JP2000106484A - Multilayer wiring board - Google Patents

Multilayer wiring board

Info

Publication number
JP2000106484A
JP2000106484A JP27403998A JP27403998A JP2000106484A JP 2000106484 A JP2000106484 A JP 2000106484A JP 27403998 A JP27403998 A JP 27403998A JP 27403998 A JP27403998 A JP 27403998A JP 2000106484 A JP2000106484 A JP 2000106484A
Authority
JP
Japan
Prior art keywords
organic resin
wiring conductor
resin insulating
film wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27403998A
Other languages
Japanese (ja)
Inventor
Takuji Seri
拓司 世利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27403998A priority Critical patent/JP2000106484A/en
Publication of JP2000106484A publication Critical patent/JP2000106484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer wiring board that is enhanced in reliability by effectively protecting an organic resin insulating layer against cracking. SOLUTION: A multilayer wiring board has a structure where organic resin insulating layers 2 and thin film wiring conductor layers 3 are alternately laminated on an insulating board 1, and the thin film wiring conductor layers 3 arranged in a vertical direction are electrically connected together through a through-hole conductor provided to the organic resin insulating layer 2, where the curvature radius R of the curved edge face (a) of the thin film wiring conductor layer 3 interposed between the organic resin insulating layers 2 is represented by a formula, R>=d/2 (where R: curvature radius, d: thickness of thin film wiring conductor layer).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMo−Mn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Hitherto, a multilayer wiring board used in a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMo−Mn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミック体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次にこれを複数枚積層するとと
もに還元雰囲気中で焼成し、高融点金属粉末と生セラミ
ック体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-shaped metal paste is printed and applied on the outer surface of the green ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method of sintering and integrating a metal powder and a green ceramic body.

【0004】なお、前記配線導体が形成されるセラミッ
ク体としては通常、酸化アルミニウム質焼結体やムライ
ト質焼結体等の酸化物系セラミックス、或いは表面に酸
化物膜を被着させた窒化アルミニウム質焼結体や炭化珪
素質焼結体等の非酸化物系セラミックスが使用される。
The ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film deposited on the surface. Non-oxide ceramics such as a porous sintered body and a silicon carbide sintered body are used.

【0005】しかしながら、このMoーMn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で、配線導体を高密度に形成することができない
という欠点を有していた。そこで上記欠点を解消するた
めに配線導体を従来周知の厚膜形成技術により形成する
のに変えて微細化が可能な薄膜形成技術を用いて高密度
に形成した多層配線基板が使用されるようになってき
た。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste, so that miniaturization is difficult, and the wiring conductor is formed at a high density. Had the disadvantage of not being able to do so. In order to solve the above-mentioned drawbacks, instead of forming the wiring conductor by a conventionally known thick film forming technology, a multilayer wiring substrate formed at a high density by using a thin film forming technology capable of miniaturization has been used. It has become.

【0006】かかる配線導体を薄膜形成技術により形成
した多層配線基板は、一般に酸化アルミニウム質焼結体
から成るセラミックスやガラス繊維を織り込んだ布にエ
ポキシ樹脂を含浸させて形成されるガラスエポキシ樹脂
等から成る基板の上面に、有機樹脂前駆体をスピンコー
ト法により被着させ、これを熱硬化処理することによっ
て形成されるエポキシ樹脂等の有機樹脂から成る絶縁層
と、銅を無電解めっき法や蒸着法等の薄膜形成技術及び
フォトリソグラフィー技術を採用することによって形成
される薄膜配線導体層とを交互に積層させた構造を有し
ている。
A multilayer wiring board in which such wiring conductors are formed by a thin film forming technique is generally made of glass epoxy resin formed by impregnating a ceramic or glass fiber woven cloth with an epoxy resin into an epoxy resin. An organic resin precursor is applied to the upper surface of the substrate by spin coating, and an insulating layer made of an organic resin such as an epoxy resin formed by subjecting the organic resin to a thermosetting treatment, and copper is formed by electroless plating or vapor deposition. It has a structure in which thin-film wiring conductor layers formed by adopting a thin-film forming technique such as a method and a photolithography technique are alternately laminated.

