多層
に積層した多層配線領域4aを形成する。
Next, the formation of the semi-cured organic resin precursor 2b and the formation of the thin-film wiring conductor 3 are repeated to form the semi-cured organic resin precursor 2b on the insulating substrate 1, as shown in FIG. And the thin film wiring conductor 3 are alternately laminated in a multilayer to form a multilayer wiring region 4a.

【0035】尚、この時、間に半硬化状態の有機樹脂前
駆体2bの層を挟んで上下に位置する薄膜配線導体3を
電気的に接続する必要がある場合には半硬化状態の有機
樹脂前駆体2bの層に設けたスルーホール5の内壁に上
下に位置する薄膜配線導体3を電気的に接続するスルー
ホール導体6を被着させればよい。
At this time, when it is necessary to electrically connect the thin film wiring conductors 3 located above and below the layer of the organic resin precursor 2b in the semi-cured state, the organic resin in the semi-cured state is required. What is necessary is just to adhere | attach the through-hole conductor 6 which electrically connects the thin film wiring conductor 3 located up and down to the inner wall of the through-hole 5 provided in the layer of the precursor 2b.

【0036】そして最後に前記絶縁基板1上に半硬化状
態の有機樹脂前駆体2bの層と薄膜配線導体3の層とを
交互に多層に積層した多層配線領域4aを130℃〜2
30℃の温度で0.5〜3時間、熱処理し、各半硬化状
態の有機樹脂前駆体2bの全てを同時に、かつ完全に熱
硬化させ、有機樹脂絶縁層2となすことによって図1に
示す製品としての多層配線基板が完成する。この場合、
各半硬化状態の有機樹脂前駆体2bはその内部に重合反
応に関与する基が充分に存在しているため上下に位置す
る各有機樹脂前駆体2bに熱を加えて一度に完全硬化さ
せると上下に位置する各有機樹脂前駆体2bはその上下
間において互いに重合反応を起こし、その結果、各有機
樹脂絶縁層2はその各々が強固に接合し、外力が印加さ
れても剥離を発生することはなくなる。
Finally, a multilayer wiring region 4a in which a layer of the organic resin precursor 2b in a semi-cured state and a layer of the thin film wiring conductor 3 are alternately laminated on the insulating substrate 1 is formed at a temperature of 130.degree.
Heat treatment is performed at a temperature of 30 ° C. for 0.5 to 3 hours, and all of the semi-cured organic resin precursors 2 b are simultaneously and completely thermally cured to form the organic resin insulating layer 2, as shown in FIG. A multilayer wiring board as a product is completed. in this case,
Each of the semi-cured organic resin precursors 2b has a sufficient amount of groups involved in the polymerization reaction in the interior thereof. , The organic resin precursors 2b located above and below cause a polymerization reaction with each other between the upper and lower portions thereof. As a result, each of the organic resin insulating layers 2 is firmly bonded to each other, and it is possible that peeling occurs even when an external force is applied. Disappears.

【0037】尚、本発明は上述の実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲であれば種
々の変更は可能であり、例えば上述の実施例では、上面
に銅板を所定パターンに加工した配線導体2aを有する
絶縁基板1上に有機樹脂絶縁層2と薄膜配線導体3とを
交互に多層に積層したが、絶縁基板1上に直接、無電解
めっき法等の薄膜形成技術及びフォトリソグラフィ技術
により薄膜配線導体3を形成し、しかる後、その上部に
有機樹脂絶縁層2を多層に積層して形成してもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the above-described embodiment, a copper plate is provided on the upper surface. The organic resin insulating layers 2 and the thin film wiring conductors 3 are alternately laminated in multiple layers on the insulating substrate 1 having the wiring conductor 2a processed into a predetermined pattern, but the thin film is formed directly on the insulating substrate 1 by electroless plating or the like. The thin film wiring conductor 3 may be formed by a technique and a photolithography technique, and thereafter, the organic resin insulating layer 2 may be formed on the multilayer by laminating a plurality of layers.

