JPH09326556A - Multilayer wiring board and manufacture thereof - Google Patents

Multilayer wiring board and manufacture thereof

Info

Publication number
JPH09326556A
JPH09326556A JP14447296A JP14447296A JPH09326556A JP H09326556 A JPH09326556 A JP H09326556A JP 14447296 A JP14447296 A JP 14447296A JP 14447296 A JP14447296 A JP 14447296A JP H09326556 A JPH09326556 A JP H09326556A
Authority
JP
Japan
Prior art keywords
organic resin
hole
insulating layer
resin insulating
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14447296A
Other languages
Japanese (ja)
Inventor
Seiichi Takami
征一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14447296A priority Critical patent/JPH09326556A/en
Publication of JPH09326556A publication Critical patent/JPH09326556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable multilayer wiring boards to be uniform in thickness, protected against disconnection, and display their characteristics enough as required. SOLUTION: Organic resin insulating layers 2 and thin film wiring conductors 3 are alternately laminated on an insulating board 1 for the formation of a multilayer wiring board, wherein the wiring conductors 3 arranged in a vertical direction are connected together through the intermediary of through-hole conductors 6 provided to through-holes 5 bored in the organic resin insulating layers 2. The through-hole conductor 6 is made of electroless plating metal deposited on the thin film wiring conductor 3 exposed under the through-hole 5, and the upside of the through-hole conductor 6 is substantially flush with that of the organic resin insulating layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMoーMn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Conventionally, in a multilayer wiring board used for a hybrid integrated circuit device, a package for housing a semiconductor element, etc., its wiring conductor is formed by a thick film forming technique such as Mo--Mn method.

【0003】このMoーMn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミック体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次ぎにこれを複数枚積層すると
ともに還元雰囲気中で焼成し、高融点金属粉末と生セラ
ミック体とを焼結一体化させる方法である。
This Mo-Mn method is usually performed with tungsten,
High melting point metal powder such as molybdenum and manganese, organic solvent,
A solvent is added and mixed, and a paste-like metal paste is applied by printing on the outer surface of the green ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these layers are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method of sintering and integrating a metal powder and a green ceramic body.

【0004】尚、前記配線導体が形成されるセラミック
体としては通常、酸化アルミニウム質焼結体やムライト
質焼結体等の酸化物系セラミックス、或いは表面に酸化
物膜を被着させた窒化アルミニウム質焼結体や炭化珪素
質焼結体等の非酸化物系セラミックが使用される。
Incidentally, the ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film adhered on the surface. Non-oxide ceramics such as a sintered compact or a silicon carbide sintered compact are used.

【0005】しかしながら、このMoーMn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using this Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Therefore, it is difficult to miniaturize the wiring conductor and the wiring conductor can be formed at a high density. It had the drawback of not being able to.

【0006】そこで上記欠点を解消するために配線導体
を従来の厚膜形成技術で形成するのに変えて微細化が可
能な薄膜形成技術を用いて高密度に形成した多層配線基
板が使用されるようになってきた。
In order to solve the above-mentioned drawbacks, therefore, a multilayer wiring board is used which is formed at a high density by using a thin film forming technique capable of miniaturization instead of forming the wiring conductor by a conventional thick film forming technique. It's starting to happen.

【0007】かかる配線導体を薄膜形成技術により形成
した多層配線基板は、酸化アルミニウム質焼結体等から
成るセラミックやガラス繊維を織り込んだガラス布にエ
ポキシ樹脂を含浸させて形成されるガラスエポキシ等か
ら成る絶縁基板の上面にスピンコート法及び熱硬化処理
等によって形成されるエポキシ樹脂等の有機樹脂から成
る絶縁層と、銅やアルミニウム等の金属をめっき法や蒸
着法等の薄膜形成技術及びフォトリソグラフィー技術を
採用することによって形成される薄膜配線導体とを交互
に多層に積層させた構造を有している。
A multilayer wiring board in which such wiring conductors are formed by a thin-film forming technique is made of glass epoxy formed by impregnating a ceramic cloth made of aluminum oxide sintered body or the like or a glass cloth woven with glass fibers with an epoxy resin. An insulating layer made of an organic resin such as an epoxy resin formed on the upper surface of an insulating substrate formed by spin coating, thermosetting, or the like, and a metal such as copper or aluminum, a thin film forming technique such as a plating method or a vapor deposition method, and photolithography. It has a structure in which thin film wiring conductors formed by employing the technology are alternately laminated in multiple layers.

【0008】またこの多層配線基板においては、積層さ
れた各有機樹脂絶縁層間に配設されている薄膜配線導体
が有機樹脂絶縁層に形成したスルーホールの内壁に被着
されているスルーホール導体を介して電気的に接続され
ており、各有機樹脂絶縁層へのスルーホールの形成は各
有機樹脂絶縁層上にレジスト材を塗布するとともにこれ
を露光、現像を施すことによって所定位置に所定形状の
窓部を形成し、次に前記レジスト材の窓部にエッチング
液を配し、レジスト材の窓部に位置する有機樹脂絶縁層
を除去して、有機樹脂絶縁層に穴(スルーホール)を形
成し、最後に前記レジスト材を有機樹脂絶縁層上より剥
離させ除去することによって行われている。
Further, in this multilayer wiring board, a through-hole conductor in which the thin-film wiring conductors disposed between the laminated organic resin insulation layers are adhered to the inner walls of the through-holes formed in the organic resin insulation layer are provided. The through holes are formed in each organic resin insulating layer by applying a resist material on each organic resin insulating layer and exposing and developing the resist material so that a predetermined shape is formed at a predetermined position. A window is formed, and then an etchant is placed in the window of the resist material to remove the organic resin insulating layer located in the window of the resist material and form a hole (through hole) in the organic resin insulating layer. Then, finally, the resist material is peeled off from the organic resin insulating layer and removed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この従
来の多層配線基板においては、有機樹脂絶縁層と薄膜配
線導体とを交互に積層して多層配線基板となす際、上部
に配される有機樹脂絶縁層の表面に下部に配される有機
樹脂絶縁層に設けたスルーホールに起因して段差が形成
され、該段差によって各有機樹脂絶縁層上に薄膜形成技
術及びフォトリソグラフィー技術を採用することにより
形成される薄膜配線導体の厚みにバラツキや断線が生
じ、多層配線基板として所望する特性を充分に発揮させ
ることができないという欠点を有していた。
However, in this conventional multilayer wiring board, when the organic resin insulating layers and the thin film wiring conductors are alternately laminated to form a multilayer wiring board, the organic resin insulating layer disposed on the upper side is arranged. A step is formed on the surface of the layer due to a through hole provided in the organic resin insulating layer disposed below, and the step is formed by adopting a thin film forming technique and a photolithography technique on each organic resin insulating layer. The thin film wiring conductor thus produced has variations in thickness and wire breakage, and thus has a drawback that the desired characteristics as a multilayer wiring board cannot be sufficiently exhibited.