【0007】またこの多層配線基板においては、積層さ
れた各有機樹脂絶縁層間に配設されている薄膜配線導体
層が有機樹脂絶縁層に形成したスルーホールの内壁に被
着されているスルーホール導体を介して電気的に接続さ
れており、各有機樹脂絶縁層へのスルーホールの形成は
まず各有機樹脂絶縁層上にレジスト材を塗布するととも
にこれに露光、現像を施すことによって所定位置に所定
形状の窓部を形成し、次に前記レジスト材の窓部にエッ
チング液を配し、レジスト材の窓部に位置する有機樹脂
絶縁層を除去して有機樹脂絶縁層に穴(スルーホール)
を形成し、最後に前記レジスト材を有機樹脂絶縁層上よ
り剥離させ除去することによって行われている。
In this multilayer wiring board, a thin-film wiring conductor layer provided between the laminated organic resin insulating layers is provided on the inner wall of a through hole formed in the organic resin insulating layer. The through holes in each organic resin insulating layer are formed by first applying a resist material on each organic resin insulating layer and exposing and developing the resist material to a predetermined position. A window having a shape is formed, and then an etchant is disposed on the window of the resist material, and the organic resin insulating layer located on the window of the resist material is removed to form a hole (through hole) in the organic resin insulating layer.
And finally removing and removing the resist material from the organic resin insulating layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この多
層配線基板はエポキシ樹脂等から成る有機樹脂絶縁層の
熱膨張係数が約40ppm〜100ppmであり、銅等
から成る薄膜配線導体層の熱膨張係数(15ppm〜2
0ppm)と大きく相違すること及び有機樹脂絶縁層間
に配設されている薄膜配線導体層の断面が略四角形状を
成し、四隅に角部が形成されていること等から有機樹脂
前駆体を熱硬化させて有機樹脂絶縁層を形成する際、有
機樹脂絶縁層と薄膜配線導体層間に両者の熱膨張係数の
相違に起因する熱応力が発生するとともにこれが薄膜配
線導体層の角部に集中して大きくなり、その結果、前記
大きく熱応力によって薄膜配線導体層の角部と接する有
機樹脂絶縁層にクラックが発生し、これが周辺の薄膜配
線導体層に達して薄膜配線導体層を断線させるという致
命的な欠点を招来し、多層配線基板としての信頼性が極
めて低いものであった。
However, in this multilayer wiring board, the thermal expansion coefficient of the organic resin insulating layer made of epoxy resin or the like is about 40 to 100 ppm, and the thermal expansion coefficient of the thin film wiring conductor layer made of copper or the like ( 15 ppm to 2
0 ppm), and the cross section of the thin film wiring conductor layer disposed between the organic resin insulating layers has a substantially square shape, and the corners are formed at the four corners. When the organic resin insulation layer is formed by curing, thermal stress is generated between the organic resin insulation layer and the thin-film wiring conductor layer due to a difference in thermal expansion coefficient between the organic resin insulation layer and the thin-film wiring conductor layer. As a result, cracks occur in the organic resin insulating layer in contact with the corners of the thin-film wiring conductor layer due to the large thermal stress, and the cracks reach the peripheral thin-film wiring conductor layer and break the thin-film wiring conductor layer. And the reliability as a multilayer wiring board is extremely low.

【0009】本発明は上記欠点に鑑み案出されたもの
で、その目的は有機樹脂絶縁層にクラックが発生するの
を有効に防止し、信頼性を高いものとなした多層配線基
板を提供することにある。
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to provide a multilayer wiring board which effectively prevents cracks from occurring in an organic resin insulating layer and has high reliability. It is in.

【0010】[0010]

【課題を解決するための手段】本発明は、絶縁基板と、
該絶縁基板上に形成され、有機樹脂絶縁層と薄膜配線導
体層とを交互に積層するとともに上下に位置する薄膜配
線導体層を有機樹脂絶縁層に設けたスルーホール導体を
介して電気的に接続してなる多層配線基板であって、前
記有機樹脂絶縁層間に配設される薄膜配線導体層の側面
を下記式で表される曲率半径の曲面としたこと特徴とす
るものである。 R≧d/2 (R:曲率半径、d:薄膜配線導体層の厚み) 本発明の多層配線基板によれば、有機樹脂絶縁層間に配
設される薄膜配線導体層の側面をR≧d/2(R:曲率
半径、d:薄膜配線導体層の厚み)で表される曲率半径
の曲面としたことから有機樹脂前駆体を熱硬化させて有
機樹脂絶縁層を形成する際、有機樹脂絶縁層と薄膜配線
導体層間に両者の熱膨張係数の相違に起因する熱応力が
発生したとしても該熱応力は薄膜配線導体層の側面が曲
面をなし、角部を有さないことから集中して大きくなる
ことはなく、これによって有機樹脂絶縁層にクラックが
発生するのを有効に防止して有機樹脂絶縁層と薄膜配線
導体層との接合を強固とするとともに薄膜配線導体層に
断線が生じるのを有効に防止し、多層配線基板としての
信頼性を高いものとなすことができる。
The present invention comprises an insulating substrate,
The organic resin insulating layer and the thin-film wiring conductor layer formed on the insulating substrate are alternately laminated, and the upper and lower thin-film wiring conductor layers are electrically connected via through-hole conductors provided in the organic resin insulating layer. Wherein the side surfaces of the thin film wiring conductor layer disposed between the organic resin insulating layers are curved surfaces having a radius of curvature represented by the following equation. R ≧ d / 2 (R: radius of curvature, d: thickness of thin-film wiring conductor layer) According to the multilayer wiring board of the present invention, the side surface of the thin-film wiring conductor layer disposed between the organic resin insulating layers is R ≧ d / 2 (R: radius of curvature, d: thickness of the thin-film wiring conductor layer), the organic resin precursor is thermally cured to form an organic resin insulating layer when the organic resin precursor is formed. Even when thermal stress due to the difference in the thermal expansion coefficient between the two and the thin film wiring conductor layer occurs, the thermal stress is concentrated because the side surface of the thin film wiring conductor layer has a curved surface and has no corners. This effectively prevents cracks from occurring in the organic resin insulating layer, strengthens the bonding between the organic resin insulating layer and the thin-film wiring conductor layer, and prevents breakage in the thin-film wiring conductor layer. Effective prevention and high reliability as a multilayer wiring board It can be made as.

