JPH06151712A - 構造体およびコンデンサの製造方法 - Google Patents

構造体およびコンデンサの製造方法

Info

Publication number
JPH06151712A
JPH06151712A JP5127707A JP12770793A JPH06151712A JP H06151712 A JPH06151712 A JP H06151712A JP 5127707 A JP5127707 A JP 5127707A JP 12770793 A JP12770793 A JP 12770793A JP H06151712 A JPH06151712 A JP H06151712A
Authority
JP
Japan
Prior art keywords
dielectric
layer
nitride
metal
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5127707A
Other languages
English (en)
Other versions
JP3351856B2 (ja
Inventor
Monte A Douglas
エイ.ダグラス モンテ
Scott R Summerfelt
アール.サマーフェルト スコット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of JPH06151712A publication Critical patent/JPH06151712A/ja
Application granted granted Critical
Publication of JP3351856B2 publication Critical patent/JP3351856B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 接続材料による誘電体の汚染を防止し、接続
材料の層剥離を防止する。 【構成】 誘電体(例えばチタン酸塩バリウムストロン
チウム22)と、誘電体に形成された電気接続部は導電
性非金属含有化合物、例えば窒化ルテニウム、二酸化ル
テニウム、窒化錫、酸化錫、窒化チタンおよび一酸化チ
タンから成る。示された新規構造体の例としては、窒化
ルテニウムの2つの層70,24の間にチタン酸塩バリ
ウムストロンチウムの層から成るコンデンサがある。か
かる構造体の利点としては、金属化合物が拡散バリアと
して働くので、誘電体と周辺材料との汚染か減少するこ
とである。反応済み金属とすると、更に反応が進むこと
が減少し、これにより接続材料の層剥離が防止される。
接続部は製造環境中で、より容易かつ経済的に処理でき
るよう単一層となっている。非導電性界面酸化物により
生じる直列浮遊容量は、一般的にこれら構造体により防
止される。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は一般的にはコンデンサの
構造体において、例えば高誘電率を有する材料に、電気
的な接続部を設けることに関する。
【0002】
【従来技術】例えば高誘電率材料に電気的接続部を形成
するための現在の方法に関連して、本発明の背景を説明
するが、この説明は本発明の範囲を限定するものではな
い。
【0003】高誘電率材料(以下HDC材料と略称す
る)は(一般に20よりも大きい)高誘電率を示し、こ
のためこれら材料は多数の電気デバイス例えばコンデン
サの製造に有効である。これらHDC材料の例として
は、チタン酸塩例えばチタン酸塩バリウムストロンチウ
ムおよびチタン酸塩鉛ジルコン、一つ以上のアクセプタ
例えばアルカリ土類金属(すなわちIIA族の元素)で
ドープされたチタン酸塩および一つ以上のドナー例えば
希土類元素(すなわちランタン系列の元素およびイット
リウム)でドープされたチタン酸塩がある。多くの強誘
電体および遷移金属酸化物(すなわち原子番号21〜2
9、39〜47、57〜79および89以上の元素の酸
化物)も高誘電率を示す。しかしながら、電気接続部が
電子デバイス内で有効であるには、これらHDC材料の
有効な特性を低下させない信頼性ある電気接続部を製造
しなければならない。
【0004】これまでこの分野では単一または多数の金
属層を用いてHDC材料へ電気的接点を一般に形成して
いた。例えば半導体基体の表面にコンデンサを形成する
HDC材料に電気接続部を設けるため、とりわけ次の技
術が用いられている。(a)誘電体/白金/基体、
(b)誘電体/白金/タンタル/基体、(c)誘電体/
金/基体、(d)誘電体/金パラジウム/基体、(e)
誘電体/金パラジウム/タングステン/基体。上記の例
における層の順は、頂部から基体(例えばシリコン)ま
での順である。コンデンサ構造体を完成するには誘電体
膜の頂部に対して同じような金属化が必要である。一般
に現在の方法では、接着層として働く他の金属と共に貴