【0010】またこの従来の多層配線基板においては、
各有機樹脂絶縁層に形成するスルーホールの位置を同一
とし、上部の有機樹脂絶縁層のスルーホールに被着させ
たスルーホール導体と下部の有機樹脂絶縁層のスルーホ
ールに被着させたスルーホール導体とを電気的に接続す
る場合、上部に位置する有機樹脂絶縁層へのスルーホー
ルの形成が下部の有機樹脂絶縁層のスルーホール内に充
填されている有機樹脂絶縁層を同時に除去して行わなけ
ればならず、スルーホールの形成に長時間を要し、量産
性が劣り、製品としての多層配線基板を高価となすとと
もにスルーホールの径が上部に向かう程、大きくなり、
所定寸法のスルーホールを正確に形成することができな
いという欠点も有していた。
In this conventional multilayer wiring board,
The positions of the through holes formed in each organic resin insulating layer are the same, and the through holes are attached to the through holes of the upper organic resin insulating layer and the through holes are attached to the through holes of the lower organic resin insulating layer. When electrically connecting with a conductor, a through hole is formed in the upper organic resin insulating layer by simultaneously removing the organic resin insulating layer filled in the through hole of the lower organic resin insulating layer. It takes a long time to form a through hole, the mass productivity is poor, the multilayer wiring board as a product is expensive, and the diameter of the through hole increases as it goes upward.
It also has a drawback that a through hole having a predetermined size cannot be accurately formed.

【0011】[0011]

【課題を解決するための手段】本発明は上記欠点に鑑み
案出されたもので、その目的は有機樹脂絶縁層と薄膜配
線導体とを交互に多層に積層して成る多層配線基板であ
って、前記薄膜配線導体の厚みバラツキ及び断線を有効
に防止し、これによって所望する特性を充分に発揮する
ことがてきる多層配線基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned drawbacks, and an object thereof is to provide a multilayer wiring board in which organic resin insulating layers and thin film wiring conductors are alternately laminated in multiple layers. Another object of the present invention is to provide a multilayer wiring board which can effectively prevent thickness variation and disconnection of the thin film wiring conductor, and thereby can sufficiently exhibit desired characteristics.

【0012】本発明は、絶縁基板上に、有機樹脂絶縁層
と薄膜配線導体とを交互に積層するとともに上下に位置
する薄膜配線導体を各有機樹脂絶縁層に設けたスルーホ
ール内に形成したスルーホール導体を介して接続して成
る多層配線基板であって、前記スルーホール導体はスル
ーホール下部に露出する薄膜配線導体に被着させた無電
解めっき金属から成り、上面が有機樹脂絶縁層の上面と
実質的に同じ平面に位置することを特徴とするものであ
る。
According to the present invention, an organic resin insulating layer and a thin film wiring conductor are alternately laminated on an insulating substrate and upper and lower thin film wiring conductors are formed in through holes provided in each organic resin insulating layer. A multilayer wiring board formed by connecting via a hole conductor, wherein the through-hole conductor is made of electroless plated metal adhered to a thin-film wiring conductor exposed at the bottom of the through-hole, and the upper surface is an upper surface of an organic resin insulating layer. It is characterized in that it is located substantially in the same plane as.

【0013】また本発明は上記多層配線基板の製造方法
であって、所定パターンの配線導体を有する絶縁基板上
に、(1)感光性有機樹脂前駆体の塗布、露光、現像に
よってスルーホールを有する有機樹脂絶縁層を形成する
工程と、(2)前記有機樹脂絶縁層のスルーホール内に
無電解めっきによりめっき金属を被着させ、めっき金属
から成るスルーホール導体を、該スルーホールを完全に
埋め、かつ上面が有機樹脂絶縁層の上面と実質的に同一
平面となるように形成する工程と、(3)前記有機樹脂
絶縁層上に薄膜配線導体を所定パターンに、且つ一部が
前記スルーホール導体と接触するようにして形成する工
程と、(4)前記(1)乃至(3)の工程を交互に繰り
返す工程、とからなることを特徴とするものである。
The present invention is also the method for manufacturing a multilayer wiring board as described above, wherein (1) a through hole is formed by coating, exposing, and developing a photosensitive organic resin precursor on an insulating board having a wiring conductor of a predetermined pattern. Forming an organic resin insulation layer, and (2) depositing a plating metal in the through hole of the organic resin insulation layer by electroless plating, and completely filling the through hole with a through hole conductor made of the plating metal. And (3) forming a thin film wiring conductor on the organic resin insulating layer in a predetermined pattern and partially forming the through hole. It is characterized by comprising a step of forming the conductor so as to be in contact with the conductor and a step (4) of alternately repeating the steps (1) to (3).

【0014】更に本発明は前述の多層配線基板の製造方
法であって、所定パターンの配線導体を有する絶縁基板
上に、(1)有機樹脂前駆体の塗布、熱処理及び孔開け
加工によってスルーホールを有する有機樹脂絶縁層を形
成する工程と、(2)前記有機樹脂絶縁層のスルーホー
ル内に無電解めっきによりめっき金属を被着させ、めっ
き金属から成るスルーホール導体を、該スルーホールを
完全に埋め、かつ上面が有機樹脂絶縁層の上面と実質的
に同一平面となるように形成する工程と、(3)前記有
機樹脂絶縁層上に薄膜配線導体を所定パターンに、且つ
一部が前記スルーホール導体と接触するようにして形成
する工程と、(4)前記(1)乃至(3)の工程を交互
に繰り返す工程、とからなることを特徴とするものであ
る。
Further, the present invention is the above-mentioned method for manufacturing a multilayer wiring board, wherein a through hole is formed on an insulating board having a wiring conductor having a predetermined pattern by (1) coating of an organic resin precursor, heat treatment and punching. A step of forming an organic resin insulating layer having: (2) depositing a plating metal in the through hole of the organic resin insulating layer by electroless plating, and completely forming a through hole conductor made of the plating metal. Filling and forming the upper surface of the organic resin insulating layer to be substantially flush with the upper surface of the organic resin insulating layer; It is characterized by comprising a step of forming the hole conductor so as to be in contact with the hole conductor and a step (4) of alternately repeating the steps (1) to (3).