【0011】[0011]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1及び図2は、本発明の多層配線基
板の一実施例を示し、1は絶縁基板、2は有機樹脂絶縁
層、3は薄膜配線導体層である。
Next, the present invention will be described in detail with reference to the accompanying drawings. 1 and 2 show an embodiment of the multilayer wiring board of the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer, and 3 is a thin-film wiring conductor layer.

【0012】前記絶縁基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体層3とから成る多層配線部4が形成
されており、該多層配線部4を支持する支持部材として
作用する。
On the upper surface of the insulating substrate 1, a multi-layer wiring portion 4 comprising an organic resin insulating layer 2 and a thin-film wiring conductor layer 3 is formed, and functions as a support member for supporting the multi-layer wiring portion 4.

【0013】前記絶縁基板1は酸化アルミニウム質焼結
体やムライト質焼結体等の酸化物系セラミックス、或い
は表面に酸化物膜を有する窒化アルミニウム質焼結体、
炭化珪素質兢焼結等の非酸化物系セラミックス、更には
ガラス繊維を織り込んだ布にエポキシ樹脂を含浸させた
ガラスエポキシ樹脂等の電気絶縁材料で形成されてお
り、例えば、酸化アルミニウム質焼結体で形成されてい
る場合には、酸化アルミニウム、酸化珪素、酸化カルシ
ウム、酸化マグネシウム等の原料粉末に適当な有機溶
剤、溶媒を添加混合して泥漿状となすとともにこれを従
来周知のドクターブレード法やカレンダーロール法を採
用することによってセラミックグリーンシート(セラミ
ック生シート)を形成し、しかる後、前記セラミックグ
リーンシートに適当な打ち抜き加工を施し、所定形状と
なすとともに高温(約1600℃)で焼成することによ
って、或いは酸化アルミニウム等の原料粉末に適当な有
機溶剤、溶媒を添加混合して原料粉末を調整するととも
に該原料粉末をプレス成形法によって所定形状に成形
し、最後に前記成形体を約1600℃の温度で焼成する
ことによって製作され、またガラスエポキシ樹脂から成
る場合は、例えばガラス繊維を織り込んだ布にエポキシ
樹脂の前駆体を含浸させるとともに該エポキシ樹脂前駆
体を所定の温度で熱硬化させることによって製作され
る。
The insulating substrate 1 is made of an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride sintered body having an oxide film on its surface.
It is made of non-oxide ceramics such as silicon carbide sintered and electric insulating material such as glass epoxy resin impregnated with epoxy resin in cloth woven with glass fiber. When formed in a body, an appropriate organic solvent and a suitable solvent are added to raw material powders such as aluminum oxide, silicon oxide, calcium oxide, and magnesium oxide to form a slurry, which is then mixed with a conventionally known doctor blade method. A ceramic green sheet (ceramic green sheet) is formed by employing a calender roll method or the like, and thereafter, the ceramic green sheet is subjected to an appropriate punching process, formed into a predetermined shape, and fired at a high temperature (about 1600 ° C.). By adding an appropriate organic solvent or solvent to the raw material powder such as aluminum oxide. When the raw material powder is adjusted and formed into a predetermined shape by a press molding method, and finally, the green body is manufactured by firing at a temperature of about 1600 ° C. For example, it is manufactured by impregnating a cloth woven with glass fibers with a precursor of an epoxy resin and thermally curing the epoxy resin precursor at a predetermined temperature.

【0014】また前記絶縁基板1はその上面に有機樹脂
絶縁層2と薄膜配線導体層3とが交互に多層に積層され
て形成される多層配線部4が被着されており、該多層配
線部4を構成する有機樹脂絶縁層2は上下に位置する薄
膜配線導体層3の電気的絶縁をはかる作用をなし、また
薄膜配線導体層3は電気信号を伝達するための伝達路と
して作用する。
On the upper surface of the insulating substrate 1, a multilayer wiring portion 4 formed by alternately stacking an organic resin insulating layer 2 and a thin film wiring conductor layer 3 is attached. The organic resin insulating layer 2 constituting 4 functions to electrically insulate the thin film wiring conductor layers 3 positioned above and below, and the thin film wiring conductor layer 3 functions as a transmission path for transmitting an electric signal.