【0038】[0038]

【発明の効果】本発明の多層配線基板の製造方法によれ
ば、半硬化状態の有機樹脂前駆体を上下に多層に積層し
た後、全ての有機樹脂前駆体を一度に完全硬化されるた
め下部に位置する半硬化状態の有機樹脂前駆体は重合反
応に関与する基が充分に存在している。そのため上下に
位置する各有機樹脂前駆体に熱を加えて一度に完全硬化
させる際、上下に位置する各有機樹脂前駆体はその上下
間において互いに重合反応を起こし、その結果、各有機
樹脂絶縁層はその各々が強固に接合し、外力が印加され
ても剥離を発生することはなくなる。
According to the method of manufacturing a multilayer wiring board of the present invention, after the organic resin precursor in a semi-cured state is laminated on the upper and lower layers, all the organic resin precursors are completely cured at once, so that the lower part is cured. The organic resin precursor in the semi-cured state, which is located in (1), has sufficient groups involved in the polymerization reaction. Therefore, when applying heat to the upper and lower organic resin precursors to completely cure them at once, the upper and lower organic resin precursors cause a polymerization reaction between the upper and lower organic resin precursors, and as a result, each of the organic resin insulating layers Are strongly bonded to each other, and no peeling occurs even when an external force is applied.

【0039】また本発明の製造方法によれば、配線導体
を薄膜形成技術により形成したことから配線の微細化が
可能となり、配線を極めて高密度に形成することが可能
となる。
Further, according to the manufacturing method of the present invention, since the wiring conductor is formed by the thin film forming technique, the wiring can be miniaturized, and the wiring can be formed at an extremely high density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法によって製作された多層配線
基板の一実施例を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board manufactured by a manufacturing method of the present invention.

【図2】本発明の多層配線基板の製造方法を説明するた
めの断面図である。
FIG. 2 is a cross-sectional view illustrating a method for manufacturing a multilayer wiring board according to the present invention.

【図3】本発明の多層配線基板の製造方法を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view illustrating a method for manufacturing a multilayer wiring board according to the present invention.

【図4】本発明の多層配線基板の製造方法を説明するた
めの断面図である。
FIG. 4 is a cross-sectional view illustrating a method for manufacturing a multilayer wiring board according to the present invention.