【0015】本発明の多層配線基板によれば、各有機樹
脂絶縁層に設けたスルーホール内に無電解めっき金属か
ら成るスルーホール導体を完全に埋め、かつ上面を有機
樹脂絶縁層の上面と実質的に同一平面に位置させたこと
から各有機樹脂絶縁層の上面はほぼ平坦となり、その結
果、各有機樹脂絶縁層の上面に薄膜形成技術及びフォト
リソグラフィー技術を採用することによって形成される
薄膜配線導体はその厚みにバラツキが発生したり、断線
を生じたりすることはなく、多層配線基板に所望する特
性を充分に発揮させることが可能となる。
According to the multilayer wiring board of the present invention, the through-hole conductor made of electroless plating metal is completely filled in the through-hole provided in each organic resin insulating layer, and the upper surface is substantially the upper surface of the organic resin insulating layer. Since the upper surfaces of the organic resin insulating layers are substantially flat, the upper surfaces of the organic resin insulating layers are substantially flat, and as a result, thin film wiring formed by adopting thin film forming technology and photolithography technology on the upper surface of each organic resin insulating layer. The conductor does not cause variations in its thickness or breaks, and it is possible to sufficiently exhibit the desired characteristics of the multilayer wiring board.

【0016】また本発明の多層配線基板によれば、各有
機樹脂絶縁層に設けたスルーホールはその内部を無電解
めっき金属から成るスルーホール導体が完全に埋めてい
る。
Further, according to the multilayer wiring board of the present invention, the through hole provided in each organic resin insulating layer is completely filled with the through hole conductor made of the electroless plating metal.

【0017】そのため上部に位置する有機樹脂絶縁層に
スルーホールを形成する場合、スルーホールは各有機樹
脂絶縁層の厚み分だけ除去すればよく、スルーホールの
形成が短時間で、製品としての多層配線基板の量産性が
向上するとともにスルーホールの径を所定の寸法に正確
に形成することも可能となる。
Therefore, when forming a through hole in the upper organic resin insulating layer, the through hole only needs to be removed by the thickness of each organic resin insulating layer, the through hole can be formed in a short time, and a multilayer as a product can be formed. The mass productivity of the wiring board is improved, and the diameter of the through hole can be accurately formed to a predetermined size.

【0018】[0018]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1は、本発明の多層配線基板の一実
施例を示し、1は絶縁基板、2は有機樹脂絶縁層、3は
薄膜配線導体である。
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a multilayer wiring board according to the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer, and 3 is a thin film wiring conductor.

【0019】前記絶縁基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体3とから成る多層配線4が配設され
ており、該多層配線4を支持する支持部材として作用す
る。
On the upper surface of the insulating substrate 1, a multilayer wiring 4 composed of an organic resin insulating layer 2 and a thin film wiring conductor 3 is arranged, and it functions as a supporting member for supporting the multilayer wiring 4.

【0020】前記絶縁基板1は酸化アルミニウム質焼結
体やムライト質焼結体等の酸化物系セラミックス、或い
は表面に酸化物膜を有する窒化アルミニウム質焼結体、
炭化珪素質焼結体等の非酸化物系セラミックス、更には
ガラス繊維を織り込んだ布にエポキシ樹脂を含浸させた
ガラスエポキシ樹脂等の電気絶縁材料で形成されてお
り、例えば酸化アルミニウム質焼結体で形成されている
場合には、アルミナ(Al2 3 )、シリカ(Si
2 )、カルシア(CaO)、マグネシア(MgO)等
の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿
状となすとともにこれを従来周知のドクターブレード法
やカレンダーロール法を採用することによってセラミッ
クグリーンシート(セラミック生シート)を形成し、し
かる後、前記セラミックグリーンシートに適当な打ち抜
き加工を施し、所定形状となすとともに高温(約160
0℃)で焼成することによって、或いはアルミナ等の原
料粉末に適当な有機溶剤、溶媒を添加混合して原料粉末
を調整するとともに該原料粉末をプレス成形機によって
所定形状に成形し、最後に前記成形体を約1600℃の
温度で焼成することによって製作される。
The insulating substrate 1 is an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride sintered body having an oxide film on its surface.
It is made of a non-oxide ceramic such as a silicon carbide sintered body, and an electrically insulating material such as a glass epoxy resin obtained by impregnating a cloth woven with glass fiber with an epoxy resin. For example, an aluminum oxide sintered body. In the case of being formed of, alumina (Al 2 O 3 ) and silica (Si
O 2 ), calcia (CaO), magnesia (MgO), and other raw material powders are mixed with an appropriate organic solvent and solvent to form a slurry, which is then applied by the well-known doctor blade method or calendar roll method. To form a ceramic green sheet (ceramic green sheet), and then subject the ceramic green sheet to an appropriate punching process to form a predetermined shape and a high temperature (about 160).
(0 ° C.) or by mixing a raw material powder such as alumina with an appropriate organic solvent and solvent to prepare the raw material powder, and molding the raw material powder into a predetermined shape by a press molding machine, and finally It is manufactured by firing the molded body at a temperature of about 1600 ° C.

【0021】前記絶縁基板1はまたその上面に有機樹脂
絶縁層2と薄膜配線導体3とが交互に多層に配設されて
多層配線4が被着されており、該多層配線4を構成する
有機樹脂絶縁層2は上下に位置する薄膜配線導体3の電
気的絶縁を図る作用を為すとともに薄膜配線導体3は電
気信号を伝達するための伝達路として作用する。
On the upper surface of the insulating substrate 1, the organic resin insulating layers 2 and the thin-film wiring conductors 3 are alternately arranged in multiple layers and the multilayer wiring 4 is adhered. The resin insulation layer 2 serves to electrically insulate the thin film wiring conductors 3 located above and below, and the thin film wiring conductor 3 also serves as a transmission path for transmitting an electric signal.

【0022】尚、前記多層配線4の有機樹脂絶縁層2
は、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドト
リアジン樹脂、ポリフェニレンエーテル樹脂、ふっ素樹
脂等の樹脂から成り、スピンコート法等を採用すること
によって絶縁基板1の上部に所定厚みに被着される。
The organic resin insulating layer 2 of the multilayer wiring 4
Is made of a resin such as an epoxy resin, a polyimide resin, a bismaleimide triazine resin, a polyphenylene ether resin, or a fluorine resin, and is applied to the upper portion of the insulating substrate 1 to a predetermined thickness by using a spin coating method or the like.