【0015】前記多層配線部4の有機樹脂絶縁層2は、
エポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリフ
ェニレンエーテル樹脂、ふっ素樹脂等の有機樹脂から成
り、例えば、エポキシ樹脂からなる場合、ビスフェノー
ルA型エポキシ樹脂、ノボラック型エポキシ樹脂、グリ
シジルエステル型エポキシ樹脂等にアミン系硬化剤、イ
ミダゾール系硬化剤、酸無水物系硬化剤等の硬化剤を添
加混合してペースト状のエポキシ樹脂前駆体を得るとと
もに該エポキシ樹脂前駆体を絶縁基板1の上部にスピン
コート法により被着させ、しかる後、これを80℃〜2
00℃の熱で0.5〜3時間熱処理し、熱硬化させるこ
とによって形成される。
The organic resin insulating layer 2 of the multilayer wiring section 4
It is made of an organic resin such as an epoxy resin, a bismaleimide triazine resin, a polyphenylene ether resin, and a fluorine resin. And a curing agent such as an imidazole-based curing agent or an acid anhydride-based curing agent are added and mixed to obtain a paste-like epoxy resin precursor, and the epoxy resin precursor is applied on the insulating substrate 1 by spin coating. After that, this is heated to 80 ° C. to 2
It is formed by heat-treating with heat of 00 ° C. for 0.5 to 3 hours and heat-curing.

【0016】更に前記多層配線部4の有機樹脂絶縁層2
はその各々の所定位置に最小径が有機樹脂絶縁層2の厚
みに対して約1.5倍程度のスルーホール5が形成され
ており、該スルーホール5は後述する有機樹脂絶縁層2
を介して上下に位置する薄膜配線導体層3の各々を電気
的に接続するスルーホール導体6を形成するための形成
孔として作用する。
Further, the organic resin insulating layer 2 of the multilayer wiring section 4
Has a through hole 5 having a minimum diameter of about 1.5 times the thickness of the organic resin insulating layer 2 at each predetermined position.
And acts as a forming hole for forming a through-hole conductor 6 that electrically connects each of the thin film wiring conductor layers 3 located above and below via the through hole.

【0017】前記有機樹脂絶縁層2に設けるスルーホー
ル5は有機樹脂絶縁層2に従来周知のフォトリソグラフ
ィー技術を採用することによって所定の径に形成され
る。
The through holes 5 provided in the organic resin insulating layer 2 are formed in the organic resin insulating layer 2 to have a predetermined diameter by employing a conventionally known photolithography technique.

【0018】また前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体層3が、更に各有機樹脂絶縁
層2に設けたスルーホール5の内壁にはスルーホール導
体6が各々配設されており、スルーホール導体6によっ
て間に有機樹脂絶縁層2を挟んで上下に位置する各薄膜
配線導体層3の各々が電気的に接続されるようになって
いる。
A thin-film wiring conductor layer 3 having a predetermined pattern is provided on the upper surface of each organic resin insulating layer 2, and a through-hole conductor 6 is provided on the inner wall of a through hole 5 provided in each organic resin insulating layer 2. The respective through-hole conductors 6 electrically connect the respective thin-film wiring conductor layers 3 positioned above and below the organic resin insulating layer 2 therebetween.

【0019】前記各有機樹脂絶縁層2の上面及びスルー
ホール5の内壁に配設される薄膜配線導体層3及びスル
ーホール導体6は電気抵抗が小さく電気信号を減衰させ
ることなく良好に伝達させることが可能な銅やアルミニ
ウムから成り、無電解めっき法や蒸着法、スパッタリン
グ法等の薄膜形成技術及びフォトリソグラフイー技術を
採用することによって形成され、例えば、銅の無電解め
っき法で形成される場合には、有機樹脂絶縁層2の上面
及びスルーホール5の内表面に、硫酸銅0.06モル/
リットル、ホルマリン0.3モル/リットル、水酸化ナ
トリウム0.35モル/リットル、エチレンジアミン四
酢酸0.35モル/リットルからなる無竃解銅めっき浴
を用いて厚さ1μm乃至40μmの銅層を被着させ、し
かる後、前記銅層をフォトリソグラフィー技術により所
定パターンに加工することによって各有機樹脂絶縁層2
間、及びスルーホール5内壁に配設される。この場合、
薄膜配線導体層3及びスルーホール導体6は薄膜形成技
術により形成されることから配線の微細化が可能であ
り、これによって薄膜配線導体層3を極めて高密度に形
成することが可能となる。
The thin-film wiring conductor layer 3 and the through-hole conductor 6 disposed on the upper surface of each of the organic resin insulating layers 2 and the inner wall of the through-hole 5 have a small electric resistance and can transmit electric signals well without attenuating. Is formed by adopting a thin film forming technology such as electroless plating, vapor deposition, sputtering, and photolithography, and photolithography, for example, when formed by electroless plating of copper. The upper surface of the organic resin insulating layer 2 and the inner surface of the through hole 5 are provided with 0.06 mol / mol of copper sulfate.
Liter, 0.3 mol / l of formalin, 0.35 mol / l of sodium hydroxide, and 0.35 mol / l of ethylenediaminetetraacetic acid were coated with a copper layer having a thickness of 1 μm to 40 μm using a non-cooking copper plating bath. Thereafter, the copper layer is processed into a predetermined pattern by a photolithography technique so that each of the organic resin insulating layers 2 is formed.
It is arranged on the inner wall of the space and through hole 5. in this case,
Since the thin-film wiring conductor layer 3 and the through-hole conductor 6 are formed by a thin-film forming technique, the wiring can be miniaturized, thereby making it possible to form the thin-film wiring conductor layer 3 at an extremely high density.