金属を用いて誘電体に接触させている。
【0005】誘電体界面における直列浮遊容量をなく
し、誘電材料成分による基体材料の汚染を防止し、接続
材料の層剥離を防止することにより、誘電材料のバルク
誘電率を保持しながら低抵抗率で誘電材料へ電気接続部
を形成する方法を、一般的に実施しなければならない。
さらに製造方法を簡略にするためにバルク層の数は一般
に減少する必要がある。
【0006】
【発明が解決しようとする課題】HDC材料に電気接続
部を設けるための現在の方法は次のような好ましくない
結果を生じることがあることがこれまで判っている。す
なわち、接触金属と誘電体との間の界面酸化物により形
成される直列浮遊容量により有効誘電率が低下するこ
と、接着層が酸化する結果接触抵抗が大きくなること、
誘電体を構成する元素により例えばシリコンをベースと
する部品が汚染されること、接触金属層により誘電体が
汚染されること、接触金属層が剥離すること、多数の層
(貴金属接触層とさらなる金属接着層)が必要なために
製造プロセスが困難になること、等の好ましくない結果
が生じる。
【0007】
【課題を解決するための手段】本発明の要旨である構造
体は、誘電体(例えば強誘電体)と、この誘電体に形成
された少なくとも一つの電気接続部から成る。この接続
材料は、導電性の非金属を含む化合物(非金属を含む化
合物とは、金属でない少なくとも一つの成分を有する化
合物である)である。かかる化合物の例としては窒化ル
テニウム、二酸化ルテニウム、窒化錫、酸化錫、窒化チ
タンおよび一酸化チタンがある。電気接続部として電気
伝導率を増やすようにドープされた化合物も使用でき
る。提供される新規な構造体の例としては、窒化ルテニ
ウムの2つの層の間に設けられたチタン酸バリウムスト
ロンチウムの層から成るコンデンサがある。
【0008】
【作用および効果】導電性金属化合物が高誘電材料に対
する電気接続部を形成している第1構造体がある。開示
された構造体は、現在の構造体の欠点を生じることな
く、HDC材料に電気接続部を設ける目的のすべてを一
般に達成するものである。接続層が反応済み金属である
場合、接続層は誘電体すなわち周辺材料の拡散および汚
染に対してより不活性である。この反応済み金属材料
は、HDC材料とその周辺材料との間の拡散バリアとし
ても働くことができるので、周辺材料によるHDC材料
(およびこの逆)の汚染を防止する。反応金属とするこ
とにより、さらなる反応が最小となり、これにより層の
剥離が防止される。接続部は製造環境中でより容易かつ
経済的に処理できるように単一層となっている。
【0009】HDC材料の多くは、酸化雰囲気中で形成
または堆積されるので、酸化物が導電性となるような電
気接続部の構成材料が選択される。これにより現行の方
法の結果生じることがあった非導電性の界面酸化物によ
る直列浮遊容量がなくなる。本発明の新規な事項と考え
られる特徴は、添付された特許請求の範囲に記載されて
いる。しかしながら発明事態は、その特徴および利点と
同じように、添付図面を参照して次の詳細な説明を読め
ば最良に理解されよう。
【0010】
【好ましい実施例の詳細な説明】図1に示した本発明の
好ましい実施例は、コンデンサであり、このコンデンサ
は3つの層、すなわち窒化ルテニウムから成る第1接続
層20と、チタン酸バリウムストロンチウムから成る誘
電体層22と、また窒化ルテニウムから成る第2接続層
24から成る。
【0011】図2に示した別の実施例では、半導体本体
26の表面上にかかるコンデンサ構造体を設けることが
できる。半導体の表面の一部の上に窒化ルテニウムの層
28が堆積され、次にチタン酸バリウムストロンチウム
の誘電層30が堆積され、次に窒化ルテニウムの第2接
続層32が堆積される。半導体上またはこの内部に設け
られた他のデバイスへの電気接続部には、代表的にはア
ルミニウムから成る金属接点34を設けることができ
る。図2は、コンデンサの要素のすべてを平面形状とし
て示しているが、本発明は、半導体表面の凹部内に形成
されたコンデンサを含む、より複雑な形状のコンデンサ
構造体にも等しく適用される。
【0012】図3に示すさらに別の実施例では、かかる
コンデンサ構造体は2つの化合物を使用して形成でき、
HDC材料30への電気接点、(a)導電性窒化金属層
28および(b)それぞれの導電性金属酸化物36で形
成するものである。窒化金属層28は、拡散バリアとし
て働き、金属酸化物層36はHDC30との安定した導
電性接点として働く。これらの二重層を形成するには少
なくとも2つの方法がある。第1の方法は、窒化金属を
堆積し、次にHDCに接触すべき酸化金属を堆積する方
法である。もう一つの方法は、窒化金属層を堆積し、こ
の窒化金属層をHDC材料堆積時に導電性酸化金属に部
分的に変換する。導電性窒化物および酸化物を形成する
金属の例としては、ルテニウム(窒化ルテニウム/酸化
ルテニウム)および錫(窒化錫/酸化錫)がある。