【0023】また前記多層配線4の有機樹脂絶縁層2は
その各々の所定位置に最小径が有機樹脂絶縁層2の厚み
に対して約1.5倍程度のスルーホール5が形成されて
おり、該スルーホール5は後述する有機樹脂絶縁層2を
介して上下に位置する薄膜配線導体3の各々を電気的に
接続するスルーホール導体6を形成するための形成孔と
して作用する。
The organic resin insulating layer 2 of the multi-layer wiring 4 has through holes 5 each having a minimum diameter of about 1.5 times the thickness of the organic resin insulating layer 2 at a predetermined position. The through hole 5 functions as a forming hole for forming a through hole conductor 6 that electrically connects each of the thin film wiring conductors 3 located above and below via the organic resin insulating layer 2 described later.

【0024】更に前記各有機樹脂絶縁層2に設けたスル
ーホール5内にはスルーホール導体6が、また有機樹脂
絶縁層2の上面には所定パターンの薄膜配線導体3が各
々配設されており、スルーホール導体6によって間に有
機樹脂絶縁層2を挟んで上下に位置する各薄膜配線導体
3の各々が電気的に接続されるようになっている。
Further, a through-hole conductor 6 is provided in the through-hole 5 provided in each organic resin insulating layer 2, and a thin film wiring conductor 3 having a predetermined pattern is provided on the upper surface of the organic resin insulating layer 2. The through-hole conductors 6 are electrically connected to the respective thin film wiring conductors 3 located above and below with the organic resin insulating layer 2 interposed therebetween.

【0025】前記スルーホール導体6はニッケル等の金
属材料から成り、スルーホール5の下部に露出する薄膜
配線導体3上に無電解めっき法等によってスルーホール
5を完全に埋め、且つ上面が有機樹脂絶縁層2の上面と
実質的に同一平面となるように形成されている。
The through-hole conductor 6 is made of a metal material such as nickel. The through-hole 5 is completely filled on the thin-film wiring conductor 3 exposed at the bottom of the through-hole 5 by an electroless plating method, and the upper surface is made of an organic resin. It is formed so as to be substantially flush with the upper surface of the insulating layer 2.

【0026】前記スルーホール導体6はスルーホール5
内に、該スルーホール5を完全に埋めるように形成され
ているため、有機樹脂絶縁層2と薄膜配線導体3とを交
互に積層して多層配線4となす際、上部に配される有機
樹脂絶縁層2の表面に下部に配される有機樹脂絶縁層2
に設けたスルーホール5に起因する段差が形成されるこ
とはなく、該段差によって各有機樹脂絶縁層2上に形成
される薄膜配線導体3の厚みにバラツキや断線が生じる
こともない。
The through hole conductor 6 is the through hole 5.
Since it is formed so as to completely fill the through hole 5 therein, when the organic resin insulating layer 2 and the thin film wiring conductor 3 are alternately laminated to form the multilayer wiring 4, the organic resin disposed on the upper side Organic resin insulation layer 2 disposed underneath on the surface of insulation layer 2
No step is formed due to the through hole 5 provided in the above, and the step does not cause variation or disconnection in the thickness of the thin film wiring conductor 3 formed on each organic resin insulating layer 2.

【0027】また同時に、前記スルーホール導体6はス
ルーホール5内を完全に埋めているため、上部に位置す
る有機樹脂絶縁層2にスルーホール5を形成する場合、
スルーホール5は各有機樹脂絶縁層2の厚み分だけ除去
すればよく、スルーホール5の形成が短時間で、製品と
しての多層配線基板の量産性が向上するとともにスルー
ホール5の径を所定の寸法に正確に形成することも可能
となる。
At the same time, since the through hole conductor 6 completely fills the through hole 5, when the through hole 5 is formed in the upper organic resin insulating layer 2,
The through holes 5 need only be removed by the thickness of each organic resin insulating layer 2, the formation of the through holes 5 is short, the mass productivity of the multilayer wiring board as a product is improved, and the through holes 5 have a predetermined diameter. It is also possible to form the size accurately.

【0028】更に前記有機樹脂絶縁層2の上面には薄膜
配線導体3が所定パターンに形成されており、該薄膜配
線導体3は銅等の金属材料から成り、無電解めっき法や
蒸着法、スパッタリング法等の薄膜形成技術及びフォト
リソグラフィ技術を採用することによって各有機樹脂絶
縁層2上に一部がスルーホール導体6と電気的に接続し
た状態で形成される。
Further, a thin film wiring conductor 3 is formed in a predetermined pattern on the upper surface of the organic resin insulating layer 2. The thin film wiring conductor 3 is made of a metal material such as copper, and is formed by electroless plating, vapor deposition or sputtering. By adopting a thin film forming technique such as a method and a photolithography technique, a part of the organic resin insulating layer 2 is formed in a state of being electrically connected to the through hole conductor 6.

【0029】尚、前記有機樹脂絶縁層2と薄膜配線導体
3とを交互に多層に配設して形成される多層配線4は各
有機樹脂絶縁層2の上面を中心線平均粗さ(Ra)で
0.05μm≦Ra≦5μmの粗面としておくと有機樹
脂絶縁層2と薄膜配線導体3との接合及び上下に位置す
る有機樹脂絶縁層2同士の接合を強固となすことができ
る。従って、前記多層配線4の各有機樹脂絶縁層2はそ
の上面をエッチング加工法等によって粗し、中心線平均
粗さ(Ra)で0.05μm≦Ra≦5μmの粗面とし
ておくことが好ましい。
The multilayer wiring 4 formed by alternately arranging the organic resin insulating layers 2 and the thin-film wiring conductors 3 in multiple layers has a center line average roughness (Ra) on the upper surface of each organic resin insulating layer 2. With a rough surface of 0.05 μm ≦ Ra ≦ 5 μm, the organic resin insulating layer 2 and the thin film wiring conductor 3 can be joined firmly and the organic resin insulating layers 2 located above and below can be firmly joined. Therefore, it is preferable that the upper surface of each organic resin insulating layer 2 of the multilayer wiring 4 is roughened by an etching method or the like so that the center line average roughness (Ra) is a rough surface of 0.05 μm ≦ Ra ≦ 5 μm.

【0030】また前記有機樹脂絶縁層2はその各々の厚
みが100μmを越えると有機樹脂絶縁層2にスルーホ
ール5を形成する際、スルーホール5を所望する鮮明な
形状に形成するのが困難となり、また5μmm未満とな
ると有機樹脂絶縁層2の上面に上下に位置する有機樹脂
絶縁層2の接合強度を上げるための粗面加工を施す際、
有機樹脂絶縁層2に不要な穴が形成され上下に位置する
薄膜配線導体3に不要な電気的短絡を招来してしまう危
険性がある。従って、前記有機樹脂絶縁層2はその各々
の厚みを5μm乃至100μmの範囲としておくことが
好ましい。
If the thickness of each of the organic resin insulating layers 2 exceeds 100 μm, it becomes difficult to form the through holes 5 in a desired and clear shape when forming the through holes 5 in the organic resin insulating layer 2. When the thickness is less than 5 μmm, when roughening is performed on the upper surface of the organic resin insulating layer 2 to increase the bonding strength of the organic resin insulating layers 2 located above and below,
There is a risk that unnecessary holes will be formed in the organic resin insulating layer 2 and an unnecessary electrical short circuit will be caused in the thin film wiring conductors 3 located above and below. Therefore, it is preferable that the thickness of each of the organic resin insulating layers 2 is in the range of 5 μm to 100 μm.