【0020】また前記薄膜配線導体層3は図2に示す如
く、有機樹脂絶縁層2間に配設されている領域におい
て、側面aをR≧d/2(R:曲率半径、d:薄膜配線
導体層3の厚み)で表される曲率半径の曲面となし、薄
膜配線導体層3の断面に角部が形成されないようになし
てある。そのため有機樹脂前駆体を熱硬化させて有機樹
脂絶縁層2を形成する際、有機樹脂絶縁層2と薄膜配線
導体層3間に両者の熱膨張係数の相違に起因する熱応力
が発生したとしても該熱応力は集中して大きくなること
はなく、これによって有機樹脂絶縁層2にクラックが発
生するのが有効に防止されて、有機樹脂絶縁層2と薄膜
配線導体層3との接合が強固となるとともに薄膜配線導
体層3に断線が生じるのが有効に防止されて多層配線基
板としての信頼性が極めて高いものとなる。
As shown in FIG. 2, in the region provided between the organic resin insulating layers 2, the thin film wiring conductor layer 3 has a side surface a of R ≧ d / 2 (R: radius of curvature, d: thin film wiring). (Thickness of the conductor layer 3) so that no corner is formed in the cross section of the thin-film wiring conductor layer 3. Therefore, when the organic resin precursor is thermally cured to form the organic resin insulating layer 2, even if a thermal stress is generated between the organic resin insulating layer 2 and the thin-film wiring conductor layer 3 due to a difference in thermal expansion coefficient between the two. The thermal stress does not concentrate and increase, thereby effectively preventing cracks from being generated in the organic resin insulating layer 2 and making the bonding between the organic resin insulating layer 2 and the thin film wiring conductor layer 3 firm. In addition, the occurrence of disconnection in the thin film wiring conductor layer 3 is effectively prevented, and the reliability as a multilayer wiring board becomes extremely high.

【0021】前記薄膜配線導体層3はその側面aがR<
d/2(R:曲率半径、d:薄膜配線導体層3の厚み)
の曲率半径を有する曲面となった場合、薄膜配線導体層
3の断面に角部が形成され、該角部に有機樹脂絶縁層2
と薄膜配線導体層3の熱膨張係数の相違に起因して発生
する熱応力が集中し、熱応力が極めて大きな値となって
有機樹脂絶縁層2にクラックを発生させてしまう。従っ
て、前記薄膜配線導体層3はその側面aをR≧d/2
(R:曲率半径、d:薄膜配線導体層3の厚み)の範囲
の曲率半径を有する曲面とすることに特定される。
The side surface a of the thin film wiring conductor layer 3 is R <
d / 2 (R: radius of curvature, d: thickness of the thin film wiring conductor layer 3)
When the curved surface has a radius of curvature, a corner is formed in the cross section of the thin-film wiring conductor layer 3 and the organic resin insulating layer 2 is formed on the corner.
And the thermal stress generated due to the difference in the thermal expansion coefficient between the thin film wiring conductor layer 3 and the thin film wiring conductor layer 3 concentrates, and the thermal stress becomes an extremely large value, causing cracks in the organic resin insulating layer 2. Therefore, the side surface a of the thin film wiring conductor layer 3 is R ≧ d / 2.
(R: radius of curvature, d: thickness of the thin film wiring conductor layer 3) is specified as a curved surface having a radius of curvature.

【0022】また前記薄膜配線導体層3は、該薄膜配線
導体層3が形成される位置の有機樹脂絶縁層2上面を例
えば、炭酸ガスレーザー等により中心部の深さが約5μ
mの椀状の溝をあけておき、更に該溝に形成された薄膜
配線導体層3の上面側の側面をエッチング処理すること
によってその側面aがR≧d/2(R:曲率半径、d:
薄膜配線導体層3の厚み)の範囲の曲率半径を有する曲
面に形成される。
The center of the thin-film wiring conductor layer 3 has a depth of about 5 μm by a carbon dioxide laser or the like.
m, and a side surface on the upper surface side of the thin film wiring conductor layer 3 formed in the groove is etched so that the side surface a is R ≧ d / 2 (R: radius of curvature, d :
(Thickness of the thin film wiring conductor layer 3).

【0023】なお、前記有機樹脂絶縁層2と薄膜配線導
体層3とを交互に多層に積層して形成される多層配線部
4は各有機樹脂絶縁層2の上面を中心線平均租さ(R
a)で0.05μm≦Ra≦5μmの粗面としておくと
有機樹脂絶縁層2の上面と薄膜配線導体層3の下面との
接合及び上下に位置する有機樹脂絶縁層2同士の接合を
強固となすことができる。従って、前記多層配線部4の
各有機樹脂絶縁層2はその上面をエッチング加工技術等
を採用することによって粗し、中心線平均粗さ(Ra)
で0.05μm≦Ra≦5μmの粗面としておくことが
好ましい。
The multilayer wiring portion 4 formed by alternately laminating the organic resin insulating layers 2 and the thin film wiring conductor layers 3 in a multilayer structure has a center line average roughness (R) of the upper surface of each organic resin insulating layer 2.
If a rough surface of 0.05 μm ≦ Ra ≦ 5 μm is set in a), the bonding between the upper surface of the organic resin insulating layer 2 and the lower surface of the thin film wiring conductor layer 3 and the bonding between the organic resin insulating layers 2 located above and below are firm. I can do it. Therefore, the upper surface of each organic resin insulating layer 2 of the multilayer wiring portion 4 is roughened by employing an etching technique or the like, and the center line average roughness (Ra) is obtained.
It is preferable to make a rough surface of 0.05 μm ≦ Ra ≦ 5 μm.