【0013】コンデンサ用誘電体22および30の別の
材料としては、チタン酸塩、例えばチタン酸鉛ジルコ
ン、一つ以上の希土類元素でドープされたチタン酸塩、
一つ以上のアルカリ土類金属でドープされたチタン酸
塩、遷移金属酸化物、例えば五酸化タンタルおよび五酸
化ニオブ、および強誘電体材料がある。
【0014】電気接続層20、24、28および32用
の別の材料としては、窒化錫および酸化錫、窒化チタン
および一酸化チタン、窒化錫および酸化錫がある。これ
ら化合物は、電気伝導率を増すようにドープしたもの、
例えばインジウムでドープした窒化錫、アルミニウムで
ドープした窒化亜鉛、インジウムでドープした酸化錫お
よびアルミニウムでドープした酸化亜鉛とすることがで
きる。
【0015】化学物半導体、例えばヒ化ガリウムおよび
リン化インジウムを含む他の多くの半導体基体も使用で
きる。化合物半導体は、特に汚染を受けやすいことが多
く、この汚染はこれら新規な構造体により一般に阻止さ
れるので、化合物半導体上に製造されたコンデンサは、
これら新規な構造体から最大の利点を得る。下記の単一
の表は、いくつかの実施例および図面を外観するもので
ある。
【0016】
【表1】
【0017】以上で数例の好ましい実施例を詳細に示し
た。本発明の範囲は、特許請求の範囲内で上記の実施例
と異なる例をも含むと解すべきである。上記構造体を参
照すると、かかる構造体への電気接続部は、オーミック
性、整流性、容量性、介入回路を介したり、介さない直
接または間接的なものである。シリコン、ゲルマニウ
ム、ヒ化ガリウムまたは他の電子材料ファミリーの個別
部品または完全集積回路を製造することも意図してい
る。
【0018】図面に示した実施例を参照して本発明を説
明したが、この説明は本発明を限定するものではない。
当業者が発明の説明を読めば、本発明の他の実施例だけ
でなく、種々の変形例および図示した実施例の組み合わ
せが明らかとなろう。したがって特許請求の範囲は、か
かる変形例および実施例を含むものである。
【0019】以上の説明に関して更に以下の項を開示す
る。 (1)誘電体と、該誘電体への少なくとも一つの電気接
続部とから成り、前記電気接続部は、導電性の非金属含
有化合物から成る構造体。 (2)前記誘電体は強誘電体材料である第1項記載の構
造体。 (3)前記誘電体は、遷移金属酸化物、チタン酸塩、一
つ以上の希土類元素でドープされたチタン酸塩、一つ以
上のアルカリ土類金属でドープされたチタン酸塩および
これらの組み合わせから成る群から選択された第2項記
載の構造体。
【0020】(4)前記誘電体は、Ta、Y
、SrTiO、TiO、PbTiO、KNbO
、KTaO、(Pb,Mg)NbO、BiTi
12またはこれらの組み合わせから成る群から選択
された第1項記載の構造体。 (5)前記誘電体は、La又はNbでドープされた(B
a、Sr、Pb)(Ti、Zr)Oである第1項記載
の構造体。 (6)前記導電性化合物は、窒化ランタン、二酸化ルテ
ニウム、窒化錫、酸化錫、窒化チタン、一酸化チタン、
およびこれらの組み合わせから成る群から選択された第
1項記載の構造体。
【0021】(7)前記導電性化合物は、電気伝導率が
実質的に増加するようドープされている第1項記載の構
造体。 (8)前記ドープされた金属化合物は、インジウムでド
ープされた窒化錫、アルミニウムでドープされた窒化亜
鉛、インジウムでドープされた酸化錫、アルミニウムで
ドープされた酸化亜鉛、およびこれらの組み合わせから
成る群から選択された第7項記載の構造体。 (9)前記誘電体はチタン酸 バリウムストロンチウム
である第1項記載の構造体。 (10)前記誘電体はチタン酸塩鉛ジルコンである第1
項記載の構造体。 (11)前記誘電体は五酸化タンタルである第1項記載
の構造体。 (12)前記誘電体は五酸化ニオブである第1項記載の
構造体。 (13)窒化ルテニウムの2つの層の間に設けられたチ
タン酸バリウムストロンチウムの層から成るコンデン
サ。
【0022】(14)(a)酸化遷移金属、チタン酸
塩、一つ以上の希土類元素でドープされたチタン酸塩、
一つ以上のアルカリ土類金属およびそれらの組み合わせ
から成る群から選択した誘電体の層を導電性非金属含有
化合物の第1層の上に形成し、(b)前記誘電体の層の
上に導電性非金属含有化合物の第2層を形成する工程だ
ら成るコンデンサを形成する方法。 (15)前記導電性化合物は、窒化ランタン、二酸化ル
テニウム、窒化錫、酸化錫、窒化チタン、一酸化チタ
ン、およびこれらの組み合わせから成る群から選択され
た第14項記載の方法。 (16)前記導電性化合物の電気伝導率を実質的に増加
するよう前記導電性化合物のドーピング工程を更に実施
する第14項記載の方法。 (17)本発明の要旨である構造体は、誘電体(例えば
チタン酸塩バリウムストロンチウム22)と、該誘電体
に形成された電気接続部(例えば、窒化ルテニウム2