【図5】本発明の多層配線基板の製造方法を説明するた
めの断面図である。
FIG. 5 is a cross-sectional view for explaining the method for manufacturing the multilayer wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・有機樹脂絶縁層 2b・・有機樹脂前駆体 3・・・薄膜配線導体 4・・・多層配線部 4a・・多層配線領域 5・・・スルーホール 6・・・スルーホール導体 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Organic resin insulating layer 2b ... Organic resin precursor 3 ... Thin film wiring conductor 4 ... Multilayer wiring part 4a ... Multilayer wiring area 5 ... Through hole 6 ...・ Through-hole conductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に有機樹脂絶縁層と薄膜配線導
体とを交互に積層した多層配線部を形成して成る多層配
線基板であって、前記多層配線部が下記(1)乃至
(4)の工程により形成されることを特徴とする多層配
線基板の製造方法。絶縁基板上に、(1)有機樹脂前駆
体を塗布するとともに熱処理し、有機樹脂前駆体を半硬
化させる工程と、(2)前記半硬化の有機樹脂前駆体上
面に所定パターンの薄膜配線導体を形成する工程と、
(3)前記(1)及び(2)の工程を繰り返し、半硬化
の有機樹脂前駆体と、所定パターンの薄膜配線導体とを
交互に多層に積層し、多層配線領域を形成する工程と、
(4)前記多層配線領域を熱処理し、各半硬化の有機樹
脂前駆体を完全に硬化させ、有機樹脂絶縁層となす工
程。
1. A multi-layer wiring board comprising a multi-layer wiring portion formed by alternately laminating organic resin insulating layers and thin-film wiring conductors on an insulating substrate, wherein the multi-layer wiring portion comprises the following (1) to (4) A) a method for manufacturing a multilayer wiring board, wherein (1) a step of applying an organic resin precursor and heat-treating the same to semi-curing the organic resin precursor on the insulating substrate; and (2) forming a thin-film wiring conductor having a predetermined pattern on the upper surface of the semi-cured organic resin precursor. Forming,
(3) repeating the steps (1) and (2), alternately laminating a semi-cured organic resin precursor and a thin-film wiring conductor having a predetermined pattern in multiple layers to form a multilayer wiring region;
(4) a step of heat-treating the multilayer wiring region to completely cure each semi-cured organic resin precursor to form an organic resin insulating layer.
【請求項2】絶縁基板上に有機樹脂絶縁層と薄膜配線導
体とを交互に積層した多層配線部を形成して成る多層配
線基板であって、前記多層配線部が下記(1)乃至
(4)の工程により形成されることを特徴とする多層配
線基板の製造方法。絶縁基板上に、(1)感光性有機樹
脂前駆体を塗布するとともに光照射し、感光性有機樹脂
前駆体を半硬化させる工程と、(2)前記半硬化の感光
性有機樹脂前駆体上面に所定パターンの薄膜配線導体を
形成する工程と、(3)前記(1)及び(2)の工程を
繰り返し、半硬化の感光性有機樹脂前駆体と、所定パタ
ーンの薄膜配線導体とを交互に多層に積層し、多層配線
領域を形成する工程と、(4)前記多層配線領域を熱処
理し、各半硬化の感光性有機樹脂前駆体を完全に硬化さ
せ、有機樹脂絶縁層となす工程。
2. A multi-layer wiring board comprising a multi-layer wiring portion formed by alternately laminating organic resin insulating layers and thin-film wiring conductors on an insulating substrate, wherein the multi-layer wiring portion comprises the following (1) to (4) A) a method for manufacturing a multilayer wiring board, wherein (1) a step of applying a photosensitive organic resin precursor and irradiating light on the insulating substrate to partially cure the photosensitive organic resin precursor; and (2) a step of coating the semi-cured photosensitive organic resin precursor on the upper surface. A step of forming a thin film wiring conductor having a predetermined pattern and (3) repeating the above steps (1) and (2) to alternately multiply a semi-cured photosensitive organic resin precursor and a thin film wiring conductor having a predetermined pattern. And (4) heat treating the multilayer wiring region to completely cure each semi-cured photosensitive organic resin precursor to form an organic resin insulating layer.
JP15846596A 1996-06-19 1996-06-19 Method for manufacturing multilayer wiring board Pending JPH1013019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15846596A JPH1013019A (en) 1996-06-19 1996-06-19 Method for manufacturing multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15846596A JPH1013019A (en) 1996-06-19 1996-06-19 Method for manufacturing multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH1013019A true JPH1013019A (en) 1998-01-16

Family

ID=15672341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15846596A Pending JPH1013019A (en) 1996-06-19 1996-06-19 Method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH1013019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189598B2 (en) 2003-03-03 2007-03-13 Seiko Epson Corporation Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
JP2013135229A (en) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd Manufacturing method of multilayer circuit board and multilayer circuit board manufactured by the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189598B2 (en) 2003-03-03 2007-03-13 Seiko Epson Corporation Wiring board, method of manufacturing the same, semiconductor device, and electronic instrument
JP2013135229A (en) * 2011-12-22 2013-07-08 Samsung Techwin Co Ltd Manufacturing method of multilayer circuit board and multilayer circuit board manufactured by the same
US9532466B2 (en) 2011-12-22 2016-12-27 Haesung Ds Co., Ltd. Method of manufacturing multi-layer circuit board and multi-layer circuit board manufactured by using the method

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH10322026A (en) Multilayered wiring board
JPH1027968A (en) Multilayer wiring board
JPH10322019A (en) Multilayered wiring board
JPH114080A (en) Multilayered wiring board
JPH1126939A (en) Multilayered wiring board
JPH11150370A (en) Multilayer wiring board
JPH09312479A (en) Multi-layer circuit board
JPH10163634A (en) Multilayer wiring board
JPH10326966A (en) Multilayered wiring board
JPH10335817A (en) Multilayered wiring board
JPH10341082A (en) Multilayered wiring board
JPH1013031A (en) Multilayered wiring board
JPH104262A (en) Multilayer wiring substrate
JPH118470A (en) Multilevel interconnection board
JPH10150266A (en) Multilayer interconnection board
JPH1197843A (en) Multilayered wiring board
JPH09321440A (en) Multilayer miring board
JPH09289380A (en) Multilayer wiring board
JPH104261A (en) Multilayer wiring substrate
JPH1197847A (en) Multilayered wiring board