【0024】また前記有機樹脂絶縁層2はその各々の厚
みが100μmを超えると有機樹脂絶縁層2にフォトリ
ソグラフィー技術を採用することによってスルーホール
5を形成する際、エッチング加工時間が長くなってスル
ーホール5を所望する鮮明な形状に形成するのが困難と
なり、また5μm未満となると有機樹脂絶縁層2の上面
に上下に位置する有機樹脂絶縁層2の接合強度を上げる
ための粗面加工を施す際、有機樹脂絶縁層2に不要な穴
が形成され上下に位置する薄膜配線導体層3に不要な電
気的短絡を招来してしまう危険性がある。従って、前記
有機樹脂絶縁層2はその各々の厚みを5μm〜100μ
mの範囲としておくことが好ましい。
If the thickness of each of the organic resin insulating layers 2 exceeds 100 μm, the photolithography technique is used to form the through holes 5 in the organic resin insulating layers 2, so that the etching processing time becomes longer and the through-holes become longer. It is difficult to form the hole 5 into a desired clear shape, and if it is less than 5 μm, rough surface processing is performed on the upper surface of the organic resin insulating layer 2 to increase the bonding strength of the upper and lower organic resin insulating layers 2. In this case, there is a risk that unnecessary holes are formed in the organic resin insulating layer 2 and unnecessary electrical short circuits are caused in the thin film wiring conductor layers 3 located above and below. Accordingly, the organic resin insulating layer 2 has a thickness of 5 μm to 100 μm.
It is preferable to set the range of m.

【0025】更に前記多層配線部4の各薄膜配線導体層
3はその厚みが1μm未満であると各薄膜配線導体層3
の電気抵抗が大きなものとなって各薄膜配線導体層3に
所定の電気信号を伝達させることが困難なものとなり、
また40μmを超えると薄膜配線導体層3を有機樹脂絶
縁層2に被着させる際に薄膜配線導体層3の内部に大き
な応力が内在し、該大きな内在応力によって薄膜配線導
体層3が有機樹脂絶縁層2から剥離し易いものとなる。
従って、前記多層配線部4の各薄膜配線導体層3の厚み
は1μm〜40μmの範囲としておくことが好ましい。
Further, if the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 is less than 1 μm, each thin-film wiring conductor layer 3
Has a large electric resistance, and it is difficult to transmit a predetermined electric signal to each thin-film wiring conductor layer 3,
When the thickness exceeds 40 μm, a large stress is present inside the thin film wiring conductor layer 3 when the thin film wiring conductor layer 3 is adhered to the organic resin insulating layer 2, and the large intrinsic stress causes the thin film wiring conductor layer 3 to cause an organic resin insulation. It becomes easy to peel off from the layer 2.
Therefore, it is preferable that the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 be in the range of 1 μm to 40 μm.

【0026】また更に前記薄膜配線導体層3及びスルー
ホール導体6はその表面に、表面の粗さが最大粗さ(R
max)で1μm≦Rmax≦5μmのニッケル層を被
着させておくと、該ニッケル層は有機樹脂と接合性が良
いニッケルで形成されているとともに表面が所定の粗さ
に粗れて有機樹脂絶縁層2との接触面積が広いものとな
り、これによって薄膜配線導体層3及びスルーホール導
体6はその線幅が極めて細いものになったとしても有機
樹脂絶縁層2に極めて強固に接合されることとなり、そ
の結果、多層配線部4に外力が印加されても薄膜配線導
体層3及びスルーホール導体6と有機樹脂絶縁層2との
間に剥離が発生することはなく、薄膜配線導体層3及び
スルーホール導体6に断線等が生じるのを有効に防止す
ることができる。
Further, the surface roughness of the thin film wiring conductor layer 3 and the through-hole conductor 6 is the maximum roughness (R
If a nickel layer of 1 μm ≦ Rmax ≦ 5 μm is applied beforehand, the nickel layer is formed of nickel having good bonding properties with the organic resin, and the surface thereof is roughened to a predetermined roughness so that the organic resin insulating layer is formed. The contact area with the layer 2 becomes large, so that the thin-film wiring conductor layer 3 and the through-hole conductor 6 are extremely firmly joined to the organic resin insulating layer 2 even if the line width becomes extremely thin. As a result, even when an external force is applied to the multilayer wiring portion 4, no separation occurs between the thin-film wiring conductor layer 3 and the through-hole conductor 6 and the organic resin insulating layer 2, and the thin-film wiring conductor layer 3 and the through-hole do not separate. Disconnection or the like in the hole conductor 6 can be effectively prevented.