0、24)とから成る。この接続部は導電性非金属含有
化合物(すなわち、金属でない少なくとも一つの成分を
有する金属化合物)、例えば窒化ルテニウム二酸化ルテ
ニウム、窒化錫、酸化錫、窒化チタンおよび一酸化チタ
ンから成る。示された新規構造体の例としては、窒化ル
テニウムの2つの層の間にチタン酸塩バリウムストロン
チウムの層から成るコンデンサがある。かかる構造体の
利点としては、金属化合物が拡散バリアとして働くの
で、誘電体と周辺材料との汚染が減少することである。
反応済み金属とすると、更に反応が進むことが減少し、
これにより接続材料の層剥離が防止される。接続部は製
造環境中で、より容易かつ経済的に処理できるよう単一
層となっている。非導電性界面酸化物により生じる直列
浮遊容量は、一般的にこれら構造体により防止される。
【図面の簡単な説明】
【図1】コンデンサの横断面図である。
【図2】半導体基体の表面に形成されたコンデンサの微
細横断面図である。
【図3】半導体基体の表面に形成されたコンデンサの微
細横断面図である。
【符号の説明】
20 第1接続層 22 誘電体層 24 第2接続層 26 半導体本体 28 窒化ルテニウム 30 チタン酸塩バリウムストロンチウム 32 第2接続層 34 金属接点
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成5年7月15日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正内容】
【書類名】 明細書
【発明の名称】 構造体およびコンデンサの製造方法
【特許請求の範囲】
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は一般的にはコンデンサの
構造体において、例えば高誘電率を有する材料に、電気
的な接続部を設けることに関する。
【0002】
【従来技術】例えば高誘電率材料に電気的接続部を形成
するための現在の方法に関連して、本発明の背景を説明
するが、この説明は本発明の範囲を限定するものではな
い。
【0003】高誘電率材料(以下HDC材料と略称す
る)は(一般に20よりも大きい)高誘電率を示し、こ
のためこれら材料は多数の電気デバイス例えばコンデン
サの製造に有効である。これらHDC材料の例として
は、チタン酸塩例えばチタン酸塩バリウムストロンチウ
ムおよびチタン酸塩鉛ジルコン、一つ以上のアクセプタ
例えばアルカリ土類金属(すなわちIIA族の元素)で
ドープされたチタン酸塩および一つ以上のドナー例えば
希土類元素(すなわちランタン系列の元素およびイット
リウム)でドープされたチタン酸塩がある。多くの強誘
電体および遷移金属酸化物(すなわち原子番号21〜2
9、39〜47、57〜79および89以上の元素の酸
化物)も高誘電率を示す。しかしながら、電気接続部が
電子デバイス内で有効であるには、これらHDC材料の
有効な特性を低下させない信頼性ある電気接続部を製造
しなければならない。
【0004】これまでこの分野では単一または多数の金
属層を用いてHDC材料へ電気的接点を一般に形成して
いた。例えば半導体基体の表面にコンデンサを形成する
HDC材料に電気接続部を設けるため、とりわけ次の技
術が用いられている。(a)誘電体/白金/基体、
(b)誘電体/白金/タンタル/基体、(c)誘電体/
金/基体、(d)誘電体/金パラジウム/基体、(e)
誘電体/金パラジウム/タングステン/基体。上記の例
における層の順は、頂部から基体(例えばシリコン)ま
での順である。コンデンサ構造体を完成するには誘電体
膜の頂部に対して同じような金属化が必要である。一般
に現在の方法では、接着層として働く他の金属と共に貴
金属を用いて誘電体に接触させている。
【0005】誘電体界面における直列浮遊容量をなく
し、誘電材料成分による基体材料の汚染を防止し、接続
材料の層剥離を防止することにより、誘電材料のバルク
誘電率を保持しながら低抵抗率で誘電材料へ電気接続部
を形成する方法を、一般的に実施しなければならない。
さらに製造方法を簡略にするためにバルク層の数は一般
に減少する必要がある。
【0006】
【発明が解決しようとする課題】HDC材料に電気接続
部を設けるための現在の方法は次のような好ましくない
結果を生じることがあることがこれまで判っている。す
なわち、接触金属と誘電体との間の界面酸化物により形
成される直列浮遊容量により有効誘電率が低下するこ
と、接着層が酸化する結果接触抵抗が大きくなること、
誘電体を構成する元素により例えばシリコンをベースと
する部品が汚染されること、接触金属層により誘電体が
汚染されること、接触金属層が剥離すること、多数の層
(貴金属接触層とさらなる金属接着層)が必要なために
製造プロセスが困難になること、等の好ましくない結果
が生じる。
【0007】
【課題を解決するための手段】本発明の要旨である構造
体は、誘電体(例えば強誘電体)と、この誘電体に形成