【0031】更に前記多層配線4の各薄膜配線導体3は
その厚みが1μm未満となると各薄膜配線導体3の電気
抵抗が大きなものとなって各薄膜配線導体3に所定の電
気信号を伝達させることが困難なものとなり、また40
μmを越えると薄膜配線導体3を有機樹脂絶縁層2に被
着させる際に薄膜配線導体3の内部に大きな応力が内在
し、該大きな内在応力によって薄膜配線導体3が有機樹
脂絶縁層2から剥離し易いものとなる。従って、前記多
層配線4の各薄膜配線導体3の厚みは1μm乃至40μ
mの範囲としておくことが好ましい。
Further, when the thickness of each thin film wiring conductor 3 of the multi-layer wiring 4 is less than 1 μm, the electric resistance of each thin film wiring conductor 3 becomes large and a predetermined electric signal is transmitted to each thin film wiring conductor 3. Becomes difficult, and again 40
If the thickness exceeds μm, a large stress is present inside the thin film wiring conductor 3 when the thin film wiring conductor 3 is applied to the organic resin insulating layer 2, and the thin film wiring conductor 3 is separated from the organic resin insulating layer 2 by the large intrinsic stress. It is easy to do. Therefore, the thickness of each thin film wiring conductor 3 of the multilayer wiring 4 is 1 μm to 40 μm.
It is preferable to set it in the range of m.

【0032】次に上述の多層配線基板の製造方法につい
て図2に基づき説明する。まず図2(a)に示す如く、
上面に配線導体2aを有する絶縁基板1を準備する。前
記絶縁基板1はガラス繊維を織り込んだ布にエポキシ樹
脂を含浸させたガラスエポキシ樹脂や、酸化アルミニウ
ム質焼結体、ムライト質焼結体等の酸化物系セラミック
ス、或いは表面に酸化物膜を有する窒化アルミニウム質
焼結体、炭化珪素質焼結体等の非酸化物系セラミックス
等の電気絶縁材料で形成されており、配線導体2は絶縁
基板1に被着させた薄い銅板をエッチング加工法により
所定パターンに加工することによって、あるいは金属ペ
ーストを絶縁基板1上にスクリーン印刷法により所定パ
ターンに印刷塗布するとともにこれを所定の温度で焼き
付けることによって形成されている。
Next, a method for manufacturing the above-mentioned multilayer wiring board will be described with reference to FIG. First, as shown in FIG.
An insulating substrate 1 having a wiring conductor 2a on its upper surface is prepared. The insulating substrate 1 has a glass epoxy resin obtained by impregnating a cloth woven with glass fibers with an epoxy resin, an oxide ceramics such as an aluminum oxide sintered body, a mullite sintered body, or an oxide film on the surface. The wiring conductor 2 is made of an electrically insulating material such as non-oxide ceramics such as an aluminum nitride sintered body and a silicon carbide sintered body. The wiring conductor 2 is formed by etching a thin copper plate adhered to the insulating substrate 1. It is formed by processing into a predetermined pattern, or by printing and coating a metal paste on the insulating substrate 1 by a screen printing method into a predetermined pattern and baking it at a predetermined temperature.

【0033】次に図2(b)に示す如く、前記上面に配
線導体2aを有する絶縁基板1上にスルーホール5を有
する有機樹脂絶縁層2を、該スルーホール5が絶縁基板
1の配線導体2a上に位置するようにして被着形成す
る。
Next, as shown in FIG. 2B, the organic resin insulating layer 2 having the through holes 5 is formed on the insulating substrate 1 having the wiring conductors 2a on the upper surface, and the through holes 5 are wiring conductors of the insulating substrate 1. The deposition is performed so as to be located on 2a.

【0034】前記有機樹脂絶縁層2はエポキシ樹脂、ポ
リイミド樹脂、ビスマレイミドトリアジン樹脂、ポリフ
ェニレンエーテル樹脂、ふっ素樹脂等の感光性、或いは
熱硬化性の樹脂から成り、例えば感光性のエポキシ樹脂
からなる場合には、フェノールノボラック樹脂、メチロ
ールメラミン、ジアリルジアゾニウム塩にプロピレング
リコールモノメチルエーテルアセテートを添加混合して
ペースト状の感光性エポキシ樹脂前駆体を得るとともに
これを絶縁基板1の上面にスピンコート法やドクターブ
レード法等により所定厚みに被着させ、次に被着させた
感光性エポキシ樹脂前駆体の上部に所定のマスクを配置
させるとともに高圧水銀ランプ等を用いた露光機で感光
性エポキシ樹脂前駆体の所定位置に1〜3J/cm3
エネルギーを照射して露光を行い、しかる後、露光した
感光性エポキシ樹脂前駆体をスプレー現像機で現像し、
配線導体2a上にスルーホール5となる穴を形成すると
ともにこれを180℃の温度で30〜60分間加熱し、
完全に硬化させることによって形成され、また熱硬化性
のエポキシ樹脂から成る場合には、ビスフェノールA型
エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジル
エステル型エポキシ樹脂等にアミン系硬化剤、イミダゾ
ール系硬化剤、酸無水物系硬化剤等の硬化剤を添加混合
してペースト状のエポキシ樹脂前駆体を得るとともに該
エポキシ樹脂前駆体を上面に配線導体2aを有する絶縁
基板1上にスピンコート法等により被着させ、しかる
後、これを80℃〜200℃の熱で0.5〜3時間熱処
理し、熱硬化させるとともに配線導体2a上にYAGレ
ーザー、エキシマレーザー等により穴をあけ、スルーホ
ール5を形成することによって形成される。
The organic resin insulating layer 2 is made of a photosensitive or thermosetting resin such as an epoxy resin, a polyimide resin, a bismaleimide triazine resin, a polyphenylene ether resin, a fluororesin, or the like, for example, a photosensitive epoxy resin. In addition, propylene glycol monomethyl ether acetate is added to and mixed with phenol novolac resin, methylol melamine, and diallyl diazonium salt to obtain a paste-like photosensitive epoxy resin precursor, which is applied on the upper surface of the insulating substrate 1 by a spin coating method or a doctor blade. Method, etc., to a predetermined thickness, and then a predetermined mask is placed on top of the photosensitive epoxy resin precursor deposited next, and the photosensitive epoxy resin precursor is determined with an exposure machine using a high pressure mercury lamp or the like. irradiation energy 1~3J / cm 3 at a position Subjected to exposure Te, thereafter, the exposed photosensitive epoxy resin precursor is developed with a spray developing machine,
A hole to be the through hole 5 is formed on the wiring conductor 2a, and this is heated at a temperature of 180 ° C. for 30 to 60 minutes,
When it is formed by completely curing and is made of a thermosetting epoxy resin, a bisphenol A type epoxy resin, a novolac type epoxy resin, a glycidyl ester type epoxy resin or the like is added to an amine type curing agent, an imidazole type curing agent, A curing agent such as an acid anhydride curing agent is added and mixed to obtain a pasty epoxy resin precursor, and the epoxy resin precursor is applied onto the insulating substrate 1 having the wiring conductor 2a on the upper surface by spin coating or the like. Then, this is heat-treated at a temperature of 80 ° C. to 200 ° C. for 0.5 to 3 hours to be thermoset, and a hole is formed on the wiring conductor 2a by a YAG laser, an excimer laser or the like to form a through hole 5. Formed by.