【0027】なお、前記薄膜配線導体層3及びスルーホ
ール導体6の表面にニッケル層を被着させる場合、該ニ
ッケル層は、例えば、電解めっき法によって形成され、
硫酸ニッケル240〜450グラム/リットル、塩化ニ
ッケル38〜60グラム/リットル、ホウ酸30〜50
グラム/リットルから成る電解ニッケルめっき液を用い
ることよって薄膜配線導体層3及びスルーホール導体6
上に被着形成される。
When a nickel layer is applied to the surfaces of the thin-film wiring conductor layer 3 and the through-hole conductor 6, the nickel layer is formed by, for example, electrolytic plating.
Nickel sulfate 240-450 g / l, nickel chloride 38-60 g / l, boric acid 30-50
By using an electrolytic nickel plating solution of gram / liter, the thin-film wiring conductor layer 3 and the through-hole conductor 6 are formed.
Is formed thereon.

【0028】また、前記ニッケル層はその表面の粗さが
最大粗さ(Rmax)で1μm未満であると薄膜配線導
体層3及びスルーホール導体6の線幅が極めて細い時に
薄膜配線導体層3及びスルーホール導体6と有機樹脂絶
縁層2との接触面積が狭く、両者の接合強度がニッケル
と有機樹脂絶縁層2との接合性のみに依存した値となっ
てしまい、また5μmを超えるとニッケル層と有機樹脂
絶縁層2との接合強度は強くなるものの有機樹脂絶縁層
2にスルーホール5を形成した際、スルーホール5より
露出するニッケル層の表面凹凸に有機樹脂絶縁層2の一
部が残り、ニッケル層とスルーホール導体6との接続の
信頼性が低下してしまう傾向にある。従って、前記薄膜
配線導体層3及びスルーホール導体6はその表面にニッ
ケル層を被着させる場合、ニッケル層の表面粗さを最大
粗さ(Rmax)で1μm≦Rmax≦5μmの範囲と
しておくことが好ましい。
If the surface roughness of the nickel layer is less than 1 μm at the maximum roughness (Rmax), the thin film wiring conductor layer 3 and the through-hole conductor 6 can be used when the line width is extremely small. The contact area between the through-hole conductor 6 and the organic resin insulating layer 2 is small, and the bonding strength between the two depends only on the bondability between nickel and the organic resin insulating layer 2. When the through hole 5 is formed in the organic resin insulating layer 2, part of the organic resin insulating layer 2 remains on the surface unevenness of the nickel layer exposed from the through hole 5, although the bonding strength between the resin layer and the organic resin insulating layer 2 increases. In addition, the reliability of the connection between the nickel layer and the through-hole conductor 6 tends to decrease. Therefore, when a nickel layer is applied to the surfaces of the thin-film wiring conductor layer 3 and the through-hole conductor 6, the surface roughness of the nickel layer is set to a range of 1 μm ≦ Rmax ≦ 5 μm in maximum roughness (Rmax). preferable.

【0029】前記ニッケル層の表面を最大粗さ(Rma
x)で1μm≦Rmax≦5μmとするには上述の電解
ニッケルめっき液中に混合されるスルホン酸、ベンゼ
ン、アルキルカルボン酸エステル等からなる光沢剤の量
を1グラム/リットル以下としておくことによって、或
いは被着させたニッケル層の表面を硝酸系のエッチング
液によるエッチング処理を施すことによって行われる。
The surface of the nickel layer has a maximum roughness (Rma).
In order to satisfy 1 μm ≦ Rmax ≦ 5 μm in x), the amount of the brightener composed of sulfonic acid, benzene, alkyl carboxylate, etc. mixed in the above-mentioned electrolytic nickel plating solution is set to 1 g / liter or less. Alternatively, it is performed by subjecting the surface of the deposited nickel layer to an etching treatment using a nitric acid-based etchant.

【0030】かくして本発明の多層配線基板によれば、
最上層の有機樹脂絶縁層2表面に半導体素子等の能動部
品や容量素子、抵抗器等の受動部品を搭載し、その電極
を薄膜配線導体層3に接続させることによって半導体装
置や混成集積回路装置となり、薄膜配線導体層3の一部
を外部電気回路に接続させれば前記半導体素子や容量素
子等は外部電気回路に電気的に接続されることとなる。
Thus, according to the multilayer wiring board of the present invention,
A semiconductor device or a hybrid integrated circuit device is mounted by mounting an active component such as a semiconductor device or a passive component such as a capacitor or a resistor on the surface of the uppermost organic resin insulating layer 2 and connecting its electrodes to the thin film wiring conductor layer 3. When a part of the thin-film wiring conductor layer 3 is connected to an external electric circuit, the semiconductor element, the capacitor and the like are electrically connected to the external electric circuit.