された少なくとも一つの電気接続部から成る。この接続
材料は、導電性の非金属を含む化合物(非金属を含む化
合物とは、金属でない少なくとも一つの成分を有する化
合物である)である。かかる化合物の例としては窒化ル
テニウム、二酸化ルテニウム、窒化錫、酸化錫、窒化チ
タンおよび一酸化チタンがある。電気接続部として電気
伝導率を増やすようにドープされた化合物も使用でき
る。提供される新規な構造体の例としては、窒化ルテニ
ウムの2つの層の間に設けられたチタン酸バリウムスト
ロンチウムの層から成るコンデンサがある。
【0008】
【作用および効果】導電性金属化合物が高誘電材料に対
する電気接続部を形成している第1構造体がある。開示
された構造体は、現在の構造体の欠点を生じることな
く、HDC材料に電気接続部を設ける目的のすべてを一
般に達成するものである。接続層が反応済み金属である
場合、接続層は誘電体すなわち周辺材料の拡散および汚
染に対してより不活性である。この反応済み金属材料
は、HDC材料とその周辺材料との間の拡散バリアとし
ても働くことができるので、周辺材料によるHDC材料
(およびこの逆)の汚染を防止する。反応金属とするこ
とにより、さらなる反応が最小となり、これにより層の
剥離が防止される。接続部は製造環境中でより容易かつ
経済的に処理できるように単一層となっている。
【0009】HDC材料の多くは、酸化雰囲気中で形成
または堆積されるので、酸化物が導電性となるような電
気接続部の構成材料が選択される。これにより現行の方
法の結果生じることがあった非導電性の界面酸化物によ
る直列浮遊容量がなくなる。本発明の新規な事項と考え
られる特徴は、添付された特許請求の範囲に記載されて
いる。しかしながら発明事態は、その特徴および利点と
同じように、添付図面を参照して次の詳細な説明を読め
ば最良に理解されよう。
【0010】
【好ましい実施例の詳細な説明】図1に示した本発明の
好ましい実施例は、コンデンサであり、このコンデンサ
は3つの層、すなわち窒化ルテニウムから成る第1接続
層20と、チタン酸バリウムストロンチウムから成る誘
電体層22と、また窒化ルテニウムから成る第2接続層
24から成る。
【0011】図2に示した別の実施例では、半導体本体
26の表面上にかかるコンデンサ構造体を設けることが
できる。半導体の表面の一部の上に窒化ルテニウムの層
28が堆積され、次にチタン酸バリウムストロンチウム
の誘電層30が堆積され、次に窒化ルテニウムの第2接
続層32が堆積される。半導体上またはこの内部に設け
られた他のデバイスへの電気接続部には、代表的にはア
ルミニウムから成る金属接点34を設けることができ
る。図2は、コンデンサの要素のすべてを平面形状とし
て示しているが、本発明は、半導体表面の凹部内に形成
されたコンデンサを含む、より複雑な形状のコンデンサ
構造体にも等しく適用される。
【0012】図3に示すさらに別の実施例では、かかる
コンデンサ構造体は2つの化合物を使用して形成でき、
HDC材料30への電気接点、(a)導電性窒化金属層
28および(b)それぞれの導電性金属酸化物36で形
成するものである。窒化金属層28は、核酸バリアとし
て働き、金属酸化物層36はHDC30との安定した導
電性接点として働く。これらの二重層を形成するには少
なくとも2つの方法がある。第1の方法は、窒化金属を
堆積し、次にHDCに接触すべき酸化金属を堆積する方
法である。もう一つの方法は、窒化金属層を堆積し、こ
の窒化金属層をHDC材料堆積時に導電性酸化金属に部
分的に変換する。導電性窒化物および酸化物を形成する
金属の例としては、ルテニウム(窒化ルテニウム/酸化
ルテニウム)および錫(窒化錫/酸化錫)がある。
【0013】コンデンサ用誘電体22および30の別の
材料としては、チタン酸塩、例えばチタン酸鉛ジルコ
ン、一つ以上の希土類元素でドープされたチタン酸塩、
一つ以上のアルカリ土類金属でドープされたチタン酸
塩、遷移金属酸化物、例えば五酸化タンタルおよび五酸
化ニオブ、および強誘電体材料がある。
【0014】電気接続層20、24、28および32用
の別の材料としては、窒化錫および酸化錫、窒化チタン
および一酸化チタン、窒化錫および酸化錫がある。これ
ら化合物は、電気伝導率を増すようにドープしたもの、
例えばインジウムでドープした窒化錫、アルミニウムで
ドープした窒化亜鉛、インジウムでドープした酸化錫お
よびアルミニウムでドープした酸化亜鉛とすることがで
きる。
【0015】化学物半導体、例えばヒ化ガリウムおよび
リン化インジウムを含む他の多くの半導体基体も使用で
きる。化合物半導体は、特に汚染を受けやすいことが多
く、この汚染はこれら新規な構造体により一般に阻止さ
れるので、化合物半導体上に製造されたコンデンサは、
これら新規な構造体から最大の利点を得る。下記の単一
の表は、いくつかの実施例および図面を外観するもので
ある。
【0016】
【表1】
【0017】以上で数例の好ましい実施例を詳細に示し