【0035】そして次に図2(c)に示す如く、前記有
機樹脂絶縁層2に設けたスルーホール5内にスルーホー
ル導体6を形成する。
Then, as shown in FIG. 2C, a through hole conductor 6 is formed in the through hole 5 provided in the organic resin insulating layer 2.

【0036】前記スルーホール導体6は例えば、ニッケ
ル等から成り、無電解めっき法によってスルーホール5
内に形成される。
The through-hole conductor 6 is made of, for example, nickel and the through-hole 5 is formed by electroless plating.
Formed within.

【0037】前記スルーホール導体6の具体的な形成方
法は、まずスルーホール5の下部に露出する配線導体2
aの表面にPbを触媒とした活性化処理を行い、次にこ
れを硫酸ニッケル40グラム/リットル、クエン酸ナト
リウム24グラム/リットル、酢酸ナトリウム14グラ
ム/リットル、次亜リン酸ナトリウム20グラム/リッ
トル、塩化アンモニウム5グラム/リットルから成る無
電解メッキ浴中に浸漬してスルーホール5の内部を完全
に埋め、且つ上面が有機樹脂絶縁層2の上面と実質的に
同一平面となるように形成する。
The concrete method of forming the through-hole conductor 6 is as follows. First, the wiring conductor 2 exposed under the through-hole 5.
The surface of a was subjected to activation treatment using Pb as a catalyst, and then this was treated with 40 g / liter of nickel sulfate, 24 g / liter of sodium citrate, 14 g / liter of sodium acetate, and 20 g / liter of sodium hypophosphite. , Soaked in an electroless plating bath consisting of 5 g / liter of ammonium chloride to completely fill the inside of the through hole 5 and to make the upper surface of the organic resin insulating layer 2 substantially flush with the upper surface. .

【0038】そして次に、図2(d)に示す如く、前記
スルーホール5がスルーホール導体6で埋められた有機
樹脂絶縁層2の上面に薄膜配線導体3を一部がスルーホ
ール導体6と接触するようにして所定パターンに形成す
る。
Then, as shown in FIG. 2D, a thin film wiring conductor 3 is partially formed on the upper surface of the organic resin insulating layer 2 in which the through hole 5 is filled with the through hole conductor 6 as a through hole conductor 6. A predetermined pattern is formed so as to be in contact with each other.

【0039】前記薄膜配線導体3は銅等の金属材料から
成り、例えば無電解めっき法、具体的にはスルーホール
5にスルーホール導体6が埋められた有機樹脂絶縁層2
を有する絶縁基体1を硫酸銅0.06モル/リットル、
ホルマリン0.3モル/リットル、水酸化ナトリウム
0.35モル/リットル、エチレンジアミン四酢酸0.
35モル/リットルから成る無電解メッキ浴中に浸漬し
て有機樹脂絶縁層2の上面に銅層を被着させ、しかる
後、前記有機樹脂絶縁層2の上面に被着されている銅層
をフォトリソグラフィ技術により所定パターンに加工す
ることによって形成される。この場合、薄膜配線導体3
は薄膜形成技術により形成されることから配線の微細化
が可能であり、これによって薄膜配線導体3を極めて高
密度に形成することが可能となる。
The thin-film wiring conductor 3 is made of a metal material such as copper, for example, an electroless plating method, specifically, the organic resin insulating layer 2 in which the through-hole conductor 6 is embedded in the through-hole 5.
An insulating substrate 1 having 0.06 mol / liter of copper sulfate,
Formalin 0.3 mol / l, sodium hydroxide 0.35 mol / l, ethylenediaminetetraacetic acid 0.
The copper layer is deposited on the upper surface of the organic resin insulating layer 2 by immersing it in an electroless plating bath of 35 mol / liter, and then the copper layer deposited on the upper surface of the organic resin insulating layer 2 is deposited. It is formed by processing into a predetermined pattern by photolithography technology. In this case, the thin film wiring conductor 3
Since it is formed by a thin film forming technique, it is possible to miniaturize the wiring, which allows the thin film wiring conductor 3 to be formed with extremely high density.

【0040】そして上記有機樹脂絶縁層2の形成及び薄
膜配線導体3の形成を交互に行えば図1に示す絶縁基板
1の上面に有機樹脂絶縁層2と薄膜配線導体3とを交互
に積層するとともに上下に位置する薄膜配線導体3を各
有機樹脂絶縁層2に設けたスルーホール5内に埋めたス
ルーホール導体6を介して接続して成る製品としての多
層配線基板が完成する。
If the organic resin insulating layer 2 and the thin film wiring conductor 3 are alternately formed, the organic resin insulating layer 2 and the thin film wiring conductor 3 are alternately laminated on the upper surface of the insulating substrate 1 shown in FIG. At the same time, a multilayer wiring board as a product is completed in which the upper and lower thin film wiring conductors 3 are connected through the through hole conductors 6 embedded in the through holes 5 provided in each organic resin insulating layer 2.