【0031】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例におい
ては絶縁基板1の上面のみに複数の有機樹脂絶縁層2と
複数の薄膜配線導体層3とを交互に積層して形成される
多層配線部4を被着させたが、該多層配線部4を絶縁基
板1の下面側のみに設けても、上下の両面に設けてもよ
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. A multilayer wiring portion 4 formed by alternately laminating a plurality of organic resin insulating layers 2 and a plurality of thin film wiring conductor layers 3 is applied only on the upper surface of the insulating substrate 1. It may be provided only on the lower surface side or on both upper and lower surfaces.

【0032】[0032]

【発明の効果】本発明の多層配線基板によれば、有機樹
脂絶縁層間に配設される薄膜配線導体層の側面をR≧d
/2(R:曲率半径、d:薄膜配線導体層の厚み)で表
される曲率半径の曲面としたことから有機樹脂前駆体を
熱硬化させて有機樹脂絶縁層を形成する際、有機樹脂絶
縁層と薄膜配線導体層間に両者の熱膨張係数の相違に起
因する熱応力が発生したとしても該熱応力は薄膜配線導
体層の側面が曲面をなし、角部を有さないことから集中
して大きくなることはなく、これによって有機樹脂絶縁
層にクラックが発生するのを有効に防止し、有機樹脂絶
縁層と薄膜配線導体層との接合を強固とするとともに薄
膜配線導体層の断線を有効に防止して多層配線基板とし
ての信頼性を高いものとなすことができる。
According to the multilayer wiring board of the present invention, the side surface of the thin-film wiring conductor layer provided between the organic resin insulating layers is defined as R ≧ d.
/ 2 (R: radius of curvature, d: thickness of the thin film wiring conductor layer), the organic resin precursor is thermally cured to form an organic resin insulating layer when the organic resin precursor is thermally cured to form an organic resin insulating layer. Even if thermal stress due to the difference in thermal expansion coefficient between the layer and the thin film wiring conductor layer occurs between the layers, the thermal stress concentrates because the side surface of the thin film wiring conductor layer has a curved surface and has no corners. This does not increase the size, which effectively prevents cracks in the organic resin insulating layer, strengthens the bonding between the organic resin insulating layer and the thin-film wiring conductor layer, and effectively disconnects the thin-film wiring conductor layer. Thus, the reliability of the multilayer wiring board can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【図2】図1に示す多層配線基板の要部拡大断面図であ
る。
FIG. 2 is an enlarged sectional view of a main part of the multilayer wiring board shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体層 4・・・多層配線部 6・・・スルーホール導体 a・・・薄膜配線導体層の側面 DESCRIPTION OF SYMBOLS 1 ... Insulating board 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor layer 4 ... Multilayer wiring part 6 ... Through-hole conductor a ... Side surface of thin film wiring conductor layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板と、該絶縁基板上に形成され、有
機樹脂絶縁層と薄膜配線導体層とを交互に積層するとと
もに上下に位置する薄膜配線導体層を有機樹脂絶縁層に
設けたスルーホール導体を介して電気的に接続してなる
多層配線基板であって、前記有機樹脂絶縁層間に配設さ
れる薄膜配線導体層の側面を下記式で表される曲率半径
の曲面としたこと特徴とする多層配線基板。 R≧d/2 (R:曲率半径、d:薄膜配線導体層の厚み)
1. A through-hole formed by alternately laminating an insulating substrate and an organic resin insulating layer and a thin-film wiring conductor layer formed on the insulating substrate, and providing upper and lower thin-film wiring conductor layers in the organic resin insulating layer. A multilayer wiring board electrically connected via hole conductors, wherein a side surface of a thin-film wiring conductor layer disposed between the organic resin insulating layers is a curved surface having a radius of curvature represented by the following equation. Multilayer wiring board. R ≧ d / 2 (R: radius of curvature, d: thickness of the thin film wiring conductor layer)
JP27403998A 1998-09-28 1998-09-28 Multilayer wiring board Pending JP2000106484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27403998A JP2000106484A (en) 1998-09-28 1998-09-28 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27403998A JP2000106484A (en) 1998-09-28 1998-09-28 Multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2000106484A true JP2000106484A (en) 2000-04-11

Family

ID=17536123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27403998A Pending JP2000106484A (en) 1998-09-28 1998-09-28 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2000106484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492018A (en) * 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 A kind of display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492018A (en) * 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 A kind of display device

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JP2000106484A (en) Multilayer wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH10215042A (en) Multilayer wiring board
JPH10335817A (en) Multilayered wiring board
JPH10326966A (en) Multilayered wiring board
JPH10163634A (en) Multilayer wiring board
JP3688844B2 (en) Multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH10322030A (en) Multilayered wiring board
JPH1041632A (en) Multilayer wiring board
JPH1013036A (en) Multilayer wiring board
JPH1126939A (en) Multilayered wiring board
JP2000013026A (en) Multi-layer printed board
JPH1027968A (en) Multilayer wiring board
JPH10322029A (en) Multilayered wiring board
JPH10150266A (en) Multilayer interconnection board
JPH10150267A (en) Multilayer interconnection board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH11150370A (en) Multilayer wiring board
JPH11186434A (en) Multi-layer wiring substrate
JPH1092879A (en) Multilayer wiring board
JPH114079A (en) Multilayered wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221