た。本発明の範囲は、特許請求の範囲内で上記の実施例
と異なる例をも含むと解すべきである。上記構造体を参
照すると、かかる構造体への電気接続部は、オーミック
性、整流性、容量性、介入回路を介したり、介さない直
接または間接的なものである。シリコン、ゲルマニウ
ム、ヒ化ガリウムまたは他の電子材料ファミリーの個別
部品または完全集積回路を製造することも意図してい
る。
【0018】図面に示した実施例を参照して本発明を説
明したが、この説明は本発明を限定するものではない。
当業者が発明の説明を読めば、本発明の他の実施例だけ
でなく、種々の変形例および図示した実施例の組み合わ
せが明らかとなろう。したがって特許請求の範囲は、か
かる変形例および実施例を含むものである。
【0019】以上の説明に関して更に以下の項を開示す
る。 (1)誘電体と、該誘電体への少なくとも一つの電気接
続部とから成り、前記電気接続部は、導電性の非金属含
有化合物から成る構造体。 (2)前記誘電体は強誘電体材料である第1項記載の構
造体。 (3)前記誘電体は、遷移金属酸化物、チタン酸塩、一
つ以上の希土類元素でドープされたチタン酸塩、一つ以
上のアルカリ土類金属でドープされたチタン酸塩および
これらの組み合わせから成る群から選択された第2項記
載の構造体。
【0020】(4)前記誘電体は、Ta、Y
、SrTiO、TiO、PbTiO、KNbO
、KTaO、(Pb,Mg)NbO、BiTi
12またはこれらの組み合わせから成る群から選択
された第1項記載の構造体。 (5)前記誘電体は、La又はNbでドープされた(B
a、Sr、Pb)(Ti、Zr)Oである第1項記載
の構造体。 (6)前記導電性化合物は、窒化ランタン、二酸化ルテ
ニウム、窒化錫、酸化錫、窒化チタン、一酸化チタン、
およびこれらの組み合わせから成る群から選択された第
1項記載の構造体。
【0021】(7)前記導電性化合物は、電気伝導率が
実質的に増加するようドープされている第1項記載の構
造体。 (8)前記ドープされた金属化合物は、インジウムでド
ープされた窒化錫、アルミニウムでドープされた窒化亜
鉛、インジウムでドープされた酸化錫、アルミニウムで
ドープされた酸化亜鉛、およびこれらの組み合わせから
成る群から選択された第7項記載の構造体。 (9)前記誘電体はチタン酸バリウムストロンチウムで
ある第1項記載の構造体。 (10)前記誘電体はチタン酸塩鉛ジルコンである第1
項記載の構造体。 (11)前記誘電体は五酸化タンタルである第1項記載
の構造体。 (12)前記誘電体は五酸化ニオブである第1項記載の
構造体。 (13)窒化ルテニウムの2つの層の間に設けられたチ
タン酸バリウムストロンチウムの層から成るコンデン
サ。
【0022】(14)(a)酸化遷移金属、チタン酸
塩、一つ以上の希土類元素でドープされたチタン酸塩、
一つ以上のアルカリ土類金属およびそれらの組み合わせ
から成る群から選択した誘電体の層を導電性非金属含有
化合物の第1層の上に形成し、(b)前記誘電体の層の
上に導電性非金属含有化合物の第2層を形成する工程だ
ら成るコンデンサを形成する方法。 (15)前記導電性化合物は、窒化ランタン、二酸化ル
テニウム、窒化錫、酸化錫、窒化チタン、一酸化チタ
ン、およびこれらの組み合わせから成る群から選択され
た第14項記載の方法。 (16)前記導電性化合物の電気伝導率を実質的に増加
するよう前記導電性化合物のドーピング工程を更に実施
する第14項記載の方法。 (17)本発明の要旨である構造体は、誘電体(例えば
チタン酸塩バリウムストロンチウム22)と、該誘電体
に形成された電気接続部(例えば、窒化ルテニウム2
0、24)とから成る。この接続部は導電性非金属含有
化合物(すなわち、金属でない少なくとも一つの成分を
有する金属化合物)、例えば窒化ルテニウム、二酸化ル
テニウム、窒化錫、酸化錫、窒化チタンおよび一酸化チ
タンから成る。示された新規構造体の例としては、窒化
ルテニウムの2つの層の間にチタン酸塩バリウムストロ
ンチウムの層から成るコンデンサがある。かかる構造体
の利点としては、金属化合物が拡散バリアとして働くの
で、誘電体と周辺材料との汚染が減少することである。
反応済み金属とすると、更に反応が進むことが減少し、
これにより接続材料の層剥離が防止される。接続部は製
造環境中で、より容易かつ経済的に処理できるよう単一
層となっている。非導電性界面酸化物により生じる直列
浮遊容量は、一般的にこれら構造体により防止される。
【図面の簡単な説明】
【図1】コンデンサの横断面図である。
【図2】半導体基体の表面に形成されたコンデンサの微
細横断面図である。
【図3】半導体基体の表面に形成されたコンデンサの微
細横断面図である。
【符号の説明】 20 第1接続層 22 誘電体層 24 第2接続層 26 半導体本体 28 窒化ルテニウム 30 チタン酸塩バリウムストロンチウム 32 第2接続層 34 金属接点