【0041】また前記絶縁基板1上に有機樹脂絶縁層2
と薄膜配線導体3とを交互に積層する場合、各有機樹脂
絶縁層2に形成するスルーホール5が同一位置であって
も、各スルーホール5内には該スルーホール5を完全に
埋めるようにしてスルーホール導体6が形成されている
ため上部に位置する有機樹脂絶縁層2にスルーホール5
を形成する際、そのスルーホール5は有機樹脂絶縁層2
の厚み分だけ除去すればよく、スルーホール5の形成が
短時間で、製品としての多層配線基板の量産性が向上す
るとともにスルーホールの径を所定の寸法に正確に形成
することも可能となる。
The organic resin insulation layer 2 is formed on the insulation substrate 1.
When the thin film wiring conductors 3 and the thin film wiring conductors 3 are alternately laminated, even if the through holes 5 formed in each organic resin insulating layer 2 are at the same position, the through holes 5 should be completely filled in each through hole 5. Since the through-hole conductor 6 is formed on the organic resin insulating layer 2 located above, the through-hole 5 is formed.
When forming the through holes 5, the through holes 5 are formed in the organic resin insulating layer 2
It is sufficient to remove only the thickness of the through hole 5, the through hole 5 can be formed in a short time, the mass productivity of the multilayer wiring board as a product can be improved, and the diameter of the through hole can be accurately formed to a predetermined size. .

【0042】尚、本発明は上述の実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲であれば種
々の変更は可能であり、例えば上述の実施例では、薄膜
配線導体3及びスルーホール導体6を無電解めっき法で
形成したが、これに限定されるものではなく、無電解め
っき法と電解めっき法の両方を併用して形成してもよ
い。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above-mentioned embodiments, the thin film wiring conductor 3 is used. Although the through-hole conductor 6 is formed by the electroless plating method, it is not limited to this and may be formed by using both the electroless plating method and the electrolytic plating method.

【0043】また上述の実施例では上面に銅箔を所定パ
ターンに加工した配線導体2aを有する絶縁基板1上に
有機樹脂絶縁層2と薄膜配線導体3とを交互に多層に積
層したが、絶縁基板1上に直接、無電解めっき法等の薄
膜形成技術及びフォトリソグラフィ技術により薄膜配線
導体3を形成し、しかる後、その上部に有機樹脂絶縁層
を多層に積層して形成してもよい。
In the above-mentioned embodiment, the organic resin insulation layers 2 and the thin film wiring conductors 3 are alternately laminated in multiple layers on the insulating substrate 1 having the wiring conductors 2a formed by processing the copper foil in a predetermined pattern on the upper surface. The thin film wiring conductor 3 may be formed directly on the substrate 1 by a thin film forming technique such as an electroless plating method and a photolithography technique, and thereafter, an organic resin insulating layer may be laminated in multiple layers thereover.

【0044】[0044]

【発明の効果】本発明の多層配線基板によれば、各有機
樹脂絶縁層に設けたスルーホール内に無電解めっき金属
から成るスルーホール導体を完全に埋め、かつ上面を有
機樹脂絶縁層の上面と実質的に同一平面に位置させたこ
とから各有機樹脂絶縁層の上面はほぼ平坦となり、その
結果、各有機樹脂絶縁層の上面に薄膜形成技術及びフォ
トリソグラフィー技術を採用することによって形成され
る薄膜配線導体はその厚みにバラツキが発生したり、断
線を生じたりすることはなく、多層配線基板に所望する
特性を充分に発揮させることが可能となる。
According to the multilayer wiring board of the present invention, the through-hole conductor made of electroless plating metal is completely filled in the through-hole provided in each organic resin insulating layer, and the upper surface is the upper surface of the organic resin insulating layer. Since the upper surface of each organic resin insulating layer is substantially flat because it is located on substantially the same plane as the above, as a result, the upper surface of each organic resin insulating layer is formed by adopting a thin film forming technique and a photolithography technique. The thin-film wiring conductor does not cause variations in its thickness or breaks, and it is possible to fully exhibit the desired characteristics of the multilayer wiring board.

【0045】また本発明の多層配線基板によれば、各有
機樹脂絶縁層に設けたスルーホールはその内部を無電解
めっき金属から成るスルーホール導体が完全に埋めてい
る。
Further, according to the multilayer wiring board of the present invention, the through hole provided in each organic resin insulating layer is completely filled with the through hole conductor made of the electroless plating metal.

【0046】そのため上部に位置する有機樹脂絶縁層に
スルーホールを形成する場合、スルーホールは各有機樹
脂絶縁層の厚み分だけ除去すればよく、スルーホールの
形成が短時間で、製品としての多層配線基板の量産性が
向上するとともにスルーホールの径を所定の寸法に正確
に形成することも可能となる。
Therefore, when forming a through hole in the upper organic resin insulating layer, the through hole only needs to be removed by the thickness of each organic resin insulating layer, the through hole can be formed in a short time, and a multilayer as a product can be formed. The mass productivity of the wiring board is improved, and the diameter of the through hole can be accurately formed to a predetermined size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【図2】(a)(b)(c)(d)は本発明の多層配線
基板の製造方法を説明するための各工程毎の断面図であ
る。
2 (a), (b), (c) and (d) are cross-sectional views for each step for explaining the method for manufacturing a multilayer wiring board according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体 4・・・多層配線 5・・・スルーホール 6・・・スルーホール導体 DESCRIPTION OF SYMBOLS 1 ... Insulating board 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor 4 ... Multilayer wiring 5 ... Through-hole 6 ... Through-hole conductor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に、有機樹脂絶縁層と薄膜配線
導体とを交互に積層するとともに上下に位置する薄膜配
線導体を各有機樹脂絶縁層に設けたスルーホール内に形
成したスルーホール導体を介して接続して成る多層配線
基板であって、前記スルーホール導体はスルーホール下
部に露出する薄膜配線導体に被着させた無電解めっき金
属から成り、上面が有機樹脂絶縁層の上面と実質的に同
じ平面に位置することを特徴とする多層配線基板。
1. A through-hole conductor in which an organic resin insulating layer and a thin film wiring conductor are alternately laminated on an insulating substrate and upper and lower thin film wiring conductors are formed in through holes provided in each organic resin insulating layer. And a through-hole conductor made of electroless plated metal adhered to a thin-film wiring conductor exposed at the bottom of the through-hole, the upper surface of which is substantially the upper surface of the organic resin insulating layer. Multi-layer wiring board characterized by being located on the same plane.
【請求項2】所定パターンの配線導体を有する絶縁基板
上に、(1)感光性有機樹脂前駆体の塗布、露光、現像
によってスルーホールを有する有機樹脂絶縁層を形成す
る工程と、(2)前記有機樹脂絶縁層のスルーホール内
に無電解めっきによりめっき金属を被着させ、めっき金
属から成るスルーホール導体を、該スルーホールを完全
に埋め、かつ上面が有機樹脂絶縁層の上面と実質的に同
一平面となるように形成する工程と、(3)前記有機樹
脂絶縁層上に薄膜配線導体を所定パターンに、且つ一部
が前記スルーホール導体と接触するようにして形成する
工程と、(4)前記(1)乃至(3)の工程を交互に繰
り返す工程、とからなる多層配線基板の製造方法。
2. A step (1) of forming an organic resin insulating layer having a through hole by coating, exposing and developing a photosensitive organic resin precursor on an insulating substrate having a wiring conductor of a predetermined pattern, and (2). A plated metal is deposited in the through hole of the organic resin insulating layer by electroless plating, a through hole conductor made of the plated metal is completely filled in the through hole, and the upper surface is substantially the upper surface of the organic resin insulating layer. And (3) forming a thin film wiring conductor on the organic resin insulating layer in a predetermined pattern so that a part of the thin film wiring conductor is in contact with the through-hole conductor. 4) A method for manufacturing a multilayer wiring board, comprising the steps of repeating the steps (1) to (3) alternately.
【請求項3】所定パターンの配線導体を有する絶縁基板
上に、(1)有機樹脂前駆体の塗布、熱処理及び孔開け
加工によってスルーホールを有する有機樹脂絶縁層を形
成する工程と、(2)前記有機樹脂絶縁層のスルーホー
ル内に無電解めっきによりめっき金属を被着させ、めっ
き金属から成るスルーホール導体を、該スルーホールを
完全に埋め、かつ上面が有機樹脂絶縁層の上面と実質的
に同一平面となるように形成する工程と、(3)前記有
機樹脂絶縁層上に薄膜配線導体を所定パターンに、且つ
一部が前記スルーホール導体と接触するようにして形成
する工程と、(4)前記(1)乃至(3)の工程を交互
に繰り返す工程、とからなる多層配線基板の製造方法。
3. A step (1) of forming an organic resin insulating layer having a through hole on an insulating substrate having a wiring conductor of a predetermined pattern by applying an organic resin precursor, heat treatment and perforating processing, and (2). A plated metal is deposited in the through hole of the organic resin insulating layer by electroless plating, a through hole conductor made of the plated metal is completely filled in the through hole, and the upper surface is substantially the upper surface of the organic resin insulating layer. And (3) forming a thin film wiring conductor on the organic resin insulating layer in a predetermined pattern so that a part of the thin film wiring conductor is in contact with the through-hole conductor. 4) A method for manufacturing a multilayer wiring board, comprising the steps of repeating the steps (1) to (3) alternately.
JP14447296A 1996-06-06 1996-06-06 Multilayer wiring board and manufacture thereof Pending JPH09326556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14447296A JPH09326556A (en) 1996-06-06 1996-06-06 Multilayer wiring board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14447296A JPH09326556A (en) 1996-06-06 1996-06-06 Multilayer wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09326556A true JPH09326556A (en) 1997-12-16

Family

ID=15363094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14447296A Pending JPH09326556A (en) 1996-06-06 1996-06-06 Multilayer wiring board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09326556A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132852A (en) * 1998-03-13 2000-10-17 Hitachi, Ltd. Multilayer wiring substrate and method for production thereof
JP2001156452A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Manufacturing method for printed wiring board
JP2001156451A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Multilayer printed wiring board and manufacturing method for it
KR100332304B1 (en) * 1999-05-31 2002-04-12 정해원 Manufacturing method for multi-layer printed circuit board
JP2002324975A (en) * 2001-04-25 2002-11-08 Toppan Printing Co Ltd Multilayer printed wiring board and its manufacturing method
JP2002359468A (en) * 2001-05-31 2002-12-13 Toppan Printing Co Ltd Multilayered printed wiring board having filled via hole structure and manufacturing method therefor
JP2007311642A (en) * 2006-05-19 2007-11-29 Sharp Corp Method of manufacturing multilayer printed wiring board
US7418778B2 (en) 2004-05-31 2008-09-02 Tdk Corporation Method for producing a CPP thin-film magnetic head
JP2008294285A (en) * 2007-05-25 2008-12-04 Nippon Mektron Ltd Printed wiring board and its manufacturing method
JP2013511137A (en) * 2009-11-12 2013-03-28 エーティーアイ・テクノロジーズ・ユーエルシー Circuit board with offset vias

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132852A (en) * 1998-03-13 2000-10-17 Hitachi, Ltd. Multilayer wiring substrate and method for production thereof
KR100332304B1 (en) * 1999-05-31 2002-04-12 정해원 Manufacturing method for multi-layer printed circuit board
JP2001156452A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Manufacturing method for printed wiring board
JP2001156451A (en) * 1999-11-26 2001-06-08 Hitachi Chem Co Ltd Multilayer printed wiring board and manufacturing method for it
JP4505907B2 (en) * 1999-11-26 2010-07-21 日立化成工業株式会社 Multilayer printed wiring board and manufacturing method thereof
JP4505908B2 (en) * 1999-11-26 2010-07-21 日立化成工業株式会社 Method for manufacturing printed wiring board
JP2002324975A (en) * 2001-04-25 2002-11-08 Toppan Printing Co Ltd Multilayer printed wiring board and its manufacturing method
JP2002359468A (en) * 2001-05-31 2002-12-13 Toppan Printing Co Ltd Multilayered printed wiring board having filled via hole structure and manufacturing method therefor
US7418778B2 (en) 2004-05-31 2008-09-02 Tdk Corporation Method for producing a CPP thin-film magnetic head
JP2007311642A (en) * 2006-05-19 2007-11-29 Sharp Corp Method of manufacturing multilayer printed wiring board
JP2008294285A (en) * 2007-05-25 2008-12-04 Nippon Mektron Ltd Printed wiring board and its manufacturing method
JP2013511137A (en) * 2009-11-12 2013-03-28 エーティーアイ・テクノロジーズ・ユーエルシー Circuit board with offset vias

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH1027968A (en) Multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH10163634A (en) Multilayer wiring board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH10215042A (en) Multilayer wiring board
JPH11168280A (en) Multilayer wiring board
JPH1126939A (en) Multilayered wiring board
JPH10322019A (en) Multilayered wiring board
JP3688844B2 (en) Multilayer wiring board
JPH10322032A (en) Manufacture of multilayered wiring board
JPH09312479A (en) Multi-layer circuit board
JPH1041632A (en) Multilayer wiring board
JPH11150370A (en) Multilayer wiring board
JPH09289375A (en) Multilayer wiring board
JPH1197847A (en) Multilayered wiring board
JPH1197843A (en) Multilayered wiring board
JPH1197848A (en) Multilayered wiring board
JPH11177236A (en) Multilayer wiring board
JPH09321440A (en) Multilayer miring board
JPH1013030A (en) Multilayer wiring board
JPH118470A (en) Multilevel interconnection board