Claims (2)

    【特許請求の範囲】
  1. 【請求項 1】誘電体と、 該誘電体への少なくとも一つの電気接続部とから成り、
    前記電気接続部は、導電性の非金属含有化合物から成る
    構造体。
  2. 【請求項 2】(a)酸化遷移金属、チタン酸塩、一つ
    以上の希土類元素でドープされたチタン酸塩、一つ以上
    のアルカリ土類金属およびそれらの組み合わせから成る
    群から選択した誘電体の層を導電性非金属含有化合物の
    第1層の上に形成し、(b)前記誘電体の層の上に導電
    性非金属含有化合物の第2層を形成する工程から成るコ
    ンデンサを形成する方法。
JP12770793A 1992-04-20 1993-04-19 構造体およびコンデンサの製造方法 Expired - Fee Related JP3351856B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87186492A 1992-04-20 1992-04-20
US871864 1992-04-20

Publications (2)

Publication Number Publication Date
JPH06151712A true JPH06151712A (ja) 1994-05-31
JP3351856B2 JP3351856B2 (ja) 2002-12-03

Family

ID=25358331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12770793A Expired - Fee Related JP3351856B2 (ja) 1992-04-20 1993-04-19 構造体およびコンデンサの製造方法

Country Status (5)

Country Link
US (1) US5520992A (ja)
EP (2) EP0567062A1 (ja)
JP (1) JP3351856B2 (ja)
KR (1) KR100325967B1 (ja)
TW (1) TW353186B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864786A (ja) * 1994-08-01 1996-03-08 Texas Instr Inc <Ti> マイクロ電子構造体とその製造法
JPH08191137A (ja) * 1994-08-01 1996-07-23 Texas Instr Inc <Ti> マイクロ電子構造体とその製造法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69404189T2 (de) * 1993-03-31 1998-01-08 Texas Instruments Inc Leicht donatoren-dotierte Elektroden für Materialien mit hoher dielektrischer Konstante
US5547379A (en) * 1994-10-06 1996-08-20 Hasel; Robert W. Method of restoring a tooth
US5541807A (en) * 1995-03-17 1996-07-30 Evans, Jr.; Joseph T. Ferroelectric based capacitor for use in memory systems and method for fabricating the same
JP3373525B2 (ja) * 1995-06-28 2003-02-04 テルコーディア テクノロジーズ インコーポレイテッド シリコン上に集積された多層強誘電体セルおよびペロブスカイト電子へテロ構造
US5739049A (en) * 1995-08-21 1998-04-14 Hyundai Electronics Industries Co., Ltd. Method for fabricating semiconductor device having a capacitor and a method of forming metal wiring on a semiconductor substrate
US6579600B1 (en) * 1996-07-25 2003-06-17 Materials Systems, Inc. Multilayer capacitor and method
US5923056A (en) * 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US6064102A (en) * 1997-12-17 2000-05-16 Advanced Micro Devices, Inc. Semiconductor device having gate electrodes with different gate insulators and fabrication thereof
US6271131B1 (en) 1998-08-26 2001-08-07 Micron Technology, Inc. Methods for forming rhodium-containing layers such as platinum-rhodium barrier layers
US6517616B2 (en) * 1998-08-27 2003-02-11 Micron Technology, Inc. Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide
US6074945A (en) * 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
US5962716A (en) * 1998-08-27 1999-10-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6133159A (en) * 1998-08-27 2000-10-17 Micron Technology, Inc. Methods for preparing ruthenium oxide films
US6541067B1 (en) * 1998-08-27 2003-04-01 Micron Technology, Inc. Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide and method of using same
US6197628B1 (en) 1998-08-27 2001-03-06 Micron Technology, Inc. Ruthenium silicide diffusion barrier layers and methods of forming same
US6323081B1 (en) 1998-09-03 2001-11-27 Micron Technology, Inc. Diffusion barrier layers and methods of forming same
US6284655B1 (en) 1998-09-03 2001-09-04 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6239028B1 (en) * 1998-09-03 2001-05-29 Micron Technology, Inc. Methods for forming iridium-containing films on substrates
US6329286B1 (en) 1999-04-27 2001-12-11 Micron Technology, Inc. Methods for forming conformal iridium layers on substrates
US6465828B2 (en) 1999-07-30 2002-10-15 Micron Technology, Inc. Semiconductor container structure with diffusion barrier
US6417537B1 (en) 2000-01-18 2002-07-09 Micron Technology, Inc. Metal oxynitride capacitor barrier layer
US6380080B2 (en) 2000-03-08 2002-04-30 Micron Technology, Inc. Methods for preparing ruthenium metal films
US6429127B1 (en) 2000-06-08 2002-08-06 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same
US6660631B1 (en) * 2000-08-31 2003-12-09 Micron Technology, Inc. Devices containing platinum-iridium films and methods of preparing such films and devices
US6642567B1 (en) 2000-08-31 2003-11-04 Micron Technology, Inc. Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices
JP3624822B2 (ja) 2000-11-22 2005-03-02 株式会社日立製作所 半導体装置およびその製造方法
KR100387264B1 (ko) 2000-12-29 2003-06-12 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조 방법
WO2003021615A1 (en) * 2001-08-28 2003-03-13 Tdk Corporation Thin film capacity element-use composition, high-permittivity insulation film, thin film capacity element and thin film multilayer capacitor
JP3995619B2 (ja) * 2003-03-12 2007-10-24 富士通株式会社 薄膜キャパシタ素子、その製造方法及び電子装置
KR101001741B1 (ko) * 2003-08-18 2010-12-15 삼성전자주식회사 반도체 장치의 커패시터 및 그 제조 방법과 커패시터를구비하는 메모리 장치
US9101436B2 (en) * 2005-10-21 2015-08-11 Ada Foundation Dental and endodontic filling materials and methods
US9259439B2 (en) * 2005-10-21 2016-02-16 Ada Foundation Dual-phase cement precursor systems for bone repair
JP5608315B2 (ja) * 2007-12-03 2014-10-15 ピーエスフォー ルクスコ エスエイアールエル キャパシタ用電極及びその製造方法、キャパシタ
US8344438B2 (en) * 2008-01-31 2013-01-01 Qimonda Ag Electrode of an integrated circuit
KR100997379B1 (ko) 2008-08-08 2010-11-30 한국과학기술연구원 선형적 유전특성을 나타내는 유전체 박막 조성물
US8846468B2 (en) * 2012-12-17 2014-09-30 Intermolecular, Inc. Methods to improve leakage of high K materials
US9466660B2 (en) 2013-10-16 2016-10-11 Micron Technology, Inc. Semiconductor structures including molybdenum nitride, molybdenum oxynitride or molybdenum-based alloy material, and method of making such structures
US9715966B2 (en) * 2014-04-23 2017-07-25 Richard Down Newberry Supercapacitor with extreme energy storage capacity

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743842C2 (de) * 1976-10-01 1982-07-01 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Trockenelektrolytkondensator und Verfahren zu dessen Herstellung
DE2806395C2 (de) * 1977-02-15 1982-09-02 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Festelektrolyt-Kondensator
US4387387A (en) * 1979-08-13 1983-06-07 Shunpei Yamazaki PN Or PIN junction type semiconductor photoelectric conversion device
US4528546A (en) * 1983-05-02 1985-07-09 National Semiconductor Corporation High power thick film
US4598306A (en) * 1983-07-28 1986-07-01 Energy Conversion Devices, Inc. Barrier layer for photovoltaic devices
JPS6074556A (ja) * 1983-09-30 1985-04-26 Fujitsu Ltd キヤパシタ
US5046043A (en) * 1987-10-08 1991-09-03 National Semiconductor Corporation Ferroelectric capacitor and memory cell including barrier and isolation layers
JPH01225149A (ja) * 1988-03-04 1989-09-08 Toshiba Corp キャパシタ及びその製造方法
JPH02134804A (ja) * 1988-11-15 1990-05-23 Nec Corp 容量素子
JPH02225346A (ja) * 1989-02-27 1990-09-07 Central Glass Co Ltd 熱線反射ガラス
US5005102A (en) * 1989-06-20 1991-04-02 Ramtron Corporation Multilayer electrodes for integrated circuit capacitors
US5070026A (en) * 1989-06-26 1991-12-03 Spire Corporation Process of making a ferroelectric electronic component and product
US4982309A (en) * 1989-07-17 1991-01-01 National Semiconductor Corporation Electrodes for electrical ceramic oxide devices
US5003428A (en) * 1989-07-17 1991-03-26 National Semiconductor Corporation Electrodes for ceramic oxide capacitors
DE69017802T2 (de) * 1989-08-30 1995-09-07 Nippon Electric Co Dünnfilmkondensator und dessen Herstellungsverfahren.
JPH03200307A (ja) * 1989-12-27 1991-09-02 Taiyo Yuden Co Ltd 積層薄膜誘電体素子およびその製造方法
US5031144A (en) * 1990-02-28 1991-07-09 Hughes Aircraft Company Ferroelectric memory with non-destructive readout including grid electrode between top and bottom electrodes
US5262920A (en) * 1991-05-16 1993-11-16 Nec Corporation Thin film capacitor
JP2690821B2 (ja) * 1991-05-28 1997-12-17 シャープ株式会社 半導体装置
US5142437A (en) * 1991-06-13 1992-08-25 Ramtron Corporation Conducting electrode layers for ferroelectric capacitors in integrated circuits and method
US5164808A (en) * 1991-08-09 1992-11-17 Radiant Technologies Platinum electrode structure for use in conjunction with ferroelectric materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864786A (ja) * 1994-08-01 1996-03-08 Texas Instr Inc <Ti> マイクロ電子構造体とその製造法
JPH08191137A (ja) * 1994-08-01 1996-07-23 Texas Instr Inc <Ti> マイクロ電子構造体とその製造法

Also Published As

Publication number Publication date
JP3351856B2 (ja) 2002-12-03
KR930022549A (ko) 1993-11-24
EP0800187A3 (en) 2005-09-14
KR100325967B1 (ko) 2002-06-20
EP0567062A1 (en) 1993-10-27
TW353186B (en) 1999-02-21
US5520992A (en) 1996-05-28
EP0800187A2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
JP3351856B2 (ja) 構造体およびコンデンサの製造方法
US5348894A (en) Method of forming electrical connections to high dielectric constant materials
US5053917A (en) Thin film capacitor and manufacturing method thereof
KR100356348B1 (ko) 기산화 고 유전상수 재료로 만든 전극
JP2825606B2 (ja) 集積回路用コンデンサおよびその製造方法
US5612560A (en) Electrode structure for ferroelectric capacitors for integrated circuits
US5612574A (en) Semiconductor structures using high-dielectric-constant materials and an adhesion layer
JP3275335B2 (ja) Icにおける強誘電性キャパシタおよびその製造方法
KR0165885B1 (ko) 전기 세라믹 산화물 디바이스용 전극
KR100200060B1 (ko) 높은 캐패시턴스 값을 지니는 탄탈 산화물 캐패시터
KR100371891B1 (ko) 마이크로 일렉트로닉 구조물 및 이의 형성 방법
US5003428A (en) Electrodes for ceramic oxide capacitors
JPH06326250A (ja) 高誘電率材料へのコンタクト構造および形成方法
US20070081297A1 (en) Method of manufacturing thin film capacitor and printed circuit board having thin film capacitor embedded therein
JPH0687493B2 (ja) 薄膜コンデンサ
JPH0687491B2 (ja) 薄膜コンデンサ
US6037256A (en) Method for producing a noble metal-containing structure on a substrate, and semiconductor component having such a noble metal-containing structure
US7501291B2 (en) Process for fabricating an integrated circuit including a capacitor with a copper electrode
US7170736B2 (en) Capacitor having low resistance electrode including a thin silicon layer
JPH0712074B2 (ja) 薄膜コンデンサ及びその製造方法
JP2751864B2 (ja) 酸素拡散バリア性電極とその製造方法
JP2004146615A (ja) キャパシタ回路
JPH04360506A (ja) 薄膜キャパシタ
KR940008893B1 (ko) 캐패시터의 제조방법
JPH0778727A (ja) 薄膜コンデンサ

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees